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Introduction. Let f :X-->S be a smooth, projective, geometrically inte-
gral morphism of locally noetherian schemes with an f-v e ry  ample invertible
sheaf e x (1 ) . In this situation

Definition ( [3 ]  and [ 8 ] ) .  A  coherent module F  of rank r on the fibre
over a geometric point s of S is said to be stable (or, semistable) (with respect
to Ox (1)) if and only if it is torsion free and for all proper coherent subsheaves
E of rank t ( 1 . t  r), the inequalities

PE (m)=x(E(m))/t<13 ,(m)=x(F(m))1r (or, 5 , resp.)

hold for all large integers m, where for a coherent moule H on X „ H(m) -= H
C)0,191 (m) and x(H(m))= — 1)i dim Hi(X„ H(m)).

For a numerical polynomial H and for a scheme T  locally o f finite type
over S, set P (T) ,  IF IF is  a  coherent Ox T -module with the following
property (*)) where F 1-‘--F 2  if an d  only if F l® o T L F z  with some
invertible sheaf L on T;

(*) F is T-flat and for all geometric points t of T, FOo r k(t) is stable with
respect to ex(1)Oeser and x(FOOTk(t)(m))=H(m).

Then an S-morphism g:T 1—>T defines a natural map g * :IL (T )E lk s (T').
Clearly Elxri s  is a contravariant functor of the category (Sch/S) of schemes lo-
cally of finite type over S to (Sets). This functor is not necessarily a sheaf for
the étale topology in (Sch/S) even if f  has a section. Hence Elks  is, in general,
not representable. Neverthless 4 , may have a coarse moduli scheme (see
[ 1 0 ] ) .  In fact, we know that i f  S= Spec (k ) with an algebraically closed
field k  and if dim X 2 , then our functor has a coarse moduli scheme 1 1 2 1
[1 3 ], [7 ] and [3 ] )  and moreover our main theorem (Theorem 5. 6) says that
if  S is an algebraic scheme over a field, then there exists a  coarse moduli
scheme M x / s (H) of EL which is locally of finite type over S.

As is stated in [7 ] ,  to construct a coarse moduli scheme of " Z s by using
"invariant theory", the problem is devided into three parts, that is, (1) bound-
edness, (2) openness and (3) existence of a geometric quotient of a scheme by
an affine algebraic group. Though (2) is proved in [8 ] , (1 )  is still an open
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problem except for some special cases; (a) the relative dimension of X  over
S52 (see [7] or [3]) or (b) the rank o f members o f E L (T ) is  2  ([9 ]). For
this reason we introduce the notion of e-stable sheaves (Definition 3. 1) and
show that a stable sheaf is e-stable with some non-negative integer e and the
property that a coherent sheaf is e-stable is bounded and open (§ 3). Thus EL
is covered by open subfunctors E  ( e  0) and each of EIA is bounded. Hence
our problem reduces to showing (3) for E .  T h a n k s  t o  the results o f D.
Mumford [ 1 0 ] ,

 M. Nagata [11] and W. Haboush [5], it is almost equivalent
to the following;

What point in Q=QuotHsN/xts is stable for a natural action on i t  of0 x 
SL(N ) with respect to a suitable fixed invertible sheaf?

Since no direct answers to the above question are known, we construct a
morphism of an open set for the étale topology of Q to a suitable scheme and
measure stability of a point using its image by the morphism. Now we know
two "measuring spaces". One is a product of Grassmann varieties (see [12]
and [7]) and the other is a projective bundle over a finite union of connected
components of Pic,/,  (s e e  [3 ]) .  This is simpler than that because the latter
needs only an open set Q x,S ' such that X ,— S ' has a section and the former
does a rather finer covering. Thus our section 4 is devoted to generalizing and
sharpening the techniques and the results in  [3 ].  By virtue of our main theo-
rem in § 4 (Theorem 4. 17), our problem reduces to the following;

Does a point o f Q  corresponding to a stable sheaf enjoy the property
(4. 15. 1) ?

Proposition 3. 6, which is an immediate corollary to Fundamental lemma
in § 2, implies that the answer is affirmative.

The main part of this work was prepared for a series of lectures at Nagoya
University in December, 1975. The author wishes to thank the attentive and
patient audience at Nagoya University.

Notation and Convention. Throughout this paper a  variety is a  geo-
metrically integral algebraic scheme over a field. For a coherent sheaf F on a
k-variety X , 1r(X, F) or simply h (F )  denotes dim kHi(X , F ) and x(F ) does
E ( — 1)*(X , F ). The rank of a coherent sheaf F  on a variety X  is the di-
mension of E(x)=EC)o,k(x) as a vector space over k(x) with generic point x of
X  and is denoted by r (E ).  For S-schemes Y and T , Y (T ) is the set of T-
valued points of Y, that is, Y(T)=-Hom,(T, Y ) .  In particular, if T=Spec(K)
with K  an algebraically closed field, then a point y in Y (T )= Y (K ) is said to
be a geometric point of Y and K  is denoted by k(y). Thus a geometric point
y of Y defines an S-morphism of Spec (k(y)) to  Y . Let f:X--->S be a smooth,
projective, geometrically integral morphism of locally noetherian schemes and
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le t 0 (1 ) be an f-very ample invertible O h-module. For a geometric point s of
S, X, is the geometric fibre of X  over s, that is, X,-= X X ,Spec (k (s)). For a
coherent module E  on a geometric fibre X , of X, the degree of E  with respect
to 0(1), which is denoted by d(E,O ) ,-(1)), is that of the first Chern class o f E
with respect to O x , ( 1 ) = O x ( 1 ) ® O s e x s .  F o r  integers a and b ,(a,b ) is the bi-
nomial coefficient (a + b)! / a! b ! .  Thus we have the equalities (a, b)=(b, a) and
(a, b)= (a, b —1) + (a —1, b).

§ 1. Preliminaries.
First o f all let us recall some results of the geometric invariant theory

which will be used in  § 4 . Combining the results of D. Mumford [10], M.
Nagata [11] and W. Haboush [5], we have

Theorem 1. 1. Let X  be an affine scheme over a f ield k , let G be a
reductive affine algebraic k-group (i.e. the unipotent part of the radical of
G is trivial) and let a :G x , X X  be an action of G on X . Then there ex ist
an affine k-scheme Y and a k-m orphism  0 of X  to Y  such that (Y , 0) is a
good quotient of X  by G  (see [14 ] Definition 1 .5 ) and 0  is universally
subm ersiv e. (Y, gi) is  a geometric quotient of X  by G  if  and only  if  the
action a is closed. Moreover if X  is an algebraic k-scheme, then so is Y .

To globalize the above result, we need the following notions due to D.
Mumford ([10] p. 30 and p. 36).

Definition 1. 2. Let F  be a coherent module on a scheme over a field k
and let a be an action of an algebraic k-group. A G-linearization of F is an iso-
morphism 0 : a*(F)-- 4P2*(F) such that ( dtt X 1 y)*(0) =P23* (0)(10 X

 (7 ) * (0 ) ,  where
a:G XkG—G is the group law and P2 (or, P23) is the projection of G X,X to X
(or, GX k GX k X  to G X k X , resP-).

Definition 1. 3. Let X , G, a and P2 be as above and let L  be an invertible
Or -module with a G-linearization 0.

1) A  geometric point X of X is said to be semi-stable if there exist a posi-
tive integer n and an invariant section S of H°(X , L® n )  (i.e. if 0,, is induced by
0, then 0(o- *(s))=P2*(s)) such that X,= {yE Xls(y)# 0} is affine and x is a
geometric point of X,.

2) A  geometric point x of X is said to be stable if there exist a positive
integer n  and an invariant section of H°(K, L ® " ) such that X , is affine, the
action of G on X , is closed and x is a geometric point of X ,. A stable point x
is said to be properly stable if the dimention of the stabilizer group at X is zero.

It is clear that there exists an open set X s‘(L) (X '(L) or X o'(L)) in X such
that the set of semi-stable (stable or properly stable, resp.) points is the set of
geometric points of the open set.



94 Masaki Maruyama

Theorem 1. 4. Let X be an algebraic scheme over a f ield k and let G
be a reductive affine algebraic k-group. I f  L  is a G-linearized invertible
0,-module, then there exists a good quotient (Y , 0) of X8s(L) by  G. M ore-
over,

(i) Y  is an algebraic k-scheme and 0 is universally  submersive,
(ii) there exists an ample invertble sheaf  M  on Y such that 0*(M )=

DD" for some integer n, hence Y  is quasi-projective over k.
(iii) there exists an open subscheme Y' of Y such that Xs(L)=0 - 1 (Y ')

and that (Y ',0IXs(L)) is a geometric quotient of Xs(L) by G.

Let X be a scheme proper over a field k, let G be a reductive affine alge-
braic k-group and let L  be a G-linearized ample invertible sheaf on X .  Pick a
geometric point x of X . To study the stability of a fixed geometric point x, we
may assume that k is algebraically closed and x is a closed point of X .  For a
one-parameter subgroup 2: Gm —>G, let us consider the morphism f
a(2(a), x)e X , where a is the action of G on X .  Since X  is proper over k , f
can be extended to a morphism J  o f A ' to  X .  Clearly f (0 )  is a fixed point
under the action of the one-parameter subgroup on X . Then the G-linearization
on L  induces an action of Gm on  A .' which is the dual space o f LC)k(f- (0)).
This action is given by a character x of Gm ;x(a)=ar for all a EGm (k). For this
r, set rti ,(x, 2)= — r. If we replace Theorem L 10 of [10] by Theorem 1. 4, the
following is obtained by the same argument in Chap. 2, § 1 of [1O].

Theorem 1. 5. Let X,G,L and x be as above. Then
(i) x is contained in  X (L ) if  and only  if  reL(x, .2)_ 0 fo r all one-pa-

rameter subgroups A ;
(ii) x is contained in X 0 (L) if and only  if  pL (x, A)>0 fo r  all one-pa-

rameter subgroups A .

We shall close this section by a lemma which will be used frequently in
the sequal.

Lemma 1. 6. Let Y be a quasi-projective variety with a very ample
invertible sheaf 0,-(1) and let F be a torsion free coherent O r -module. Then

10s
for a general s in H°(Y F C )0 ,0 H = c o k e r (F ( -1 ) . .- F ( -1 )C )O r - - - ›
F (-1)C )0,(1) - - -  F ) is  a torsion free OH -module, where H  is  the closed
subscheme of Y defined by s=0.

Pro o f . For F v = ey(F, Or ), there are an integer m and a surjective
homomorphism g:0,(—m)@r-4 F" because 0(1) is am ple. Then we obtain

a v
h:F Fv)v y (m ,  S r) where j  is a canonical homomorphism. Since Y
is an integral scheme, j  induces an isomorphism on a non-empty open set of Y .
Thus j  is injective because F  is torsion free. This implies that h is injective.
Let E  be the cokernel o f h .  Since Y  is noetherian, Ass (E ) is a finite set,



M oduli of stable sheaves 95

whence for a general s  in H°(Y  , ,(1)), Ass(E) n { s=o }  =0. Moreover, we
may assume that the closed subscheme H  o f  Y  defined by s=0  is integral.
Using this s, we get the following exact commutative diagram;

h
ii( M )1 - - -> E  ( ..?.DR H - - - )

Ii
O r   a 3 (111)T r E

Î r,5<' î 1® s

F ( - 1 ) - - .  ,( m  — 1 )  —> E(-1)---> 0

0 0

Since Ass (E) n ( s=o) =0 implies that i is injective and since ker (i)
by Snake lemma, we know the injectivity of Tt. On the other hand, OH (m)sr is
torsion free OH -module, whence so is F C ) O y e i r . q . e . d .

§  2 .  A fundamental lemma.
Let f : X—>S be a smooth, projective, geometrically integral morphism of

locally noetherian schemes and let Ox (1) be an f-very ample invertible sheaf
on X .  I f  S  is connected, then the self-intersection number of ° x (1), or the
degree of X . with respect to Ox ,(1) is independent of the choice of a geometric
point s of S, and we denote it by h .  If F  is a coherent Ox ,-module of rank r,
then

(2.1) 1=',(m)= x(F(m))/ r =hmn / n!  { d ( F  ,  x (1)) / r
— d (K  Ox (1))/2}mn - 1 /(n-1)! +terms of degree n -2 ,

where n=dim X , and K x , is the canonical invertible sheaf of X .  Since K.76
=Q1mOosk(s), it is easy to see that d(K xs, x(1)) is independent o f S  and we
denote it by c(X ). Our aim of this section is to prove the following which
plays an important role in the sequal.

Fundametal lemma 2 .  2 .  Let S  be  a  locally  noetherian, connected
scheme, f:X—>S be a smooth, projective, geometrically integral rnorphism
of relative dimension n  and let Ox (1) be an f -v ery  ample invertible sheaf
on X .  Assume that a l  (or, e) is a negative (or, non-negative, resp.) integer
w ith a 1± e <0 , r is  a positive integer and that a, (2. i. n ) are rational
num bers. Set

P(m)=hmn= h m /  n !  {al / r — c(X)12}mn - 1  / (n- 1 ) !  E a inn- t.

Then there exist integers L and M  such that if  F is a torsion free coherent
Ox-module of rank  r' r w ith som e geom etric point s of S  and if  F has the
properties (1),(2) and (3);
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(1) for general' )  non-singular curves C =D i . D 2 • • • • D n-1, Di E  I O X .,(
1

)

every coherent subsheaf E(#0) of FOO, has a degree - r(E)(a 1 -1-e)1 r,
(2) 4n- 1 P(m).-4n - 1 P,(m ) f o r a l l  large integers m, where f o r a  nu-

m erical polynom ial g(m ) of  one variable, w e def ine that 4g(m)=-g(m)—
g(m -1 ) and 4kg(m)=4(4k - lg(m)),

( 3 )  h°(F(m))_r'P(m) f or some
then the following holds; d(F, 0 1 (1))_ M.

Before proving the above lemma, let us show some lemmas.

Lemma 2. 3. A ssume that a coherent torsion free Ox-module F  has
the property  (1) of Lemma 2 .2 . Then we have

(1) f or each i (0 i<n ), there exists a non-empty open set U 1 o f  V
{D i •D,•••• • A ID 1, • • Di E  I °XXI-) DI • D2 • • • • • D , i s  a  smooth variety  of
dimension n—i} (V i (1_. i< n ) is an open set ot of a Grassmann variety and
V o is the point X s ) such that f or every k(s)-rational point Y . of  U„ FOey,
is torsion free and every coherent subsheaf E(#0) of  FC)O y i  has a degree
5r(E)(a1+e)Ir.

(2) f o r every  k(s)-rational point Y  of U 1 an d  f o r every coherent
subsheaf E of  FO 0 y ,, H°(Y „E)=0.

Pro o f . (2) is an immediate consequence of (1) because if  H°(Y „ E)*0,
then e y , is a subsheaf of E and because a1 d-e<0. To prove (1) let us consider
the universal family X-->V, of the subvarieties of X, corresponding to
the points of V .  Set F ( ') =P2 1*(F ) with the second projection p 2 , : X 1 - X ,. I t
is easy to see that the first projection is a smooth, projective, geo-
metrically integral morphism with a very ample invertible sheaf L i =P2,*(0 x ,(1)).
Shrinking V, if necessary, we may assume that F ( ') is flat over V .  By virtue of
Proposition 2. 1 of [8 ] and Lemma 1. 6 there exists a non-empty open set V,'
of V, such that for all points y of V,', F (1 )k (v )  is torsion free. The property
(1) of Lemma 2. 2 for F(De c  means just that F(Dec  is cotype ((ai +e)/r —b/ri,
•••, (a i+ e)lr — b lr ') , where b=d(F, OJ(I.)). T h u s  U n _1 exists by virtue of
Theorem 2. 8 of [8]. Now let W .  the subscheme of V„_1 X k ( ,) V, which defines
the incidence correspondence between the open sets of the Grassmann varieties
V,,_ 1 and V i . Since W .  an open set of a flag variety, the second projection
q2; :W,—>V, is flat. Hence for the first projection ql, :W,—>U 1 , U  =q21(q11- 1

(Un_i)) fl V i '  is an open set of V , .  Note that for a k(s)-rational point Y i  of Ui,
if one takes sufficiently general members in  I ex,(1) , then Y, •
D, + 1 . • • •D_1 is contained in Assume that for a k(s)-rational point Y, of
U„ F O 0 y , has a coherent subsheaf E  with degree > r(E )(a i+ e )/ r. If D,-Fi,
• • •, D,,_ 1 are sufficiently general members o f I exA) I , then for Yi•Di+i •

U= {C = ••• • D n-i Di E  I e x ( 1) I, C  i s  a  non-singular curve} forms a n  o p en  se t o f a
G rassm ann va r ie ty . W e  have only to assume that there exists a dense subset V  in  U(k (s))
such that every curve in  V  satisfies the condition (1 ).
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E(Dec  is  a subsheaf o f F C )0 , (see the proof o f Lemma 1. 6), the
degree of E00,, is equal to that of E(11)0y , and C' is k(s)-rational point of U„_ 1.
This is a contradiction. Therefore the above U,'s are the desired open sets.

q.e.d.
We need some numerical lemmas.

Lemma 2.4.
(1) Set P(n, m) = E ;"=- 0 ' (n-2, i), then P(n, m) = (n -1, m - 1).2 )

(2) Set Q(n, m) = ' (n - 2, ti)(in- i ) ,  then Q(n, m) = (n, m-1).
(3) E.,=„(i-t, c -1) = E ; (a-t -1, i)(b - a, c-i) fo r all integers a, b, c

and t with b a>t and c>0.
Pro o f . If one notes the equalities P(n, m) ,  P(n -1, m )+P(n, m -1) and

Q(n, m )=Q(n -1, m )+Q(n, m -1), then (1) and (2) are proved easily by in-
duction on n +m . Let us show (3) for every fixed t by induction on a+ c . Set
R(a,b, c, t)= c -1 )  a n d  R'(a, b, c,t) ,  L -4 (a-t-1 , i)(b  - a ,  c - i) .
Then, using (1), we obtain

b -t
R(t +1, b, c, t)= (i-t, c  -1)= E (c -1, i)i=t+i 1=1

= P(c +1, b - t + 1 ) - 1 =  (b -t, c )-1 .
On the other hand,

-1

R'(t +1, b, c, t) ,  E ( b - t - 1 ,  c - i) ,  E (b -t -1, i)
1=0 1=1

= P(b -t +1, c +1)-1= (b -t, c)-L
Thus we have R(t +1, b, c, t) ,  IT(t +1, b, c, t) f o r  a ll b  and c. Moreover,
R(a, b, 1, t)=b - a +1= R' (a, b,1, t) for all a and b . Next assume that a +  2
and Then since

b -t
R(a,b, c, t)= E  (c-1, i) ,  P(c +1, b -t +1)- P(c +1, a -t),

we have
R(a,b, c, t)=R(a,b, c-1, t)+ R (a -1, b-1, c, t).

By the induction assumption we obtain

R(a,b, c, t)= R' (a, b, c-1, t)+ R '(a -1, b-1, c, t).
Now let us prove that the right hand side o f this equality is equal to R'(a, b,
e, t), which completes our proof.

Ri(a,b, c-1, t)+ R i(a -1, b - 1, e, t)

= E ( a - t - 1 ,i) ( b - a ,c - i- 1 ) + E ( a - t -2 , i)(b -a, c -i)
i =0 1=0
c-1 c-1
E (a -t -1 , i -1 )(b  -  a, c -i)+E (a-t -2, i)(b - a, c-i)i=i 1=0

-1
= (b - a , c) + E ((a - t -1, i -1) + (a - t -2, i)) (b - a, c - i)

1= 1

2
)  See Notation and Convention.
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= f  (a — t —1, i)(b — a, c —i)+ (b — a, c)
i=1
e

= E (a — t —1, i)(b — a, c— i)=Rf(a,b, c, t). q.e.d.
i=0

Lemma 2. 5. For  f (x )==x , the coefficient of x" - - 1 - '  in  (zlif)(x —1) is
— (i +2)n! /2(n — i —1) ! .

Pro o f . It is clear that for g(x )=(x - 1), 4'g(x )=(4' f )(x  — 1). Since g(x)
= 0 ( -1 )(n —i, i)xn -  , our lemma holds for i= 0 . Assume that our assertion
holds for i = j .  Then 41 g(x)=(n! / (n— j)!)x" - J —((j +2)n! I2(n— j —1)!)xn - i - '
+terms of lower degrees. Hence

4i -"-g(x)=(n! I(n—  j)!){xn - 1 —(x — ((j+2)n! /2(n—  j-2)!)xn - i - 2

+terms of degrees j — 3= (n! 1(n—  j-1)!)xn - J- 1

—(n! I (n — j)!)((n — j)! 12(n — j —2)!)xn - J- 2

— ((j+2)n ! /2(n—  j-2)!)xn - J- 2

+terms of degrees j —3= (n! 1 (n— j —1)!)xn - j - 1

—((j 3 )n !  /2(n — j — 2)!)xn - i - 2 +terms of lower degrees.

Therefore our proof is completed by induction on i.

The following is due to M. F. Atiyah [1].

Lemma 2. 6. Let F  be an indecomposable vector bundle on a non-
singular projective curve of genus g and let d and r be the degree and the
rank of F  respectively. For a maximal splitting (L 1 , ••., L T ) of F, we have
the following inequalities;

d / r —(r —1)(3g — 2)<d(L 1) dIr+ (g —1)(r —1) + (i —1)g
d r ± (2g —1)(r —1), 3 )

where d (L ) denotes the degree of L .

Proof  of Lemma 2 . 2 .  The idea o f our proof is essentially the same as
Gieseker's in the proof of Lemma 1. 2 of [3 ].  The main part of our proof con-
sists of an evaluation of h° (F (m)).

As in  [3 ] let H m  be the smallest coherent subsheaf o f F(m ) such that
H°(X  „ H m )=H °(X , F(m )) and F(m)111„, is torsion free. Since d(11,,,, ,(1))

0, the assumption (1) and (1) of Lemma 2. 3 imply that H o =O. Moreover,
the exact commutative diagram

0 - - H ° ( X  „ Hm)H o (x  „ F ( (m ) )  - - ->H ° (X s , F(m)111.)
f

H°(X  „ H m (— H°(X „ F(m— t ) )-4 H°(X „ F(m— p)/ ,„(— p))

yields
3 ) T h is  in equality  is  sharper th an  Atiyah's original one. But the fac t is  n o t essential.
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(2. 2. 1) H °(X  „  H m ( — p)) = H °(X , F (m - p )) for all non-negative integers
p.

We claim
(2. 2. 2) Hm(P) is a subsheaf of H m „  for all non-negative integers p.
In  fact (2. 2. 1) implies that the subsheaf H„,' o f  F (m ) generated by

H°(X „ F(m)) is that of H „(— p) generated by H°(X „ H m „(— p)). Let H m "
be the inverse image of the torsion part of H„,„(—p)/H,' by the natural
homomorphism H m „(— H m „(—  p )111 m /. Then F (m )/H m "  is  torsion
free because so are F(m)/11,,,„( - p )  and H m „(—p)/icf„,". Since H°(X„ H m ")
= H°(X „ H m „(— p))= H°(X „ F(m)), we have that 11„," = H m . This means
that Hm (P) is a subsheaf Hm„.

Choose so general k(s)-rational members D I , • • •, D.-1 of I °x(l) I that each
Y i -=D 1 . • • • • D, is contained in U, of Lemma 2. 3 and that HC)0 y 1  is a subsheaf
of F(m)®0 y .  The exact sequence

0—>Hm ( -1)—>H m —>Hm ®O y i —>0

and (2. 2. 1) provides us with the inequality

h°(F(m))= ,.) -5CH m( — 1)) + (H .0 0 17i)
-= h°(F(m —1)) ± CH m 00 y i ).

Summing up these inequalities from 0 to m, we obtain

11°(F(m)) E ho(Hu ooy ,).
u = 0

By virtue of Lemma 2. 3, (2) and the exact sequence

i )0 0 y,—> P O t o y „ , - - › o

the inequalities

— j)C)0 17,) . E CH„(—j—k)C)0 y , 1)
k = 0

are obtained. Thus we have
m u m

ho(F(m)) E E C H .( —ii)0 0 y2)-5 E E E le(11.( — 2)00 y3)
u=0 u= 0 ji= 0  i2=0
ni

—E E h°(1/„(—ii—i2)0 0
y 3 )_- - • • •

u=0 0 3 1 ,7 2 1 e

E E
u=00,,+fl,

From this the following is obtained

(2. 2. 3) le(F (rn))-- (n -3, j)le( ff.( — :7)0 0 r—i).
u =0  j=0

Let g  be the genus of the curve 17 „ 1 . S ince S is connected, g  is independ-
ent of the choice o f s  and Y„_ 1 . L e t  m l , • • •, m , be the integers such that

H „ A l ) .  C le a r ly  l  r ' .  We denote the rank of H m  by rm

In the first place, assume that m < m i .  Set E=I-i11--1(—m1+1)00Y-1.
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By (2. 2. 2), H u ( — j) is a subsheaf of Hm1-1(u —  j —m1+1) i f  U < M I .  Thus
H i,( — PC)O y „  is a subsheaf of E(u—  j). This and (2. 2. 3) assert

rn u
h° (F (m)) E E (n -3 ,  j)h° (E(u — j)) (n -3 ,  i — t)h° (E (t))

U = 0  i=0 t=o t= t
/12 172- t

= E h°(E(t))( E (n -3 , i)).
t=o

By Lemma 2. 4, (1) we have

(2. 2. 4) h ° (F (m )) E (n —2, m — t)C E (t)), if m <m ,.
t=o

Write E = E i (DE 2 C) • • • (j) E . with indecomposable vector bundles E, of rank p i on
Y.-1. Since each E i is a coherent subsheaf of FC)0 y „_1 , d(E ,)=- cl, p,(ai+e)/ r
by the assumption on By Lemma 2. 3, (2) we have that h°(E 1) = 0 .  We
shall apply Lemma 2. 6 to E 1 . L e t  (L » ,  • ,  4 ? )  be a maximal splitting of E 1.
I f  l e ( E t 0 0 . 2 ( X j ) ) t h e n  one of Lk ( z) (i)=- Lk ( ') 0 0 x ,(j) has a  non-negative
degree, whence p i +  + (2g — 1)(p, —1)_>_ 0 by virtue o f Lemma 2. 6. Let
ti b e  the integer such that {—di l p i — (2g —1)(p, —1)} 1 h +1>t { —  d i / p, —
(2g —1)(pi  —1} /h and let t,' be the integer max (t 1 , 0). Then we have

(n -2 ,  m — t)h° (E i ( t ) )=  E (n -2 ,  m — t)h° (E ,(t))
t o t= t,'

{pi ht+d,—p,(g —1)+(E,(t))1(n —2, m—t)

5 {pi ht + p,(g —1)} (n-2, m—t)
t= t1'

P, m
E  E  hl(L, ( ') (t))(n —2, m—t),
11=1t=t,'

where E ,(t)=E i C)Ox,(t). Since d(L n
( z) (t,'))_>: —(p, —1)(3g —2)—(2g —1)(p, —1)

= — (p i -1)(5g — 3), we have that for hi (L k ( ')  (t)) 5 max Up, —1)(5g —3) —
(t —t!) h+ g —1, gl 5_ max {(p, —1)(5g — 3) + g —1, g ) .  S in c e there
exists an integer A 1, which depends only on r and g, such that 1/1(Lk (1 ) (t)) A i
for all i, k, and t  with On the other hand, since d(L k

( ') (t,'± t))  th —
(p, —1)(5g —3), we see that 11' (L k ( ')  (t + t)) ,  0 if t>  [(p i —1)(5g —3)+2g —2)/ h.
Combining above results, we obtain

(2. 2. 5) E (n-2, m—t)h°(E i (t)) E  {pi ht + p z (g —1)} (n-2, m—t)
t=o t= t,'
+ A(n —2, m — t), where d (E ,)=d„ r(E 1) =p 1 a n d  A  depends

only on r, h and q .

Now let us come back to the computation o f h° (F (m)). By (2. 2. 5) we
have

h° (F (m)) (n —2, m —  t) h°(E,(t))
t=0 

E (n -2 , m— t) {tpi h+ pi (g —1)) + ( n -2 , m)A
i=1t=11' i-1
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(n-2, m—t)ftp i h+p,(a i -Fe)/ r — pi (g —1)}
i=1t=t,'

(n — 2, m)A.

Let to be the integer such that —(a1 + e) r +(g —1)} / h+1>to l —(a1+e)1 r +
(g — 1)) 1h. Then our computation proceeds as follows;

h° (F(m)) t  t oiz(n — 2, m —t)r(E) Ith+ (al + e)1 r —(g —1)}
ni —to

+ r(E)(n — 2, m)A= r(E) E (n-2, t) {(m — t)h-l- (a 1 + e) I r
t=0

—(g —1)} + r(E)(n — 2, m)A=r(E)[h(n, m — t 0 )
+ {(ai+e)/ r —(g —1)} (n-1, m — t 0 ) + (n — 2, m)A].

Since r(E)<r' , we know

(2. 2. 6) I f  m <m t , W (F(m)) .5g,-(n2 ) = (r' —1)[h(n, m — t 0 ) + {(d1+e)1 r
— g +1} (n —1, m — t 0 )]+ (n — 2 , m )B , where t o i s  a n  integer
depending only on a l , e, r, g  and h, and where B  depends only
on r,  h  and g.

In the next place, we shall evaluate h° (F (m)) for We may assume
that F ( K ) 0 0 y , _ 1  is generically generated by its global sections and that

(2. 2. 7) d (F , 1 (1)) r'a1/ r —e(e+ 1).

If we set

v(m)= (n j)h° (F (u — j)00 y ,,),
u=m,

then (2. 2. 3) implies
n u -1  u

C F ( M ) )  E E (n - 3, i ) 11°(1/.( — i)>®0 Y„1)u-o i=o
no u
E  E  (n - 3, Ph° (F (u — j)(De g —1)- F v(m).
= j=0

On the other hand,
m

v(m) = E  E  (n-3, i —t)h° (F MOO y ,_,)
i=mi t=0
m m
E  E  (n - 3, i—t)h°(F(t)C)O y ,)

m
+  E  E  (n-3, i — t)h° (F MOO y „_).

t=i
Thus we obtain

(2. 2. 8) I f  m m z,  th en  h° (F (m)) g(m1 - 1) + v i(m) + v2(m), where
m m

v i (m )=  E  E  (n-3, i — t)h° (F (000 y  ._,) and v2 (m )  = 1 1 (n —t=m, i=t t=i
3, i—t)CF(t)(Dtly„..1).4)

4 ) I f  n = 1  o r 2, th en  v2 (m )=0 .
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Since F(m i)(Dfl y , „  is generically generated by its global sections, every
member of a maximal splitting o f F(rn i )(De y ,  has a  non-negative degree.
Thus if  m>m t + (2g —2) h, then C F ( m ) 0 0 Y . - 1 ) = 0 .  M oreover, h1 (F(m )0
ey„_,) r'g  i f  n't1 __ m_7121 d- (2g — 2)h. These and the fact that x(F (t)0 0 Y.1)

1 x(F (t)) imply that if t1 is the integer with (2g —2) / h t i <(2g —2)/h+1,
then

vi(m)= E 144 - 1 x(F(t))+CF(t)oey„)} E (n-3, i — t)
t=m, i= t

rnm — t me+ ti m-t
E 1 x(F (t)) E (n — 3, i )  + E  r'g  E (n — 3, i)

t= m, i=o t=m,
me+ ti

=  E  (n —2, m—t).6111- 1 x (F( t) )+ E  r' g(n —2, m— t)
t=mi t=mi

5  E  (n-2, m — t){ r' 4 4 - 1  P(t)— a} K(n — 2, m — me),
t = m,

where a = r'a i / r— d(F, ex (1)) and K =( t i + l ) r g .  By the assumption (2) we
know that a  is non-negative. Our aim is to show that a  is bounded above.
We claim

in n - 2
(n -2 , m—t)tin - 1 /3 (t) =P(m)—  P(m 1 -1)—  E (m— m„ P(m 1 -1 ) .

t =m, j=1
In fact, since

in n— me
E (n -2 ,  m — t) zln 1 P (t) -= E (n — 2, t) 43 -  1  P (m — t),

t=ine t=0

we have only to show that
mm— me — me

E (n — 2, t),‘In-  1  .13 (m — t) = E (n — 2—i, t)Jn - 1 - 1 P(m— t)
t=o t=o

—  (n — 1—  j, m — P(m, —1).
J=1

Assume that this holds for i. Then
m— m— me
E  (n -2 , t)dn - 1 P(m— t)=dn - 2 - ip(m)--F E  {(n — 2 — t)
t=o 1-1

—(n -2—i, t -1)} Zin - 2 - zP(m — t) — (n — 2 — i, —  )11 1)4" - 2 - 1 P(M t — 1)

- E  (n-1—  j, P(rn, —1)
J=o

m-m, 1+1
=  E  (n— 3 —i , t)zln- 2 -  P(m —t) — E (n -1 — j,  m — P(m, —1).

1=0 J=1
Thus our claim is proved by induction on i. Set N =m—  m 1 + 1 .  Then we
have

n -2
E (n-2, m— t).4n - '13 (t)=P(m )—  P(m ,- 1) — E (N -1 ,  j)4) P(m, —1)

t=m, J=1
and

m — mi2 (n -2 , m — t)= E  (n -2 , t) =(m—m, n —  1) (N  — 1, n-1).
1=0
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Therefore we obtain

(2. 2. 9) v i (m )  r' {P(m)—  P(m,-1)}  —  a(N — 1, n-1)
n -2

—r' E (N - 1 ,  j)4 iP(m ,-1)+K (N  — 1,n-2), where N =m— m,
j=1

+1  and where K  depends only on h, r and g.

Let us compute v 2 (m). Using Lemma 2. 4, (3) for a=m „ b=m , e=n  —2
and t =t, we obtain

nn-1 n -3
V 2 ( M ) :=  E CF(t)(Do y ) E (m e — t-1, i)(m—m„ n— 2 — i)

t=1 i=0
nu-1n - 2
E h°(F(t),00 17,)E  (m i —t —1, n —2 —i)(N —1,i)
t=11 = 1

n - 2 mt-1
= E (N — 1,i) E (m,— t —1, n — 2 — i)h°(F(t)C)0 y , )

i=1 t=1
n -2

= E (N —1, i) f „
t=i

nit-1

f i = E (m,—  t 1, n —2— i)h°(F(t)(Dey.).
t=1

W rite FOtay,,,=FiCV2@-  • ••eF . w ith  F i indecomposable vector bundles
on Y n _1. I f  d z =d(F,), p i=r(F,), then we may assume that d i p i a i lr— e —  1
and p,(ai+e)/ r for 2 i u because of the assumption (1) and (2. 2. 7).
As (2. 2. 5) we have

E (m,—t —1, n — 2 — i)h°(F i (t))
t=i

me-iE{pht + p,(g —1)} (m,—t —1, n A(m, n —2 —i),
t -  t1'

where t,'= max (1, t,) with the integer ti  such that — { dip j + (2g — 1)(p;  —  1)} /
h t ,<— { d ,Ip j + (2g —  1)(pi - 1)} /h+ 1. For the integer to' (or, to") defined by
—{(a1 +e)1 r+ g — 1} /h+1>to' — { (a i +e)Ir+ g —11/h (or, — {ai /r — (e+1.)/p i

+q-1}  Ih +1 >t o "  —  r— ( e + 1 ) / p i + g —1} /h, resp.), put t' = max (1, to')
and t"=max (1, t o" ) .  Then f  is evaluated as follows;

f E  {pi ht+p i a i l r — 1)(m1— t-1,n —2 —i)
t= ti'

+  E  E  Ipillt+P1(a1+e)1 r— p i (g —1)} (m 1 — t-1, n —  2 — i)
j= 2  t= t i '

+ uA(rn„ n —2 —i)

E{r'ht - I- r'a1/r-1— r'(g — 1)} (m 1 —t —1, n —2 —i)
t= t ,

— Et , { Piht+piadr— e-1— pi(g-1)} (m 1— t-1,n —2 —i)
= t

+uA (m„ n —2 —i).

Furthermore,

where
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— E {PIN+ p i a,/ r — e —1— p i (g —1)} (m1 —t —1, n — 2—i)t=t ,

5_-{ (e/r+(e+ 1 )/P1)/h+ 1 1P1ladr — (e - 1)/P1 — (g-1)1(m1,n — 2 — i)
A'(m„ n — 2 — i),

where A' is an integer which depends only on e, r, h  and g .  Thus we obtain

f E (m,— t —1, n — 2 — i)t
t =

+ Va l / r-1 — r'(g -1 )}  E (m 1 —t —1,n— 2 —i)+ Bi(m„ n — 2—i)t=t ,

r 'h  E (t, n — 2 — i)(m, —1 —t)
t=0

m i - t ' - 1
+ r- 1 — r'( g - 1 ) }  E  (t, n —2 —i)+ B'(m„ n —2 —i)t=o

=r'h(m,—  2, n— i)+ r —1— r'(g —1)} (rn,—t' —1, n — 1 )
+ B' (rn„ n — i — 2).

The last part in the above inequality can be regarded as a polynomial with
respect to m „ The leading term of the polynomial is r 'hm i n- i/(n— i)!. S ince
g -1 =  {(n —1)h+ c(X)} /2 by the adjunction formula, the term of degree n— i
—1 of the polynomial is

n - i - 2
[ (  E  k)r/h1(n— i)! + Va l / r —1

k = -1

—r'((n —1)h + c(X))121 /(n—i— 1)!]m1
1 1

=Cr'h {(n — —3)(n — i)/ 2(n — i)! — (n / 2(n — —1)!}
+ (r' r — 1— r/ c(X )/2)/(n — 1)!]m ,' - i- '

= {—r/h(i + 2)/2 + r' r — 1— r'c(X )/ 21 m 1n- 1 - 1  / (n — 1 ) ! .
Therefore

n-2
(2.2. 1 0 )  v 2 (m )  E (N - 1, i)g,(m ,), where g 1 (m 1)  is a polynomial with

i=1
respect to m , of the following form;

gi( K )= r'hm in - i /(n — i)! + {—r' h(i +2) / 2+ r' ai/ r —1—r' c(X)/
2} n v - i- 1 / (n— i-1)! +terms of degree<n — i — 1  and the coef-
ficients o f g ,(m ) depend only on al , e, r, r', h, n  and g.

Since by virtue of Lemma 2. 5

S P(m 1 -1 )=h m 1n- 1  I (n —i)! + {—h(i + 2)/2 + r
c(X)/ 2} m 1n- 1 - 1  / (n —1)! +terms of d e g r e e < n  —1,

the inequalities (2. 2. 8), (2. 2. 9) and (2. 2. 10) imply

(2. 2. 11) I f  m r n i ,  then h°(F(m ))— r' P(m ) g r ,(m ,-1)— r'P(m ,-1)—
n -2

a(N — 1, n -1)+ E 9V ) (m1)(N — 1, i), w here 0 ' ) (m t ) i s  a
i=1

polynomial with respect to m, o f the following form;



Moduli of stable sheaves 105

+terms of degree<n — i —1 and
the coefficients of Oi ( e ) (m i )  depend only on al , e, r, r', h, n  and

g.
Since the leading term o f ge (m) is (r' —1)hmn /n! and that o f r'P(m ) is

r'hmn/n!, there exists an integer L such that

(2. 2. 12) gr ,(m -1)— r'P(m -1)<0 and 0 ," (m )< 0  for all r',i  and m L.
(2. 2. 6) says that if and h°(F(m ))— r'P(m ) 0, then m must be greater
than m1 - 1. If one takes this L in advance and assumes that F has the prop-
erties (1), (2) and (3) for L, then the above fact and the property (3) imply that
h°(F(m))— r'P(m)._. 0  for some rn_ m i .  Assume that m i L  and F  satisfies
the assumption (2. 2. 7). Choose an integer m such that m__Tyt, and h°(F(m))
—r'P(m) 0 . Then (2. 2. 11) and (2. 2. 12) assert that

O h°(F(m))—r'P(m)_g,,(m' —1)— r' P(m i —1) — a(N —1, n-1)
n -2

+ E 0, 0-0 (m1 )(N —1, i)<0
i=1

This is a contradiction, whence m i < L .  Therefore if F  enjoys the properties
(1), (2), (3) and (2. 2. 7) for this L , then F(L ) is generically generated by its
global sections. Thus d(F (L), O (1 )) 0 ,  which implies that d(F , tfx(1))
—rL h . Therefore M = m in — rLh, al — r(e+1)}  is the desired integer.

q.e.d.
§ 3. e -s ta b le  sheaves.

In  this section we shall assume that f:X — >S is  a projective, smooth,
geometrically integral morphism with relative dimension n  and an f-very
ample invertible sheaf e x (1) and S is connected and noetherian. To construct
the moduli schemes of stable sheaves we cover the family of stable sheaves by
subfamilies which are open and bounded. For this purpose let us introduce
the following notion.

Definition 3. 1. Let e  be a  non-negative integer. A stable (or, semi-
stable) sheaf F (with respect to e x (1)) of rank r on a geometric fibre X, of X
over S is said to be e-stable (or, e-semi-stble, resp.) (with respect to 0,(1)) if for
general non-singular curves' )  C  =-D i • D2 * • • • • D n - 1 ,  D i E  I OX,( 1)  ,  every co-
herent subsheaf E of FC)Oc  of rank t(l. t r — 1) has a degree_ ftd(F, e x (1))
+e} /r.

Remark 3 .  2 .  The condition on FC)e7c  in  the above definition means
that FO 0 c  is of cotype (p) with /3, =e /rt  or equivalently it is of type (a) with
a ,  te/(r —t) 2 r (see [ 8 ]  Definition 1.1). N o te  that cri- or2 • • •

To show that the family of e-stable sheaves is bounded we need

Lemma 3. 3. L et 0 1 1 8 (e, H ) be a family of classes of  coherent sheaves
5 ) S e e  the footnote (1).
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on the fibres of X over S such that if  F EC-We, H), then F is a torsion f ree
module of rank  r on a geometric fibre X , of X  over S, for general curves
C = D 1 .D 2 •••••D 1, Di E I Ox,(1) I , FOec is of cotype (13) w ith pt =e1rt and
the Hilbert polynomial of F is H . T hen C o s (e, H) is bounded.

Pro o f . Let F  be a coherent sheaf of on a geometric fibre X, of X  over
S. Assume that F is contained in 01 1 8 (e, H ). Then, as in Lemma 2. 3, we can
find k(s)-rational members D 1, D2, • ••, in  10 x,(1) I such that (1) Yo =Xs,
Yi •••3 Y n - 1

=-
DI •D2 ***** D n - 1  are non-singular, (2) FC)O y i  is  a torsion

free e y ,-module and that every coherent e y ,-submodule E  of FC )e y , of rank
t(1_-< t r - 1 )  has a d e g re e  ftd(F, 01 (1))+0 I r .  On the other hand, there
exists an integer m, which depends only on H and e, such that td(F(m), ex(1))
- Fe<0 for all t. Then h°(Y„ F(m)(De y ,) = 0  for all i =0, 1, • • •, n - 1. This
and Theorem 1. 13 of [6 ]  complete our proof.

Let %,„(e, H) be the family of classes of coherent sheaves on the fibres of
X  over S such that F  is contained in H ) if and only if F  is e-semi-
stable and the Hilbert polynomial of F  is H.

Corollary 3 . 3 . 1 . For each e, H, H) is bounded.

From now on we assume

(3 . 4 ) for all geometric points s of S and all i> 0 , H i(X „  x ,(1))=- 0.

If one replaces 0 ,(1 ) by 01 (m) with m a sufficiently large integer, then the
assumption (3. 4) is satisfied. Moreover, a coherent e x ,-module F  is stable (or,
semi-stable) with respect to e x (1) if and only if it is so with respect to 01 (m).
Thus, without losing any generalities, we may assume that e ,(1 )  satisfies
(3. 4);

Lemma 3. 5. Under the assumption 3. 4, the property  that a coherent
sheaf is e-stable (or, e-semi-stable) is open.

Pro o f . The assumption (3. 4) implies that f * (0 ,(1 ))=E  is a locally free
Os-module (E.G.A., Ch. III, 7. 9. 10). Moreover, X  is  a  closed subscheme
o f P(E), °/(1) °P(E)(1)00x and H°(P (E)s, p (E),(1)) s ,  x , ( 1 ) )  for all
geometric points s o f S .  Put r (E )= N . Let us consider the Grassmanian
Y =Grass,„,(E) and the closed subscheme P(Q) of P(E) X s Y  with Q the uni-
versal quotient bundle. Let X' be the scheme theoretic intersection P(Q) and
X X s Y  in P(E) X Y. It is clear that X ' is a fibre bundle over X, and hence
the first projection p:X 1 -->X  is smooth. Using the Jacobian criterion for
smoothness, we know that for the second projection q:X'.-->Y, there exists an
open set U of Y  such that (i) qu :X ' u-->U is smooth and geometrically integral,
(ii) dimX7 .= 1  for all points u of U and (iii) U n Y,*çb for all geometric points
s of S (see E.G.A., Ch. IV, 17. 13. 2 and 17. 13. 4, (i)).
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P (Q )n (x  xsY)=x'

S

Set F' = P*(F) for the given S-flat coherent ex -module F. F o r  a  geometric
point s of S, U s is a variety over k(s) and qu , is proper. Thus there exists a
non-empty open set V. of U, such that PC)e sk(S) is flat over V. Since F  is
f-fiat and since p is a flat morphism, F ' is flat over S .  Therefore, applying
Theorem 11. 3. 10 of E. G. A., Ch. IV, we see that F ' is q-flat at every point of
q-1 (17

 3). Replacing U by an open set of U, we may assume that i s  flat over
U and U enjoys the properties (i), (ii) and (iii) above. By virtue of Theorem
2. 8 of [8 ] and Remark 3. 2, the property that a coherent sheaf is of cotype (A)
with p, =e/rt is open. Thus there exists an open set U ' such that fos every
algebraically closed field k, (.17(k)=. fu U (k)IF/C) k(u) is of cotype (9)} . It is
easy to see that for a geometric point s of S, U', is non-empty if and only if for
general curves C =D i •D2 -  D i I  ex,(1)1, F(glec is cotype ( i8). Sine Y
is flat over S, the image W of U' in S is open. On the other hand, we can find
an open set W' such that for every algebraically closed field k, W ' (k) = {sES(k)i
FO o s k(s) is stable (or, semi-stable, resp.)} ([8] Theorem 2. 8). Then it is
obvious that the open set W n W' is the desired one in S. q.e.d.

The following, which plays a key role in the sequal, is a  corollary to
Lemma 2. 2 and Corollary 3. 3. 1.

Proposition 3 .  6 .  For each H), there exists an integer N  such
that

1) f o r all  F E&,,,,(e, H ), m_-_1\T and  i>0 , F (m ) is generated by  its
global sections and C F(m ))=0 ,

2) if F is contained i n  x y ,s (e, H) and if  it is stable, then f or all m_>_N
and all coherent subsheaves E of F w ith 0#E E F ,

h°(E(m))/ r(E)<h°(F(m))1r(F),

3 )  if  F  is contained i n  „,-/2 (e, H) and if  it is not stable, then f o r all
m.-1\T and all coherent subsheaves E of F  w ith 0 * E c F ,

h°(E(m))/ r(E)..h°(E(m))/ r(E)

and, moreover, there exists a  coherent, non-trivial subsheaf Eci of  F  such
that h° (E0(m))/r(E0)=11V(m))/r(F) f o r all

Pro o f . By virtue o f Corollary 3. 3. 1 there exists an integer N , such
that (1) holds for N = N , .  By taking e A-1,(e, H)(m0)={F(m0)IF exis(e,H)}
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instead of e ,, s (e, H ) with mo a sufficiently negative integer, we may assume
that d ( F , 1 (1))+e<0 for every F E e r b s (e, H ). Let us apply Lemma 2. 2 to
the case that P(m )=x (F(m ))/ r(F)=H(m )Ir(F), r= r(F) and e=e, where F
is a member of e x l s (e, H ).  Then we obtain the integers L  and M satisfying
the conditions in Lemma 2. 2 because a 1 -1- e = d(F , ,(1))+ e<0. We may as-
sume that L N 1. L e t  a be the family of classe of coherent sheaves on the
fibres of X over S such that E is contained in a if and only if (a) E is a coherent
subsheaf of a member F of H), (b) FIE  is torsion free and (c) h°(E(m))

r(E)P(m)=r(E)h°(F(m))1r(F) for some m L .  Then every member E  of
Q enjoys the properties (1), (2) and (3) in Lemma 2. 2 for F = E .  Thus the set
{d(E, ez(1) ) IEEal is bounded below by M .  Since H ) is bounded,
the condition (b) above and Corollary 1. 2. 1 of [8 ] imply that a is bounded.
Therefore, there exists an integer N .L ,  such that for all i>0 , m l\T  and
E E g ,  ht(E(m ))=0. This and the definition of the stable (or, semi-stable)
sheaves imply that h°(E(m))I r(E)<h°(F(m))/ r(F) (or, resp.) for all tn - A7.

and all coherent subsheaves E  of F  such that E # 0 , F IE  is torsion free and
F  is contained in H ).  Pick a coherent subsheaf E  of F E e i l s (e, H)
with 0  E  F . There exists a coherent subsheaf E ' of F  such that r(E) ,

r ( E ' ) ,  and F /E ' is torsion free. Thus if r(E )<r, then h°(E(m))Ir(E)
. h°(E'(m))1r(E')<h°(F(m))1r(F) (or, 5, resp.) for all m N. I f  h°(F(m))
=h°(E(m)), then H°(F(m))=H°(E(m)) and hence E(m )=F(m ) because F(m)
is generated by its global sections. Thus i f  r(E )=r and if E # F , then we
have also that h°(E(m))/ r(E)<h°(F(m))Ir. Finally assume that a member F
of e x ls (e, H ) is not stable, then we can find a coherent, non-trivial subsheaf
E o o f F  such that x(Eo(m))/r(E0)= Z(F(m))/r(F) and F/E o is  torsion free.
It is easy to see that E 0 is contained in a .  Hence for all m N ,  and all i>0,
tr(E 0 (m ))= 0 . Thus h°(E 0 (m))1 r(E0)=h°(F(m))1 r for all m N  is there-
fore the desired integer. q.e.d.

§ 4 . Techniques of Gieseker.
In this section we shall recall and generalize the results of D. Gieseker [3]

on the quotient of an algebraic scheme by an algebraic group.
From now on k  denotes a field of characteristic p. o .  Let V  be an N-

dimensional vector space over k and let V' be another finite dimensional vector
space over k .  For G=S L (N ,k ), ao denotes a natural dual action of G on V ;

6.0:v-w okk[G ]. For an integer r with 1 r N , set W =Hoin k(A V ,V '), then
ao provides us with a dual action a of G on WV, where Wy is the dual vector
space o f  W .  Fix a basis e h  e2, • • •, eN o f  V  and a basis f i ,  f21 fM o f  V'.
Then for suitable functions { x }  defining a system of coordinates of SL(N , k),

can be written as follows;

6. (e=i/\--- Aeir C)f  i v )

= L A •  •  •A e irO f iv  0  (s g n  (r )x ii i„ „  •  •  •  •
i i<
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where ff,v1 is the dual basis of 
{ f }  and S r  is the r-th symmetric group. Thus

we obtain an action a of G on P ( W V )  and a G-linearization on the hyperplane
bundle L on P (W v). Since the center of G acts trivially on P(Wv), a induces
an action i7 of G = PG L(N , h) on P (W v). and G-linearizations on LO'N for all
integers a. For an algebraically closed field K  containing k, a non-zero element
T  o f W C ),K  defines a K-linear injection KBa— >aTEW OEK, whence T
induces a K-linear surjection WvO kK--->K. The last map yields a K-rational
point of P(Wv), which is also denoted by T .  T can be regarded as an alterna-
tive multilinear map of VC) k K  to V/O,K. For vectors v1, • • •, v., in VO k K, the
value of T at v 1A v 2A•••Av r is denoted by T(v i , •••, vi ). N o w  let us employ
the following notion due to Gieseker.

Definition. Let K  be an algebraically closed field containing k and let T
be a non-zero element of W C),K or a K-rational point of P(W v). Vectors
v1, • •, vc, in VC),K are said to be T-independent if there exist vectors v d+1 , • •, V,
in  V C ),K  such that T(v i , • • •,24) * O .  A  vector v in VC) kK  is said to be T-
dependent on V1, ,Vd if T(v i , • • •, Vd, V , W

d-1-21 . • • ) W r) =0 for all vectors Wd+2, • • •, Wr

in  V C ),K . Th e vector subspace o f V C ),K  formed by vectors which are T-
dependent on v 1, • • v , ,  will be called the T-span of v1, V.

By the same argument as in Proposition 2. 3 and Proposition 2. 4 o f [3 ]
and by Theorem 1. 5 we obtain

Proposition 4. 1. Let K  be an algebraically closed field containing k.
1) A point T  in  P (W v )(K ) is properly  stable (or, semi-stable) with

respect to the action a and the G-linearized invertible sheaf L if whenever
v i ,••• ,v d i n V ( I K  are T -in d ep en d en t  and U is the T-s panof v1, ••-,v d , then
dimU<dN I r= (d I r )d im  V . (or, dimU r esp .)

2) For a point T in P (W v)(K ), assume that there ex ist a vector sub-
space U of VOEK and an integer d such that T (v i ,••• ,v d ,v„„  •••)= 0  when-
ever v b  •••, v„, are in U  and that dim U>dN Ir. T h e n  the T  is not semi-
stable.

Let f  : X—)S and 0,(1) be as in  §  3 . Moreover, assume that S  is  an
algebraic k-scheme. Fix a numerical polynomial

H (m) = rhmn / n! (a l — rc(X)2} mn - 1  / (n —1)! + terms of degree <n —1,

where r  is a positive integer, h is the degree o f X  with respect of x ( 1 )  and
where c(X ) is the degree of the canonical divisor on a fibre of X  over S . Let
Q  be a  un ion  of some o f  connected components of Quot 6

11@x/v/ x i s  and let
XQ =  X  X s Q . The universal quotient sheaf on X Q  is denoted by 0 :VC)kex-

Q
- ->

F .  Fix a basis e 1, • • • , e ,  of V and functions {x} defining a system of coordi-
nates of SL(N ,1?). Define a homomorphism of O c x , Q - m o d u l e s  0 of .17. ,_,kes- c.ko
to itself as follows;
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0(e 01) = Ee i O x i ,.
.1=1

Set ç-g=p2*(95) and f '=p2*(F) with P 2 :G X,X,2—>XQ the second projection.
Then we obtain the homomorphism g-52 :V (Dice Gx,x,-->F, where À is the base
change of 0 by X .  By virtue of the universality o f (F, 0) and the connect-
edness of G, we obtain a morphism 7:G x kQ Q and an isomorphism 2' :1=*(F)

such that the following diagram is commutative;

0  ;VOkec kx„ 4
0

V  k O G  kx,  i'*(F) 0

where i"- :G x  ,X 9 --> X Q i s  the base extension of r. Let X 1 =G X kX.2 , X2 =

G x k G x kX Q , P23.X2—>X1 be the projection to the second and the third factors
and let p:G  X k G G  be the group multiplication. Then we know easily

(1G xr)*(2)(e,010101)-= Ee .f 0 x 0 1 0 1
=1

P23* (2)(e10 1 0 1 0 1) =  e fC )1 0 x 7 j0 1
7=1

(px 1x ,)*(2)(ei010101)= Ee,C)(ix z k C)x k ,)01,
.1=1 =1

whence we have

P23* (2)( 10 X 'i)* (2 ) = (tt X 1x(2)* (2).

Consider the following commutative diagram;

(:7-(p X 1x,)) * (V0k 0 x,) (f( x 1 ) )*((:, ) X 120 )*(F)
x 1 ) *( ; )

(P2(tt x 1x2 ))*(V03 ,0 x,) =1, 3*(V ,koxi)

= (P 2P23)*(V 0 kox i)
p23*(2)

(P2(1G x 7---:) )*(VOkex, )-= ('F- P23)*(VOkOxi)
(1G x 77)* (;) (16 x 

--
e)* (2') ' Î

(16 x r
-
))* ((:))

( f(
1
GXT"))

* (V O k e,C ,)  ( E- (1G X .F- ))*(F)

where P3. X2 — >X(2 is the third projection. Note that all the sheaves of the left
hand side of the above diagram are canonically isomorphic to V0,0 x 2 .  The
equality

(te X 1 xQ )*(2')(F-(tt x 1 .4))*(0) = 3*(95)(tt x1.20*(2)
= P3*(0)P23*( 2)(1Gx .E)*(2) = P23*(2 ')(1G X i--)* (2 ')(z: (1G X .F))*(0)

implies that
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•F(tt X lx) = Z- (10 X )  and

(tt X 124) * (2') =P23*(2')(1, X Z-)(2')

because of the universality o f (Q, F, 95). These facts mean that r (or, i") is an
action of G on Q (or, X Q, resp.) and, moreover, 0 (2 or A') defines a G-lineariza-
tion on O., x 6 )

< . 4V ® .  Y  or F, resp.). It is obvious that the structure mor-..
phism P:Q-->S is a G-morphism with the the trivial action of G on S.

The following is a generalization of Lemma 4. 1 of [3].

Lemma 4. 2. Let U be the largest open set X Q over which F is locally
free. Then there exists a G-linearized invertible sheaf L on X Q and a G-
homomorphism r: ;\F—>L which is an isomorphism on U.

Pro o f . Since P:Q-->S is a G-morphism, OxQ(1)= (lx X P) * (0 x(1) )  carries
a G-linearlzation. If one notes that in the diagram

1G X  Z.'
>

2 3 P2
GXkG X OX Q

x
X,XQ XQ

1 X 7

P "  G
P2

Gx kGx
x 1G

every square made by corresponding morphisms is cartesian and every mor-
(1,, r) P2phism in the lower row is flat (r :G X kQ — >  Gx

isomorphism etc.), then it is easy to see that for every G-linearized 0,4 -module
E, q(E ) has a G-linearization, whence so does eq * (E) (see E. G. A., Ch. III,
1. 4. 15). Moreover, the canonical map eq * (E)—>E is a G-homomorphism.
Now let us apply the above observation to F (m )= F C )G Q (m ).  Then as in the
proof of Proposition 2. 1 of [8] we have a resolution of F by locally free, G-
linearized Ox ,-modules;

f n f - f 2 7 7 .  f f0 E.0--> r — > C 1

where all the f  are G-homomorphisms. Set

L= (det Eo)C)(det Ei) -1 • • • (d e t  En) (
- 1 ) ',

then L carries a G-linearization. This L is the desired invertible sheaf. Since
F is q-flat, so is ker (f z). Thus ker(f,) and F are locally free on U and for all
points x of Q,

f  k (x )
0

EnooQk(x) E,OeQk(x) f  k(x)

f 00 k ( x )
E 00 0 ,2k(x ) r 00 Qle(x) 0

and (1G, t.) is an
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is  exact. We know therefore that fo r  K o =ker ( f o ® k (x )) and y E q - 1 (x),
hd (K0 ,,)_  max {dim ( 0 q - 1(x), —  1 ,  O}. Th is implies that if U ' is the largest open
set of X Q over which ker (f 0 ) is locally free, then (1) all the ker(f i ) are locally
free on U ', (2) codim (X, —U'y , X 0) 2 fo r all points y  of Q  and (3) U'QU.
Since ker ( f i ) are naturally G-linearized, U' is G-stable. Let us cover U' by a
family of affine open subsets {U i } such that every K i ,-, -k er(f  

1 )  l U i is  a free
0u5-m odule. Let lai(i, j), •••, j ) )  be a free basis o f K i , ( i 0 )  and let
b1(i+ 1, j), •, br ,(1+1 , j)  be elements of r(u„ E, + i)  whose images to K 1 ; are
a i (i, j), • • •, arX i, j) respectively. Then the set (a i (i, j), • • •, j ) ,  •  •  • ,

j) )  forms a free basis of r(u„ E z) (i 1 ) . Take si, • • •, s,. from nu) , F)
and pull them back to t h  • • •, t r  in r(U ,, E 0 ) .  Let r i (si A • •-A s,) be the element
of nu„ L ) defined as follows

(t1A—AtrAa1(0, j)A.-Aa,(0, j ) )

0(b1(1, j)A...Abn(1, j)Aa1(1, j)A . . . A
ar i (1, j)) - 1  C> • .0 (bi(n —1, j)A—Ab, 2 (n —

1, j)Aai(n —1, PA.-A
a „,( n - 1 ,  j)) ( - 1 ) -

`  '0(bi(n, P)(-1»'.
Then it is c le a r  that n(siA• • •As,-) is independent of the choice of j),
bm ( i, j) . Thus we obtain a map of A (F I u.,) to L lu , and moreover, Ti coincides
with Ti' o n  U ;  n Uy . Patching them together, we get a  homomorphis r u ,:

A F  Iu, - - >Lu,  which is an isomorhism on U . By the uniqueness of Ti, we see
that ru , is a G-homomorphism. In order to extend the ru , to a  homomorphism
on the whole space X0, we need

Claim: For all points x  of X Q , depth (ex„,x). dim (se7a-1,(,),x),

In fact, by virtue of E. G.A., Ch. IV, 17. 5. 8 we have

dim (Ox„x) — depth (ex, x) = dim (Oc,0(x)) —  depth (00 , q (x ))

because q is smooth. Thus

depth (0 x 0  ) .-  dim (ex, x) — dim (0 (2,0(x)) = dim (0,-1, ( x ) ,x ).

Since codim(X y —U'0 , X 0) 2 for all points y of Q , the above claim im-
plies that depth (ex„x ). 2 for all points x  of X Q U I

.  By this and E. G. A., Ch.
IV  5. 10. 5 we know

72*(L u, )= L

where 7):U '--X -
(2 is the natural open immersion. Thus ru , can be extended to

a homomorphism on XQ as follows

a )7*(ru,)
r 7)*(AF I u,)  7)*(L I = L

where a is a natural G-homomorphism. Since r, P2 are flat, we have
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1*7)*(Liv , ) =-(1Gx7)*(rv)*(LIrp)
p 2*7)*(1. I u,) =.-- (la X V)*(P2, ty)* (1- (7)

T*12*(AF ip) ;=" (1G X YI)*(7 ri,)* (A F  I v)

P2* 7)*(1\- Fi ry) (10 X )2)*(P2,u,)* (A F v)
which imply that ' * ( T u ' )  is a G-homomorphism. q.e.d.

Following D. Gieseker we denote L in the above lemma by detF . From
now on we assume

(4. 3) for all invertible sheaves A on geometric fibres X , of X Q which
is numerically equivalent to (detF)00 Qk(y),h°(A) is constant and hi(A)=0
for all positive integers i.

We also assume for a moment

(4. 4) f  has a section s:S — >X.

Since f  is  projective, smooth and geometrically integral, the Picard
scheme PicK s  exists and moreover, the assumption (4. 4) implies that we
have a unique Poincaré sheaf L  on X X s Picj a s  such that ($ X lpiexis)* (L )=--
Opic x ,s . Let s be the morphism of Q to Picx i s  defined by detF and let P be a
union of a finite number of connected components of Picx/s such that (1) v(Q)
g P  and (2) h°(LC)0,k(z)) is constant and le(L(Dopk(z))=0 for all geometric
points z of P and all positive integers i. v  can be regarded as a morphism of
Q to P and we shall use the notation L instead of L ip . By the universality of
L, we see that (11  X2))*(L)----'(detF)0q*(M ) for some invertible sheaf M  on Q.

Lemma 4. 5. s  is a G - morphism with the trivial action of G on P.

P ro o f .  Since det F  is a G-linearized 04 -module, there exists an isomor-
phism r*(detF)=->p 2*(detF ). Hence we see that

i-*(1, x v)*(L) T o 2*(11  X v)*(L)(1)i--*q*(M) v )C) -1;2*q*(M)
fi 2*(1,)( v)*(L) (D (1G x q)*(z-*(M V) ® p2*(m))

which implies that sr =5P2.  Therefore s is a G-morphism. q.e.d.

By virtue of E.G. A., Ch. III, 7. 9. 10, the assumption (2) on (P, L) yields
the following;

E=7.c* (L) is locally free and 1)*(E)=v*7r * ( L )  q*(1 1 xv)*(L)L=.' q* (detF)
O M , w here 7r: X x s 13—>P is the projection.

Now set
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(4. 6) 
z = P (c w ...0 ,(A vO k e , E ) ')
Z=P (cW a Q ( A V O k e ( 2 ,  q * (detF)® M )v)

Then the dual action a o :V-->VC) k k [G ] induces a G-action on Z  and a G-line-
arization on the tautological line bundle e z(1 ) . Since

7)*(,W.cop(AVOkOp, E)V) 1,*(E))v

q*(detF) om)v
q*(detF))vomv,

w e have that Z Z x Q  and ( ,,,e,Q(AVC)ktgQ, q* (detF ))v). Thus G
acts on Z  and the projections Z-->Z and 2- -->Q are G-morphisms. Moeover,
this action is just one induced by the dual action ô- 0 . On the other hand, using

the canonical G-homomorphism r  : ;\F-->detF in Lemma 4. 2, we obtain a G-
homomorphism

AvoiceQ=q*(Avok "ex,)  q*( ) > q*( q ( r )  A F) > q* (detF).

Pick a pointy of Q a n d consider (i. Ok(Y)): AVO k k(y)--->q* (detF)C)0,2k(y). The
assumption (4. 3) provides us with a caonical isomorphism q* (detF)ao Qk(y)----->
H°(q - - 1 (y), (d e tF )C A k (y )). Thus if s i denotes the image of e, by r(OC)0,2k(y)):
VC) k k(y)_'Ho(q - 1 (y), V(DhOq -1(,))-->H°(q - 1 (37), FOoQk(Y)), then (i0k(Y))(ez1A
• - • A e i r )  coincides with s i ,A• • As  on  the largest open set U , over which
FO Nk(y) is locally fre e . Since U , is not empty and sice s l , • •, s, generate
F(Do Qk(y), T'Cile(y) is not zero. Th is means that for the G-homomorphism

6:0,2 --> m0Q (A V O k 0,2, q* (detF )) defined by T, the dual of 6,6v : Q (Ar V
® k 00 q (d e F ))v -O Q is surjective. We obtain therefore a G-morphism Q-->Z
which is a section of the projection Consequently, composing this sec-
tion and the projection Z = Z x Q -÷ Z ,  a G-morphism p:Q Z  is obtained.
Moreover, the following diagram is commutative

Q

(4.7)

where p is the natural projection.

To analize the morphism p we need

Lemma 4. 8. Let f :X -->S be a  projective, geom etrically  integral
morphism, E be a locally free Os -module and let both E l and E2 be quotient
coherent Os -modules of E . Suppose that for a point s of S, E i Oe s k(s) and
E 2 (po s k(s) have the same Hilbert polynomial.
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1) I f  S=Spec(K) with K a field, E 1 is torsion free and if for a non-
empty open set U of X , E l l u = E 2 1 u  as quotient sheaves of El u , then E2 is
isomorphic to E 1 as quotient sheaves of E.

2) I f  S= Spec(A) with A an artinian local ring, f  is smooth, E, and
E2 are f -flat, for the unique point s of S, both E i C)eis k(s) and E 2C)os k(s)
are torsion free and if Ell u=E2l u  as quotient sheaves of El u  for an open
set with codim(X—U, X ) 2, then E 2  is isomorphic to E 1 as quotient
sheaves of E.

Proof. Let F  be the kernel of the homomorphism çb :E—>E i , J be the
coherent subsheaf of E generated by F 1 and F2 and let E  = ELT.

1) Since JD F I , there exists a natural homomorphism a: E 1 —>E. Our
assumption implies that Supp (ker (a)) ç X—U, and hence ker (a) is a torsion
sheaf. By this and the fact that E 1 is  torsion free, we get that ker(a)=0,
which means that J = F i .  Thus F 1 contains F 2 . Hence we have the following
exact commutative diagram;

02

oF l / F 2 E2

0

Then F 1/F 2 =0 because the Hilbert polynomial of F 1/F 2 is O . Thus E2 is
isomorphic to E 1 as quotient sheaves of E.

2) Since f  is projective and smooth, E 1 an d  E 2  are f-flat and since
E i (Do s k(s) and E200 8 k(s) are torsion free, we obtain the following exact
sequences;

f ( i)

0 
1 

where E »  are locally free e x -modules and n=dimX (see the proof of Proposi-
tion 2. 1 o f  [8 ] ) .  Furthermore, for a point x of X  with dim(e x ,x ) =d, ker
f  - 2).v is a  free  0 -m odu le . Since F i ,ker (0i), hde ,x(F i,„) „-S  max {dim (ex.x)
—2, O}. A s  is claimed in the proof of Lemma 4. 2, depthox,x(ex,x)-dim(Ox, )-
On the other hand, we know the equality

depthox,x(Fi, ) - Ehdox,s(F,, )=depthex,x(ex,x) (see [2] Theorem 3. 7).

Thus we have that depth(F,,,) min 12, dim(e x ,x ) ) .  This and the assumption
that codim(X—U, 2  im p ly  th a t  for all points x in X—U, depthex,x(Fi,x)

2. Therefore if j:(1--->X is the natural open immersion, then j * ( F  u )  F
which means that F 1 = F 2 as subsheaves of E  because j* (E  I )  = E .  Thus we
see that E2 is isomorphic to E 1 as quotient sheaves of E. q.e.d.

Let R be the open set of Q such that for every algebraically closed field
K, R(K)-= {xEQ(K)IFOo o k(x) is torsion free) (see Proposition 2. 1 of [8]).
Clearly R is a G-stable open set of Q.
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Proposition 4 .9 .  p i ,  i s  an immersion. To be more precise, there
exists a G-stable open set Z o of Z  such that p induces a closed immersion
of R  to Z o .

Proof. Let K  be an algegraically closed field containing k .  Pick two
points x 1 and x 2 in  Q (K ). Suppose that x 1 is contained in  R (K ) and that
P(K)(x1)-=P(K)(x2). If s is the point in S (K ) over which x 1 and x2 lie . Then
both g i  =F0e Qk(x i )  and E2=F0e Qk(x2) are quotient sheaves of VC)kex,,,
where X.K= XsOk(s)K. I f  U  is a non-empty open set of Xi , over which E1
and E2 are locally free, then 000A(xz):VC)kex„-->E,—>0 defines a morphism
a, of U to Grass (N , r) such that 95g0A(xi) I u:V0k 6 u—>ELI  is the pull back of
the unversal quotient bundle by a. The assumption that p(K)(x i ) ,  p(K)(x2)
means that s A...AsPr) i2)A  . . . A  _,2, ) in  H°(X  K , (detFCA k (x i )) =H°(X  „,
(detF)(1)0A(x 2)), where si m is the image of ei  in H°(X K ,  E i) by r(000,k(x,)).
This asserts that a l =a2, and hence E1I u= E 2  u as quotient sheaves of V a ce u .
Since E 1 is torsion free, E 1 is isomorphic to E2 as quotient sheaves of y o k e-

-  XK
by virtue of Lemma 4. 8, (1). Thus x i =x 2 . We obtain therefore

(4. 9. 1) p(R )n te(Q— R) ,  0,
(4. 9. 2) if x i  and x 2 are mutually distinct points in R (K ), then p(K)(x 1)

#  p ( K ) ( X 2 ) .

Since Q is proper over S  and since Z  is separated over S , p is a proper
morphism (E. G. A., Ch. II, 5. 4. 3). Thus if one sets Z 0=Z — p(Q — R ), then
Z o is  G-stable open set in Z  because Q — R  is  a G-stable closed set in Q
and p  is a G-morphism. (4. 9. 1) implies that p - i(Z 0 )=R , whence p' : R— >Z 0
induced by p  is proper. This and (4. 9. 2) say that p ' is a  finite morphism
and for every algebraically closed field K, p'(K):R(K)-->Z o (K )  is injective.
Take a point x in  R  and an artinian local ring A .  Let a n d  .5c" 2  be A-
valued points of R  whose images of the unique point of Spec (A ) are x.
Assume that p(A)(.t 1) , p(A)( -±2). Let R i = F 0 09,9 A , where Spec (A) is regarded
as a Q-scheme by the A-valued point Then :81 and .R2 are quotient coherent
sheaves of VC) k 0x4 with the same X A = X  X s Spec (A ) .  Since E 1 is  flat over
Spec (A) and since for the maximal ideal m of A, 12,0A A lut is torsion free,
there exists an open set U' in XA such that both E 1 and E2 are locally free on
U' and that codim (X  — U', 2 (see Corollary 1. 3. 1 of P g .  B y  the same
reason as above, the assumption that p(A )(i 1) ,  p(A)(5 2) yields an isomorphism
of ..g1 I u , to P 2 1,, as quotient sheaves of VC),0,,. Now if we apply Lemma 4. 8,
(2) to this situation, then we see that :8'1 is isomorphic to E2 as quotient
sheaves of VC),,ex A . Therefore p'(A ): R(A) — Z 0 (A ) is injective, and hence p' is
an unramified morphism. For a point x of R , set z=p'(x). Then since 0 R  i s
unramified over Os ,„ k(x) 0,./ms is a separablly algebraic extension of k(z)=
=oz.z/inz and in, = m,OR ,„, where m, and m, are the maximal ideals of Ou  and
e z ,„ respectively. This implies that k (x )=k(z ) because for every algebraically
closed field K , p'(K ) is injective. On the other hand, since p' is finite and in-
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jective, is a finite module over Combining these results and Nakaya-
ma's lemma, we see that 0 Z Z 0 R , . V is surjective. q.e.d.

Now we shall remove the assumption (4. 4) from the above results. Since
f : X-->S is smooth, there exists an étale, surjective morphism t):S' S  such
that f' -= f x sS' :X ' x s S'—>S' has a section e (E. G. A., Ch. IV, 17. 16. 3). we
have the following commutative diagram:

ix X S171
X0 X  8(S '  X ES' ) X 'Q  X  X X ' Qr ______, X 0

ix X $72 •
gl ' î i2 " 1 l e g'ilf'

71

72

Q x s (S' x sS')=Q' x = Q "

where Q'=- Qx 8 S', 7r is the projection, 7r 1 (or, 7r2) is the first (or, the second,
resp.) projection and where and i 2" are the natural sections induced by
e. Since f':X'--4S' and f"-- f x s .S":X" ,  X ' x„X"S" , - S'x s .S' have sec
tions, we can construct P ' and Z ' (or, P" and Z ") for X', S' and detF' (or,
X", S" and detF", resp.) as in (4. 6) under the assumption that (4. 3) holds for
Q and F, where F ' (1 x x s z)*(F) and F " =  (lx x  I

)*(F') .  We can find a sub-
scheme P of Picx i s  such that P' = P x sS' and P" =P x 8S" =P ' x ,P '. Let L'
and L" be universal invertible sheaves on X x s .13 ' and X x 8 13 ", respectively.
If u 1 and u 2 are the projections of P " to _FP, then (1 1 X sui)*(L')L=_L"Ovp.Mi
and (11 x  s u 2 ) * ( E ) - - = ' . / 1 / 0 0 p , M 2  for some invertible sheaves M 1 and M 2  on P".
Thus we get an isomorphism cr: Z i " -- 4 Z "-- 4 Z 2 " ,  where Z," is the base change

712
of Z' by P"— P'. I f  ut is the dimension of Z' over P', then (AS2 / ) - ' is a
P'-ample invertible sheaf. Since u,*(.(2, 7 p,) is canonically isomorphic to f2

n i

we obtain a canonical isomorphism C: ItIt is

clear that (a, e) defines descent data of (Z', (A r2 v/A - 1 ) for the étale, surjective
morphism u:P'— >P. Thanks to the descent theory of quasi-projective schemes
([4 ] V III, Proposition 7. 8), there exists a couple of a Pm --bundle p : Z P  in
the étale topology on P  and a P-ample invertible sheaf H  on Z  such that

772
Z  P' Z '  and HC)0z0z , -  (AQz , /pV .  Since the actions of G on Z' and Z"
come from the dual action ao o f  G on V, the descent theory of morphisms
provides us with an action of G on Z and a G-linearization on H.

Z"  Z' ---,Z
1 r 1 p

Pu ip t ,   1 3 / p
U2

Clearly 7z.' and p  are G-morphisms with the trivial action of G on P.
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On the other hand, we have G-homomorphisms :  AV(Dke/Q q' * (detF)

a n d  : C) k 0 Q ,--->qVdetF 1)  (see the construction of the morphism p before
(4. 7)). Since Ir is flat, it is easy to see that det F '- '(1 ,X s 7r)*(detF), q'* (detF ')

.r*q* (d e tF ) and r*(i) . W e have therefore that for F " , (1,X ,71)*(F')

(1,X s n- 2)*(F ') and for 1 ,": AVO k0,2 , qW;(detF") (i=1, 2),

d e tF "  (1 ,X  sri)* (detF ') ( 1 X  871) * (11 X s7)*(det F)
(11 X 87t2) * (

1
x X sn)*(detF) (lx X  s72)*(detF '),

q" * (detF") - 7ri * q ( d e t F ' ) .-'7 1*7*q * (detF)
7-c2* q ( d e t F ')  and

7ri* n* (r)= 7r2*7*(7)'1-=--' 12"

As in (4. 7) we get the mophisms and pi ":Q " Z "  for a n d
(i= 1 , 2 ), respectively. The above three isomorphisms show that p," is the

base change of p' by i-th projection of S " to S' and p 1" p 2 " . By virtue of the
descent theory again, a morphism of Q to Z  is obtained. Since p p '  and
since p ' is a G-morphism, p is also a G-morphism.

Summarizing the above results, we have

Proposition 4 .  1 0 .  A ssume that (4.3) holds f o r Q an d  F . Then there
exist an open and closed subscheme P of P ic ,/,  of f inite type over S and a
Pm-bundle p:Z—>P in the étale topology on P such that

1) G  acts on Z  and there ex ists a  p-ample, G-linearized invertible
sheaf H  on Z,

2) there exists a G-morphism p:Q—>Z with p1R an immersion,
3 )  i f  u:S' S  is  an étale, surjective morphism such that f/ = f x s S/

has a section, then Z x s S' and px  „S' are the same defined in (4.7).

Pro o f . By virtue of Proposition 4. 9, (p R) X sS '  is an immersion and it
is quasi-compact. Then p R  is an immersion because S ' is faithfully flat and
quasi-compact (E.G. A. Ch. IV, 2.7. 1). q . e . d .

Our next task is to analize the sets of stable points of Z  and R . Let us
begin with some general remarks.

Lemma 4 .  1 1 .  L et G  be a  geom etrically  reductive affine algebraic
group over k and let A  and A ' be k-algebras w ith dual actions of  G .  I f

A-->A' is  a surjectiv e G-homomorphism and if  x  is  an element of  A' G,
then there exists a positive integer t such that xt is contained in 0(AG).

For a proof, see [11] 5 . 1 . B.

Lemma 4 .  1 2 .  Let f: X.—>17 be a projective morphism of  algebraic k-
schemes. Assume that a reductive affine algebraic group G over k acts on
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X  and that f  is a G-morphism w ith the trivial action of G on Y . L e t  L
(or, M ) be a G-linearized ample invertible sheaf on X  (or,Y  , resp.). Then
there ex ists a  non-negative integer ao  su ch  th at f o r all a _ a o ,  x os (Lo
f*(m®"))= U yE y(xy)os(L0eyk(Y)) and Xss(L® f*(M ® " ) ) =  yE Y(Xy) " (L ® e y

k(Y)).

Pro o f . The inclusion Xos (LC) f * (M ® )) g  U  Y  (Xy)03(LOOyk(Y)) = S1
and X-gs(LOf * (M ®"))g U yEy(Xy)"(Lagyk(3))=S2 are obvious. Pick a closed
point y of Y and a geometric point x of (X ,)"(L ®e y k (y )). We may assume
that {Y.1 uE H°(Y  , M), Y ,. is affine) covers Y ,  w here Y .=  (2. Y  lu(z ) 0} .
Choose a member u  of H°(Y, M ) such that y is a point of Y . and Y. is an af-
fine scheme Spec ( B ) .  Set X' -= f -

1(Y .) . By a Leray's spectral sequence and
the fact Y. is affine, there exists a positive integer no such that for all n_>_ no,
H1(X', 100Lon)=0, where t y is  the definig ideal o f X y  in Os ,. Let us con-
sider graded G-algebras A = B  i )  and A' , k(y) -T(T,,,.13, 1), where B ,=
H°(X', Loin.) and B 1 ' =H°(X -1, (L 0 0 k ( y ) ) ° in o ) .  Then we get a surjective,
graded G-homomorphism 0: A — >A '. The assumption that x  is  a point of
(Xy)"(LCDOyk(Y)) implies that there exists an element a of B i l° su c h that (X0).
is affine and x is a point of (X y ).. By virtue of Lemma 4. 11, at is contained
in 0(11°) for a positive integer t. Since 0  is graded, we can find an element b
in B iLa such that 0(b)= a'. X ', is an affine scheme because Y. is affine. More-
over, X' y n X y  =  (X y )a .  For a large integer a,, bOuoitno'- can be regarded as

*010,, T gitnoN G .an element of H°(X , (L® f )  Then for s=bC)ug (itno' ' 1), X ,=
X ' , .  Thus we see that for all large integers a, x  is a  geometric point of
X "(L® f*(M®')). Furthermore, since X, C S2, S2 is an open set of X . There-
fore the above argument shows that for all large integers a, there exists a
positive integer n and sections .31, •-•, s„, in H°(X, (LC) f * (M 0 ')) 0 n)° such that
S 2 = Li X s,  and a ll the X ,, are a ff in e . This means that S2 is contained in
Xss(LC)f *(M oa)). If x is a geometric point of (Y y ) o s(LOe y k(y)), then X , can
be so chosen that the G-orbit o(x) of x is closed in X s O k k (x ). Since the action
of G at x  is regular, there exist a positive integer j  and a G-invariant section
s '  of (L0f*(/14.0 "))01 such that x  is a point of X ,, X ,  is affine and that the
action of G on X ,, is closed (see Amplification 1. 11 of [ 1 0 ] ) .  We see there-
fore that for all large integers a, x is a geometric point of Xe(LO.f * (M ° ')).
Since X,,OES i , S i is open in X .  These results show that for all large integers
a , there exist a positive integer n ' and G-invariant sections s' 1, •••, s'„,, of
(L® f*(M 0 '))on' such that Si= U all the X,, , a re  affine and that the
action of G  on each X,, , is closed. Therefore S 1 is  a  subset o f x e (L o
f*(M ®")). q.e.d.

We shall apply the above lemma to the following situation. Let H be the
G-linearized invertible sheaf on Z  obtained in Proposition 4. 10, M  be an S-
ample invertible sheaf on P and let {U,} be a finite affine open covering of S.
Lemma 4. 12 for X=Zo,, Y u,, f =Puo L  H LT,=H  I zu , and M = M 1 p u ,im -
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plies that if one replaces H by HOP*(M 0 ')  for a sufficiently large integer «,
then for all i,

(Z u1)0(1/(1)= U  (Zy)o(H(Dapk(Y ))
(4.13)y E P u ,

(Z (Hu,)= U (Z y)"(11®Opk(Y ))
yE P

For the invertible sheaf ° z ,,(1) corresponding to the hyperplanes in Z y = P ) ,
HOopk (y ) is isomorphic to 0 4 (m +1 ) .  Thus Proposition 4. 12 provides us
with a criterion for stability of a geometric point of Z u ,. On the other hand,
Proposition 1. 18 of [10] says that

(4. 14) (Ru,)02([1 * (Hu,) I R O D .(p  I  R) - 1  {(Z )0 8(1101

The following which is due to D. Gieseker is an interpretation of Proposi-
tion 4. 1 in the words of sheaves.

Lemma 4 .  1 5 .  Suppose that a geometric point y of R u , satisfies the
condition

(4. 15. 1) r(OC)k(y)):V C),k(y) H°(X y, FO o Qk(y)) is bijective and for
all proper coherent subsheaves E ( 0) of F(DeQk(y) gener-
ated by  a  subset o f H °(X „F 0 0 , 2k(y)), the following ine-
quality holds;

h° (X E)<r(E)h° (X ,„ F (30 Qk(y)) / r.

Then y is a geometric point of (III R ) - 1 {(Zu,)08(H

Pro o f . The point z= dy(y) can be regarded as a k(y)-linear map 7', of

j\V 0 k le(y) to U =H°(x y, (detF)ClAk(Y)). If z is not stable in Z u ,  then (4. 13)
shows that 7', is not stable, and hence there exist a subspace W  of VOkk(Y )
and a T,-independent set of vectors fv1, • • •, v,} in W such that every vector in
W is T i -dependent on v1 , • • •, v, and that dimW _>_dN/r=dh°(X ,, F(DeQk(y))/ r
by virtue of Propsition 4. 1. Let E be the subsheaf of FC)0,9 k(y) generated by
fr(OC)k(y))(w)l w E W } . Then it is easily seen that r (E )= d  and h°(X,,E).
dimW. This contradicts to the assumption (4. 15. 1). q . e . d .

The following is an easy generalization of Theorem 1. 4.

Lemma 4 .  1 6 .  Let f :X—>S be a projective morphism of  algebraic k-
schem es. Assume that a reductive affine algebraic k-group G acts on X
and f is a G-morphism with the trivial action of G on S. Let x (1) be a G-
linearized f -ample invertible sheaf on X and let X 0s(0 x (1)) (or, Xs'(0 x(1)))
be Lii(X0e(axu,(1)) (o r , U i(X 0 "( 0  xui(1)), resP.), w here {U,} is  a finite
affine open covering of S (note that they  are independent of {U 11 ). Then
a good quotient (Y , g) of Xss(0 x (1)) by G exists. Moreover,

( i )  g is affine and universally submersive,
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(ii) for the natural morphism h:Y —>S, there exists an h-ample in-
vertible sheaf M on Y such that g*(M)=0 1 (m) for some positive integer m,

(iii) there exists an open subset Y' of Y such that X0 3 (0 x (1))=g - i(Y ')
and (Y ', g I xe(01 (1)) is a geometric quotient of x - 0s(01 (1)) by G.

P ro o f. Since i s  a finite covering and since all the X u , are noetheri-
an schemes, there exist a positive integer m and G-invariant sections si(, •• •,
s;.? in H°(X u , 01 (m)) such that all the (X u ,)s,,i, =U i ( i)  are affine and U J U J ( ') .=
(X 0 82(ex u ,(1)). By virtue of Theorem 1. 1, there exists a good quotient K O
o f U f ( i)  b y  G .  Since fo r a ll affine open set U'=Spec (A )  o f V ., ( i) , r (U P )

X V5 (1)U', 01) ° = r(U f
w , x )G Or ( v .0) , 0 v ,,i))A= A (see [10 ] p. 9, Remark 7) and

since Spec (['(U ° X „ iv ',  ex)G )  is a good quotient of U  x  v i ci,U ' by G, U'
is a good quotient of LTi) x  v U ' by G . Thus we obtain

(4. 16. 1) for all open set U' of V 3 °, U ' is a good quotient of U i ( l) x
by G.

Hence we can construct a good quotient Y. o f  (X u )ss(ex-
u ,(1)) as in the

proof of Theorem 1. 10 o f [ 1 0 ] .  Moreover, we see, by the same argument as
above, that for all open sets U' of U 1, Y i X 5U ' is a good quotient of X x S U'.
Thus for U, ; = u i n ui , Y, X s U i f  is a good quotient of X x  5 U 1 ; by G. Hence
we can patch Y , together and obtain a good quotient (Y, g) o f X  by G . Fur-
thermore, .s.,(i)/s5i;) is induced by a function c5V  of P(V° fl vp, Cy ) by virtue
of (4. 16. 1). Clearly fo5i,P 1  forms a  zech 1-cocycle for the covering {V i m} of
Y and in the sheaf oi,*. Thus we get an invertible sheaf M  on  Y  such that
g*(M )-- e,x (m ). The proof of the fact that MI y i  is ample is completely same
as that in the proof of Theorem 1. 10 of [10 ]. T h e  rest of the proof is similar
to that of Theorem 1. 10 of [1O].

Now we come to our main theorem of this section.

Theorem 4 .  1 7 .  Assume that (4.3) holds for Q  and  F . Let U  be a
G-stable subscheme of R such that every geometric point of U satisfies the
condition (4.15.1). Then there exist an S-scheme Y and an S-morphism
g:U—>Y such that (Y, g) is a geometric quotient of U by G and Y is quasi-
projective over S.

P ro o f. Since pu :U—>Z is an immersion and U is noetherian, iii ,  is quasi-
affine. Thus, for a finite affine open covering {U,} of S, the morphism
(PI u) X 5 U, o f  V, =--U x ,U , to Z . =Z  X 5 U 1 is  quasi-affine. Then Proposition
1. 18 of [10] implies that (V i)os(te,*(H I z )) contains pi - 1  {(Z i) o' (H  1)}. On the
other hand, Lemma 4. 15 and our assumption assert that V  is a  subset of

ter' {(Z1)0(1/ z)}. Thus U= (p I uY1  {Ze(H)} =Uos((ttlu) * (H )) under the nota-
tion o f Lemma 4 . 16 . Therefore we obtain, by virtue o f Lemma 4. 16, a
geometric quotient (Y ,  g ) and an S-ample invertible sheaf M  o n  Y  such

g* (M )= (It I ) * (H® m) for some positive integer m. q.e.d.
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Remark 4 .  1 8 .  Since the center o f S L (N ,k ) acts trivially on Q, the
above results can be regarded as those for the action of PG L(N ,k ) and also
for the action of GL(N,k).

§  5 .  Construction of moduli of stable sheaves.
As in § 4, let f : X—>S be a smooth, projective, geometrically integral mor-

phism of algebraic k-schemes and let Ox (1) be an f-vary ample invertible sheaf
on X which satisfies the condition (3. 4). In this section, combining the results
of preceding sections, we shall construct coarse moduli schemes of stable sheaves
on the fibres of X over S . Without losing any generality, we may assume that
S is connected. Let n be the relative dimension of X over S, h be the degree
of 0,(1) and let c(X) be the degree of AQx / s  with respect to e x (1 ). For a posi-
tive integer r, let H  be a numerical polynomial;

H(m)= rhmn / n! + {a,— rc(X) / 2} mn- ' / (n-1 )! +term s of degree<n —1.
To fix ideas let us introduce the following contravariant functor a s of the
category (Sch/S) of locally noetherian S-schemes to the category of sets (Sets):

For TE (Sch/S), a s (T) = {E  I E has the properties (5. 1. 1) and (5. 1. 2)1 /
where-, -is such an equivalence relation that E --E ' if and only if

007-L for some invertible sheaf L on T.
(5. 1. 1) E is a T-flat, coherent ex,  S T -module.
(5. 1. 2) For all geometric points t  o f  T , the Hilbert polynomial of

EC)ei k(t) with respect to Ox(1) is H  and EC)0,12(t) is stable
with respect to ex(1)00sen

a s is not necessarily a sheaf for the étale topology in (Sch/S) even if f
has a section. The aim of this section is to show that a s has, neverthless, a
coarse moduli scheme.

To construct the moduli scheme o f E Zs, we need a subfunctor a ' s of
EL

For TE (Sch/S), a , ; ( T ) = I E E a s (T) I for all gemetric points t o f T,
ECIeTk(t) is e-stable).

For an integer m, set a s (m)(T)= lEOPi * (69x(m)) I E E  E l/ s (T ) )  and

E lk's (m)(T)=- 1E OP 1* (e x(m)) I E E  (T ) }  ,  where p , is the first projection of
X x s T to X .  Then E L (or, E L ) is isomorphic to E L (m ) (or, E (m ) ,
resp.). Thus we may replace E L, and E  by E 1/ 5  (m) and E  (m), respec-
tively. By virtue o f Corollary 3. 3. 1 and Proposition 3. 6, we can find an
integer me such that for all integers m.m„ all geometric points s of S and for
all E in aS(Spec (k(s))),

(5. 2. 1) EC>gx ,(m ) is generated  by  its global sections and h'(X„
E D , x ,(m))=0  i f  i>0,

(5. 2. 2) if  an  invertible sheaf L  on X , has the same Hilbert polyno-
m ial as det(EC)exs(m))=ci(E009 x,(m)), then h1(X ,,L )=0  f o r



Moduli of stable sheaves 123

all positive integers i.
(5. 2. 3) f o r all coherent subsheaves E' of  E with O E '* E ,

h°(X s , E'C)ex e (m ))<r(E')h
°
(X 8, E0ex ,(m ))/r.

We may assume that me m e , if e > e '.  Let H c (m )=H (m +m e ), then the
Hilbert polynomial of a member of E lks(me)(SPec(k(s))) is He. S e t  N e=
H (m ) , then the condition (5. 2. 1) implies that fo r  every member E  of

(me ) (Spec (k(s))), h°(X „ E)=N e .

N ow  let us consider = Quot g̀x.EDm a n d  t h e  universal qoutient sheaf
0:VeOkaxx s Z)— >F„ where V, is an N e-dimensional vector space over k .  Then,
by virtue of Lemma 3. 5, for each integer with there exists an open
set R e ,,, such that a geometric point y  of e") is contained in R e ,e , if and only if

(5. 3. 1) r(00k(y)) :V e -> H°(X y , F e CDok(y)) is bijective,

(5. 3. 2) F eC)o-o k(y) is contained in EL'(m,)(Spec(k(y))).

For every geometric point S  of S and for every E of E i x 1 ) ; ( m e )  (Spec (k(s))), there
exists a surjective homomorphism a :V eØke x,-->E such that na):17,0,k(s)-->
H°(X „ E) is bijective by virtue of (5. 2. 1). By the universality of (0, 0, F e), a
corresponds to a geometric point y  o f -0 lying over S .  Clearly y  is a geometric
point of Thus we obtain a surjective map R e,,,(k(s))-->E V;(m,) (Spec
(k(s))). On the other hand, for a natural action  of C =PG L(N „ k) on Q. , Re,e

,

is G-stable and if two geometric points Yi and y 2 o f  -0 are in the same orbit of
G, then clearly FeC)ok (y i) -L.- 'F,C)o -,A(y2) (see § 4). Conversely assume that for
geometric points Yi and Y2 in Re,,, (k(s)) with s a geometric point of S , there
exists an isomorphism p :Fe(Dee k(Yi) 2 -)- Fei0ei-2-k(Y2). Then r(00k(Y2)) - 1 E(P)r(95

Ok(Y1)): V eØkk(5) -3- H °(X s, Fe00 -,A (Y 1)).--4H °(Xs, Fe00i5k(Y2))- VeC)kk(s) is
a linear isomorphism which defines a k(s)-rational point Or of G. H ence w e
see that -r(g, Y1)= Y2, w h e n c e

 Y i  and y 2 are in the same orbit of G. We get
therefore a natural bijection

(5. 4) R e,,,(k(s))/G(k(s))  2 E ( m e) (Spec (k(s)))L
-
4 El";,;' (Spec (k(s))).

Let 0 1, •••, Qt }  be the set of connected components of er? having a non-
empty intersection with Then since the image of Q . Picxm  by the
morphism defined by (detFe) I xx,Q, is contained in a connected component of
Picv s , for every geometric point y of Qi ,  (detF e)00-e/2(y) has the same Hilbert
polynomial as (detFe)00,-A(yo) where y o is  a  geometric point of Qi n R e ,„.
Thus each Q, enjoys the property (4. 3) by virtue of the assumption (5. 2. 2).
Theorem 4. 17 and the assumption (5. 2. 3) provides us with a geometric quo-
tient (mg1,, OW  of Qi n R e ,e , by G. Set _We= tii M?e ,  and ge,e= BC', then

ge,e , )  is a geometric quotient of by G and M e,,, is quasi-projective
over S.

Proposition 5 . 5 . M e ,e , is a coarse moduli scheme of that is,
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(i) for all geometric points s of S, there exists a bijective map 0, of
Yg(Spec (k(s)) to M,,,,(k(s)),

(ii) f o r TE (Sch/S) and E E (T ), there exists a morphism Pi e ' o f
T to M,,,, such that fei"(t)=0,(E®o r k(t)) for all points t in T(k(s)). More-
over, for a morphim g:T'-->T in (SchIS),

feie •g= f (E)
(iii) i f  M ' E (S ch I S) and m aps Ol:EI;:s '(Spec(k(s)))—>Mi(k(s)) satisfy

the above condition (ii), then there exists a unique S-morphism 0 of M,,,,
to M' such that 0(k(s))•03=0,' and 0. f e

l ye ' = f ' E for all geometric points s of
S and for all E E  E M T ), where f' E is the morphism given by the condition
(ii) for M'.

Proo f . The proof is essentially the same as that of Theorem 4. 11 of [7 ] .
The condition (i) is just (5 . 4 ) . The restriction of ç  and F, to X X are
denoted by ke , and Then the triple (R ,,, , , 95e,e, Fe.,') has the following
universal property:

(5. 5. 1) For all T in (Sch/S), E in E g (T ) ,  and for all surjective homo-
morphisms a :1 7 ,0 k e g x x s T — > E  such that for all geometric points
t  o f  T, r(aC)k(t)):V,C)k(t)-->H°(X t , E 0 0 k (t)) is  bijective,
there exists a unique morphism h, o f T  to R,,,, such that (1/
X s h„)*(F,,,,) E and (11 X s  t)* (9  a.

Assume that TE(Sch/S) and EE (T ) are g iv e n . Set E'=EC)
Pi* (0 1(me)) with the first projection p i  o f X  x s T to X , then E ' is a member
o f  Eixii,;'(me)(T), and hence h'(X„ E'Oo T k(t))-=0, i>0 and E'C)or k(t), is
generated by its global sections for all geometric points t o f T .  By these and
the fact that the second projection P2 of X x s T  to T  is proper and E' is T-flat
imply that E" , (p 2 ) * (.0 ) is a locally free Or module of rank N. and the natural
homomorphism p :p 2*(E")—>E' is surjective. Let us cover T  by a family of
open sets (T 2) such E"I T A is  fre e . Take a basis (e h  •••,eaN j  of each EI  I T A .

Using this basis, we obtain a surjective homomorphism

/31:VeaceXxsT — > P2* (E
,

f l  T a  
PITÀ

- *  I T P

Moreover, for all geometric points t  of Y , E"C)0,k(t)=>H °(X„E'C)ork(t)),
and hence r(p,C)k(t)):V ,C) kk(t)—>H°(X„ E'®or k(t)) is bijective. Therefore
the universal property (5. 5. 1) gives us a unique morphism such
that (11 X s h,)*(F,, , )'.: E' I T A and p, (1„x s h,)*(0,,,,). Since a change of basis
of E" I T A is represented by a  7'2-valued point of GL(N „ k) and since M e ,e, is a
geometric quotient of R 4 ,, by an action of GL(N,,k), the morphism f,=-g,,,,•h,
is independent of the choice of a basis of E"I T A . Hence f a = f ,  on T2 n
We get therefore a  morphism f i e '  o f T  to  /14",,,,. 6 ) N e x t  assume that a
morphism g of T' to T in (Sch/S) is given. The fact that h1(X„E'C)e,k(t))=0,

It is clear that f g , o r L --- Pe for every invertible sheaf L on T.
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i > 0  for all geometric points t  of T  implies that 9 * (E '') '- (P2')*(ix X sg(* )E ),
where P 2 ' is the projection X X sr--›r. Thus if we define PA' :V,OkOxx r --->
(11 x s q)*(E) I T 2 , o n  T 2 ' =g - - 1 (T 2)  by using the basis fg*(e 1

1 ),•••.g(e 2
N ,)}  of

g* (En)17.
2 ' ,  then p i=  ax X s(g T À ,))* (p a ) . Similarly to the above, pa'  defines a

m orphism  h,' :77.-->R„„. It is obvious that h,' = h ,•g . Therefore, feZe' • g=
f edc.," xo . (E) ,  which completes the proof that h a s  p r o p e r t y  (ii). In  order to
prove (iii), let us consider the following diagram;

,-'
Gx„,R,„,  R„,,

q21 if'Fe.,,
R e ,,, ) M '

where r '  is the action of G = S L (N „k ) on R„,, induced by the r  in § 4 and
where q 2 is the projection. Since F„,, carries a G-linearization, (r')*(F,,,,) is
isomorphic to g2 *(F„,,), which implies that f Fe,r' • q 2  -  f  Fe.e'• 2 - 1 . Thus there
exists a unique m o p h is m  :M,,,,—>M' with Çb•9e .e = f ' F e . e because (Me,e , , ge,e , )
is a geometric quotient of R„,, by G . By the functoriality of fe.ge' and f ' ,  and
by the universality of R„,,, we see that 0- =  f' , for all E  in E lK ( T ) .  It is
clear that 0(k(s))•0,=0,'. q.e.d.

Since both and M e 2 , e  are coarse moduli schemes of the same functor
E L', we obtain a unique isomorphism 0 , e 2 M e , e' such that f
=  e ' .  Since M,„, is an open subscheme of M „ M ,,,,, can be regarded an
open subscheme of M,,, through Taking the inductive limit of { M,,,}, an
S-scheme M x / s (H ) is obtained. S in ce each  M,,, is quasi-projective over S,
M ( H )  is locally of finite type and separated over S.

Theorem 5. 6. The functor E!,1/,,,,, has a coarse moduli scheme  M » (H )
in  (Sch IS ). M oreover, M ( H )  is separated an d  locally  o f  f inite type
over S.

Pro o f . For all geometric points s of S , U , E l):,(Spec(k(s))=  E L (Spec
(k(s))) by virtue of Corollary 1. 2. 1 of [ 8 ] .  Thus Proposition 5. 5 implies that
M 1 1 8 (H ) enjoys the property (i) of coarse moduli schemes for E L . To show
the property (ii), take a  T  in (S ch /S ) and an E  in  E L ( T ) .  By virtue of
Lemma 3. 5, there exists an ascending sequence of open sets {Te} e>,D of T such
that U ,T ,= T  and that a geometric point t is in T, if and only if EC)o r k(t) is
e-stable . Set E,-=E xx s T , .  Let us consider a pair of T e ,OET,(e' _e). Proposi-
tion 5 . 5  provides us with morphisma and f
such that 0;,,•fer = f .  B y  the construction of feg1,:, we see that j • fZ:=
faexxi ) .(E, ) for the open immersions i :T ,,-->T, and j: M,,,,— M ,,. Thus we get
j•Sb,e • f  =  feke •i, whence a morphism f E :T—>Mx 7 E (H ) is obtained. For the
m orphism  g:T'-->T in (S ch /S ), g(T,') is contained in T „  where T,' for T ' is
the same as T, for T .  Thus the functoriality of f E  is an immediate consequence
of that of fege,. Finally let us show the property (iii). Assume that {M ', f  SI)
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has the property (ii). Then it enjoys the property (ii) for E ik ,e , Thus we get
a morphism I f  e ' e ,  then (gbe,I m e ,e)•feie =I* 1 , and hence the
uniqueness of 0, implies that 6  6  Ie

=
 e '  M e . e •  W e have therefore a unique mor-

phism gb:/l/ j o s (H) M ' such that O•fE= fE'. q.e.d.

We shall close this article by the following remark.

R em ark  5 . 7 . 1) Let S'--->S be a morphism of algebraic k-schemes and
let X '= X  x s S '.  Then M 1 1 8 (H) X s .S' =/l/,,,,,(H ). If the characteristic of k is
zero, then this is easy because the geometric quotient in Theorem 4. 17 is a
universal one (see  [10 ]). In general case, this is a corollary to the fact that
R e ,,, is a principal fibre bundle over b y  the group G (see the forthcoming
paper [9]).

2 )  Is M , 8 (H) of finite type over S ?  This is equivalent to the following
question: Is  the family of classes of stable sheaves with a  fixed Hilbert
polynomial on the fibres of X  over S  bounded? This is true if the relative
dimension of X  over S  is 1 or 2 (see [1 ] ,  [7 ] and [3]) or if r=2 (see [9 ]) .

D E PAR TM E N T O F M ATH EM ATIC S

KYOTO U N IV E R S ITY
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