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1. Introduction

Let M be an n-dimensional differentiable manifold of class C® and TM
its tangent bundle, which is a 2n-dimensional differentiable manifold. The pro-
longation of tensor fields and connections from M to TM has been studied in
[3] by Yano and Kobayashi. In particular, for an affine connection ¥ on M,
its complete lift 7€ is an affine connection on TM. If g is a pseudo-Riemannian
metric on M, its complete lift g€ is a pseudo-Riemannian metric on TM with
n positive and n negative signs.

In [4], Yano and Kobayashi have tried to detcrmine the form of an infini-
tesimal affine transformation on (TM, F€). However, their work is incomplete
because they have determined essentially only the fibre-preserving infinitesimal
affine transformations. In the same paper, they have also tried to determine
the form of an infinitesimal isometry on (TM, g€). But their result turned out
to be incorrect as was pointed out by Tanno [I], who in turn gave a complete
solution on the form of an infinitesimal isometry on (TM, g°©).

In this paper, we shall use the method of adapted frames to determine
the most general form of an infinitesimal affine transformation on (TM, F€),
without any extra assumption on the infinitesimal affine transformation itself.
For the case of fibre-preserving transformations, our result is an improvement
over that given in [4]. As an application of our results and further illustra-
tion of our method, we shall give an alternative proof of the result of Tanno
on infinitesimal isometries on (TM, g€) mentioned earlier.

2. Preliminaries

In this section, we shall summarize all the basic definitions and results
that are needed later. Most of them are well-known, and details can be found
in Yano [2] and Yano and Kobayashi [3, 4]. Indices a, b, c,...; h, i, j,... have
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range in {I,...,n}, while indices A4, B, C,...; 2, u, v,... have range in {l,...,n;
n+1,..,2n}. We put I=n+i. Summation over repeated indices is always
implied.

Coordinate systems in M are denoted by (U, x"), where U is the coordinate
neighbourhood and x* the coordinate functions. Components in (U, x*) of
geometric objects on M will be referred to simply as components. We denote
the partial differentiation 6% by 0,.

Let 7 be an affine connection on M with components I'%;. Its covariant
differentiation will again be denoted by the same symbol F. The curvature
tensor R and the torsion tensor T of F have components R,;* and T*;
respectively. The opposite connection F of F has components I hi=T1;.
The covariant differentiation, curvature tensor and torsion tensor of F will be
denoted by 7, R and T respectively.

A vector field X on M with components X" is an infinitesimal affine trans-
formation of ¥ if

2.1) 0;0, X"+ X0, —r4,0,X"+rh0;,X*+I",0,X*=0.
The left hand side of (2.1) are the components
(2.2) £ =P, 0 X"+ R, ;" X*

of the Lie derivative £,F of F with respect to X. The Lie derivative £yR of
the curvature tensor R is given by

(2.3) fokjih=X”VaRkjih_RkjiuﬁaXh+Rajihﬁan+Rkaihﬁan+RkjahﬁiX“.
It is known that
(2.4) fokji"=kaXr’}i—ijxrf,'i+ Tﬁjfxrﬁi.

Hence £3R=0 if X is an infinitesimal affine transformation.
Let g be a pseudo-Riemannian metric on M with components g;. As

usual, {;11} is the Christoffel symbol of g; and [g/'] is the inverse of the

matrix [g;]. A vector field X on M with components X" is an infinitesimal
isometry on (M, g) if

(2.5) X"aagji+g,,j6iX“+gaian“=0.

The left hand side of (2.5) are the components £4g;; of the Lie derivative £yg
of g with respect to X. In terms of the covariant differentiation in (M, g), we
have
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(2.6) £x9;i=9,; Vi X+ 9.V ;X

It is also known that

h
Ji
Thus an infinitesimal isometry is an infinitesimal affine transformation with

respect to the Riemannian connection of g.
We shall be using the following identities in (M, F):

@) £x] 1 h =2 14014+ P 0107 uEx8 ).

(2.8) %Rkjih:%TﬁkT.‘;i'l‘ngT‘l}i,

(2.9) (gkajith%TI‘:jRialha

(2.10) VijBh_VijBh=RkjahBa—T;:jVth,
(2.11) VkVJA?_VJVkAt‘=Rk"ahA:‘—Rkj,aA2“ ﬁJVaAt'-

Here, ¥ denotes the cyclic sum of terms in the indices k, j, i. (2.8), (2.9) are
respectively the first and second Bianchi identity. (2.10) and (2.11) are the
Ricci identities for a vector field with components B* and a (1,1) tensor with
components A%,

Let n: TM—>M be the canonical projection of TM onto M. The coordinate
system (U, x") in M induces in a natural way a coordinate system {n~!(U),
(x", y")} in TM, which we call the induced coordinate system. We sometimes
write y* as x" and (x", y") as (x#). Components in {n~!(U), x4} of geometric

objects on TM will be referred to simply as components. We denote 5?)—,, and

6%‘ by 0;, 0, respectively. For a vector field X on M with components X",

the vertical lift X' and the complete lift X¢ of X are vector fields on T™M
with components

0 Xh o
(2.12) XV:{ ], XC:[ J
Xh yiaiXh

A (1,1) tensor field C on M with components C* induces a vector field (C
on TM whose components are
o }
yicr |

On the other hand, similar to Lemma 2.2 of Tanno [I], we can prove that a
(1,1) tensor field 4 on M with components A* induces a vector field A* on TM

(2.13) (C:
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whose components are

Aty!
(2.14) A*: )
—4(IhA%4+Th,A49)yiy

For the affine connection ¥ on M, its complete lift € is an affine connec-
tion on TM whose components "4, are:
215 rhy=rh, =0, TI%=o0, TI%=0,
Fi=yko,rh, I'i=r%, Fi=rh, [i=0.

Jis jis

3. Adapted frames in TM

When an affine connection F with components I'%; is given on M, we
can introduce on each induced coordinate neighbourhood n~!(U) of TM a
frame field which is very useful in our computations. It is called the adapted
frame on n~!(U) and consists of the following 2n linearly independent vector
fields on n~Y(U):

0
oyt

0

D‘:OF'

3.1 D=2 —yiry,

The non-holonomic objects €,,* of the adapted frame {D,}={D, D;} arc
defined by

3.2) [D,, D,]1=9,,'D,.

If we denote by [L{#] the matrix of components of {D,}, namely

st 0
[L;:J=[ .
—yiry 8

and [LY] the inverse matrix of [L#], (3.2) becomes
(3.3) QM"=[D1(L;,‘)—D”(L;{)]L)',.

When working out the details in (3.3), we find that the only non-zero com-
ponents of the non-holonomic objects are

(3.4) Q=R v, Q= —Q, =l

jia

In what follows, we shall often consider the components of tensors on
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TM with respect to the adapted frame on n~'(U). We call such components
the frame components to distinguish them from the ordinary components of
§2. By using (3.1), it is not difficult to show that the frame components of
the vector fields XV and (C are the same as the ordinary components, namely

0 0
(3.5) Xv: [ } C: ( }
Xh B le{l

while the frame components of X¢ and A* are

Xh A{tyl
(3.6) Xe: { , A% e
yiv.xt —3Th;Alyiyi

Let / be an arbitrary affine connection on TM (not necessarily F€). The
frame components '}, of 7 on n~'(U) are defined by

(3.7 F3,=[Di(LY)+FEsLSLEILY,

where "4, are the ordinary components of #. For a vector field X on T™M
with frame components X", it can be shown that

(3.8) 7, X0=D,(X")+Ty,Xn

are exactly the frame components of the covariant derivative #X of X. There
are formulas analogous to (3.8) for tensor fields of other types. The frame
components of the curvature tensor R of 7 are given by

(39) Rw;.;‘ _D (FA;A)_DA(F(WA)'I'F(M ¥ X.ti:z;u_gm}lrr:u'

From the components of FC€ given in (2.15), we can use (3.7) to show
that the possibly non-zero frame components of the complete lift FC are
(3.10) Fh=rh, Fhi=y*R,,» T =r".

It then follows from (3.9) that the possibly non-zero frame components of the
curvature tensor R of F€ are

G.11) Rkjih=Rkjih1 thiﬁ=yaVaRkjih’
Riji" =Riyi" = Rijif = Ry it

The computation leading to (3.11) is straightforward except for R,;”, where
we have to use Bianchi’s second identity (2.9).
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Let us denote the opposite connection of F€ by F*. From (3.7) and (3.3),
it follows that the frame components I i of P* are related to the frame
components '}, of FC by

* ~
(3.12) Ip=ri,—Q,".

In particular,
¥ _ - - a
r'}i=ff"j“Qij"=ykRkijh+Rijkhyk-

It can be shown that
Rijeh=Riph+ VTl =V T+ T4 Th+ ThTi; — Tl T,

. . . * . . " .
Putting this into the expression for I'%;, and using the first Bianchi’s identity,
we get

o k( h h
Ihi=y*(Ry;i" =7, .Th).
Working similarly with other sets of indices, we can show that the possibly

non-zero frame components of the opposite connection F* of FC are

F7i=rb F§i=}’k(Rkji"_VkT?i)’

ijs

(3.13)

4. Decomposition of infinitesimal affine transformation

We begin our determination of infinitesimal affine transformation on (TM,
V€) by refining the discussions given in §4 of Yano and Kobayashi [4]. Thus,
let "4, be the components of FC given by (2.15) and X an infinitesimal affine
transformation on (TM, F€). By (2.1), the components X4 of X satisfies

4.1) 0c0p XA+ XEQ Ty — TEgd XA+ T4p0cXE+T4:0,XE=0.
Let us put (ACB)=(hji) in (4.1). We get 9;0,X"=0 and so
4.2) Xi=Aby* + B"

where Al, B" are functions of x" only. It is easy to see that A} and B" are
respectively the components of a (1,1) tensor A and a vector field B on M.
If we put (ACB)=(hji) in (4.1) and use (4.2), we get



Infinitesimal automorphisms 405
“.3) 0; A}~ T4 AL+ T}, A7 =0,

i.e., PA=0.
If we put (ACB)=(hji) in (4.1) and use (4.2), we get

4.4) 0;A"—T§;Al+T%;4¢=0.
In the presence of (4.3), (4.4) is equivalent to
(4.5) T},A¢=T4 45

If we put (ACB)=(hji) in (4.1) and use (4.2), considering only those terms
not involving y*, we get

ajaiB"+B“aarjfl-—['“}iaa3h+FﬁiaJ-B“+r’}aaiB”=0,

which is the condition for B to be an infinitesimal aftine transformation.
Let us now put (ACB)=(hji) in (4.1) and use (4.2). We get

(4.6) 0;0, X" +ThA3+T",47=0.

(4.6) implies that I't;444-I'" A% is symmetric in j, i, i.e.,
IhAs+Th At=T" A7+ T'!, 44,

In other words,

4.7 Th A%=T", A2,

Since Th,A¢ is skew-symmetric in j, i by (4.5) and symmetric in j, i by (4.7),
we see that (4.5) and (4.7) are equivalent to

(4.8) Th, 43 =T9,4"=0.
On the other hand, from (4.6), we have
(4.9) Xi= —3(Tl A3+ T, ANy y + Ely' + F",

where E!, F* are functions of x" only.

Bh

It now follows that [ ' :l are the components of the vector field
_ Elyi+ F"
X —A*. By looking at its transformation law, it is easy to see that F* are

Bh
the components of a vector field F on M. Thus, |: :l are the components

Ely!
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of the vector field X—A*—FY. Guided by the form of the components for

0

B€ (cf. (2.12)), we put E'=0,B"+CF Then [ } are the components of

Cly!

the vector field X —A*—FV— B¢, By looking at its transformation law, we see

that C! are the components of a (1,1) tensor C on M and that
X—a*—Fv-Bc=.C.

Let us obtain further information on C. We put (ACB)=(hji), use (4.2)
and (4.9) and consider only those terms not involving y*. What we get is

£BF’J‘1+VJC:'=0‘

As B is an infinitesimal affine transformation, we see that FC=0.

On the other hand, if we put (ACB)=(hji), use (4.2) and (4.9) and con-
sider only those terms not involving y*, what we get in the presence of £5/ =0
is

(4.10) 0,Ch—T%,Ch+Th,Ca=0.
By FC=0, we also have
(4.11) 0,Ch—rg;Ch+r1",C3=0.
(4.10) and (4.11) together gives
4.12) T¢Ch+ThC4=0.

We summarize what we obtain so far in

Proposition 4.1. Let FC be the complete lift of an affine connection ¥
on M to TM. An infinitesimal affine transformation X on (TM, F€) can be
expressed uniquely in the form

X=A4*+BC+.C+F",
where A is a (1,1) tensor field on M satisfying
VA=0, T",A?=T4%A44=0,

B is an infinitesimal affine transformation on (M, V),
C is a (1,1) tensor field on M satisfying

Vc=0’ T?ac‘i’= j"'icl';’
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and F is a vector field on M.

We can obtain further conditions on A, B, C and F by considering terms
involving y* after putting (ACB)=(hji) in (4.1) and so on. In theory, by carry-
ing this process to the end, we should get the general form of an infinitesimal
affine transformation on (TM, F€). But in practice, this process becomes more
and more involved and tends to be unmanagable. However, having succeeded
in decomposing an infinitesimal affine transformation as the sum of vector fields,
we now switch to the adapted frames.

5. Infinitesimal affine transformations on (TM, F€)

Let X be an infinitesimal affine transformation on (TM, F€) and suppose
that it is expressed uniquely in the form X=A*+BC+.:C+F¥ as in Proposition
4.1. By (3.5) and (3.6), the frame components X* of X are given by

- Alyi+ B
(5.1) [X¥]= .

yi(ZB"+Cl+F"

In what follows, we shall compute the frame components £x1""'{” of £gF€
according to (cf. (2.2))

(5.2) £4T5,=75P*X "+ R, Xe.

By equating £5I}, to zero, we then get the conditions on A, B, C, F for X to
be an infinitesimal affine transformation. We do our computations in stages.

First, the frame components F*X* of F*X can be calculated by using
(5.1), (3.13) and (3.8). The expressions thus obtained, after simplification by
the conditions on A4, B, C in Proposition 4.1, become

P¥Xr=7p,B",

rrXn=4t,
(5.3)
PEXF =y R, " A+ yeV P B" + P F",

VrXi=p B"+CH.

We remark that to obtain the coefficient of y¢ in F*X% we have to use the
Ricci identity (2.10) for the vector field B.

Next, the frame components F EV:‘X v can be calculated by using (5.3) and
(3.10). The expressions thus obtained, after simplification by the conditions
on A, B, C in Proposition 4.1, become
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(5.4) PSP¥Xt=p P ,B"—y R, 4",
PSPrXr=rsriXn=pcr*Xt =0,
PSR =yaye[V ;(Roip"A8) — Th R, " A2 +y <[P ;7 P ,B*+ R, ;*P B!
—chi’ﬁlBh_chilC?_TijV,ﬁ,’Bh] +Vjﬁ,‘Fh,
VSP¥XF=p P B*+y*R, ;" 42,
Ve Xi=ye(R;;," A%+ R,;,"43) + 7 ;P ,B",
rer¥Xi=0.

Finally, the frame components of £}, can be calculated by using (5.2),
(5.4), (3.11) and (5.1). The expressions thus obtained, after simplification by
the conditions on A4, B, C in Proposition 4.1, become

(5.5) fxff,!i=,Vk(RajihAﬂ_RkjiaAL') ;
£XF?E=£XF5'5=£XF;';=O,
£e%=yaye(V iR,y " AL — T} Ry A2+ 7 R, ;" A2)

+ye(£5R, ;i"+ R, ;"Ca— R ;°CH) + £,:T°4,,

(We remark that to obtain the coefficient of y¢ in £,f° n., we have
to use Bianchi’s second identity (2.9))

£xlh =y*(Ry ;"4 + R, ;" A7),
fxf}_'i =yM(Rji "4+ Ry )" A%+ R, ;" A2)
£5F=0.

Let us analyse the conditions we get when we equate (5.5) to zero. From
£gTh =£4I% =0, we already get

Ry;i"Ah=R,;" A= — R, ;," A%
Since 7 A=0, we get from the Ricci identity (2.11) that
Ryjo" A =R, ;" 4h.

Hence, we have
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(5.6) Ry ji"Ab=R, ;" A4 =R, ;,"A¢=0.
With (5.6), what remains when (5.5) is equated to zero is
fxf§i=yc(£Bchih+Rajihc'l_chiacﬁ)'*'fFr,';i:O-

Since £3R.;;"=0 by the remark following (2.4), we are left with two more
conditions:

(5.7 R,;i"Ci=R,;"Cl, £¢I'=0.

Hence, in the presence of Proposition 4.1, conditions (5.5) when equated to
zero is equivalent to (5.6) and (5.7). Thus, the conditions in Proposition 4.1
together with (5.6) and (5.7) determine the most general infinitesimal affine
transformation on (TM, F€). We state this as our main result in

Theorem 5.1. Let FC be the complete lift of an affine connection V on
M to TM. The most general infinitesimal affine transformation X on (TM,
7€) can be expressed uniquely in the form

(5.8) X=A*4+B¢+.C+F",
where A is a (1,1) tensor field on M satisfying
FA=0, Th,A9=Te A%=0,
Ryji" A= R, ;" A= R, ;," 47 =0,
C is a (1,1) tensor field on M satisfying
rc=0, Th"Ci=T4Ch,
Ry ;i°Cl=R,;;"Ct=R,;,"C4,
and B, F are infinitesimal affine transformations on (M, V).

Let us consider some consequences of our theorem.

1. By putting B=0, C=0, F=0, we see that for a (1,1) tensor 4 on M
satisfying the conditions stated in the theorem, A* is an infinitesimal affine
transformation. Similarly, for B, C and F satisfying the conditions stated in
the theorem, BS, (C and FY are infinitesimal affine transformations. The cases
B€ and FY have appeared in [3, Proposition 7.6].
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2. A transformation on TM is said to be fibre-preserving if it sends each
fibre of TM into a fibre. An infinitesimal transformation on TM is said to be
fibre-preserving if it generates a local 1-parameter group of fibre-preserving
transformations. The infinitesimal transformation X in the theorem is fibre-
preserving iff A=0. Thus, by putting 4=0, we get a characterization of fibre-
preserving infinitesimal affine transformation on TM (cf. [4, Lemma 3.6]).
Similarly, by putting A=0, B=0 in the theorem, we get a characterization of
vertical infinitesimal affine transformation on TM (cf. [4, Lemma 3.1]).

3. With our theorem, we can easily deduce

Proposition 5.2. Every infinitesimal affine transformation on (TM, V€) is
fibre-preserving iff the only (1,1) tensor field A on (M, V) satisfying the con-
ditions stated in Theorem 5.1 is the zero tensor.

We note that the proof of the necessity part of Proposition 5.2 requires
the fact that if A satisfies the conditions stated in Theorem 5.1, then A* is
an infinitesimal affine transformation. This fact is a consequence of our theo-
rem (consequence | above), and does not follow from any of the discussions in
[4]. From Proposition 5.2, we see that what Yano and Kobayashi [4] did was
precisely to characterize the infinitesimal affine transformations that are fibre-
preserving (cf. their Remark 3).

6. Infinitesimal isometries on (TM, g¢)

Let g be a pseudo-Riemannian metric on M and g€ its complete lift to

TM. In this last section, the affine connection F is taken to be the Riemann-
ian connection associated with g <so that I’ ';,={Jhl }) It is well-known that
P€ is just the Riemannian connection associated with g€. Tanno [1] has de-
termined the general form of infinitesimal isometries on (TM, g€). Here, as an
application of our results and further illustration of our method, we present an
alternative proof of his theorem.

To begin with, we recall that the components of g€ are given by
y¥oig;i 9
(6.1) .
9ji 0
1t follows from this that the frame components of g€ are

0 g5
(6.2) [G.]= .
9dji 0



Infinitesimal automorphisms 411

Now, let ¥ be an infinitesimal isometry on (TM, g€). X is then an infini-
tesimal affine transformation on (TM, F€) and according to Proposition 4.1, it
can be expressed uniquely in the form

X=A4*+B¢+.C+F",

where A, B, C, F satisfy the conditions listed in Proposition 4.1 (with T%;=0).
In addition A satisfies the condition

(6.3) RkjahA?=0

by Theorem 5.1. What we now do is to compute the frame components £5G,,
of £39€ according to (cf. (2.6))

6.4) £3G,,=G,,FEX"+G, VX

and then equate the expressions thus obtained to zero.
Since T%;=0, we have 7=F and PS=p* The frame components FEX"
can thus be obtained from (5.3). On account of (6.3), they become

(6.5) ViCXh=ViBhv

By (6.4), (6.2) and (6.5), the frame components £5G,, are

(6.6) £3G;;=yV £pg;i+££9;i,
£3G;;=£3G;j=£59;:+9;xCl,
£2G;i=g Al + g, 4"

By (2.7), we can easily show that P £zg;,=0 iff £B{;'l. }=0. Hence, the
result of equating (6.6) to zero is

(6.7) £r9;,=0,
Cl=—g"£gg;,,

gjhA? +gihA? =0.
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Our discussion can now be summarized in the following theorem, first ob-
tained by Tanno [I, Theorem A]:

Theorem 6.1. Let g€ be the complete lift of a pseudo-Riemannian metric
g on M to TM. The most general infinitesimal isometry X on (TM, g°)
can be expressed uniquely in the form

X=A*4+BC+.C+FV,
where A is a (1,1) tensor field on M satisfying
PA=0, Ry;o"4i=0, g;,4l+gu4;=0,

B is an infinitesimal affine transformation on (M, g),
C is the (1,1) tensor field Ct=—ghifgg;; on M,
and F is an infinitesimal isometry on (M, g).

Let B be an infinitesimal affine transformation on (M, g) and consider the
(1,1) tensor field C: Ct=—g"i£,g;;. By Theorem 6.1, B€+.C is an infinitesi-
mal isometry on TM and so ¢C is an infinitesimal affine transformation. It
follows from Theorem 5.1 that Cl= —g"i£,g;; satisfies (5.7), i.e.,

(6.8) Rajihg"bfagbk=Rkji"ghbfsghn-

It would be interesting to see a direct proof of (6.8).
HonG KoNG PoLyTECHNIC, HONG KONG
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