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§1. Introduction

Let G be a compact connected Lie group of rank I and p a rational prime.
The group multiplication u: G x G—G induces a map

(1.1) p*: H¥G: Z,) — H¥(GxG; Z).
By the virtue of the Kiinneth formular, u* gives a Hopf algebra structure
(1.2) ¢: HXG: Z,) — HXG: Z,)®H*(G; Z,)

of H¥G; Z,).

Since
()~ (x®1+1®x) e A*(G; Z)QA*(G: Z,)
for A%G.Z)= Y H(G:;Z,),
i>0
we put

F(x)=(x)—(x@1+1®x).
An element x e A*(G; Z,) is said to be primitive if ¢(x)=0.
On the other hand consider the universal G bundle
(1.3) G — EG — BG.

An element xeFI*(G;Zp) is called to be universally transgressive if x is
transgressive with respect to (1.3).
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As is well known
(1.4) if x is universally transgressive, then x is primitive (cf. Borel [5]).
As is well known

(1.5) if HXG; Z) is p-torsion free, then H¥(G; Z,)= A(x,, X,,..., X)) with
degx; odd and I=rankG.

So by the Hopf Samelson theorem, each x; can be chosen to be primitive.
Moreover each x; can be chosen to be universally transgressive.

On the other hand if H¥(G; Z) has p-torsion, it seems to be very difficult
to determine the Hopf algebra structure of H*(G; Z,). In fact Browder [12]
showed that

(1.6) if p is an odd prime, H*(G; Z,) is primitively generated if and only if
H*(G; Z) is p-torsion free.

The purpose of the present paper is to determine the Hopf algebra struc-
ture of H*(G; Z,) for any p and any simple G.

For a classical type G, the Hopf algebra structure of H*(G; Z,) is de-
termined by Baum-Browder [4] except for G=Spin(n) and Ss(4m). The
Hopf algebra structure of H*(Spin(n); Z,) and H*(Ss(4m); Z,) was deter-
mined by Ishitoya-Toda and the author [13].

For exceptional type G, H¥(G; Z) has p-torsion if and only if (G, p)
is one of the following:

(6, P)=(62, 2),
=(F4, 2), (Fy, 3),
=(Es, 2), (E, 3), (A4dEg, 2), (AdE,, 3),
=(E;, 2), (E,, 3), (A4dE,, 2), (AdE,, 3),
=(Es, 2), (Eg, 3), (Es, 5),

where G,, F,, Eq, E;, E; are compact 1-connected simple Lie groups and
AdE; is the quotient of E; by its center for i=6, 7.

Note that since the covering projection p: E¢—AdEg (resp. p': E;— AdE>)
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is a 3-fold covering (resp. a 2-fold covering), p*: H*(AdE4; Z,)~H*(E4; Z))
is an isomorphism for any prime p#3 (resp. p'*: H*(AdE,; Z,)>H*E,; Z))
is an isomorphism for any prime p#2). The following are the cases where the
Hopf algebra structure of H*(G; Z,) was determined for the above (G, p):

(62, 2), (F4, 2) by Borel [6]

(A4dEg, 2), (E;, 2) for by Toda [34], Kono-Mimura [17]
i=6,7,8 and Kono-Mimura-Shimada [21],

(F4 3) by Araki [2],

(Es, 3) by Kono-Mimura [18] and Toda [34],

(E,, 3), (AdE,, 3), (Eg, 3) by Kono-Mimura [19].

So the Hopf algebra structure of H*(G; Z,) was determined except for (G, p)
=(AdE,, 3) and (Eg 5). In this paper we shall determine these two cases.
Cohomology operations of H*(AdE; Z;) and H*(Eg; Z;) are also deter-
mined.

The results of this paper are stated as follows, for details see Theorem
5.15 and 6.10:

H¥Eg:; Z)=Z[x,,]/(x32)®A(X3, X11, X15, X33, X327, X35, X39, Xq7) With
degx;=1,

Bx3)=d(x;1)=@(x,,)=0

B(x15)=x1,0x3,  Plxz3)=x,,®x,

B(x27)=2%,,®% 5+ x3,®x3,

B(x35)=2%,,®X23+xF @4,

B(x30) =3%1 2@ X274+ 3%, @ x5+ %3, ®x3,
B(x47)=3%12@®x35+3x3,®x,33+ %3, ®x, 4,

X1 =P'X3, Xp=Px11, X23=P'xy5, X35=P X3,

X47=P1X34.

H*(AdEq; Z3)=2Z;[x,, xg]/(x3, x})®A(xy, X3, X7, Xo, Xy, X;5) with degx;=i,
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$(x,)=(x2)=0,
(x3)=x,®x;, P(x7)=x3®x;, Hxs)=x3®x,,
Pxg) =X, @%7 —x3®X3+ X ®@x, + x4 ®x,,
O(x11)=X,®Xx9—X3@X7+ X3 ®X3 — x§® X3+ X5X,®x, — x;®X,,
B(x15)=x3®Xg+ X3 ® X7+ X§®x3+ x5x3®x,,
Xy=Px;, X;=Px;, xg=px5, X,5=P'x,,.

The paper is organized as follows:

In §2 Cotort(Zs, Zs) for some Hopf algebra over Zs is calculated. In
§3 a generalization of Theorem 1.1 of [13] is given. In §4 the invariant sub-
algebra H*(BT®; Z;)"®s) under the action of the Weyl group of Eg is
calculated. In §5 the Hopf algebra structure of H*(Eg; Zs) is determined by
the results of §2,§3, §4. In this section the Rothenberg-Steenrod spectral se-
quence [29] plays an important role. In the next section, §6, the Hopf algebra
structure of H*(AdEg:; Z;) is determined. Note that in §6 we only need the
result of §3. In §7 the Hopf algebra structure of H*(Ey; Z;) and H*(F,;
Z,) is determined by making use of the result of §6.

Throughout the paper the augmentation ideal of a connected algebra A
is denoted by A.

§2. Injective resolutions of Z;

In this section we shall construct injective resolutions of Zs over some
Hopf algebras.

Notation 2.1. (A4, ¢) is a graded Hopf algebra over Zs such that
(1) As an algebra
A=Z[x1,]/(x3)®A(x3, X114, X5, X23, X275 X35)
where degx;=i,
(2) The coalgebra structure is given by
B(x3) =P(x11)=(x;2) =0,
G(x15)=%12®%3,  Px23)=%1,@x11,
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P(x37)=2%,,Qx,5+x},®x3,
Blx35)=2x1,@X23+ X3, @4,

where @(x)=d(x)—(x®1+ ®@x).

To construct an injective resulusion of Zs over the coalgebra (4, ¢) we
use the method of [32] (see also [20]).

Let L be a graded submodule of A generated by
2
{X3, X11, X15, X23, X279, X35, X125 XT2, X325 X151}

Let s: L-»sL be the suspension. Denote the corresponding elements under the
suspension by

{as. a1, big, bass €28, €36, dy3, dys, diq, dyo} .

Let 6: A—»L be the projection and ¢: L—»A the inclusion. Define 8: A—sL
and 7: sL—»A by the following commutative diagram:

L— 40 ,[
s-1 ;[Ja/
sLK

Construct the free tensor algebra T(sL) over sL and denote the product by
Y. Let I be the two-sided ideal of T(sL) generated by Im (Yo(8®8)ogp)e(1—
(¢06)). Then we have

Lemma 2.2. [ is generated by
Las. ay2]. [a;, byl [a;, ], [ai, di], [bye, baal,
[bj. exls [ezs, €361,
[di3, biel+dys-as, [di3, bysl+das-ay,,
[di3, c25]+dsy-a4s+2d,5- by,
[dy3, c36]+ds7-a1,+2d,s by,
[dss, biel+dss-as, [dis, basl+dsq-ay,,

[d25’ c28] +d49 . a4+2d37 . bl6’
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[das, c36]+dao-a,,+2d37-byy,
[d37, bil+dao-as [dsqg, bygl+dag-a;,,
[d37, cag]+dao-bis, [dag, 361+ dao- by,
[dao, bjl, [dao, €l

where i=4,12, j=16,24, k=28, 36, 1=13, 25, 37,49, x- y=y(x, ) and [x, y]=
x-y—(—1)y-x with e=degx-degy.

The proof is easy.

Put X=T(sL)/I. Then 0 induces a map A—X which is again denoted by
#. We define a map

d= —yo(0@0)epoc: sSL— T(sL)

and extend it naturally over T(sL). Then d(I)cl and so d induces a map
X—X, which is again denoted by d: X—X (cf. [32]). Then it is easy to see
d?2=dod=0. So (X, d) is a differential coalgebra over Z,.

Since the relation
doB+y(B®0B)opp=0

holds, we now can construct the twisted tensor product X with respect to 8.
That is, X=A®X is an A-comodule with the differential operator

d=1®@d+(1®Y)(18001)(¢®1).

Then we have

Lemma 2.3. d is given by
Q1) d(x3)=a4 d(x;)=a;; d(x;)=d;s,
d(x,5)=bg+x2-a4, d(x33)=bys+X,-a,,,
d(x,7)=cCr5+2x,,- b1+ x3,-a,,
d(x3s)=c36+2x12-byytxis-ayy,
d(x}2)=dps+2x,-dy3,

d(x3;)=d3;+3x,,-dys+3x},-dys5,
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d(x4,)=dgo— x5 dy7+x},-dys—x3,-dys,
(2.3) d(ay)=d(a,,)=0,
d(b,g)=—d,3-a4, d(byy)=—d3-a,,
d(cyg)=—2d,3-big—dys-as, d(c36)=—2d,3-byu—d,ys5-ay5,
d(d,3)=0, d(d,s)=—2d%;, d(ds3;)=—3[d,3, d3s],
d(dyo)=[d37, dy3]—d35.
Note that
d(x)=d(x)  for any xesL.
Now define weight X by
(2.9 A: X3 Xy1 Xys Xa3 Xa7 X3zs X,
X: a, ay; big by, c3 36 dinje
weight: 1 1 1 1 1 1 j
Define filtration
F( )={x; weight x>r}.
Then
d(F(X))=F/(X).
Put
Eo(X)=Z;F(X)|F;+ (X).
Let dy: Eo(X)—>Ey(X) be the induced map. Then
Ey(X)
= A(X3, X115 X150 X23> X27, X35)®Zs[ay, a5, byg, byg, Cag, €36]OC(Q(x1,)),
where C(Q(x,,)) is the cobar construction of Zs[x,,]/(x7,). Since
do(xg)=ay, do(xi1)=a,z do(x,5s)=bys,

ao(xzs) =by4, ao(x27)=‘328a a0(3‘35)"‘— C36>



266 Akira Kono
(Eo(X), dy) is acyclic and so is (X, d).

So by definition we have
2.5) H(X; dy=Cotor4(Zs, Z).
Remark 2.4. E (A)=ZXZ,F(A)/F;,(A) is primitively generated (cf. [25]).

Now we prove the following:
Lemma 2.5, H*'(X; dy~Zs generated by u,,={d,;c,5+others}.

Proof. Consider the spectral sequence associated with the above filtration.
Eq=Z[ay, a,3, bye, byss €25, €361@T{d,3, dys, dy37, dao}
The element x,, of degree 41 is of the form
aydyz-Cagtaadyz-byy-astasdis-big-fi+diaas-fr
+o4dys-bigtdysas-fit+asds;-a,

where o;€Z and f; is a polynomial of a, and a,,.

Since dy(x,4;)=0 we have a,=0, f;=0 and as=0.

But dy(cys-f1)=—2dy3-bi6 f1, di(brs-f2)=—di3-a,-f; and di(c36-a4)=
—2d,3-bysa,. On the other hand dy;-c,s¢Imd,. So E,~Z; generated by
d,3-c,5 for deg=41. Clearly d,3-c,3 is a permanent cycle (cf. Remark 2.6)

and is not a coboundary by the reason of the filtration. So E,~E_, for deg
=41 and we have the resuit. Q.E.D.

Remark 2.6. u,, is represented by d,;c,5+d,sb,¢+2d55a,.
Proof. d(dq3ca8+dysbe+2dsqa,)
=2d%3b,¢+d 3dysa,+dysdi3a,—2d23b,6—[d,s, dysla,
=0.
Let (A4', ¢') be the Hopf subalgebra of (A4, ¢) generated by

{X3, X115 X125 X155 X323}

Put
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L'={x3, X1, X155 X23, X12, X125 X1, X2}
and

sL'={ay, a2, bye bag, di3, dys, d3q, dao}.
Similarly we can construct (X', d') and (X', d’). Then we have
2.7) (X', d") is acyclic.
And so we have

H(X'; d')=Cotor?' (Zs, Z5).

Moreover we have

Lemma 2.7. H?2°(X'; d')=Zs generated by u,o=1{b,¢-d;3+2a,-d,s}.

The proof is similar.

Remark 2.8. (1) The spectral sequence used in the proof of Lemma 2.5
is essentially May’s spectral sequence [23].
(2) H*Y(X;d)#0 and H?°(X';d')#0 are also proved by the fact that x;, and
X,; are not universally transgressive which is proved in §5 without using the

above results.

§3. A transgression theorem

In this section G denotes a compact connected Lie group of rank! and p
a rational prime. Let U be a closed connected subgroup of & of rankl!'.
As is seen in §2 of [35], the fibering

3.1 G ==, G/U— BU
is equivalent to the principal G bundle
3.2) G E_1, BU

where E=EG [>I<G and BU =EGi<]pt for the total space of the universal G
bundle EG.

Denote by T{(G; U) a graded submodule of H!(G; Z,) which consists
of the transgressive elements with respect to (3.1) or (3.2) and T*(G; U)=3Y;.,
Ti(G; U).
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Thus
(3.3) T*(G; U)=56"'((*H* ' (BU, pt; Z,))

for the coboundary operator 6: H¥(G; Z,)»H**! (E, G; Z,) and the homomor-
phism i*: H**!(BU, pt;Z,)->H**!(E, G; Z,) induced by the bundle projec-
tion i: (E, G)—»(BU, pt).

Obviously we have
N
3.3) Imn*=T*G; U) for n*: HXG/U; Z,) — H*(G; Z,).
We use the following notations
T (G U)= 30 T?(6; U),

ToYG; U)=3 5 T?1(G; V) .

Let T be a maximal torus of G. Since any maximal tori are conjugate
to each other, we have

3.4) T*(G; T) is independent of the choice of T'.

Following [13], T*(G; T) is denoted by T%.
In [13] the following is proved (cf. Theorem 1.1 of [13]):

Theorem 3.1. There exist elements a,,..., a, of odd degrees such that
(1) HXG; Z)=A(a,,..., a)@Ima* as an Imn*-module,

N~
) Té¢=<ay,...,a,>@Imn*,

where A(ay,..., a)) indicates the submodule spanned by the simple monomials
a§t---ast (=0 or 1) which are linearly independent, and <ay,...,a,> does
a submodule spanned by {a,,..., a;}.

Let U’ be also a closed connected subgroup of G such that U'>U.
Consider the following commutative diagram:
3.5) G— G/U— BU

G — G/U — BU'.

Then by the naturality of the transgressions we can easily get the following:
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Lemma 3.2. T*(G; U)>T*G; U’).

Let Uk be a graded submodule of A*(G; Z,) which consists of universally
transgressive elements.

Since
(3.6) U =T*;G),
we have
3.7) Ut=T*(G; U) for any U

by Lemma 3.2,
Also by the commutative diagram

(3.8) U—U|U— BU

11

G6— G/U — BU
we have
Lemma 3.3. j*T*(G; U)cT*U'; U).

Now recall from [27]. Let R=k[X,,..., X,] be a graded polynomial alge-
bra over a commutative field k with deg X;>0 for any i, I<i<n a finite se-
quence of homogeneous elements with positive degrees {f},...,f} is called a
regular sequence if f; is @ non zero divisor in R/(fy,...,f;—,) for any i, 1<i<s.

Let R'=k[Y,,...,Y,] be also a graded polynomial algebra with degY;>0
for any i, 1<i<n. Let ¢: R"»R be a homomorphism of graded algebra. Then
the following is well known:

Lemma 3.4. The following three conditions are equivalent:
(1) R is a finite R’-module under ¢,

2) {o(Yy),..., o(Y,)} is a regular sequence,
(3) R is a free finite R'-module under ¢.

The proof is given in [27]. See also [16].

On the other hand let {g,....,g,} be a finite sequence of homogeneous
elements with positive degrees in R'. Then the following is well known [27]:
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Lemma 3.5. If ¢ is faithfully flat and {¢(g,),..., ¢(g)} is a regular
sequence, then {g,,..., g} is also a regular sequence.

Note that
(3.9) if R is a free R’-module under ¢, ¢ is faithfully flat.
An important example of a regular sequence is given in this section.

Let G; be a compact connected Lie group &, its closed connected sub-
group and i: G,—»G, the inclusion. Then we have

Lemma 3.6. If H¥G,; Z) and H*(G,; Z) are p-torsion free and rank
G,=rankG,=1, then H¥(BG,; Z,) is a free H*(BG,; Z,)-module under i*.

Proof. Since by Borel's theorem (cf. [S] see also [29]), H*(BG,; Z,)
and H*(BG,; Z,) are both graded polynomial algebras in [-variables of posi-
tive degrees the result follows from Quillen’s finiteness theorem (Corollary 2.4 of
[28]) and Lemma 3.4. Q.E.D.

Remark 3.7. We can also prove Lemma 3.7 by the cohomology Serre
spectral sequence for the fibering

G,/G, — BG, — BG,
and the fact that H'G,/G,; Z,)=HBG,; Z,)=0.
Now consider the following commutative diagram

(3.10) F—s E, —> B,

|4

F—’EZ——)BZ

where F—E,—»B, and F—-E,—B, are fiberings F is arcwise connected and
By, B, are 1-connected. Also we assume that F, E,, E,, B;, B, have homotopy
type of CW complexes of finite type.

Let {E¥*(1),d!} (resp. {E}*(2), d?}) be the cohomology Serre spectral se-
quence for the fibering F—»E;—B, (resp. F—»E,—B,) with Z, coefficient. Then
we have

Theorem 3.8. If H*(B,: Z,) is a free H*(B,; Z,)-module of finite rank
under f*, then E¥*(1) is a free E¥*(2)-module for r>=2.
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Proof. Let {x,=1,x,,..,x,} be a free basis of H*B;Z, over
H*(B;; Z,).

Let {E**(3), d3} be a spectral sequence such that

(1) As a module E**(3) is generated by 1, X,,..., X, with bi-degree (degx;, 0),
(2) d(X,)=0 for any i.

Define ¢: E¥*(3)—-E}¥*(1) by o(X)=x;®1.

Since d}(x;®1)=0 for any r>2, ¢ is a map of spectral sequence. Then we
only need to prove

B.11) e®f%: E¥*(3)®E**(2) — E}*(1) is isomorphic for r>2.
Moreover we only need to prove

3.12) o®f%: E¥*(3)QE%$*(2) — E%*(l) is isomorphic.

But (3.12) follows from the following (3.13):

(3.13) E$*(2) /4 E3*(1)

Z g Z

H*(B,; Z,)®@H*(F; Z,) L@, H¥(B|; Z,)QH*(F; Z,) .

Q.E.D.

Corollary 3.9. Under the assumption of Theorem 3.8, xeH(F;Z,) s
transgressive with respect to F—~E,—B, if and only if with respect to F>E,—
BZ.

Now we can prove the following:

Theorem 3.10. Let G be a compact connected Lie group and U be
its closed connected subgroup such that H*(U; Z) is p-torsion free. Then

Ti<=T*G; U).
Moreover if rank U=rank G, then
T:=T*G; U).

Proof. Let T' be a maximal torus of U and T a maximal torus of G
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such that T'<T. Then by Lemma 3.2,

TE=T*G; T)eT*G; T).

On the other hand since H*BT';Z,) is a free H*(BU; Z )-module by
Lemma 3.6,

T*G; U)=T*6G: T)
by Corollary 3.9. So we have
T(=T*G; U).

If rank U=rankG, we may assume that T'=T. And so we have the
second assertion of the theorem. Q.E.D.

Corollary 3.11. T*G; U)=T*G;T).

From now on we assume that H*(U; Z) is p-torsion free and rank U
=rankG.

Now recall from [13] (see also [35]):

Theorem 3.12. Let a,,...,a, be the elements in Theorem 3.1 and 1, be
the transgression with respect to the fibering

(3.14) G — G|T — BT

where T is a maximal torus of G. Then {to(a,),...,to(a)} is a regular
sequence .

Remark 3.13. 7,(a;)) is not uniquely determined. But the property
{to(ay),..., to(a)} is a regular sequence is independent of the choice of t4(a;).

Now let t be the transgression with respect to
(3.15) G — G/U— BU.

Since H¥BT; Z,) is a free H¥(BU; Z,) module by Lemma 3.6, ay,...,a, are
also transgressive with respect to (3.15). Moreover we have
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Theorem 3.14. {t(a,),..., ©(a)} is a regular sequence.

The proof is easy (cf. Lemma 3.5).

Remark 3.15. Let G,, G, be closed connected subgroups of & such
that

() H*G,; Z) and H¥G,; Z) are p-torsion free,
(2) rankG,=rankG,,
3) 6,-6,.
Then consider the following commutative diagram

G,/6, — > G|G, —— GG,
e 1
BG,

As is well known * is surjective and so ¢* is surjective. And so GG,
is totally non homologous to zero mod p in G/G,. So H*(G[G,; Z)) is a
free H*(G/G,; Z,)-module.

§4. Mod 5 invariant subalgebras of Weyl groups

Let T be a maximal torus of Eg. The completed Dynkin diagram of Eg is

oy oy 0y o5 g A  Og O
O—0 -O (o] O O oO——0
(0]
>

where «;’s (1 <i<8) are the simple roots and
=20y + 30, +dot; + 60ty + Sos + dotg + 307 + 2008
is the highest root (&=wg) (cf. [11]).
Let U be the identity component of the centralizer of the element x,e€T

such that ozl(xl)=—,])-- and ayx,)=0 for i=2,3,...,8. Then the Weyl groups
W( ) of Eg and U are generated by the following elements:

W(Eg)=<g; i=1,2,..,8>
4.1)

WU)=<e; ¢;i=2,3,.., 8>



274

where ¢, (resp. @) denotes the reflection through the plane ;=0 (resp. &=0)
in the universal covering of T. (See Borel-Siebenthal [10].)

Remark 4.1.

covering map.

Since the center of Ej is trivial we may consider that all roots are ele-
ments of H2%(BT)=H!'(T), then the simple roots «, a,,..., %3 form a basis

Akira Kono

According to Borel-Siebenthal [10] the local type of U is
Dg. Since the center of Spin(16) is Z,@Z,, n*: H¥(U: Z,)-H*(Spin(16):
Z,) is isomorphic for any odd prime p, where n: Spin(16)->U is the universal

of H*BT) and H*BT)=Z[a,, %,,..., %5] (cf. [9]).

Following Bourbaki [11], we put

oy = %‘(31 +eg) — %(82 testestesteetes),

a,=¢&;+¢;,
=€ _1—&_3 for 3<i<8.
Then d&=¢,+¢&g.
Put
ty=—¢,
tg= —&g
and
=g for i=2,3,.,7.
Then
1 &
a1=——5§1t,,
a,=t,—t;,
az;=It+1t,,
o=t —t_, for 4<i<8

and
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&= t7 - tg.

1

8
Since ;= 3.y for aijez[ :
2z

of H(BT; Zs).

], the elements ¢, t,,..., tg also form a basis

Then the actions of W(Eg) and W(U) over H*(BT; Z;) are given by the
following table (4.2)

[} P2 Ps [ @5 Ps (244 Ps ¢
31 i+ ty —f
1, ty+cy h —l L5
ty ts+cy t; N
1 1+ 1y ts
ts ts+cy t Ig
tg te+cy ts ty
Iy tr+cy tg g
g tg+cy t;
4.2)

where the blanks indicate the trivial action and
Cr=ti+tyt e ttg.
Denote by
c;=0(ty, tase.., tg)
the i-th elementary symmetric function on the variables ;s (co=1).
Also denote by
pi=01}, t3...., 1)
the i-th elementary symmetric functions on the variables t?’s (po=1). W(E,)
and W(U) act on H¥(BT; Z;) as a ring homomorphism and the invariant sub-

algebras are denoted by H*(BT; Z)" ().

Then we have the following:

Lemma 4.2. H*(BT®; Z,)V WYV =Z4[p,, pss..., P17, C3]-
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The proof is easy.
Put ¢=¢,. Note that since UcEgs, W(U)cW(Eg) and so if fe H¥BT;

Z)VED fe HXBT; Z;)¥V). But ¢ does not act on H*(BT?; Z;)" @, Also
note that

Lemma 4.3. i*: H¥(BU; Z;)->H*(BT; Z;) is injective and Tmi*=H*(BT;
ZHVWUO), where i: TOU (cf. §3).

The graded subalgebra R¥{=Z;[c,, c,, ¢3,..., cg] is invariant under the ac-
tion of ¢. ¢(c;) is given by

8

“3) T oed=I1 U+tte) =% (1+e) e,

1

1

Let I,=(c}), I,=(c?, ¢;) and I3=(c?, c;, c3). Since ¢(c,)=—c, and ¢(c;)=c,.
The ideals I, and I, are ¢ invariant. Since @(c;)=csmodl,, I is also ¢
invariant. @(cg)=cy4, @(cs)=cs—c4cy, O(cg)=ce—2¢5¢y, @(c7)=c,+2c6c, and ¢(cg)
=cg+c,c,mod .

The identity
8 8 8
(4.4) il;Il (I—1)- };[1 (I+1) = 11 (1—13)

gives the relations between c¢;’s and p;’s

8

4.5) T (D ¥ = X (~)pi

More explicitly

4.5) pi=¢c3—2c,,
Pa=c3—2¢c3c,+2¢,,
p3=c3—2c4c,+2c5¢, —2¢q
Pa=c3—2csc3+2c6c,—2¢q¢, + 2cq4
Ps=c%—2cec4+2c,03—2c4¢, ,
Pe=c%—2cic5+2cqe,,

— 2
pr=c3—2cgC6 .
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Let R*=H*(BT; Z;)"Es) and i: R*> R} be the inclusion. Note that
Lemma 4.4. If fe R*, then fe H¥(BT; Z5)"'*® if and only if o(f)=f.

Now we prove the following:

Lemma 4.5. Let f,3€R2® be a homogeneous element of degree 28.

f25=p7+(other terms), then ¢(fyg)# fas.
Proof. Since ¢(c,)=c, mod I3=(c%, c,, ¢3),
and
@(cg—Cs5c1)=ce—2¢s5c, +C5¢, =cg—cCscy mod I3,
the ideal
I=(c1, ¢3, €3, €4, C6—C5C1)

is invariant under the action of ¢. Put R'=R}/[ and =n': R§-R’
projection). Then

R'=Z[cs, ¢4, cg1®A(cy)
and
4.6) m'(p)=7'(p)=0,
n'(p3)=2(csc; —c6)=0,
n'(p7)=c%—2cgcs¢q .

Since I is ¢ invariant ¢ induces a ring homomorphism

¢':R'—> R’,
Note that
4.7 @'(c)=—cy,
¢'(cs)=cs,
@'(c)=¢q,

@'(cg)=cg—cqcy .

277

If

(the
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Then f,g is of the form
oap;+fhs for a€Zs and fhgeKern'.
Put
F28=7'(f25) =7'(ap7) = e} —2acqesc, .
On the other hand
@'(f28)=0c +2acgesc, .

If @(f28)=f2s, then ¢'(f25)=f,5 and so a=0. Q.E.D.

Also we have
Lemma 4.6. Let f,o€R*°. If f,o=p%+(other terms), then ¢(fy0)# fao-
Proof. Since
@(c3)=ci mod I,
¢(cg—csey)=ce—csc; mod I3,
o(c7+csci)=cq+2c6¢; —Ccecy=cq+cec; mod I5,
and
@(cg—2cqc)=cg+cq¢,+2c7¢y=cg—2cqc, mod I,
the ideal
J=(c3, ¢;, €3, €3, Cg—CsCy, C7+C6Cy, Cg—2C4C4)
=(c1, ¢z, €3, €%, Cg—C5Cq, €3, Cg)

is invariant under the action of ¢. Put R"=R¥/J and n": R§—>R" (the projec-
tion). Then

R =Zs[cs1®A(c,, cy)

and
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(4.8) n'(p)=0,

m'(py)=2¢4,
7'(p3)=2(csc, —¢6)=0,
7'(pa)=0,

n'(ps)=c3 —2cscqey
n'(pe)=0,

n'(p;)=0.

Since J is ¢ invariant ¢ induces a ring homomorphism

¢":R"— R".
Note that
4.9) ¢'(c))=—cy,
¢ (ca)=cq,

¢"(cs)=cs—cqc, -
Then f,, is of the form
Bpi+f., for BeZs and f,,eKern”
Put fu0=7"(fa0) = Pct —4Pcicsc,.
On the other hand
@"(fa0)=Pect —4fcdcse; +4Pescae, = Pet .
If @(fa0)=/fa0, then @"(f40)=Ffso and so p=0. Q.E.D.

Remark 4.7. The homogeneous space Eg/U is an irreducible Riemannian
symmetric space denoted by EVIII. The subgroup U is Semi-Spin(16) (cf.
[16]).

§5. H*(Ey; Zs)

The purpose of this section is to determine the Hopf algebra structure and
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the cohomology operations of H*(Eg; Z,).

First recall from [7] (see also [35] and §3).

Theorem 5.1. There exist X3, X;;, Xy2, Xy5, X23, X327, X35, X39, X47 € H*(Ejg;
Zs) such that

(1) As an algebra
H*(Eg; Zs) =Zs[x,,]/(x3)®A(X3, X115 X155 X23, X379, X35, X30, X47)
where degx;=1,
* 37 s
(@) TE,=Zs[x,,]/(x32)® <X3, X141, X135, X33, X27, X35, X309, X47>
and Imn*=Z[x,,]/(x3},), where n: Eg—Eg|T8,

(B) x11=2P'x3 and x,,=px,,.
The following is easily proved
Lemma 5.2. As an algebra
HX(BEg; Z5)=Z[y4, y12, 131  for x<I14,

where o(y;.)=x; for j=3, 11, 12 under the cohomology suspension ¢. More-
over y,=2'y, and y,3=py;,.

The following is also easily proved:
Lemma 5.3. ¢(x,5)#0 if and only if y,-y,3=0.

Let u: Eg—U(240) be the representation defined in [26]. We use the nota-
tion of [26]. Since the coefficient of (c3)? in p*u*(c,) is 9.23—-45-33—((—1)2
—2249)-(4)=—-36£0mod 5, p*(c,)#0 modS. Since H8(BEg; Z;)~Z generated
by y2 and so

(5.1) p*(cy)=ay} for a#0 (c, is the mod S reduction of ¢,).
On the other hand f£2'c,=0 and so
(5.2) p2'y%=0.

But B2'yi=Bysyi2=YaV13-

So we have
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(5.3) Yay13=0.
So we have

Lemma 5.4. ¢(x,5)#0.

Now we use the following (cf. [13]):

Theorem 5.5. For xe H*(G; Z,) (G; a compact connected Lie group),
the following three conditions are equivalent:
(1) xeTg,
2) ¢(x)—-x®@1eImn*@H*G; Z,),
3) ¢(x)—x®1lelmn*RTE.

So we may assume that

(5.4) B(x,5)=x%,®x;3.
Lemma 5.6. 2!'x;=0 for i=11,12.
Proof. 2'x;e T§B=0 for i=11,12. Q.E.D.

So ¢(2P'x,5)=P (x,,®x3)=x,,®x,, and so P!'x,;s#0. But P'x,5eTE3
and so

(5.5 Plx;s=xX,3 and $(x23)=x,2®x”.

Let U be the closed subgroup of Ejg defined in §4. Since H*(U; Z)
is 5-torsion free (cf. Remark 4.1) and rank U=rank E5, we can apply Theorem
3.10 and Theorem 3.14. Let 7 be the transgression with respect to the fibering

(5.6) E; — E;/ U—> BU.
Note that
(5.7 {1(x3), T(x11), T(xy5), 1(X23), T(X27), T(X35), T(X309), T(X47)}

is a regular sequence in

(5-8) H*(BU; Zs)gzs[l’la P2s--+5 P7» cB],
where degp;=4i and degcg=16 (p;, c5 are in §4).

Then we have

Lemma 5.7. (1) 7(x,;)= p,+(other terms)
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and (2) 1(x39)=p?%+(other terms) up to non-zero constant.

Proof of (1). 1If t(x,;) does not contain the term p,, ©(x,,)€J=(p;, Ps» P3»
P4s Ds> De> €g)- On the other hand (x;)eJ, for i=3, 11, 15, 23, 35, 39, 47, by
the dimensional reason. This contradicts the fact that (5.7) is a regular
sequence. Similarly we can prove (2). Q.E.D.

Now consider the following commutative diagram:

(5.9) E,— EE, — BE,

T

E, — E4/U — BU

|1

E; — Ey|/T® — BT,
Note that
(5.10) Im {i*j*: H*(BEg; Zs)— H*(BT®; Z5)} c H*(BT? ; Z;)" (E»)

(cf. [33]).

If x,, is universally transgressive, by the naturality of the transgressions
there exists an element x € H*(BT; Z5)¥ ) such that

(5.11) x=p,;+(other terms) and xe H*(BT;Z,)" Fs),

But (5.11) contradicts Lemma 4.5 and so we have

Lemma 5.8. Xx,, is not universally transgressive.

For a compact connected Lie group G, Milnor-Rothenberg-Steenrod con-
structed a spectral sequence of algebra {E}, d,},»; such that

(1) EY is naturally isomorphic to the cobar construction of H¥(G; Z)),

(2) E}x~Cotort*(¢iz:)(Z, Z ),

(3) E%X=Gr(H*(BG; Z)).

(For details see [29]. See also [11] and [24].)

If $(XZ7)=0 then
(5.12) CotorH*Es;zs) (Z Z)=Cotor*' (Zs, Z)R®Zs[y,s] for deg<3s.

But since u,o€ E} (cf. Lemma 2.7) and y,z€E}, y,5 is a permanent cycle. So
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applying the cohomology suspension (cf. Remark 5.17) we have

(5.13) If ¢(x,,)=0, then x,; is universally transgressive.
So we have
(5.14) $(x27)#0.

By Theorem 5.5, ¢(x,,) is of the form
(5.15) 00 X3, @3+ 0%, ®X, 5 for oy, 0,€Zs.
Using the coassociativity we have a,=20; and so we have
Lemma 5.9. @(x;7)=2x,,®x,5+x3,®x3.

Since  P'x,,€ T3 =0, P'x,3=0. G(P'x;7)=P'(2x, @ x15+x1,®x;3)=
2x,,®x,3+x3,®x,,#0. So we have

(5.16) Plxy;=xX35 and  P(x35)=2x1,@x53+xF,®x15 .

Corollary 5.10. The subalgebra generated by {x3, X{, X135, X155 X235 X27,
X35} is isomorphic to (A, ¢) as a Hopf algebra.

Then by the argument similar to the above we have
Lemma 5.11. @(x;9)#0.

Moreover by Theorem 5.6, ¢(x;,) is of the form
(5.17) o x3,®x3+0,x3,®x 5 +03x,,0x%,; for oy, ay, a3€Zs.

Using the coassociativity we have a,=3a; and a3=3a;. So we have

Lemma 5.12. ¢(x39)=x3,®x3+3x3,®@x,5+3x,,0x57.

Since Plx35€TE3=0, Plx;5=0. P(P'x35)=P (x},@x3+3x7,®x,5+
3%1,®x,7)=%x3,®x;;+3x3,®x,3+3x,®x35#0. So we have

(5.18) Plxyo=x47 and ¢(xs7)=3x,,@x35+3xF,®x,3+x3,®@x ;.

Now we compute f-operation.
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(5.19)

and
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&(Bx,5)=0 and so Px,5=0,

$(Bx23)=x12®x12 and so fx,;=
#(Bx27)=0 and so fx,,=0,
P(Bx3s)=x,,®%,+x3,®,, and so Bx;s=

‘-ﬁ(ﬁxw):O and so fx;4=0,

P(Pxy7)=x3,@x,,—x},@x},+x,,®x3,

|
and so fx,;= —Zx‘l‘2= —xt,.

Let Pf ={xeH!(Eg; Zs); §(x)=0}. Note that Pi =T, by [13]. Easily

we have

Lemma 5.13. P #0 if and only if i=3,11, 12.

So we have 2x,;=2ix,,=0 for i>0 and Pix;=0 for i>1.

Lemma 5.14. 2ix;=0  for i>1.

Proof. ¢(Pix,s)=2i(x,,®x3)=0 and so 2Lix,;s=0 for i>I.

‘15(-9?“"‘23):

Pi(x,,®x,,)=0 and so Pix,3=0 for i>1. Similarly we have ¢(2ix;)=0, i>1
and so 2ix;=0 for i>1.

Thus the following Theorem 5.15 is proved:

Theorem 5.15. In Theorem 5.1.

P(x15)=x1,@x3, P(x23)=x,@x,,
P(x37)=2x,®x s+ x1,®x3,
P(x35)=2x,,®x23+x},®xy 4,

P(x39)=3%,®x27+3x},®x,5+x},®x3,

Q.E.D.
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P(x47)=3x1,®x35+3x,®X;53+x1,®x,y,
$(x3)=$(x, 1)=$(x12)=0,

| 1 1
Bxi1=xy2, BX23='§X§2’ ﬁx35=—§x?2, ﬁxu:jxl‘

2>
Bx;=0 for i=3, 12,15, 27, 39,

Plxy=xy1, P'X;5=X33, P'X37=X;3s, PlX39=X47,

2x=0 for i=11,12,23, 35,47

and
Pix;=0  for any j>1.
Let &: Eg—K(Z, 3) be the generator of H3(Eg; Z)~Z. Consider the fibering
(5.20) K(Z,2) — Eg s Eg,

which is classified by &. Ejg is called the 3-connective fibre space over Ej.
Also consider the fibering
(5.21) K(Z, 3) —s BE; % BE,,

which is classified by &: BEz—K(Z, 4) corresponding to the generator of
H4(BEg; Z)~Z. Note that BEy is the classifying space of Es:QBES.

Making use of Kudo's transgression theorem to the fibering (5.20) we have
(5.22) H*(Es§ Z)=Zs[ysol@®@A(Xys, X33, X279, X35, X390, X475 V515 V59),
where degy;=i and X;=q*(x;).

Also easily we have
(5.23)  H*(BEg:Z)=Zs[yie, Y2a V25 V3o Vaor Yag]  for #<50.

Consider the Serre spectral sequence for the fibering

BEy; — . BE; = K(Z, 4).
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(5.24) E¥=H*(K(Z, 4); Z,)®@ H*(BE; Z)

=Z[uy, u,;]@A(u, ;) ®H*(BEy; Zs) *< 50,
where degu;=1i, u;,=2'u, and u,3=Pu,.

Clearly y,¢ is transgressive with t(y,¢)=u,-u,;5. Applying 2! we have
V24=2'y16 and ©(yy4)=uy;-u;3 and so X3=2"'%s.

Moreover we have

(5.25) y,g is a permanent cycle or d,3;(1®y,5)=t,;3® 6.
By (5.25) we can also get

(5.26) y,s is a permanent cycle or ¢(x,)#0.
Similarly we have

(5.27) y4o is a permanent cycle or d,;(1®ys0)=U3®Y1s-

Moreover u,®y,, is a permanent cycle and corresponds to the Massey
product <yg, yy3, V12>

Remark 5.16. Using the Milnor-Rothenberg-Steenrod spectral sequence,
the cohomology suspension

o: H**'(BG; Z,)— H*(G; Z,)
is represented by the following composition

H**'(BG; Z,) —~ EL, — E} — E{“:“H**‘(ZG;Zp)gﬁ*(G; Z).

On the other hand

Im {E} —— El=H*(G;Z,)}=P%  (cf. Browder [12]).

§6. H*(AdE,; Z,)

Let E; be the compact 1-connected simple Lie group of type Ez As is
well known the center of E4 is a cyclic group of order 3 and denoted by Z,.
The quotient of E¢ by the center, E¢/Z; is denoted by AdEg and the cover-
ing projection E¢—A4dE is denoted by p.
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Let T® be a maximal torus of Es. The completed Dynkin diagram is

oy 03 A4 Os A6
o o o
oq

where «; (1<i<6) are the simple roots and
G=ay +20,+ 2005+ 300, + 2005 + g

is the highest root.

Let ¥ be the identity component of the centralizer of the element x eT®
such that cxz(x)=—;~and ax)=0 for i#2. According to Borel-Siebenthal [10]

the local type of ¥ is AsxA,. Moreover ¥ is SU(6)-SU(2) for SU6)nSU (2)
=Z, (cf. [17]). Note that since ¥ >T*¢ and so VoZ,.

Remark 6.1. The homogeneous space Eb/V is an irreducible Riemannian
symmetric space and denoted by EII

Since n': SU(6)xSU(2)— V is a double covering,

(6.1) w'*: H¥(V; Z,)— H¥SU(6)xSU(2); Z,) is an isomorphism for any
odd prime p. In particular H*(V; Z) is p-torsion free for any odd prime p.
Recall from [3]
Theorem 6.2. (1) H*(Eg; Z3)=Z3[%:]/(X3)®A(X3, X7, %o, X1y, X5, X19),
Where )?,-E TE‘G, )?7=91i3, £8=ﬂ.§7 and 215=.@1g11,
(2) H*(AdEg; Z3)=Z3[x,, xg]/(x3, x3)@A(xy, X3, X7, X9, X115 X15),

where x;€ Tyyp,, X, =PXy, X7=P'x;3, xg=Px; and x;s=P'x,,,
(3) Kerp* is the ideal generated by x, and x,.

Since by (2.2) of [13]

(6.2) P*(Thae) =Tk, ,

and
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(6.3) T§ =2Z;5[X]/(X})D <X;, %5, X9, Xyy, X5, X;7> and
— T
Thop,=Z;5[x;, xg]/(x3. XD <xy, X3, X7, Xgy X1, X15>,
we have
Lemma 6.3. p*(x,)=ZX%; for i=3,7,89, 11, 15.

Put V= f’/Z3 and consider the following commutative diagram:

(6.4) V__J ,E,

[

V1, AdE,,
where p: >V is the restriction of p: E,—AdE,.

Note that the double covering
(6.5) n": ¥V — PU(6)x SO(3)
induces an isomorphism
(6.6) (n")*: HX(PU(6)xSO(3); Zy) — H*(V; Z3).

Also the following Lemma is well known:

Lemma 6.4. (1) H*(V; Z))= A(F5, 5, s, 77, Jo» F11)»
where yiET:)a Vs GT; and U;=T;= <J3 V3, Js, Y2 Joo F11>,
Q) HXV; Z3)=Zy[y,]/(y3)®A(Y1s V30 V55 Y15 Vos Y11)
— T ——
where y,e Ty, y3 €Ty and Ty=2Z;[y,)/(y3)® <yi» V3, V3 Y15 Yoo Y11>
) J1=2'§3, y2=Py, and y;=2'y;.

By the argument similar to the above we have
(6.6) A CAES for i=3,7,9,11 and p*(y5)=75.
Now we apply Theorem 3.10 and Theorem 3.14 to the fibering
(6.7) E, — E,/V — BV .

Note that
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(6.8) H*BV'; Z3)=Z,[us, g, us, 0, 3, us],
where o(u;,,)=7; and o(uy)=j3 under the cohomology suspension o.

By Theorem 3.14
6.9) {r(X3), ©°(%7), 1(Xo), T(X1,), 1(X;5), ©(X,7)} is a regular sequence.

w(X3)=ouy+puy for o, feZ;. If a=0, then 1(%;)=pu,. Applying 2!
we have t(x;)=2'Bu,=pP'u,e(uy) the ideal generated by uj,. But this
contradicts (6.9). So a#0.

Next we show

Lemma 6.5. 1(%X;)=u,, and 1(%,,)=u,, mod decomposables.

Proof. 1f 1(Xy) is decomposable, (X,)e€ (uy, Uy, ug, ug). On the other
hand ©(X;) € (uy, ugy, g, ug, uy,) for i=3,7, 11, 15, 17. This contradicts (6.9).

(X,)=u,, mod decomposables
is proved similarly. Q.E.D.
By the naturalities of the transgressions we have
Corollary 6.6. j*(X;)=7;+a' ¥} for a'eZ,
and J¥X) =¥, for i=7,9,11.
Moreover we have
Corollary 6.7. j*(x3)=y;+a'y;  for o' e€Z,
and J¥(x)=y; for i=7,9,11.
On the other hand, since
(6.10) H*(E¢|V; Zy)=H*(AdE |V ; Z3)=0 for =<2,
we have

(6.11) Jxp)=y, and j*(xz)=yp,.
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Let G be a compact connected Lie group. Denote by P¢ a submodule
of Hi(G; Z,) which consists of primitive elements. That is

Pi={xe H'(6; Z,); §()=0}.

Note that PicTg for any i (cf. [5]).

Now recall from [4]:

Lemma 6.8. Ppy,=0 for i=3,9, 11.

The proof is easy.

Since j*(x;)=y; mod (y3) for j=3,9, 11, we have

Lemma 6.9. &(x)#0 for i=3,9,11.

Now we can determine ¢(x;) for i=3,7,8,9, 11.

By Theorem 5.5 we may assume that

(6.12) Bx3)=x,®x, .

Applying 2! we have

(6.13) P(x7)=21(x,®x,)=x3®x,,
and
(6.14) P(xg)=PP(x7)=P(x3®x,) =x3®x; .

Also by Theorem 5.5, ¢(x,) is of the form

(6.15) 00X, ®X7+ 0, X3 @ X3+ 03 X3 R x|+ Xg®X, .
Since @(x,)=¢(x,)=0, we have

(6.16) (PR DP(xg)= (23 + 0 )x3®x,®x; + 3%, @xI @ x,
Also we have

(6.17) (1®P)P(xe) =0 X, ®X3®X; +0,X3®X,® X, .
Since ($®1)P(xo) =(1@P)P(x,), we have
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(6.18) az=0, and o,=o,—a,.
Recall that
(6.19) Bxy=—x3 since P(fx;)=x,®x, and Px;eTig,-
Applying B to ¢(x,) we have
(6.20) P(Pxo)=0,X,®xg — X3 ®x3 + o, X3 X, + 0, Xg®X; .
On the other hand, since
$(x3)= —x3®@x, +x3@x3 +x3@x3 —x,®x3,

P(x2x8) =X, ®xg + X3 ®X, + X3 ®X, + X3 ® X,

and

Bxo€ Tile.
we have
(6.21) Pxog=Xx,Xg
and

P(xg)=X,@X7—X3®X3+ x5 ®x; +xg®X; .
Next similarly ¢(x,,) is of the form
(6.22) B1x,®xo+Bx3®x7+Pax3 @ X3+ Paxs@X3+ Psx3@ X, + fex x5 ® Xy
for B,eZ,.

Using the relation (1®@)d(x,,)=(d®@1)d(x,,) we have

(6.23) B:=Bs=Ps=—B, and By=Ps=4,.
Applying B-operation we have

(6.24) PBx, =—xgx}—x§

and

P(x1)=%X,@%9—x3@Xx7 4+ x3®X3— X3 @ X3+ XX, ®X; — X3 ®X; .
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Now we can compute 2!'x; for i=7,8,09.
(6.25) Plx;=P'P'xy=—P2x;=0 by the Adem relation,
P(Plxg) =21 (x3®x,)=x3®x} and so Plxg=-—x§,
P'xoe T3, =0 and so 2!xy,=0.
Applying 2! we have
(6.26) P(x,5)=F(P'x1)=P'P(x,)=X3®Xo+Xg®X;+ X ® X3+ X5X} ®X,
Applying B-operation we have
(6.27) G(Bx,5)=PP(x,5)=x3®xX; + X5 ®xg — X§ ®xF + X5 X3 R X,

and so

Bx,s=—x3 since Px,;s€Tise, .
Since 2'x,5e T3, =0, 2'x,5=0.
Note that
(6.28) P4, =0 for i#1,2,6.
Since ¢(Lix;)=0 for j>2, we have
(6.29) Pix;=0 for j>2.
Thus the following theorem is proved:

Theorem 6.10. In (2) of Theorem 6.2,
(x1)=h(x2)=0, G(x3)=x,8x,,
Px)=x3®x;, P(xs)=x3®x,,
B(x9)=%,®x7 —x3®@x3+x3@x; +x§®x, ,
Bx,1)=%,0x9—X3®x7+X5®X3 — x5 ® X3+ XX, @X; —X3 @, ,
B(x,5)=x3®Xo+Xg®X7 + X$® X3+ Xgx3®X, ,

Bxy=x,, Pxy=—x3, Px;=Xg Pxo=Xgx;,
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Bx,,=—xgx}—x8, Px;s=-x3, Ppx;=0  for i=2,8,
Plx,=x3, P'xy=x,, Plxg=—x5, 2P'x,,=Xx;s,
2'x;=0  for i=1,7,9,15,
Pix;=0  for j=2.
Applying p* we have
Corollary 6.11. In (1) of Theorem 6.2
B(%3)= §(%7) = P(Xs) = (o) =0,
6(i”)=523®23, 6(’?15):’?8@57,

Remark 6.12. Corollary 6.11 is proved by Araki [2] wusing Kudo’s
transgression theorem.

Now consider the inclusion j: SU(6)»V—E, Since the center of ¥V

is of order 6, we have Z;SU(6). Consider the following commutative
diagram:

(6.30) SU®6) I, Eg

| o | a
SU(6)/Z; —5— AdE; —— AdE/(SU(6)/Z;) .

> E¢/SU(6)

Note that

(6.31) HXSU(6)/Zy; Z3)=H*(PU(6); Z3)=Z;[y,]/(y)®A(V1s Y3, Y15 Vor Y11)-
By Corollary 6.7 and (6.1) we have

(6.32) J*(x)=y; for i=1,2,3,7,9,11.

In particular j'* is surjective and so AdEg/(SU(6)/Z;)=E¢/SU(6) is
totally non homologous to zero mod3 in 4dE;. So we have

Corollary 6.13. H*(E¢/SU(6); Z3)=Z;[es, eg]/(e?, e))®A(e,s), where deg
e;=I, r*(eg)=x3, r*(eg)=xg and r*(e;s)=x;s. Moreover Be,s=¢e3.



294 Akira Kono

§7. H*(E¢;Z3)

In this section we shall determine the Hopf algebra structure of H*(Ej;
Z;). By Corollary 6.12 we only need to determine @(X,,).

First recall from [2]. Let k: F,—E; be the inclusion defined in [2].
Then the following is known:

Theorem 7.1. k*: H¥(Ey; Zy) — H*(F,; Z3) is surjective and Kerk*=
(£9s gl7)'

Remark 7.2. This gives the Hopf algebra structure of H*(F,; Z,).
In fact if k*(X;) is also denoted by X; for i=3, 7, 8, 11, 15, then we have

H(Fy; Z3)=2Z5[%]/(RD® (X3, %7, %1y, %15),
P(X3)=P(%7) = (%) =0,

B(%11)=%®%;,

P(%15)=%s®%,.

Also recall from [19]:

Lemma 7.3. (1) CotorH*(F4iZ3)(Z,, Z4) is generated by elements ;s for
i=4,8,9, 20, 21, 25, 26, 36, 48, with degii;=I,

(2) The Rothenberg-Steenrod spectral sequence (or the Eilenberg-Moore
spectral sequence) (cf. [29] or [30]),

E,=Cotor"*F4iZ3) (Z, Z}) ——= E,,=Gr(H*(BF,; Z;))
collapses,
(3) Moreover iig, iig, iy, are represented by P'u,, PPu,, P3P'u, for a

generator u, of H*(BF,; Z;)~Z,.

Now we assume that

7.1 é(x,7)=0.

Then we have

Lemma 7.4. (1) Under the assumption (7.1),
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Cotor!*(Ee:Z3)(Zy, Z )= Cotor""Fa:230(Z s ZYRQZ [, 1, 4]

with degi;=i,

(2) In particular an element ii,5 of CotorH"Esi23)(Z, Z3) of degree 19
is of the form ail,y-iiy for a€Zs.

So by the argument similar to the proof of Lemma 5.8 we have
(7.2) Under the assumption (7.1), i,g is a permanent cycle.

Since clearly X, is universally transgressive, ii,, is a permanent cycle repre-
sented by u,,=1(X;). So we have

Lemma 7.5. Under the assumption (7.1),

H*(BEg:; Z5) for x<24, is generated by the following elements:
Uy =1(X3), ug=Pluy, ug=LP Uy, Uro=P3Pu,,
U o=1(%y) and u;g=1(%,7).

Proof. Clearly ii;, i=4,8,9, 10, 18 are permanent cycles. Since P32'k*u,
is not decomposable, so is #32'u,. So the result follows. Q.E.D.

Now the following is well known:

(7.3) H*(BSU(6); Z;)=Z,[c,, c3, c4, Cs, Cg], Where ¢; is the mod3 reduction
of the i-th universal Chern class.

Consider the inclusion
j': BSU(6) — BE,.
Then by the naturality of the transgression and by (6.32) we have
(7.4) J*(up)=cs+ac,-c3 for aeZy up to non-zero multiple.
Moreover we have
(7.5) J'*(uy), j'*(ug) €(cy, ¢4) by the dimensional reason.

Since 23u,,e H*%(BE,; Z,), so
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(7.6) P3u,o€(uy, ug) by the dimensional reason.
On the other hand
(7.7)  J'™X(P3uy0)=23(cs+ac, - c3)=cecs+ (other terms) up to non-zero multiple.
And so
(7.8) JH(P3uy0)¢(ca, ca).
That is a contradiction and so we have
Lemma 7.6. ¢(%,,)#0.
Then applying Theorem 5.5 we have
Theorem 7.7. In (1) of Theorem 6.2,
B(%3)=P(X7) = §(%s) = P(%5)=0,
(%1 =%s®%3, P(X15)=%3®F; B(X,7)=%®%,,
BR,=%g PR,s=—X%3, B%=0  for i#7, 15,
PlXy=%,, P'X =% P'%=0  for i#3,11,
PI%=0  for j>2.
The proof is easy (cf. Theorem 6.10).

Remark 7.8. The similar proof is given in [18]. But the proof is tedi-
ous since we need the algebra structure of H*(BE4; Z;) for <30 under the
assumption of (7.1).
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