Hopf algebra structure of simple Lie groups

By

Akira Kono

(Received May 25, 1976)

§1. Introduction

Let G be a compact connected Lie group of rank l and p a rational prime. The group multiplication $\mu: G \times G \rightarrow G$ induces a map

(1.1)
$$\mu^* \colon H^*(\mathbf{G}; \mathbf{Z}_p) \longrightarrow H^*(\mathbf{G} \times \mathbf{G}; \mathbf{Z}_p).$$

By the virtue of the Künneth formular, μ^* gives a Hopf algebra structure

$$(1.2) \phi: H^*(\mathbf{G}; \mathbf{Z}_p) \longrightarrow H^*(\mathbf{G}; \mathbf{Z}_p) \otimes H^*(\mathbf{G}; \mathbf{Z}_p)$$

of $H^*(G; \mathbb{Z}_n)$.

Since

$$\phi(x) - (x \otimes 1 + 1 \otimes x) \in \widetilde{H}^*(G; \mathbf{Z}_p) \otimes \widetilde{H}^*(G; \mathbf{Z}_p)$$
for $\widetilde{H}^*(G; \mathbf{Z}_p) = \sum_{i > 0} H^i(G; \mathbf{Z}_p)$,

we put

$$\overline{\phi}(x) = \phi(x) - (x \otimes 1 + 1 \otimes x)$$
.

An element $x \in \tilde{H}^*(G; \mathbb{Z}_p)$ is said to be primitive if $\bar{\phi}(x) = 0$.

On the other hand consider the universal G bundle

$$\mathbf{G} \longrightarrow E\mathbf{G} \longrightarrow B\mathbf{G}.$$

An element $x \in \widetilde{H}^*(G; \mathbb{Z}_p)$ is called to be universally transgressive if x is transgressive with respect to (1.3).

As is well known

(1.4) if x is universally transgressive, then x is primitive (cf. Borel [5]).

As is well known

(1.5) if $H^*(G; \mathbf{Z})$ is p-torsion free, then $H^*(G; \mathbf{Z}_p) \cong \Lambda(x_1, x_2, ..., x_l)$ with $\deg x_i$ odd and $l = \operatorname{rank} G$.

So by the Hopf Samelson theorem, each x_i can be chosen to be primitive. Moreover each x_i can be chosen to be universally transgressive.

On the other hand if $H^*(G; \mathbb{Z})$ has p-torsion, it seems to be very difficult to determine the Hopf algebra structure of $H^*(G; \mathbb{Z}_p)$. In fact Browder [12] showed that

(1.6) if p is an odd prime, $H^*(G; \mathbb{Z}_p)$ is primitively generated if and only if $H^*(G; \mathbb{Z})$ is p-torsion free.

The purpose of the present paper is to determine the Hopf algebra structure of $H^*(G; \mathbb{Z}_p)$ for any p and any simple G.

For a classical type G, the Hopf algebra structure of $H^*(G; \mathbb{Z}_p)$ is determined by Baum-Browder [4] except for G = Spin(n) and Ss(4m). The Hopf algebra structure of $H^*(Spin(n); \mathbb{Z}_2)$ and $H^*(Ss(4m); \mathbb{Z}_2)$ was determined by Ishitoya-Toda and the author [13].

For exceptional type G, $H^*(G; \mathbb{Z})$ has p-torsion if and only if (G, p) is one of the following:

$$(G, p) = (G_2, 2),$$

 $= (F_4, 2), (F_4, 3),$
 $= (E_6, 2), (E_6, 3), (AdE_6, 2), (AdE_6, 3),$
 $= (E_7, 2), (E_7, 3), (AdE_7, 2), (AdE_7, 3),$
 $= (E_8, 2), (E_8, 3), (E_8, 5),$

where G_2 , F_4 , E_6 , E_7 , E_8 are compact 1-connected simple Lie groups and AdE_i is the quotient of E_i by its center for i=6, 7.

Note that since the covering projection $\rho: E_6 \rightarrow AdE_6$ (resp. $\rho': E_7 \rightarrow AdE_7$)

is a 3-fold covering (resp. a 2-fold covering), $\rho^*: H^*(AdE_6; \mathbb{Z}_p) \to H^*(E_6; \mathbb{Z}_p)$ is an isomorphism for any prime $p \neq 3$ (resp. $\rho'^*: H^*(AdE_7; \mathbb{Z}_p) \to H^*(E_7; \mathbb{Z}_p)$ is an isomorphism for any prime $p \neq 2$). The following are the cases where the Hopf algebra structure of $H^*(G; \mathbb{Z}_p)$ was determined for the above (G, p):

So the Hopf algebra structure of $H^*(G; \mathbb{Z}_p)$ was determined except for $(G, p) = (AdE_6, 3)$ and $(E_8, 5)$. In this paper we shall determine these two cases. Cohomology operations of $H^*(AdE_6; \mathbb{Z}_3)$ and $H^*(E_8; \mathbb{Z}_5)$ are also determined.

The results of this paper are stated as follows, for details see Theorem 5.15 and 6.10:

$$H^*(E_8; \mathbf{Z}_5) \cong \mathbf{Z}_5[x_{12}]/(x_{12}^5) \otimes \Lambda(x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}) \text{ with }$$

$$\deg x_i = i,$$

$$\overline{\phi}(x_3) = \overline{\phi}(x_{11}) = \overline{\phi}(x_{12}) = 0$$

$$\overline{\phi}(x_{15}) = x_{12} \otimes x_3, \quad \overline{\phi}(x_{23}) = x_{12} \otimes x_{11},$$

$$\overline{\phi}(x_{27}) = 2x_{12} \otimes x_{15} + x_{12}^2 \otimes x_3,$$

$$\overline{\phi}(x_{35}) = 2x_{12} \otimes x_{23} + x_{12}^2 \otimes x_{11},$$

$$\overline{\phi}(x_{39}) = 3x_{12} \otimes x_{27} + 3x_{12}^2 \otimes x_{15} + x_{12}^3 \otimes x_3,$$

$$\overline{\phi}(x_{47}) = 3x_{12} \otimes x_{35} + 3x_{12}^2 \otimes x_{23} + x_{12}^3 \otimes x_{11},$$

$$x_{11} = \mathscr{P}^1 x_3, \quad x_{12} = \beta x_{11}, \quad x_{23} = \mathscr{P}^1 x_{15}, \quad x_{35} = \mathscr{P}^1 x_{27},$$

$$x_{47} = \mathscr{P}^1 x_{39}.$$

$$H^*(\mathbf{AdE}_6; \mathbf{Z}_3) = \mathbf{Z}_3[x_2, x_8]/(x_2^9, x_8^3) \otimes \Lambda(x_1, x_3, x_7, x_9, x_{11}, x_{15}) \text{ with } \deg x_i = i,$$

$$\bar{\phi}(x_1) = \bar{\phi}(x_2) = 0,$$

$$\bar{\phi}(x_3) = x_2 \otimes x_1, \quad \bar{\phi}(x_7) = x_2^3 \otimes x_1, \quad \bar{\phi}(x_8) = x_2^3 \otimes x_2,$$

$$\bar{\phi}(x_9) = x_2 \otimes x_7 - x_2^3 \otimes x_3 + x_8 \otimes x_1 + x_2^4 \otimes x_1,$$

$$\bar{\phi}(x_{11}) = x_2 \otimes x_9 - x_2^2 \otimes x_7 + x_8 \otimes x_3 - x_2^4 \otimes x_3 + x_8 x_2 \otimes x_1 - x_2^5 \otimes x_1,$$

$$\bar{\phi}(x_{15}) = x_2^3 \otimes x_9 + x_8 \otimes x_7 + x_2^6 \otimes x_3 + x_8 x_2^3 \otimes x_1,$$

$$x_2 = \beta x_1, \quad x_7 = \mathcal{P}^1 x_3, \quad x_8 = \beta x_7, \quad x_{15} = \mathcal{P}^1 x_{11}.$$

The paper is organized as follows:

In § 2 Cotor^A(Z_5 , Z_5) for some Hopf algebra over Z_5 is calculated. In § 3 a generalization of Theorem 1.1 of [13] is given. In § 4 the invariant subalgebra $H^*(BT^8; Z_5)^{W(E_8)}$ under the action of the Weyl group of E_8 is calculated. In § 5 the Hopf algebra structure of $H^*(E_8; Z_5)$ is determined by the results of § 2, § 3, § 4. In this section the Rothenberg-Steenrod spectral sequence [29] plays an important role. In the next section, § 6, the Hopf algebra structure of $H^*(AdE_6; Z_3)$ is determined. Note that in § 6 we only need the result of § 3. In § 7 the Hopf algebra structure of $H^*(E_6; Z_3)$ and $H^*(F_4; Z_3)$ is determined by making use of the result of § 6.

Throughout the paper the augmentation ideal of a connected algebra A is denoted by \tilde{A} .

§2. Injective resolutions of Z_5

In this section we shall construct injective resolutions of Z_5 over some Hopf algebras.

Notation 2.1. (A, ϕ) is a graded Hopf algebra over \mathbb{Z}_5 such that

(1) As an algebra

$$A \cong \mathbb{Z}_{5}[x_{12}]/(x_{12}^{5}) \otimes \Lambda(x_{3}, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}),$$

where $\deg x_i = i$,

(2) The coalgebra structure is given by

$$\vec{\phi}(x_3) = \vec{\phi}(x_{11}) = \vec{\phi}(x_{12}) = 0,$$

$$\vec{\phi}(x_{15}) = x_{12} \otimes x_3, \quad \vec{\phi}(x_{23}) = x_{12} \otimes x_{11},$$

263

$$\overline{\phi}(x_{27}) = 2x_{12} \otimes x_{15} + x_{12}^2 \otimes x_3,$$

$$\overline{\phi}(x_{35}) = 2x_{12} \otimes x_{23} + x_{12}^2 \otimes x_{11}$$

where $\overline{\phi}(x) = \phi(x) - (x \otimes 1 + 1 \otimes x)$.

To construct an injective resulusion of Z_5 over the coalgebra (A, ϕ) we use the method of [32] (see also [20]).

Let L be a graded submodule of \tilde{A} generated by

$$\{x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{12}, x_{12}^2, x_{12}^3, x_{12}^4, x_{12}^4\}.$$

Let $s: L \rightarrow sL$ be the suspension. Denote the corresponding elements under the suspension by

$$\{a_4, a_{12}, b_{16}, b_{24}, c_{28}, c_{36}, d_{13}, d_{25}, d_{37}, d_{49}\}.$$

Let $\theta: A \to L$ be the projection and $\iota: L \to A$ the inclusion. Define $\bar{\theta}: A \to sL$ and $\bar{\iota}: sL \to A$ by the following commutative diagram:

Construct the free tensor algebra T(sL) over sL and denote the product by ψ . Let I be the two-sided ideal of T(sL) generated by $\operatorname{Im}(\psi \circ (\overline{\theta} \otimes \overline{\theta}) \circ \phi) \circ (1 - (\iota \circ \theta))$. Then we have

Lemma 2.2. I is generated by

$$[a_4, a_{12}], [a_i, b_j], [a_i, c_k], [a_i, d_l], [b_{16}, b_{24}],$$

$$[b_i, c_k], [c_{28}, c_{36}],$$

$$[d_{13}, b_{16}] + d_{25} \cdot a_4, \quad [d_{13}, b_{24}] + d_{25} \cdot a_{12},$$

$$[d_{13}, c_{28}] + d_{37} \cdot a_4 + 2d_{25} \cdot b_{16}$$

$$[d_{13}, c_{36}] + d_{37} \cdot a_{12} + 2d_{25} \cdot b_{24}$$

$$[d_{25}, b_{16}] + d_{37} \cdot a_4, \quad [d_{25}, b_{24}] + d_{37} \cdot a_{12},$$

$$[d_{25}, c_{28}] + d_{49} \cdot a_4 + 2d_{37} \cdot b_{16},$$

$$[d_{25}, c_{36}] + d_{49} \cdot a_{12} + 2d_{37} \cdot b_{24},$$

$$[d_{37}, b_{16}] + d_{49} \cdot a_{4}, \quad [d_{37}, b_{24}] + d_{49} \cdot a_{12},$$

$$[d_{37}, c_{28}] + d_{49} \cdot b_{16}, \quad [d_{37}, c_{36}] + d_{49} \cdot b_{24},$$

$$[d_{49}, b_{i}], [d_{49}, c_{k}],$$

where $i=4, 12, j=16, 24, k=28, 36, l=13, 25, 37, 49, x \cdot y = \psi(x, y)$ and $[x, y] = x \cdot y - (-1)^{\epsilon} y \cdot x$ with $\epsilon = \deg x \cdot \deg y$.

The proof is easy.

Put X = T(sL)/I. Then $\bar{\theta}$ induces a map $A \to X$ which is again denoted by $\bar{\theta}$. We define a map

$$d = -\psi \circ (\bar{\theta} \otimes \bar{\theta}) \circ \phi \circ \iota : sL \longrightarrow T(sL)$$

and extend it naturally over T(sL). Then $d(I) \subset I$ and so d induces a map $X \to X$, which is again denoted by $d: X \to X$ (cf. [32]). Then it is easy to see $d^2 = d \circ d = 0$. So (X, d) is a differential coalgebra over \mathbb{Z}_5 .

Since the relation

$$d \circ \bar{\theta} + \psi(\bar{\theta} \otimes \bar{\theta}) \circ \phi = 0$$

holds, we now can construct the twisted tensor product \overline{X} with respect to $\overline{\theta}$. That is, $\overline{X} = A \otimes X$ is an A-comodule with the differential operator

$$\overline{d} = 1 \otimes d + (1 \otimes \psi) \circ (1 \otimes \overline{\theta} \otimes 1) (\phi \otimes 1)$$
.

Then we have

Lemma 2.3. \bar{d} is given by

(2.1)
$$d(x_3) = a_4$$
, $d(x_{11}) = a_{12}$, $d(x_{12}) = d_{13}$,
 $d(x_{15}) = b_{16} + x_{12} \cdot a_4$, $d(x_{23}) = b_{24} + x_{12} \cdot a_{12}$,
 $d(x_{27}) = c_{28} + 2x_{12} \cdot b_{16} + x_{12}^2 \cdot a_4$,
 $d(x_{35}) = c_{36} + 2x_{12} \cdot b_{24} + x_{12}^2 \cdot a_{12}$,
 $d(x_{12}^2) = d_{25} + 2x_{12} \cdot d_{13}$,
 $d(x_{12}^3) = d_{37} + 3x_{12} \cdot d_{25} + 3x_{12}^2 \cdot d_{13}$,

$$\vec{d}(x_{12}^4) = d_{49} - x_{12} \cdot d_{37} + x_{12}^2 \cdot d_{25} - x_{12}^3 \cdot d_{13}$$

(2.3)
$$\overline{d}(a_4) = \overline{d}(a_{12}) = 0$$
,
 $\overline{d}(b_{16}) = -d_{13} \cdot a_4$, $\overline{d}(b_{24}) = -d_{13} \cdot a_{12}$
 $\overline{d}(c_{28}) = -2d_{13} \cdot b_{16} - d_{25} \cdot a_4$, $\overline{d}(c_{36}) = -2d_{13} \cdot b_{24} - d_{25} \cdot a_{12}$,
 $\overline{d}(d_{13}) = 0$, $\overline{d}(d_{25}) = -2d_{13}^2$, $\overline{d}(d_{37}) = -3[d_{13}, d_{25}]$,
 $\overline{d}(d_{49}) = [d_{37}, d_{13}] - d_{25}^2$.

Note that

$$d(x) = \overline{d}(x)$$
 for any $x \in sL$.

Now define weight \overline{X} by

(2.4) A:
$$x_3$$
 x_{11} x_{15} x_{23} x_{27} x_{35} x_{12}^j

X: a_4 a_{12} b_{16} b_{24} c_{28} c_{36} d_{12j+1}

weight: 1 1 1 1 1 j

Define filtration

$$F_r() = \{x : \text{weight } x \ge r\}.$$

Then

$$\overline{d}(F_r(\overline{X})) \subset F_r(\overline{X})$$
.

Put

$$E_0(\overline{X}) = \sum_i F_i(\overline{X}) / F_{i+1}(\overline{X})$$
.

Let $\overline{d}_0 \colon E_0(\overline{X}) \to E_0(\overline{X})$ be the induced map. Then $E_0(\overline{X})$

$$\cong \Lambda(x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}) \otimes \mathbf{Z}_5[a_4, a_{12}, b_{16}, b_{24}, c_{28}, c_{36}] \otimes C(Q(x_{12})),$$

where $C(Q(x_{12}))$ is the cobar construction of $\mathbb{Z}_{5}[x_{12}]/(x_{12}^{5})$. Since

$$\vec{d}_0(x_4) = a_4$$
, $\vec{d}_0(x_{11}) = a_{12}$, $\vec{d}_0(x_{15}) = b_{16}$,

$$\vec{d}_0(x_{23}) = b_{24}, \ \vec{d}_0(x_{27}) = c_{28}, \ \vec{d}_0(x_{35}) = c_{36},$$

266 Akira Kono

 $(E_0(\overline{X}), \overline{d}_0)$ is acyclic and so is $(\overline{X}, \overline{d})$.

So by definition we have

$$(2.5) H(X; d) = \operatorname{Cotor}^{A}(\mathbf{Z}_{5}, \mathbf{Z}_{5}).$$

Remark 2.4. $E_0(A) = \sum_i F_i(A) / F_{i+1}(A)$ is primitively generated (cf. [25]).

Now we prove the following:

Lemma 2.5. $H^{41}(X; d) \cong \mathbb{Z}_5$ generated by $u_{41} = \{d_{13}c_{28} + \text{others}\}$.

Proof. Consider the spectral sequence associated with the above filtration.

$$E_0 \cong \mathbf{Z}_5[a_4, a_{12}, b_{16}, b_{24}, c_{28}, c_{36}] \otimes T\{d_{13}, d_{25}, d_{37}, d_{49}\}$$

The element x_{41} of degree 41 is of the form

$$\alpha_1 d_{13} \cdot c_{28} + \alpha_2 d_{13} \cdot b_{24} \cdot a_4 + \alpha_3 d_{13} \cdot b_{16} \cdot f_1 + d_{13} a_4 \cdot f_2 \\ + \alpha_4 d_{25} \cdot b_{16} + d_{25} a_4 \cdot f_3 + \alpha_5 d_{37} \cdot a_4$$

where $\alpha_i \in \mathbb{Z}_5$ and f_i is a polynomial of a_4 and a_{12} .

Since $d_0(x_{41})=0$ we have $\alpha_4=0$, $f_3=0$ and $\alpha_5=0$.

But $d_1(c_{28} \cdot f_1) = -2d_{13} \cdot b_{16} \cdot f_1$, $d_1(b_{16} \cdot f_2) = -d_{13} \cdot a_4 \cdot f_2$ and $d_1(c_{36} \cdot a_4) = -2d_{13} \cdot b_{24}a_4$. On the other hand $d_{13} \cdot c_{28} \notin \text{Im } d_1$. So $E_1 \cong \mathbb{Z}_5$ generated by $d_{13} \cdot c_{28}$ for deg = 41. Clearly $d_{13} \cdot c_{28}$ is a permanent cycle (cf. Remark 2.6) and is not a coboundary by the reason of the filtration. So $E_1 \cong E_\infty$ for deg = 41 and we have the result. Q. E. D.

Remark 2.6. u_{41} is represented by $d_{13}c_{28} + d_{25}b_{16} + 2d_{37}a_4$.

Proof.
$$d(d_{13}c_{28} + d_{25}b_{16} + 2d_{37}a_4)$$

= $2d_{13}^2b_{16} + d_{13}d_{25}a_4 + d_{25}d_{13}a_4 - 2d_{13}^2b_{16} - [d_{25}, d_{13}]a_4$
= 0 .

Let (A', ϕ') be the Hopf subalgebra of (A, ϕ) generated by

$$\{x_3, x_{11}, x_{12}, x_{15}, x_{23}\}.$$

Put

$$L' = \{x_3, x_{11}, x_{15}, x_{23}, x_{12}, x_{12}^2, x_{12}^3, x_{12}^4, x_{12}^4\}$$

and

$$sL' = \{a_4, a_{12}, b_{16}, b_{24}, d_{13}, d_{25}, d_{37}, d_{49}\}.$$

Similarly we can construct (X', d') and $(\overline{X}', \overline{d}')$. Then we have

(2.7)
$$(\overline{X}', \overline{d}')$$
 is acyclic.

And so we have

$$H(X'; d') = \operatorname{Cotor}^{A'}(\mathbf{Z}_5, \mathbf{Z}_5).$$

Moreover we have

Lemma 2.7.
$$H^{29}(X'; d') \cong \mathbb{Z}_5$$
 generated by $u_{29} = \{b_{16} \cdot d_{13} + 2a_4 \cdot d_{25}\}$.

The proof is similar.

Remark 2.8. (1) The spectral sequence used in the proof of Lemma 2.5 is essentially May's spectral sequence [23].

(2) $H^{41}(X; d) \neq 0$ and $H^{29}(X'; d') \neq 0$ are also proved by the fact that x_{39} and x_{27} are not universally transgressive which is proved in §5 without using the above results.

§3. A transgression theorem

In this section G denotes a compact connected Lie group of rank l and p a rational prime. Let U be a closed connected subgroup of G of rank l'. As is seen in §2 of [35], the fibering

$$\mathbf{G} \xrightarrow{\pi} \mathbf{G}/\mathbf{U} \xrightarrow{i} B\mathbf{U}$$

is equivalent to the principal G bundle

$$\mathbf{G} \xrightarrow{\pi} E \xrightarrow{i} B\mathbf{U}$$

where $E = EG \times G$ and $BU = EG \times pt$ for the total space of the universal G bundle EG.

Denote by $T^i(G; U)$ a graded submodule of $H^i(G; Z_p)$ which consists of the transgressive elements with respect to (3.1) or (3.2) and $T^*(G; U) = \sum_{i>0} T^i(G; U)$.

Thus

(3.3)
$$T^*(G; U) = \delta^{-1}(i^*H^{*+1}(BU, pt; Z_p))$$

for the coboundary operator $\delta \colon H^*(G; \mathbf{Z}_p) \to H^{*+1}(E, G; \mathbf{Z}_p)$ and the homomorphism $i^* \colon H^{*+1}(B\mathbf{U}, pt; \mathbf{Z}_p) \to H^{*+1}(E, G; \mathbf{Z}_p)$ induced by the bundle projection $i \colon (E, G) \to (B\mathbf{U}, pt)$.

Obviously we have

(3.3)
$$\widetilde{\operatorname{Im}} \pi^* \subset T^*(G; U) \text{ for } \pi^* \colon H^*(G/U; \mathbb{Z}_p) \longrightarrow H^*(G; \mathbb{Z}_p).$$

We use the following notations

to each other, we have

$$T^{\text{even}}(G; U) = \sum_{i>0} T^{2i}(G; U),$$

$$T^{\text{odd}}(G; U) = \sum_{i>0} T^{2i+1}(G; U).$$

Let T be a maximal torus of G. Since any maximal tori are conjugate

(3.4) $T^*(G; T)$ is independent of the choice of T.

Following [13], $T^*(G; T)$ is denoted by T_G^* .

In [13] the following is proved (cf. Theorem 1.1 of [13]):

Theorem 3.1. There exist elements $a_1, ..., a_l$ of odd degrees such that

- (1) $H^*(G; \mathbf{Z}_n) = \Delta(a_1, ..., a_l) \otimes \operatorname{Im} \pi^*$ as an $\operatorname{Im} \pi^*$ -module,
- $(2) \quad \boldsymbol{T_G^*} = \langle a_1, \dots, a_l \rangle \oplus \widetilde{\text{Im}} \pi^*,$

where $\Delta(a_1,...,a_l)$ indicates the submodule spanned by the simple monomials $a_1^{\varepsilon_1} \cdots a_l^{\varepsilon_l}$ ($\varepsilon_i = 0$ or 1) which are linearly independent, and $\langle a_1,...,a_l \rangle$ does a submodule spanned by $\{a_1,...,a_l\}$.

Let U' be also a closed connected subgroup of G such that $U' \supset U$. Consider the following commutative diagram:

(3.5)
$$G \longrightarrow G/U \longrightarrow BU$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \longrightarrow G/U' \longrightarrow BU'.$$

Then by the naturality of the transgressions we can easily get the following:

Lemma 3.2. $T^*(G; U) \supset T^*(G; U')$.

Let U_G^* be a graded submodule of $\tilde{H}^*(G; \mathbb{Z}_p)$ which consists of universally transgressive elements.

Since

$$(3.6) U_G^* = T^*(G; G),$$

we have

$$(3.7) U_G^* \subset T^*(G; U) for any U$$

by Lemma 3.2.

Also by the commutative diagram

$$(3.8) U' \longrightarrow U'/U \longrightarrow BU$$

$$\downarrow \qquad \qquad \qquad \parallel$$

$$G \longrightarrow G/U \longrightarrow BU$$

we have

Lemma 3.3.
$$j^*T^*(G; U) \subset T^*(U'; U)$$
.

Now recall from [27]. Let $R = k[X_1, ..., X_n]$ be a graded polynomial algebra over a commutative field k with $\deg X_i > 0$ for any $i, 1 \le i \le n$ a finite sequence of homogeneous elements with positive degrees $\{f_1, ..., f_s\}$ is called a regular sequence if f_i is a non zero divisor in $R/(f_1, ..., f_{i-1})$ for any $i, 1 \le i \le s$.

Let $R' = k[Y_1, ..., Y_n]$ be also a graded polynomial algebra with deg $Y_i > 0$ for any $i, 1 \le i \le n$. Let $\varphi: R' \to R$ be a homomorphism of graded algebra. Then the following is well known:

Lemma 3.4. The following three conditions are equivalent:

- (1) R is a finite R'-module under φ ,
- (2) $\{\varphi(Y_1),...,\varphi(Y_n)\}\$ is a regular sequence,
- (3) R is a free finite R'-module under φ .

The proof is given in [27]. See also [16].

On the other hand let $\{g_1, ..., g_s\}$ be a finite sequence of homogeneous elements with positive degrees in R'. Then the following is well known [27]:

Lemma 3.5. If φ is faithfully flat and $\{\varphi(g_1),...,\varphi(g_s)\}$ is a regular sequence, then $\{g_1,...,g_s\}$ is also a regular sequence.

Note that

(3.9) if R is a free R'-module under φ , φ is faithfully flat.

An important example of a regular sequence is given in this section.

Let G_1 be a compact connected Lie group G_2 its closed connected subgroup and $i: G_2 \rightarrow G_1$ the inclusion. Then we have

Lemma 3.6. If $H^*(G_1; \mathbb{Z})$ and $H^*(G_2; \mathbb{Z})$ are p-torsion free and rank $G_1 = \operatorname{rank} G_2 = l$, then $H^*(BG_2; \mathbb{Z}_p)$ is a free $H^*(BG_1; \mathbb{Z}_p)$ -module under i^* .

Proof. Since by Borel's theorem (cf. [5] see also [29]), $H^*(BG_1; \mathbf{Z}_p)$ and $H^*(BG_2; \mathbf{Z}_p)$ are both graded polynomial algebras in *l*-variables of positive degrees the result follows from Quillen's finiteness theorem (Corollary 2.4 of [28]) and Lemma 3.4. Q. E. D.

Remark 3.7. We can also prove Lemma 3.7 by the cohomology Serre spectral sequence for the fibering

$$G_1/G_2 \longrightarrow BG_2 \longrightarrow BG_1$$

and the fact that $H^{odd}(G_1/G_2; Z_p) = H^{odd}(BG_1; Z_p) = 0$.

Now consider the following commutative diagram

$$(3.10) F \longrightarrow E_1 \longrightarrow B_1$$

$$\parallel \qquad f \downarrow \qquad f \downarrow$$

$$F \longrightarrow E_2 \longrightarrow B_2$$

where $F \to E_1 \to B_1$ and $F \to E_2 \to B_2$ are fiberings F is arcwise connected and B_1 , B_2 are 1-connected. Also we assume that F, E_1 , E_2 , B_1 , B_2 have homotopy type of CW complexes of finite type.

Let $\{E_r^{**}(1), d_r^1\}$ (resp. $\{E_r^{**}(2), d_r^2\}$) be the cohomology Serre spectral sequence for the fibering $F \to E_1 \to B_1$ (resp. $F \to E_2 \to B_2$) with \mathbf{Z}_p coefficient. Then we have

Theorem 3.8. If $H^*(B_1; \mathbb{Z}_p)$ is a free $H^*(B_2; \mathbb{Z}_p)$ -module of finite rank under f^* , then $E_r^{**}(1)$ is a free $E_r^{**}(2)$ -module for $r \ge 2$.

Proof. Let $\{x_1 = 1, x_2, ..., x_n\}$ be a free basis of $H^*(B_1; \mathbf{Z}_p)$ over $H^*(B_2; \mathbf{Z}_p)$.

Let $\{E_r^{**}(3), d_r^3\}$ be a spectral sequence such that

- (1) As a module $E_r^{**}(3)$ is generated by $1, X_2, ..., X_n$ with bi-degree (deg $x_i, 0$),
- (2) $d_r(X_i) = 0$ for any i.

Define $\varphi: E_r^{**}(3) \rightarrow E_r^{**}(1)$ by $\varphi(X_i) = x_i \otimes 1$.

Since $d_r^1(x_i \otimes 1) = 0$ for any $r \ge 2$, φ is a map of spectral sequence. Then we only need to prove

(3.11) $\varphi \otimes f^* : E_r^{**}(3) \otimes E_r^{**}(2) \longrightarrow E_r^{**}(1)$ is isomorphic for $r \ge 2$.

Moreover we only need to prove

(3.12) $\varphi \otimes f^* : E_2^{**}(3) \otimes E_2^{**}(2) \longrightarrow E_2^{**}(1)$ is isomorphic.

But (3.12) follows from the following (3.13):

Q.E.D.

Corollary 3.9. Under the assumption of Theorem 3.8, $x \in \widetilde{H}(F; \mathbb{Z}_p)$ is transgressive with respect to $F \to E_1 \to B_1$ if and only if with respect to $F \to E_2 \to B_2$.

Now we can prove the following:

Theorem 3.10. Let G be a compact connected Lie group and U be its closed connected subgroup such that $H^*(U; \mathbb{Z})$ is p-torsion free. Then

$$T_G^* \subset T^*(G; U)$$
.

Moreover if rank $U = \operatorname{rank} G$, then

$$T_G^* = T^*(G; U)$$
.

Proof. Let T' be a maximal torus of U and T a maximal torus of G

such that $T' \subset T$. Then by Lemma 3.2,

$$T_G^* = T^*(G; T) \subset T^*(G; T')$$
.

On the other hand since $H^*(BT'; \mathbb{Z}_p)$ is a free $H^*(BU; \mathbb{Z}_p)$ -module by Lemma 3.6,

$$T^*(G; U) = T^*(G; T')$$

by Corollary 3.9. So we have

$$T_G^* \subset T^*(G; U)$$
.

If rank U = rank G, we may assume that T' = T. And so we have the second assertion of the theorem. Q. E. D.

Corollary 3.11. $T^*(G; U) = T^*(G; T)$.

From now on we assume that $H^*(U; \mathbf{Z})$ is p-torsion free and rank $U = \operatorname{rank} \mathbf{G}$.

Now recall from [13] (see also [35]):

Theorem 3.12. Let $a_1,...,a_l$ be the elements in Theorem 3.1 and τ_0 be the transgression with respect to the fibering

$$(3.14) G \longrightarrow G/T \longrightarrow BT$$

where T is a maximal torus of G. Then $\{\tau_0(a_1),...,\tau_0(a_l)\}$ is a regular sequence.

Remark 3.13. $\tau_0(a_i)$ is not uniquely determined. But the property $\{\tau_0(a_1),...,\tau_0(a_l)\}$ is a regular sequence is independent of the choice of $\tau_0(a_i)$.

Now let τ be the transgression with respect to

$$\mathbf{G} \longrightarrow \mathbf{G}/\mathbf{U} \longrightarrow \mathbf{B}\mathbf{U}.$$

Since $H^*(BT; \mathbb{Z}_p)$ is a free $H^*(BU; \mathbb{Z}_p)$ module by Lemma 3.6, $a_1, ..., a_l$ are also transgressive with respect to (3.15). Moreover we have

Theorem 3.14. $\{\tau(a_1), \ldots, \tau(a_l)\}$ is a regular sequence.

The proof is easy (cf. Lemma 3.5).

Remark 3.15. Let G_1 , G_2 be closed connected subgroups of G such that

- (1) $H^*(G_1; \mathbf{Z})$ and $H^*(G_2; \mathbf{Z})$ are p-torsion free,
- (2) $\operatorname{rank} G_1 = \operatorname{rank} G_2$,
- (3) $G_1 \supset G_2$.

Then consider the following commutative diagram

As is well known ℓ'^* is surjective and so ℓ^* is surjective. And so G/G_1 is totally non homologous to zero mod p in G/G_2 . So $H^*(G/G_2; \mathbb{Z}_p)$ is a free $H^*(G/G_1; \mathbb{Z}_p)$ -module.

§4. Mod 5 invariant subalgebras of Weyl groups

Let T be a maximal torus of E_8 . The completed Dynkin diagram of E_8 is

where α_i 's $(1 \le i \le 8)$ are the simple roots and

$$\tilde{\alpha} = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 6\alpha_4 + 5\alpha_5 + 4\alpha_6 + 3\alpha_7 + 2\alpha_8$$

is the highest root $(\tilde{\alpha} = \overline{\omega}_8)$ (cf. [11]).

Let U be the identity component of the centralizer of the element $x_1 \in T$ such that $\alpha_1(x_1) = \frac{1}{2}$ and $\alpha_i(x_1) = 0$ for i = 2, 3, ..., 8. Then the Weyl groups W() of E_8 and U are generated by the following elements:

(4.1)
$$\begin{cases} W(\mathbf{E}_8) = \langle \varphi_i; i = 1, 2, ..., 8 \rangle \\ W(\mathbf{U}) = \langle \varphi_i, \tilde{\varphi}; i = 2, 3, ..., 8 \rangle \end{cases}$$

274 Akira Kono

where φ_i (resp. $\tilde{\varphi}$) denotes the reflection through the plane $\alpha_i = 0$ (resp. $\tilde{\alpha} = 0$) in the universal covering of T. (See Borel-Siebenthal [10].)

Remark 4.1. According to Borel-Siebenthal [10] the local type of U is D_8 . Since the center of Spin(16) is $Z_2 \oplus Z_2$, $\pi^* : H^*(U: Z_p) \to H^*(Spin(16): Z_p)$ is isomorphic for any odd prime p, where $\pi : Spin(16) \to U$ is the universal covering map.

Since the center of E_8 is trivial we may consider that all roots are elements of $H^2(BT) = H^1(T)$, then the simple roots $\alpha_1, \alpha_2, ..., \alpha_8$ form a basis of $H^2(BT)$ and $H^*(BT) = \mathbf{Z}[\alpha_1, \alpha_2, ..., \alpha_8]$ (cf. [9]).

Following Bourbaki [11], we put

$$\begin{split} &\alpha_1 = \frac{1}{2} (\varepsilon_1 + \varepsilon_8) - \frac{1}{2} (\varepsilon_2 + \varepsilon_3 + \varepsilon_4 + \varepsilon_5 + \varepsilon_6 + \varepsilon_7) \ , \\ &\alpha_2 = \varepsilon_1 + \varepsilon_2 \ , \\ &\alpha_i = \varepsilon_{i-1} - \varepsilon_{i-2} \qquad \text{for} \quad 3 \leq i \leq 8 \ . \end{split}$$

Then $\tilde{\alpha} = \varepsilon_7 + \varepsilon_8$.

Put

$$t_1 = -\varepsilon_1 ,$$

$$t_8 = -\varepsilon_8$$

and

$$t_i = \varepsilon_i$$
 for $i = 2, 3, ..., 7$.

Then

$$\alpha_{1} = -\frac{1}{2} \sum_{i=1}^{8} t_{i},$$

$$\alpha_{2} = t_{2} - t_{1},$$

$$\alpha_{3} = t_{2} + t_{1},$$

$$\alpha_{i} = t_{i-1} - t_{i-2} \quad \text{for } 4 \le i \le 8$$

and

$$\tilde{\alpha} = t_7 - t_8$$
.

Since $t_j = \sum_{i=1}^8 a_{ij} \alpha_i$ for $a_{ij} \in \mathbb{Z} \left[\frac{1}{2} \right]$, the elements $t_1, t_2, ..., t_8$ also form a basis of $H^2(BT; \mathbb{Z}_5)$.

Then the actions of $W(E_8)$ and W(U) over $H^2(BT; \mathbb{Z}_5)$ are given by the following table (4.2)

	φ_1	$arphi_2$	φ_3	$arphi_4$	$arphi_5$	$arphi_6$	φ_7	$arphi_8$	$ ilde{arphi}$
<i>t</i> ₁	$t_1 + c_1$	<i>t</i> ₂	$-t_2$						
t ₂	$t_2 + c_1$	<i>t</i> ₁	$-t_1$	t ₃					
<i>t</i> ₃	$t_3 + c_1$			<i>t</i> ₂	t ₄				
t ₄	t_4+c_1				<i>t</i> ₃	t ₅			
<i>t</i> ₅	t_5+c_1					t ₄	t 6		
<i>t</i> ₆	t_6+c_1						t ₅	t ₇	
<i>t</i> ₇	t_7+c_1							<i>t</i> ₆	<i>t</i> ₈
<i>t</i> ₈	$t_8 + c_1$								t ₇

(4.2)

where the blanks indicate the trivial action and

$$c_1 = t_1 + t_2 + \dots + t_8$$
.

Denote by

$$c_i = \sigma_i(t_1, t_2, ..., t_8)$$

the *i*-th elementary symmetric function on the variables t_i 's $(c_0 = 1)$.

Also denote by

$$p_i = \sigma_i(t_1^2, t_2^2, ..., t_8^2)$$

the *i*-th elementary symmetric functions on the variables t_i^2 's $(p_0=1)$. $W(E_8)$ and W(U) act on $H^*(BT; Z_5)$ as a ring homomorphism and the invariant subalgebras are denoted by $H^*(BT; Z_5)^{W(\cdot)}$.

Then we have the following:

Lemma 4.2.
$$H^*(BT^8; \mathbb{Z}_5)^{W(U)} = \mathbb{Z}_5[p_1, p_2, ..., p_7, c_8].$$

The proof is easy.

Put $\varphi = \varphi_1$. Note that since $U \subset E_8$, $W(U) \subset W(E_8)$ and so if $f \in H^*(BT; \mathbf{Z}_5)^{W(E_8)}$, $f \in H^*(BT; \mathbf{Z}_5)^{W(U)}$. But φ does not act on $H^*(BT^8; \mathbf{Z}_5)^{W(U)}$. Also note that

Lemma 4.3. $i^*: H^*(BU; \mathbb{Z}_5) \rightarrow H^*(BT; \mathbb{Z}_5)$ is injective and $\operatorname{Im} i^* = H^*(BT; \mathbb{Z}_5)^{W(U)}$, where $i: T \hookrightarrow U$ (cf. § 3).

The graded subalgebra $R_0^* = \mathbf{Z}_5[c_1, c_2, c_3, ..., c_8]$ is invariant under the action of φ . $\varphi(c_i)$ is given by

(4.3)
$$\sum_{i=1}^{8} \varphi(c_i) = \prod_{i=1}^{8} (1 + t_i + c_1) = \sum_{i=1}^{8} (1 + c_1)^{8-i} c_i.$$

Let $I_1 = (c_1^2)$, $I_2 = (c_1^2, c_2)$ and $I_3 = (c_1^2, c_2, c_3)$. Since $\varphi(c_1) = -c_1$ and $\varphi(c_2) = c_2$. The ideals I_1 and I_2 are φ invariant. Since $\varphi(c_3) \equiv c_3 \mod I_2$, I_3 is also φ invariant. $\varphi(c_4) \equiv c_4$, $\varphi(c_5) \equiv c_5 - c_4 c_1$, $\varphi(c_6) \equiv c_6 - 2c_5 c_1$, $\varphi(c_7) \equiv c_7 + 2c_6 c_1$ and $\varphi(c_8) \equiv c_8 + c_7 c_1 \mod I_1$.

The identity

(4.4)
$$\prod_{i=1}^{8} (1-t_i) \cdot \prod_{i=1}^{8} (1+t_i) = \prod_{i=1}^{8} (1-t_i^2)$$

gives the relations between c_i 's and p_i 's

(4.5)
$$\sum_{i=1}^{8} (-1)^{i} c_{i} \cdot \sum_{i=1}^{8} c_{i} = \sum_{i=1}^{8} (-1)^{i} p_{i}.$$

More explicitly

$$(4.5') p_1 = c_1^2 - 2c_2 ,$$

$$p_2 = c_2^2 - 2c_3c_1 + 2c_4 ,$$

$$p_3 = c_3^2 - 2c_4c_2 + 2c_5c_1 - 2c_6 ,$$

$$p_4 = c_4^2 - 2c_5c_3 + 2c_6c_2 - 2c_7c_1 + 2c_8 ,$$

$$p_5 = c_5^2 - 2c_6c_4 + 2c_7c_3 - 2c_8c_2 ,$$

$$p_6 = c_6^2 - 2c_7c_5 + 2c_8c_4 ,$$

$$p_7 = c_7^2 - 2c_8c_6 .$$

Let $R^* = H^*(BT; \mathbb{Z}_5)^{W(E_8)}$ and $i: R^* \to R_0^*$ be the inclusion. Note that

Lemma 4.4. If $f \in R^*$, then $f \in H^*(BT; \mathbb{Z}_5)^{W(E_8)}$ if and only if $\varphi(f) = f$.

Now we prove the following:

Lemma 4.5. Let $f_{28} \in \mathbb{R}^{28}$ be a homogeneous element of degree 28. If $f_{28} = p_7 + \text{(other terms)}$, then $\varphi(f_{28}) \neq f_{28}$.

Proof. Since $\varphi(c_4) \equiv c_4 \mod I_3 = (c_1^2, c_2, c_3)$,

and

$$\varphi(c_6-c_5c_1) \equiv c_6-2c_5c_1+c_5c_1 \equiv c_6-c_5c_1 \mod I_3$$
,

the ideal

$$I = (c_1^2, c_2, c_3, c_4, c_6 - c_5 c_1)$$

is invariant under the action of φ . Put $R' = R_0^*/I$ and $\pi' : R_0^* \to R'$ (the projection). Then

$$R' = \mathbf{Z}_5[c_5, c_7, c_8] \otimes \Lambda(c_1)$$

and

(4.6)
$$\pi'(p_1) = \pi'(p_2) = 0,$$

$$\pi'(p_3) = 2(c_5c_1 - c_6) = 0,$$

$$\pi'(p_7) = c_7^2 - 2c_8c_5c_1.$$

Since I is φ invariant φ induces a ring homomorphism

$$\varphi' \colon R' \longrightarrow R'$$
.

Note that

(4.7)
$$\varphi'(c_1) = -c_1,$$

$$\varphi'(c_5) = c_5,$$

$$\varphi'(c_7) = c_7,$$

$$\varphi'(c_8) = c_8 - c_7 c_1.$$

278 Akira Kono

Then f_{28} is of the form

$$\alpha p_7 + f'_{28}$$
 for $\alpha \in \mathbb{Z}_5$ and $f'_{28} \in \operatorname{Ker} \pi'$.

Put

$$\bar{f}_{28} = \pi'(f_{28}) = \pi'(\alpha p_7) = \alpha c_7^2 - 2\alpha c_8 c_5 c_1$$
.

On the other hand

$$\varphi'(\vec{f}_{28}) = \alpha c_7^2 + 2\alpha c_8 c_5 c_1$$
.

If
$$\varphi(f_{28}) = f_{28}$$
, then $\varphi'(\bar{f}_{28}) = \bar{f}_{28}$ and so $\alpha = 0$. Q. E. D.

Also we have

Lemma 4.6. Let $f_{40} \in \mathbb{R}^{40}$. If $f_{40} = p_5^2 + (\text{other terms})$, then $\varphi(f_{40}) \neq f_{40}$.

Proof. Since

$$\varphi(c_4^2) \equiv c_4^2 \mod I_3,$$

$$\varphi(c_6 - c_5 c_1) \equiv c_6 - c_5 c_1 \mod I_3$$
,

$$\varphi(c_7+c_6c_1) \equiv c_7+2c_6c_1-c_6c_1=c_7+c_6c_1 \mod I_3$$

and

$$\varphi(c_8 - 2c_7c_1) \equiv c_8 + c_7c_1 + 2c_7c_1 = c_8 - 2c_7c_1 \mod I_3$$

the ideal

$$J = (c_1^2, c_2, c_3, c_4^2, c_6 - c_5 c_1, c_7 + c_6 c_1, c_8 - 2c_7 c_1)$$

$$= (c_1^2, c_2, c_3, c_4^2, c_6 - c_5 c_1, c_7, c_8)$$

is invariant under the action of φ . Put $R'' = R_0^*/J$ and $\pi'': R_0^* \to R''$ (the projection). Then

$$R'' = \mathbb{Z}_5 \lceil c_5 \rceil \otimes \Lambda(c_1, c_4)$$

and

(4.8)
$$\pi''(p_1) = 0,$$

$$\pi''(p_2) = 2c_4,$$

$$\pi''(p_3) = 2(c_5c_1 - c_6) = 0,$$

$$\pi''(p_4) = 0,$$

$$\pi''(p_5) = c_5^2 - 2c_5c_4c_1,$$

$$\pi''(p_6) = 0,$$

$$\pi''(p_7) = 0.$$

Since J is φ invariant φ induces a ring homomorphism

$$\varphi'' \colon R'' \longrightarrow R''$$
.

Note that

(4.9)
$$\varphi''(c_1) = -c_1,$$

$$\varphi''(c_4) = c_4,$$

$$\varphi''(c_5) = c_5 - c_4 c_1.$$

Then f_{40} is of the form

$$\beta p_5^2 + f_{40}'$$
 for $\beta \in \mathbb{Z}_5$ and $f_{40}' \in \operatorname{Ker} \pi''$

Put
$$\bar{f}_{40} = \pi''(f_{40}) = \beta c_5^4 - 4\beta c_5^3 c_4 c_1$$
.

On the other hand

$$\varphi''(\vec{f}_{40}) = \beta c_5^4 - 4\beta c_5^3 c_4 c_1 + 4\beta c_5 c_4 c_1 = \beta c_5^4$$
.

If
$$\varphi(f_{40}) = f_{40}$$
, then $\varphi''(f_{40}) = f_{40}$ and so $\beta = 0$. Q. E. D.

Remark 4.7. The homogeneous space E_8/U is an irreducible Riemannian symmetric space denoted by EVIII. The subgroup U is Semi-Spin(16) (cf. [16]).

§5.
$$H^*(E_8; Z_5)$$

The purpose of this section is to determine the Hopf algebra structure and

the cohomology operations of $H^*(E_8; \mathbb{Z}_5)$.

First recall from [7] (see also [35] and §3).

Theorem 5.1. There exist x_3 , x_{11} , x_{12} , x_{15} , x_{23} , x_{27} , x_{35} , x_{39} , $x_{47} \in H^*(E_8; \mathbf{Z}_5)$ such that

(1) As an algebra

$$H^*(E_8; Z_5) \cong Z_5[x_{12}]/(x_{12}^5) \otimes \Lambda(x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47})$$

where $\deg x_i = i$,

(2)
$$T_{E_8}^* = Z_5[\widetilde{x_{12}}]/(x_{12}^5) \oplus \langle x_3, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47} \rangle$$

and $\operatorname{Im} \pi^* = \mathbb{Z}_5[x_{12}]/(x_{12}^5)$, where $\pi: \mathbb{E}_8 \to \mathbb{E}_8/\mathbb{T}^8$,

(3)
$$x_{11} = \mathcal{P}^1 x_3$$
 and $x_{12} = \beta x_{11}$.

The following is easily proved

Lemma 5.2. As an algebra

$$H^*(BE_8; Z_5) = Z_5[y_4, y_{12}, y_{13}]$$
 for $* \le 14$,

where $\sigma(y_{j+1}) = x_j$ for j = 3, 11, 12 under the cohomology suspension σ . Moreover $y_{12} = \mathcal{P}^1 y_4$ and $y_{13} = \beta y_{12}$.

The following is also easily proved:

Lemma 5.3. $\bar{\phi}(x_{15}) \neq 0$ if and only if $y_4 \cdot y_{13} = 0$.

Let $\mu: \mathbf{E}_8 \to \mathbf{U}(240)$ be the representation defined in [26]. We use the notation of [26]. Since the coefficient of $(c_2')^2$ in $\rho^*\mu^*(c_4)$ is $9 \cdot 2^3 - 45 - 3^3 - ((-1)^2 - 2^2 + 9) \cdot (\frac{4}{2}) = -36 \not\equiv 0 \bmod 5$, $\mu^*(c_4) \not\equiv 0 \bmod 5$. Since $H^8(B\mathbf{E}_8; \mathbf{Z}_5) \cong \mathbf{Z}_5$ generated by y_4^2 and so

(5.1) $\mu^*(c_4) = \alpha y_4^2$ for $\alpha \neq 0$ (c_4 is the mod 5 reduction of c_4).

On the other hand $\beta \mathcal{P}^1 c_4 = 0$ and so

$$\beta \mathcal{P}^1 y_4^2 = 0.$$

But $\beta \mathcal{P}^1 y_4^2 = \beta y_4 y_{12} = y_4 y_{13}$.

So we have

$$(5.3) y_4 y_{13} = 0.$$

So we have

Lemma 5.4. $\bar{\phi}(x_{15}) \neq 0$.

Now we use the following (cf. [13]):

Theorem 5.5. For $x \in \tilde{H}^*(G; \mathbb{Z}_p)$ (G; a compact connected Lie group), the following three conditions are equivalent:

- $(1) \quad x \in T_G^*,$
- (2) $\phi(x) x \otimes 1 \in \operatorname{Im} \pi^* \otimes H^*(G; \mathbf{Z}_n)$,
- (3) $\phi(x) x \otimes 1 \in \operatorname{Im} \pi^* \otimes T_G^*$

So we may assume that

$$(5.4) \bar{\phi}(x_{15}) = x_{12} \otimes x_3.$$

Lemma 5.6. $\mathcal{P}^1 x_i = 0$ for i = 11, 12.

Proof.
$$\mathscr{P}^1 x_i \in T_{E_8}^{i+8} = 0$$
 for $i = 11, 12$. Q. E. D.

So $\overline{\phi}(\mathscr{P}^1x_{15}) = \mathscr{P}^1(x_{12} \otimes x_3) = x_{12} \otimes x_{11}$ and so $\mathscr{P}^1x_{15} \neq 0$. But $\mathscr{P}^1x_{15} \in T_{E_8}^{23}$ and so

(5.5)
$$\mathscr{P}^1 x_{15} = x_{23} \text{ and } \overline{\phi}(x_{23}) = x_{12} \otimes x_{11}$$
.

Let U be the closed subgroup of E_8 defined in §4. Since $H^*(U; Z)$ is 5-torsion free (cf. Remark 4.1) and rank U=rank E_8 , we can apply Theorem 3.10 and Theorem 3.14. Let τ be the transgression with respect to the fibering

$$(5.6) E_8 \longrightarrow E_8/U \longrightarrow BU.$$

Note that

(5.7)
$$\{\tau(x_3), \, \tau(x_{11}), \, \tau(x_{15}), \, \tau(x_{23}), \, \tau(x_{27}), \, \tau(x_{35}), \, \tau(x_{39}), \, \tau(x_{47})\}$$

is a regular sequence in

(5.8)
$$H^*(BU; \mathbf{Z}_5) \cong \mathbf{Z}_5[p_1, p_2, ..., p_7, c_8],$$

where deg $p_i = 4i$ and deg $c_8 = 16$ (p_i , c_8 are in § 4).

Then we have

Lemma 5.7. (1)
$$\tau(x_{27}) \equiv p_7 + \text{(other terms)}$$

282 Akira Kono

and (2) $\tau(x_{39}) \equiv p_5^2 + \text{(other terms)} \ up \ to \ non-zero \ constant.$

Proof of (1). If $\tau(x_{27})$ does not contain the term p_7 , $\tau(x_{27}) \in J = (p_1, p_2, p_3, p_4, p_5, p_6, c_8)$. On the other hand $\tau(x_i) \in J$, for i = 3, 11, 15, 23, 35, 39, 47, by the dimensional reason. This contradicts the fact that (5.7) is a regular sequence. Similarly we can prove (2).

Now consider the following commutative diagram:

$$\begin{array}{ccccc}
E_8 & \longrightarrow & EE_8 & \longrightarrow & BE_8 \\
\parallel & & \uparrow & & \uparrow^{j} \\
E_8 & \longrightarrow & E_8/U & \longrightarrow & BU \\
\parallel & & \uparrow & & \uparrow^{i} \\
E_9 & \longrightarrow & E_9/T^8 & \longrightarrow & BT^8.
\end{array}$$

Note that

(5.10) Im
$$\{i^*j^*: H^*(BE_8; \mathbf{Z}_5) \longrightarrow H^*(BT^8; \mathbf{Z}_5)\} \subset H^*(BT^8; \mathbf{Z}_5)^{W(E_8)}$$
 (cf. [33]).

If x_{27} is universally transgressive, by the naturality of the transgressions there exists an element $x \in H^*(BT; \mathbb{Z}_5)^{W(U)}$ such that

(5.11)
$$x = p_7 + (\text{other terms}) \text{ and } x \in H^*(BT; \mathbb{Z}_5)^{W(E_8)}$$
.

But (5.11) contradicts Lemma 4.5 and so we have

Lemma 5.8. x_{27} is not universally transgressive.

For a compact connected Lie group G, Milnor-Rothenberg-Steenrod constructed a spectral sequence of algebra $\{E_r^*, d_r\}_{r\geq 1}$ such that

- (1) E_1^* is naturally isomorphic to the cobar construction of $H^*(G; \mathbb{Z}_p)$,
- (2) $E_2^* \cong \operatorname{Cotor}^{H^*(G; \mathbb{Z}_p)}(\mathbb{Z}_p, \mathbb{Z}_p),$
- (3) $E_{\infty}^* = Gr(H^*(BG; \mathbf{Z}_p)).$

(For details see [29]. See also [11] and [24].)

If
$$\overline{\phi}(x_{27})=0$$
 then

(5.12) $\operatorname{Cotor}^{H^*(E_8; \mathbf{Z}_5)}(\mathbf{Z}_5, \mathbf{Z}_5) \cong \operatorname{Cotor}^{A'}(\mathbf{Z}_5, \mathbf{Z}_5) \otimes \mathbf{Z}_5[y_{28}]$ for $\deg \leq 35$.

But since $u_{29} \in E_2^2$ (cf. Lemma 2.7) and $y_{28} \in E_2^1$, y_{28} is a permanent cycle. So

applying the cohomology suspension (cf. Remark 5.17) we have

(5.13) If
$$\overline{\phi}(x_{27}) = 0$$
, then x_{27} is universally transgressive.

So we have

(5.14)
$$\bar{\phi}(x_{27}) \neq 0$$
.

By Theorem 5.5, $\overline{\phi}(x_{27})$ is of the form

(5.15)
$$\alpha_1 x_{12}^2 \otimes x_3 + \alpha_2 x_{12} \otimes x_{15}$$
 for $\alpha_1, \alpha_2 \in Z_5$.

Using the coassociativity we have $\alpha_2 = 2\alpha_1$ and so we have

Lemma 5.9.
$$\overline{\phi}(x_{27}) = 2x_{12} \otimes x_{15} + x_{12}^2 \otimes x_3$$
.

Since $\mathscr{P}^1 x_{23} \in T_{E_8}^{31} = 0$, $\mathscr{P}^1 x_{23} = 0$. $\overline{\phi}(\mathscr{P}^1 x_{27}) = \mathscr{P}^1 (2x_{12} \otimes x_{15} + x_{12}^2 \otimes x_3) = 2x_{12} \otimes x_{23} + x_{12}^2 \otimes x_{11} \neq 0$. So we have

(5.16)
$$\mathscr{P}^1 x_{27} = x_{35}$$
 and $\overline{\phi}(x_{35}) = 2x_{12} \otimes x_{23} + x_{12}^2 \otimes x_{11}$.

Corollary 5.10. The subalgebra generated by $\{x_3, x_{11}, x_{12}, x_{15}, x_{23}, x_{27}, x_{35}\}$ is isomorphic to (A, ϕ) as a Hopf algebra.

Then by the argument similar to the above we have

Lemma 5.11. $\bar{\phi}(x_{39}) \neq 0$.

Moreover by Theorem 5.6, $\overline{\phi}(x_{39})$ is of the form

$$(5.17) \alpha_1 x_{12}^3 \otimes x_3 + \alpha_2 x_{12}^2 \otimes x_{15} + \alpha_3 x_{12} \otimes x_{27} \text{for} \alpha_1, \alpha_2, \alpha_3 \in \mathbb{Z}_5.$$

Using the coassociativity we have $\alpha_2 = 3\alpha_1$ and $\alpha_3 = 3\alpha_1$. So we have

Lemma 5.12.
$$\overline{\phi}(x_{39}) = x_{12}^3 \otimes x_3 + 3x_{12}^2 \otimes x_{15} + 3x_{12} \otimes x_{27}$$
.

Since
$$\mathscr{P}^1 x_{35} \in T_{E_8}^{43} = 0$$
, $\mathscr{P}^1 x_{35} = 0$. $\overline{\phi}(\mathscr{P}^1 x_{35}) = \mathscr{P}^1 (x_{12}^3 \otimes x_3 + 3x_{12}^2 \otimes x_{15} + 3x_{12} \otimes x_{27}) = x_{12}^3 \otimes x_{11} + 3x_{12}^2 \otimes x_{23} + 3x_{12} \otimes x_{35} \neq 0$. So we have

(5.18)
$$\mathscr{P}^1 x_{39} = x_{47}$$
 and $\overline{\phi}(x_{47}) = 3x_{12} \otimes x_{35} + 3x_{12}^2 \otimes x_{23} + x_{12}^3 \otimes x_{11}$.

Now we compute β -operation.

(5.19)
$$\overline{\phi}(\beta x_{15}) = 0$$
 and so $\beta x_{15} = 0$,
 $\overline{\phi}(\beta x_{23}) = x_{12} \otimes x_{12}$ and so $\beta x_{23} = \frac{1}{2} x_{12}^2 = 3x_{12}^2$,
 $\overline{\phi}(\beta x_{27}) = 0$ and so $\beta x_{27} = 0$,
 $\overline{\phi}(\beta x_{35}) = x_{12} \otimes_{12}^2 + x_{12}^2 \otimes_{12}$ and so $\beta x_{35} = \frac{1}{3} x_{12}^3 = 2x_{12}^3$,
 $\overline{\phi}(\beta x_{39}) = 0$ and so $\beta x_{39} = 0$,

and

$$\bar{\phi}(\beta x_{47}) = x_{12}^3 \otimes x_{12} - x_{12}^2 \otimes x_{12}^2 + x_{12} \otimes x_{12}^3$$
 and so $\beta x_{47} = \frac{1}{4} x_{12}^4 = -x_{12}^4$.

Let $P_{E_8}^i = \{x \in H^i(E_8; Z_5); \overline{\phi}(x) = 0\}$. Note that $P_{E_8}^i \subset T_{E_8}^i$ by [13]. Easily we have

Lemma 5.13. $P_{E_8}^i \neq 0$ if and only if i = 3, 11, 12.

So we have $\mathcal{P}^i x_{11} = \mathcal{P}^i x_{12} = 0$ for i > 0 and $\mathcal{P}^i x_3 = 0$ for i > 1.

Lemma 5.14. $\mathcal{P}^i x_j = 0$ for i > 1.

Proof. $\overline{\phi}(\mathscr{P}^ix_{15}) = \mathscr{P}^i(x_{12} \otimes x_3) = 0$ and so $\mathscr{P}^ix_{15} = 0$ for i > 1. $\overline{\phi}(\mathscr{P}^ix_{23}) = \mathscr{P}^i(x_{12} \otimes x_{11}) = 0$ and so $\mathscr{P}^ix_{23} = 0$ for i > 1. Similarly we have $\overline{\phi}(\mathscr{P}^ix_j) = 0$, i > 1 and so $\mathscr{P}^ix_j = 0$ for i > 1.

Q. E. D.

Thus the following Theorem 5.15 is proved:

Theorem 5.15. In Theorem 5.1.

$$\bar{\phi}(x_{15}) = x_{12} \otimes x_3, \quad \bar{\phi}(x_{23}) = x_{12} \otimes x_{11},
\bar{\phi}(x_{27}) = 2x_{12} \otimes x_{15} + x_{12}^2 \otimes x_3,
\bar{\phi}(x_{35}) = 2x_{12} \otimes x_{23} + x_{12}^2 \otimes x_{11},
\bar{\phi}(x_{39}) = 3x_{12} \otimes x_{27} + 3x_{12}^2 \otimes x_{15} + x_{12}^3 \otimes x_3,$$

$$\begin{split} \overline{\phi}(x_{47}) &= 3x_{12} \otimes x_{35} + 3x_{12}^2 \otimes x_{23} + x_{12}^3 \otimes x_{11}, \\ \overline{\phi}(x_3) &= \overline{\phi}(x_{11}) = \overline{\phi}(x_{12}) = 0, \\ \beta x_{11} &= x_{12}, \quad \beta x_{23} = \frac{1}{2} x_{12}^2, \quad \beta x_{35} = \frac{1}{3} x_{12}^3, \quad \beta x_{47} = \frac{1}{4} x_{12}^4, \\ \beta x_i &= 0 \quad \text{for} \quad i = 3, 12, 15, 27, 39, \\ \mathcal{P}^1 x_3 &= x_{11}, \quad \mathcal{P}^1 x_{15} = x_{23}, \quad \mathcal{P}^1 x_{27} = x_{35}, \quad \mathcal{P}^1 x_{39} = x_{47}, \end{split}$$

and

$$\mathcal{P}^j x_i = 0$$
 for any $j > 1$.

 $\mathcal{P}^1 x_i = 0$ for i = 11, 12, 23, 35, 47

Let $\varepsilon: E_8 \to K(\mathbf{Z}, 3)$ be the generator of $H^3(E_8; \mathbf{Z}) \cong \mathbf{Z}$. Consider the fibering

(5.20)
$$K(\mathbf{Z}, 2) \longrightarrow \tilde{\mathbf{E}}_8 \xrightarrow{q} \mathbf{E}_8$$
,

which is classified by ε . \tilde{E}_8 is called the 3-connective fibre space over E_8 .

Also consider the fibering

(5.21)
$$K(\mathbf{Z}, 3) \longrightarrow B\tilde{\mathbf{E}}_{8} \xrightarrow{q'} B\mathbf{E}_{8}$$

which is classified by $\varepsilon' : BE_8 \to K(Z, 4)$ corresponding to the generator of $H^4(BE_8; Z) \cong Z$. Note that $B\tilde{E}_8$ is the classifying space of $\tilde{E}_8 \simeq \Omega B\tilde{E}_8$.

Making use of Kudo's transgression theorem to the fibering (5.20) we have

$$(5.22) \quad H^*(\tilde{\boldsymbol{E}}_8; \boldsymbol{Z}_5) \cong \boldsymbol{Z}_5[y_{50}] \otimes \Lambda(\tilde{x}_{15}, \tilde{x}_{23}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{x}_{39}, \tilde{x}_{47}, y_{51}, y_{59}),$$

where deg $y_i = i$ and $\tilde{x}_i = q^*(x_i)$.

Also easily we have

(5.23)
$$H^*(BE_8; \tilde{\mathbf{Z}}_5) \cong \mathbf{Z}_5[y_{16}, y_{24}, y_{28}, y_{36}, y_{40}, y_{48}]$$
 for $* \leq 50$.

Consider the Serre spectral sequence for the fibering

$$B\tilde{E}_8 \longrightarrow BE_8 \xrightarrow{\varepsilon'} K(Z, 4)$$
.

286 Akira Kono

(5.24)
$$E_{2}^{*} \cong H^{*}(K(\mathbf{Z}, 4); \mathbf{Z}_{5}) \otimes H^{*}(B\tilde{\mathbf{E}}_{8}; \mathbf{Z}_{5})$$
$$\cong \mathbf{Z}_{5} \lceil u_{4}, u_{12} \rceil \otimes \Lambda(u_{13}) \otimes H^{*}(B\tilde{\mathbf{E}}_{8}; \mathbf{Z}_{5}) \qquad * \leq 50,$$

where $\deg u_i = i$, $u_{12} = \mathcal{P}^1 u_4$ and $u_{13} = \beta u_4$.

Clearly y_{16} is transgressive with $\tau(y_{16}) = u_4 \cdot u_{13}$. Applying \mathscr{P}^1 we have $y_{24} = \mathscr{P}^1 y_{16}$ and $\tau(y_{24}) = u_{12} \cdot u_{13}$ and so $\tilde{x}_{23} = \mathscr{P}^1 \tilde{x}_{15}$.

Moreover we have

(5.25) y_{28} is a permanent cycle or $d_{13}(1 \otimes y_{28}) = u_{13} \otimes y_{16}$.

By (5.25) we can also get

(5.26) y_{28} is a permanent cycle or $\overline{\phi}(x_{27}) \neq 0$.

Similarly we have

(5.27) y_{40} is a permanent cycle or $d_{13}(1 \otimes y_{40}) = u_{13} \otimes y_{28}$.

Moreover $u_4 \otimes y_{24}$ is a permanent cycle and corresponds to the Massey product $\langle y_4, y_{13}, y_{12} \rangle$.

Remark 5.16. Using the Milnor-Rothenberg-Steenrod spectral sequence, the cohomology suspension

$$\sigma: H^{*+1}(BG; \mathbf{Z}_n) \longrightarrow \widetilde{H}^*(G; \mathbf{Z}_n)$$

is represented by the following composition

$$H^{*+1}(B\boldsymbol{G};\boldsymbol{Z}_p) \longrightarrow E_{\infty}^1 \hookrightarrow E_2^1 \hookrightarrow E_1^1 \cong \tilde{H}^{*+1}(\Sigma\boldsymbol{G};\boldsymbol{Z}_p) \cong \tilde{H}^*(\boldsymbol{G};\boldsymbol{Z}_p) \ .$$

On the other hand

$$\operatorname{Im} \left\{ E_2^1 \longrightarrow E_1^1 \cong \widetilde{H}^*(G; \mathbb{Z}_p) \right\} = P_G^* \quad \text{(cf. Browder [12])}.$$

§6.
$$H^*(AdE_6; Z_3)$$

Let E_6 be the compact 1-connected simple Lie group of type E_6 . As is well known the center of E_6 is a cyclic group of order 3 and denoted by Z_3 . The quotient of E_6 by the center, E_6/Z_3 is denoted by AdE_6 and the covering projection $E_6 \rightarrow AdE_6$ is denoted by ρ .

Let T^6 be a maximal torus of E_6 . The completed Dynkin diagram is

where α_i (1 \le i \le 6) are the simple roots and

$$\tilde{\alpha} = \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$$

is the highest root.

Let \tilde{V} be the identity component of the centralizer of the element $x \in T^6$ such that $\alpha_2(x) = \frac{1}{2}$ and $\alpha_i(x) = 0$ for $i \neq 2$. According to Borel-Siebenthal [10] the local type of \tilde{V} is $A_5 \times A_1$. Moreover \tilde{V} is $SU(6) \cdot SU(2)$ for $SU(6) \cap SU(2) = Z_2$ (cf. [17]). Note that since $\tilde{V} \supset T^6$ and so $\tilde{V} \supset Z_3$.

Remark 6.1. The homogeneous space E_6/\tilde{V} is an irreducible Riemannian symmetric space and denoted by EII.

Since $\pi': SU(6) \times SU(2) \rightarrow \tilde{V}$ is a double covering,

(6.1) $\pi'^*: H^*(\tilde{V}; \mathbb{Z}_p) \longrightarrow H^*(SU(6) \times SU(2); \mathbb{Z}_p)$ is an isomorphism for any odd prime p. In particular $H^*(\tilde{V}; \mathbb{Z})$ is p-torsion free for any odd prime p.

Recall from [3]

Theorem 6.2. (1) $H^*(E_6; \mathbf{Z}_3) \cong \mathbf{Z}_3[\tilde{x}_8]/(\tilde{x}_8^3) \otimes \Lambda(\tilde{x}_3, \tilde{x}_7, \tilde{x}_9, \tilde{x}_{11}, \tilde{x}_{15}, \tilde{x}_{17})$, where $\tilde{x}_i \in T_{E_6}^i$, $\tilde{x}_7 = \mathscr{P}^1 \tilde{x}_3$, $\tilde{x}_8 = \beta \tilde{x}_7$ and $\tilde{x}_{15} = \mathscr{P}^1 \tilde{x}_{11}$,

- (2) $H^*(AdE_6; \mathbf{Z}_3) \cong \mathbf{Z}_3[x_2, x_8]/(x_2^9, x_8^3) \otimes \Lambda(x_1, x_3, x_7, x_9, x_{11}, x_{15}),$ where $x_i \in \mathbf{T}^i_{AdE_6}, x_2 = \beta x_1, x_7 = \mathcal{P}^1 x_3, x_8 = \beta x_7$ and $x_{15} = \mathcal{P}^1 x_{11},$
- (3) Ker ρ^* is the ideal generated by x_1 and x_2 .

Since by (2.2) of [13]

$$\rho^*(T^*_{AdE_6}) \subset T^*_{E_6},$$

and

288

Akira Kono

(6.3)
$$T_{E_6}^* = \widehat{Z_3[\tilde{x}_8]/(\tilde{x}_8^3)} \oplus \langle \tilde{x}_3, \tilde{x}_7, \tilde{x}_9, \tilde{x}_{11}, \tilde{x}_{15}, \tilde{x}_{17} \rangle \text{ and}$$

$$T_{AdE_6}^* = \widehat{Z_3[x_2, x_8]/(x_2^9, x_8^3)} \oplus \langle x_1, x_3, x_7, x_9, x_{11}, x_{15} \rangle,$$

we have

Lemma 6.3.
$$\rho^*(x_i) = \tilde{x}_i$$
 for $i = 3, 7, 8, 9, 11, 15.$

Put $V = \tilde{V}/Z_3$ and consider the following commutative diagram:

(6.4)
$$\tilde{V} \xrightarrow{J} E_{6}$$

$$\downarrow^{\rho} \qquad \downarrow^{\rho}$$

$$V \xrightarrow{J} AdE_{6},$$

where $\rho: \tilde{V} \to V$ is the restriction of $\rho: E_6 \to AdE_6$.

Note that the double covering

(6.5)
$$\pi'': \mathbf{V} \longrightarrow \mathbf{PU}(6) \times \mathbf{SO}(3)$$

induces an isomorphism

(6.6)
$$(\pi'')^* \colon H^*(\boldsymbol{P}\boldsymbol{U}(6) \times \boldsymbol{SO}(3); \boldsymbol{Z}_2) \longrightarrow H^*(\boldsymbol{V}; \boldsymbol{Z}_2).$$

Also the following Lemma is well known:

Lemma 6.4. (1)
$$H^*(\tilde{V}; Z_3) \cong \Lambda(\tilde{y}_3, \tilde{y}_3', \tilde{y}_5, \tilde{y}_7, \tilde{y}_9, \tilde{y}_{11})$$
, where $\tilde{y}_i \in T^i_{\tilde{V}}$, $\tilde{y}_3' \in T^3_{\tilde{V}}$ and $U^*_{\tilde{V}} = T^*_{\tilde{V}} = <\tilde{y}_3, \tilde{y}_3', \tilde{y}_5, \tilde{y}_7, \tilde{y}_9, \tilde{y}_{11}>$, (2) $H^*(V; Z_3) \cong Z_3[y_2]/(y_2^3) \otimes \Lambda(y_1, y_3, y_3', y_7, y_9, y_{11})$, where $y_i \in T^i_V$, $y_3' \in T^3_V$ and $T^*_V = Z_3[y_2]/(y_2^3) \oplus < y_1, y_3, y_3', y_7, y_9, y_{11}>$ (3) $\tilde{y}_7 = \mathcal{P}^1 \tilde{y}_3, y_2 = \beta y_1$ and $y_7 = \mathcal{P}^1 y_3$.

By the argument similar to the above we have

(6.6)
$$\rho^*(y_i) = \tilde{y}_i \quad \text{for } i = 3, 7, 9, 11 \quad \text{and} \quad \rho^*(y_3') = \tilde{y}_3'.$$

Now we apply Theorem 3.10 and Theorem 3.14 to the fibering

(6.7)
$$E_6 \longrightarrow E_6/\tilde{V} \longrightarrow B\tilde{V}.$$

Note that

(6.8)
$$H^*(B\tilde{V}; \mathbf{Z}_3) = \mathbf{Z}_3[u_4, u_6, u_8, u_{10}, u_{12}, u_4'],$$

where $\sigma(u_{i+1}) = \tilde{y}_i$ and $\sigma(u_4) = \tilde{y}_3'$ under the cohomology suspension σ .

By Theorem 3.14

(6.9)
$$\{\tau(\tilde{x}_3), \tau(\tilde{x}_7), \tau(\tilde{x}_9), \tau(\tilde{x}_{11}), \tau(\tilde{x}_{15}), \tau(\tilde{x}_{17})\}\$$
 is a regular sequence.

 $\tau(\tilde{x}_3) = \alpha u_4 + \beta u_4'$ for $\alpha, \beta \in \mathbb{Z}_3$. If $\alpha = 0$, then $\tau(\tilde{x}_3) = \beta u_4'$. Applying \mathscr{P}^1 we have $\tau(x_7) = \mathscr{P}^1 \beta u_4' = \beta \mathscr{P}^1 u_4' \in (u_4')$ the ideal generated by u_4' . But this contradicts (6.9). So $\alpha \neq 0$.

Next we show

Lemma 6.5. $\tau(\tilde{x}_9) \equiv u_{10}$ and $\tau(\tilde{x}_{11}) \equiv u_{12} \mod decomposables$.

Proof. If $\tau(\tilde{x}_9)$ is decomposable, $\tau(\tilde{x}_9) \in (u_4', u_4, u_6, u_8)$. On the other hand $\tau(\tilde{x}_i) \in (u_4', u_4, u_6, u_8, u_{12})$ for i = 3, 7, 11, 15, 17. This contradicts (6.9).

$$\tau(\tilde{x}_{11}) \equiv u_{12} \mod decomposables$$

is proved similarly.

Q. E. D.

By the naturalities of the transgressions we have

Corollary 6.6.
$$j^*(\tilde{x}_3) = \tilde{y}_3 + \alpha' \tilde{y}_3'$$
 for $\alpha' \in \mathbb{Z}_3$
and $j^*(\tilde{x}_i) = \tilde{y}_i$ for $i = 7, 9, 11$.

Moreover we have

Corollary 6.7.
$$j^*(x_3) = y_3 + \alpha' y_3'$$
 for $\alpha' \in \mathbb{Z}_3$
and $j^*(x_i) = y_i$ for $i = 7, 9, 11$.

On the other hand, since

(6.10)
$$H^*(E_6/\tilde{V}; Z_3) = H^*(AdE_6/V; Z_3) = 0 \text{ for } * \leq 2,$$

we have

(6.11)
$$j^*(x_1) = y_1$$
 and $j^*(x_2) = y_2$.

Let G be a compact connected Lie group. Denote by P_G^i a submodule of $H^i(G; \mathbb{Z}_p)$ which consists of primitive elements. That is

$$P_G^i = \{x \in H^i(G; Z_n); \bar{\phi}(x) = 0\}.$$

Note that $P_G^i \subset T_G^i$ for any i (cf. [5]).

Now recall from [4]:

Lemma 6.8.
$$P_{PU(6)}^{i} = 0$$
 for $i = 3, 9, 11$.

The proof is easy.

Since $j^*(x_i) \equiv y_i \mod (y_3)$ for j=3, 9, 11, we have

Lemma 6.9. $\bar{\phi}(x_i) \neq 0$ for i = 3, 9, 11.

Now we can determine $\overline{\phi}(x_i)$ for i=3, 7, 8, 9, 11.

By Theorem 5.5 we may assume that

$$(6.12) \overline{\phi}(x_3) = x_2 \otimes x_1.$$

Applying \mathcal{P}^1 we have

(6.13)
$$\bar{\phi}(x_7) = \mathcal{P}^1(x_2 \otimes x_1) = x_2^3 \otimes x_1,$$

and

(6.14)
$$\bar{\phi}(x_8) = \beta \bar{\phi}(x_7) = \beta(x_2^3 \otimes x_1) = x_2^3 \otimes x_2$$
.

Also by Theorem 5.5, $\overline{\phi}(x_9)$ is of the form

(6.15)
$$\alpha_1 x_2 \otimes x_7 + \alpha_2 x_2^3 \otimes x_3 + \alpha_3 x_2^4 \otimes x_1 + \alpha_4 x_8 \otimes x_1.$$

Since $\overline{\phi}(x_1) = \overline{\phi}(x_2) = 0$, we have

$$(6.16) \qquad (\overline{\phi} \otimes 1)\overline{\phi}(x_9) = (\alpha_3 + \alpha_4)x_2^3 \otimes x_2 \otimes x_1 + \alpha_3x_2 \otimes x_2^3 \otimes x_1$$

Also we have

$$(6.17) (1 \otimes \overline{\phi}) \overline{\phi}(x_9) = \alpha_1 x_2 \otimes x_2^3 \otimes x_1 + \alpha_2 x_2^3 \otimes x_2 \otimes x_1.$$

Since $(\overline{\phi} \otimes 1)\overline{\phi}(x_9) = (1 \otimes \overline{\phi})\overline{\phi}(x_9)$, we have

(6.18)
$$\alpha_3 = \alpha_1 \quad \text{and} \quad \alpha_4 = \alpha_2 - \alpha_1.$$

Recall that

(6.19)
$$\beta x_3 = -x_2^2 \text{ since } \phi(\beta x_3) = x_2 \otimes x_2 \text{ and } \beta x_3 \in T_{AdE_6}^4.$$

Applying β to $\overline{\phi}(x_9)$ we have

(6.20)
$$\overline{\phi}(\beta x_9) = \alpha_1 x_2 \otimes x_8 - \alpha_2 x_2^3 \otimes x_2^2 + \alpha_1 x_2^4 \otimes x_2 + \alpha_1 x_8 \otimes x_2 .$$

On the other hand, since

$$\overline{\phi}(x_2^5) = -x_2^4 \otimes x_2 + x_2^3 \otimes x_2^2 + x_2^2 \otimes x_2^3 - x_2 \otimes x_2^4,$$

$$\bar{\phi}(x_2x_8) = x_2 \otimes x_8 + x_2^4 \otimes x_2 + x_8 \otimes x_2 + x_2^3 \otimes x_2$$

and

$$\beta x_9 \in T_{AdE_6}^{10},$$

we have

$$(6.21) \beta x_9 = x_2 x_8$$

and

$$\overline{\phi}(x_9) = x_2 \otimes x_7 - x_2^3 \otimes x_3 + x_2^4 \otimes x_1 + x_8 \otimes x_1$$
.

Next similarly $\overline{\phi}(x_{11})$ is of the form

(6.22)
$$\beta_1 x_2 \otimes x_9 + \beta_2 x_2^2 \otimes x_7 + \beta_3 x_2^4 \otimes x_3 + \beta_4 x_8 \otimes x_3 + \beta_5 x_2^5 \otimes x_1 + \beta_6 x_2 x_8 \otimes x_1$$
 for $\beta_i \in \mathbb{Z}_3$.

Using the relation $(1 \otimes \overline{\phi})\overline{\phi}(x_{11}) = (\overline{\phi} \otimes 1)\overline{\phi}(x_{11})$ we have

(6.23)
$$\beta_2 = \beta_3 = \beta_5 = -\beta_1$$
 and $\beta_4 = \beta_6 = \beta_1$.

Applying β -operation we have

$$\beta x_{11} = -x_8 x_2^2 - x_2^6$$

and

$$\overline{\phi}(x_{11}) = x_2 \otimes x_9 - x_2^2 \otimes x_7 + x_8 \otimes x_3 - x_2^4 \otimes x_3 + x_8 x_2 \otimes x_1 - x_2^5 \otimes x_1$$
.

Now we can compute $\mathcal{P}^1 x_i$ for i = 7, 8, 9.

$$(6.25) \qquad \mathscr{P}^1 x_7 = \mathscr{P}^1 \mathscr{P}^1 x_3 = -\mathscr{P}^2 x_3 = 0 \text{ by the Adem relation,}$$

$$\overline{\phi}(\mathscr{P}^1 x_8) = \mathscr{P}^1 (x_2^3 \otimes x_2) = x_2^3 \otimes x_2^3 \text{ and so } \mathscr{P}^1 x_8 = -x_2^6,$$

$$\mathscr{P}^1 x_9 \in T_{AdE_4}^{13} = 0 \text{ and so } \mathscr{P}^1 x_9 = 0.$$

Applying \mathcal{P}^1 we have

(6.26)
$$\overline{\phi}(x_{15}) = \overline{\phi}(\mathscr{P}^1 x_{11}) = \mathscr{P}^1 \overline{\phi}(x_{11}) = x_2^3 \otimes x_9 + x_8 \otimes x_7 + x_2^6 \otimes x_3 + x_8 x_2^3 \otimes x_1$$

Applying β -operation we have

(6.27)
$$\overline{\phi}(\beta x_{15}) = \beta \overline{\phi}(x_{15}) = x_2^3 \otimes x_8 x_2 + x_8 \otimes x_8 - x_2^6 \otimes x_2^2 + x_8 x_2^3 \otimes x_2$$

and so

$$\beta x_{15} = -x_8^2$$
 since $\beta x_{15} \in T_{AdE_6}^{16}$.

Since
$$\mathscr{P}^1 x_{15} \in T^{19}_{AdE_6} = 0$$
, $\mathscr{P}^1 x_{15} = 0$.

Note that

(6.28)
$$P_{AdE_6}^i = 0$$
 for $i \neq 1, 2, 6$.

Since $\overline{\phi}(\mathcal{P}^j x_i) = 0$ for $j \ge 2$, we have

$$\mathscr{P}^{j}x_{i}=0 \quad \text{for } j\geq 2.$$

Thus the following theorem is proved:

Theorem 6.10. In (2) of Theorem 6.2,

$$\overline{\phi}(x_1) = \overline{\phi}(x_2) = 0, \quad \overline{\phi}(x_3) = x_2 \otimes x_1,$$

$$\overline{\phi}(x_7) = x_2^3 \otimes x_1$$
, $\overline{\phi}(x_8) = x_2^3 \otimes x_2$,

$$\overline{\phi}(x_9) = x_2 \otimes x_7 - x_2^3 \otimes x_3 + x_8 \otimes x_1 + x_2^4 \otimes x_1$$
,

$$\overline{\phi}(x_{11}) = x_2 \otimes x_9 - x_2^2 \otimes x_7 + x_8 \otimes x_3 - x_2^4 \otimes x_3 + x_8 x_2 \otimes x_1 - x_2^5 \otimes x_1 ,$$

$$\overline{\phi}(x_{15}) = x_2^3 \otimes x_9 + x_8 \otimes x_7 + x_2^6 \otimes x_3 + x_8 x_2^3 \otimes x_1$$
,

$$\beta x_1 = x_2$$
, $\beta x_3 = -x_2^2$, $\beta x_7 = x_8$, $\beta x_9 = x_8 x_2$,

$$\begin{split} \beta x_{11} &= -x_8 x_2^2 - x_2^6, \quad \beta x_{15} = -x_8^2, \quad \beta x_i = 0 \qquad \text{for} \quad i = 2, \, 8 \, , \\ \mathscr{P}^1 x_2 &= x_2^3, \quad \mathscr{P}^1 x_3 = x_7, \quad \mathscr{P}^1 x_8 = -x_2^6, \quad \mathscr{P}^1 x_{11} = x_{15} \, , \\ \mathscr{P}^1 x_i &= 0 \qquad \text{for} \quad i = 1, \, 7, \, 9, \, 15 \, , \\ \mathscr{P}^j x_i &= 0 \qquad \text{for} \quad j \geq 2 \, . \end{split}$$

Applying ρ^* we have

Corollary 6.11. In (1) of Theorem 6.2

$$\overline{\phi}(\tilde{x}_3) = \overline{\phi}(\tilde{x}_7) = \overline{\phi}(\tilde{x}_8) = \overline{\phi}(\tilde{x}_9) = 0,$$

$$\overline{\phi}(\tilde{x}_{11}) = \tilde{x}_8 \otimes \tilde{x}_3, \quad \overline{\phi}(\tilde{x}_{15}) = \tilde{x}_8 \otimes \tilde{x}_7,$$

Remark 6.12. Corollary 6.11 is proved by Araki [2] using Kudo's transgression theorem.

Now consider the inclusion $\tilde{\jmath}': SU(6) \rightarrow \tilde{V} \rightarrow E_6$. Since the center of \tilde{V} is of order 6, we have $Z_3 \hookrightarrow SU(6)$. Consider the following commutative diagram:

Note that

(6.31)
$$H^*(SU(6)/\mathbb{Z}_3; \mathbb{Z}_3) \cong H^*(PU(6); \mathbb{Z}_3) \cong \mathbb{Z}_3[y_2]/(y_2^3) \otimes \Lambda(y_1, y_3, y_7, y_9, y_{11}).$$

By Corollary 6.7 and (6.1) we have

(6.32)
$$j'^*(x_i) = y_i$$
 for $i = 1, 2, 3, 7, 9, 11$.

In particular j'^* is surjective and so $AdE_6/(SU(6)/Z_3) = E_6/SU(6)$ is totally non homologous to zero mod 3 in AdE_6 . So we have

Corollary 6.13. $H^*(E_6/SU(6); Z_3) = Z_3[e_6, e_8]/(e_6^3, e_8^3) \otimes \Lambda(e_{15})$, where deg $e_i = i$, $r^*(e_6) = x_2^3$, $r^*(e_8) = x_8$ and $r^*(e_{15}) = x_{15}$. Moreover $\beta e_{15} = e_8^2$.

§7. $H^*(E_6; Z_3)$

In this section we shall determine the Hopf algebra structure of $H^*(E_6; \mathbb{Z}_3)$. By Corollary 6.12 we only need to determine $\overline{\phi}(\tilde{x}_{17})$.

First recall from [2]. Let $k: \mathbf{F_4} \rightarrow \mathbf{E_6}$ be the inclusion defined in [2]. Then the following is known:

Theorem 7.1. $k^*: H^*(E_6; \mathbb{Z}_3) \longrightarrow H^*(F_4; \mathbb{Z}_3)$ is surjective and $\operatorname{Ker} k^* = (\tilde{x}_9, \tilde{x}_{17})$.

Remark 7.2. This gives the Hopf algebra structure of $H^*(\mathbf{F}_4; \mathbf{Z}_3)$. In fact if $k^*(\tilde{x}_i)$ is also denoted by \tilde{x}_i for i=3, 7, 8, 11, 15, then we have

$$H^*(\mathbf{F}_4; \mathbf{Z}_3) \cong \mathbf{Z}_3[\tilde{x}_8]/(\tilde{x}_8^3) \otimes \Lambda(\tilde{x}_3, \tilde{x}_7, \tilde{x}_{11}, \tilde{x}_{15}),$$

$$\bar{\phi}(\tilde{x}_3) = \bar{\phi}(\tilde{x}_7) = \bar{\phi}(\tilde{x}_8) = 0,$$

$$\bar{\phi}(\tilde{x}_{11}) = \tilde{x}_8 \otimes \tilde{x}_3,$$

$$\bar{\phi}(\tilde{x}_{15}) = \tilde{x}_8 \otimes \tilde{x}_7.$$

Also recall from [19]:

Lemma 7.3. (1) $\text{Cotor}^{H^*(F_4; Z_3)}(Z_3, Z_3)$ is generated by elements \tilde{u}_i 's for i=4, 8, 9, 20, 21, 25, 26, 36, 48, with $\deg \tilde{u}_i=i$,

(2) The Rothenberg-Steenrod spectral sequence (or the Eilenberg-Moore spectral sequence) (cf. [29] or [30]),

$$E_2 = \operatorname{Cotor}^{H^*(F_4; \mathbb{Z}_3)} (\mathbb{Z}_3, \mathbb{Z}_3) \Longrightarrow E_{\infty} = Gr(H^*(BF_4; \mathbb{Z}_3))$$

collapses,

(3) Moreover \tilde{u}_8 , \tilde{u}_9 , \tilde{u}_{20} are represented by \mathscr{P}^1u_4 , $\beta\mathscr{P}^1u_4$, $\mathscr{P}^3\mathscr{P}^1u_4$ for a generator u_4 of $H^4(B\mathbf{F}_4; \mathbf{Z}_3) \cong \mathbf{Z}_3$.

Now we assume that

(7.1)
$$\bar{\phi}(x_{17}) = 0$$
.

Then we have

Lemma 7.4. (1) Under the assumption (7.1),

$$\begin{split} \mathrm{Cotor}^{H^*(E_6;Z_3)}(\boldsymbol{Z}_3,\,\boldsymbol{Z}_3) &\cong \mathrm{Cotor}^{H^*(F_4;Z_3)}(\boldsymbol{Z}_3,\,\boldsymbol{Z}_3) \otimes \boldsymbol{Z}_3 \big[\, \tilde{u}_{1\,0},\, \, \tilde{u}_{1\,8} \big] \\ & \qquad \qquad \text{with } \deg \tilde{u}_i = i \,, \end{split}$$

(2) In particular an element \tilde{u}_{19} of $Cotor^{H^*(E_6; \mathbf{Z}_3)}(\mathbf{Z}_3, \mathbf{Z}_3)$ of degree 19 is of the form $\alpha \tilde{u}_{10} \cdot \tilde{u}_9$ for $\alpha \in \mathbf{Z}_3$.

So by the argument similar to the proof of Lemma 5.8 we have

(7.2) Under the assumption (7.1), \tilde{u}_{18} is a permanent cycle.

Since clearly \tilde{x}_9 is universally transgressive, \tilde{u}_{10} is a permanent cycle represented by $u_{10} = \tau(\tilde{x}_9)$. So we have

Lemma 7.5. Under the assumption (7.1),

 $H^*(BE_6; \mathbb{Z}_3)$ for $* \leq 24$, is generated by the following elements:

$$u_4 = \tau(\tilde{x}_3), \ u_8 = \mathcal{P}^1 u_4, \ u_9 = \beta \mathcal{P}^1 u_4, \ u_{20} = \mathcal{P}^3 \mathcal{P}^1 u_4,$$

$$u_{10} = \tau(\tilde{x}_9)$$
 and $u_{18} = \tau(\tilde{x}_{17})$.

Proof. Clearly \tilde{u}_i , i=4, 8, 9, 10, 18 are permanent cycles. Since $\mathscr{P}^3 \mathscr{P}^1 k^* u_4$ is not decomposable, so is $\mathscr{P}^3 \mathscr{P}^1 u_4$. So the result follows. Q.E.D.

Now the following is well known:

(7.3) $H^*(BSU(6); \mathbb{Z}_3) \cong \mathbb{Z}_3[c_2, c_3, c_4, c_5, c_6]$, where c_i is the mod 3 reduction of the *i*-th universal Chern class.

Consider the inclusion

$$j': BSU(6) \longrightarrow BE_6$$
.

Then by the naturality of the transgression and by (6.32) we have

(7.4) $j'^*(u_{10}) = c_5 + \alpha c_2 \cdot c_3$ for $\alpha \in \mathbb{Z}_3$ up to non-zero multiple.

Moreover we have

(7.5) $j'^*(u_4), j'^*(u_8) \in (c_2, c_4)$ by the dimensional reason.

Since
$$\mathcal{P}^3 u_{10} \in H^{22}(BE_6; \mathbb{Z}_3)$$
, so

296 Akira Kono

(7.6)
$$\mathscr{P}^3 u_{10} \in (u_4, u_8)$$
 by the dimensional reason.

On the other hand

(7.7) $j'^*(\mathscr{P}^3u_{10}) = \mathscr{P}^3(c_5 + \alpha c_2 \cdot c_3) = c_6c_5 + \text{(other terms)}$ up to non-zero multiple.

And so

$$j'^*(\mathscr{P}^3u_{10}) \notin (c_2, c_4).$$

That is a contradiction and so we have

Lemma 7.6. $\bar{\phi}(\tilde{x}_{17}) \neq 0$.

Then applying Theorem 5.5 we have

Theorem 7.7. In (1) of Theorem 6.2,

$$\begin{split} \overline{\phi}(\tilde{x}_3) &= \overline{\phi}(\tilde{x}_7) = \overline{\phi}(\tilde{x}_8) = \overline{\phi}(\tilde{x}_9) = 0 \;, \\ \overline{\phi}(\tilde{x}_{11}) &= \tilde{x}_8 \otimes \tilde{x}_3, \quad \overline{\phi}(\tilde{x}_{15}) = \tilde{x}_8 \otimes \tilde{x}_7, \quad \overline{\phi}(\tilde{x}_{17}) = \tilde{x}_8 \otimes \tilde{x}_9 \;, \\ \beta \tilde{x}_7 &= \tilde{x}_8, \quad \beta \tilde{x}_{15} = -\tilde{x}_8^2, \quad \beta \tilde{x}_i = 0 \qquad for \quad i \neq 7, \ 15 \;, \\ \mathscr{P}^1 \tilde{x}_3 &= \tilde{x}_7, \quad \mathscr{P}^1 \tilde{x}_{11} = \tilde{x}_{15}, \quad \mathscr{P}^1 \tilde{x}_i = 0 \qquad for \quad i \neq 3, \ 11 \;, \\ \mathscr{P}^j \tilde{x}_i &= 0 \qquad for \quad j \geq 2 \;. \end{split}$$

The proof is easy (cf. Theorem 6.10).

Remark 7.8. The similar proof is given in [18]. But the proof is tedious since we need the algebra structure of $H^*(BE_6; \mathbb{Z}_3)$ for $* \le 30$ under the assumption of (7.1).

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY

References

- [1] J. F. Adams: Lectures on Lie groups, Benjamin, New York 1969.
- [2] S. Araki: On the non-commutativity of Pontrjagin rings mod 3 of the compact exceptional groups, Nagoya Math. J., 17 (1960), 225-260.
- [3] S. Araki: Differential Hopf algebras and the cohomology mod 3 of the compact excep-

- tional groups E_7 and E_8 . Ann. Math., 73 (1961), 404–436.
- [4] P. Baum-W. Browder: The cohomology of quotient of classical groups, Topology, 3 (1965), 305-336.
- [5] A. Borel: Sur l'homologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. Math., 57 (1953), 115-207.
- [6] A. Borel: Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 273-342.
- [7] A. Borel: Sous groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J., 13 (1961), 216-240.
- [8] A. Borel: Topology of Lie groups and characteristic classes, Bull. AMS, 61 (1955), 397-432.
- [9] A. Borel-F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 459-538.
- [10] A. Borel-J. de Siebenthal: Les sous groupes fermés connexes de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), 200-221.
- [11] N. Bourbaki: Groupes et algèbre de Lie IV-VI, 1968.
- [12] W. Browder: Homology rings of groups, Amer. J. Math., 90 (1968), 318-333.
- [13] K. Ishitoya-A. Kono-H. Toda: Hopf algebra structure of mod 2 cohomology of simple Lie groups, Publ. RIMS. Kyoto Unive., 12 (1976), 141-167.
- [14] A. Iwai-N. Shimada: A remark on resolutions for Hopf algebras, Publ. RIMS of Kyoto Univ., 1 (1966), 187-198.
- [15] J. Kojima: On the Pontrjagin product mod 2 of Spinor groups, Mem. Fac. Sci. Kyushu Univ., Ser. A., 11 (1957), 1-14.
- [16] A. Kono: On the 2-rank of compact connected Lie groups, J. Math. Kyoto Univ., 17 (1977), 1-18.
- [17] A. Kono-M. Mimura: Cohomology mod 2 of the classifying space of the compact connected Lie group of type E_6 , J. Pure and Applied Alg. 6 (1975), 61-81.
- [18] A. Kono-M. Mimura: Cohomology mod 3 of the classifying space of the compact, 1-connected Lie group of type E_6 , (preprint).
- [19] A. Kono-M. Mimura: Cohomology operations and the Hopf algebra structure of the compact, exceptional Lie groups E_7 and E_8 , (to appear).
- [20] A. Kono-M. Mimura-N. Shimada: Cohomology of classifying spaces of certain H-spaces, J. Math. Kyoto Univ., 15 (1975), 607-617.
- [21] A. Kono-M. Mimura-N. Shimada: On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_7 , J. Pure and Applied Alg., 8 (1976), 267-283.
- [22] T. Kudo: A transgression theorem, Mem. Fac. Sci. Kyusyu Univ., A9 (1956), 79-81.
- [23] P. May: The cohomology of restricted Lie algebras and of Hopf algebras, Bull. A. M. S., 71 (1965), 372-377.
- [24] J. Milnor: Construction of universal bundles II, Ann. Math., 63 (1956), 430-436.
- [25] J. Milnor-J. Moore: On the structure of Hopf algebras, Ann. Math., 81 (1965), 211–264.
- [26] M. Mimura-H. Toda: A representation and the quasi p-regularity of the compact Lie group, Japanese J. Math., 1 (1975), 101–109.
- [27] D. Quillen: The mod 2 cohomology ring of extra special 2-groups and the Spinor groups, Math. Ann. 194 (1971), 197-212.
- [28] D. Quillen: The spectrum of an equivariant cohomology rings I, Ann. Math., 94 (1971), 549-572.
- [29] M. Rothenberg-N. E. Stenrod: The cohomology of the classifying spaces of H-spaces, (mimeographed notes).

- [30] M. Rothenberg-N. E. Steenrod: The cohomology of the classifying spaces of H-spaces, Bull. AMS, 71 (1965), 872–875.
- [31] J. P. Serre: Homologie singulière des espaces fibrés, Ann. Math., 54 (1951), 425-505.
- [32] N. Shimada-A. Iwai: On the cohomology of some Hopf algebra, Nagoya Math. J., 30 (1971), 103-111.
- [33] H. Toda: Cohomology mod 3 of the classifying space BF_4 of the exceptional group F_4 , J. Math. Kyoto Univ., 13 (1972), 97-115.
- [34] H. Toda: Cohomology of the classifying space of exceptional Lie groups, Manifolds, Tokyo 1973.
- [35] H. Toda: On the cohomology rings of some homogeneous spaces, J. Math. Kyoto Univ., 15 (1975), 185–199.