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§1. Introduction

In his remarkable article [1], Y. Ohya considered the Cauchy problem for
linear partial differential equations of order s which has real characteristic
roots of constant multiplicity and proved its well-posedness in the Gevrey classes
Yoe(l<la<lm|(m—1)) and the existence of a finite domain of dependence.
There no condition is assumed on the lower order terms, which differs very
much from the well-posedness in &, cf. [9]. These facts seem to imply that
Gevrey classes are suitable spaces to treat hyperbolic differential equations.

Since then the Cauchy problem in Gevrey classes has been studied in detail
from various viewpoints, e.g. Leray-Ohya [2], Steinberg [4], Beals [5], Ivrii
[6], etc. However we should remark the followings. In [1], [2], [4], the
smoothenss of the characteristic roots play an essential role. In [5], [6], the
smoothness of the characteristic roots is not assumed, but it is assumed in [5]
that the coefficients do not depend on time variable # and also that the character-
istic roots do not vanish, and in [6] that the coefficients of the principal part of
the differential operator are analytic.

Now we state our result. Consider the partial differential equation of
second order

(1.D) L[2]=8%—0,(a¥024)— 60— cu=f(x, ?),

(x,)eR=R"X[0, %], #>0, where 8=0;44a0;+8°, a¥(x,t)=a’(x,t), it is
supposed that repeated indices are summed from 1 to #, e.g. 9,(a¥0,u)=337 ;_;
9;(a¥10m)V.

Definition 1.1.  (»{%., ¥, ).
We say that $(x)E & belongs to 3. if for any compact set K, there exist

1 Throughout this paper, we use the following abbreviations and function spaces: x=(x1, x2,-+, %),
§=(f1, 2, oy fﬂ)) pz(/’l’}’% --+, pn); pi are non-negative integers, |2 |=P1+P2++Pm ei=(0, -+,
1, -, 0), 9:=0/3¢, 0;=0[dxi, 0P=081P10aP2-+-0utn, PG(x)=dip (), Vip(x)={$(x)} z;, (2, ¥)=
[t @z, lulle= [ ).
¢& & means that ¢ is an infinitely differentiable function, ¢(x)& D ;2* means that ¢(x) and all
of its derivatives (in the distribution sense) are square integrable. ¢(x, )& 9 12*°[0, £] means that
t—>p(x, )E D27, 0<t<4, is infinitely differentiable, cf. [8].
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two constants p and C such that
1.2) 197 (x)| < 'Plj,, C, xEK, for any p.

If (1.2) holds for any x, we say that ¢(x) belongs to y©. ¢(x)Syy® means
that §(x)Ey'® has a compact support.
We assume
i) the coefficients €y (),
1.3) ii) a¥(x, £), a'(x, ¢) are real-valued,
iii) a¥(x, £)6,=0 for any (x, ¢, §)ERQ X R™.
Let 0;6%9;, d1=47, Dbe the principal part of the commutator [8, 8;4%9;] and

assume also

either iv): there exists a constant A such that
b¥(x, )§§1=—Aat(x, )éi&;,  for any (x, ¢, £)ER X R™,
or iV'): there exists a constant A such that

B(x, DEG=Aai(x, D, for any (x, 1, E)S@XR™.

Then our main result is

1.4)

Theorem 1.1. Assume (1.3) and (1.4), then if 1<a<l2, for any given
S(x, DEYP(Q) and any given initial data (u(x, 0), dau(x, 0)) =y {D(R™), there
exists a solution u(x, t) of the equation (1.1) in Q, whick belongs to (% (Q).
Moreover the solution is unique in E*(Q).

Remark 1.1. To put it in the concrete,

1.5) b1=(a'),'+a*(a'?)y,,— (at)y,a* — at*(al)y,.
Example 1. Consider the differential equation
(1.6) 0;2u—0(a¥0,0) — 60— 640, — cu=F(x, £),

(x, £)EL, assuming that ¥ do not depend on ¢, i.e. a¥/=a¥(x). In this case,
o¥(x, £)=0. Therefore by Theorem 1.1, we can see that if we assume only
(1.3), the Cauchy problem for the equation (1.6) is well-posed in (5., 1< a<l2.

Example 2. Consider the differential equation
1.7 0,22 — 0(adu) — 693,00 — bOu—cu=f(x, £),
(x, )R]0, £]. Consider the following two simple but typical cases: 1)
a(x, )=¢(x)tk; $(x)=0, £=0 is an integer, 2) a(x, )=¢(x)(A—1)¥; ¢$(x)=0,
#=0 is an integer. In case of 1), if we take 4 =0, then iv) in (1.4) is satisfied.
In case of 2), if we take 4=0, then iv") in (1.4) is satisfied. Therefore in both
cases, by Theorem 1.1, the Cauchy problem for (1.7) whose coefficients = y*(£2)
is well-posed in y{%,, 1<<a<l2.

Now we explain the outline of the proof. At first, we prove Theorem 1.1
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in arestricted form. Namely we prove the existence of a solution u(x, £) € y‘*(£2)
of the equation (1.1) for the restricted right-hand term and initial data:
Az, HEye(Q), (u(x,0), dmu(x,0)Eyy®(R™), by the method of successive
approximation, where the theorem of Oleinik and the lemma of Sobolev are
used. Next we show the existence of a finite domain of dependence. Finally
we obtain Theorem 1.1 by the procedure of partition of unity.

Remark 1.2. (Lemma of Sobolev). There exists a constant ¢(%), which
depends only on the space dimension #, such that
suplau(x)|<ec(n) X |10Pu(x)]l.
1p1<(n/21+1
Remark 1.3. Let a'(x, 8), a¥(x, ), 6%x, ) B(2). Assume ii), iii) in
(1.3) and (1.4), then the Cauchy problem for

(1.8) Lol =8%—3(a¥dp)=F(x, ), (x,)ER,

is well-posed in D3 and also in E. Moreover there exists a finite domain of
dependence.® In (7), O. A. Oleinik considered in case of 6=4d;, and proved
the well-posedness in D7:. We shall give a rough sketch of the proof of this
theorem in Appendices.

Remark 1.4. We give here the definition of I',\®, I')’[0, 4] (Gevrey
classes in the Z2-sense), which will be used in §§3 and 4. ¢(x)= D32 is said to
belong to I','® if there exist two constants p and C such that

|a.
[|3p¢(x)||§-!—5,|T'IC, for any p.
d(x, Hye D3:[0, 4] is said to belong to I'”[0, /] if there exist two constants p
and C such that

(pl+A&)!°
0;15%“3"‘37’45(96, t)llgiTl_HzC, for any p and 4.

Taking the lemma of Sobolev into account, we can see the following
relations:

70 CI Oy, y (@) T [0, Al Cy ().

§2. Estimate of a solution of Lj[u]=f, under the assumption iv)

In this and the following sections, we assume (1.3), iv) in (1.4). Our aim
in this section is to estimate the solution «(x, £)& D7:[0, %] of

2.1 Lo[u]=f(x, £)

2 Let Czg,to, (%0, 20)ELR, be a backward cone defined by
Cr,t0={(x, 1ES; plr—xo|<to—1},
where p,-1=( sgpnkz"(x, 8)Ei4+-\a'i(x, 1)€i€jl. Then the latter part of the theorem means that if
e

[§1=1
u(x, )EE? be a solution of (1.8) where f(x, £)=0 in Cgy,1y, and if (#(x, 0), dru(x, 0))=0 on
Czy,t, {t=0}, then «(x, ) vanishes identically in Cz,,¢,.
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with null initial data.

Our method mentioned below is based on the idea of O. A. Oleinik in [7].
However, we should remark that we need to obtain an energy inequality in so
refined form as to be useful for the argument in the following section.

Let 7; 0=r=_%, be a parameter, and vp=uvp(x, #; 7) be the solution of
the (hyperbolic) Cauchy problem
(2.2) 8*[v]=0%u, v|;=,=0,
where 8*[v] = —8,u—9;[atv]+8%. Let us start from the following identity:

(—1)P2Re(w, L3[3P0p])=2Re(@u, Li[op))+(—1)?2Re(a, [L3, 3]0y)
=2Re(0%u, 6*[0Pu])—2Re(8*[vp)], 0;a¥70;vp)
+4 Re([0?, 8]u, 0Pu)+2Re([0?, a¥]0su, djvp)
+2Re([[3?, 8], 8]u, vp),
where Ly*=8%*2—0,a%0;, [Ly*, 07]=L*?—?L,*, and so on.
From now on, we consider each term of the right side of (2.3).

(2.4) The 1-st term =—d/d¢||ullp®— Cill 1%,

2.3)

where
llzellp=l10Pull, C1= Zn sup @)y, (x, I +2 sup [6%x, £).
i=1(z.0)e @ e
Hereafter we use C; to denote a constant which does not depend on p.
The 2-nd term= — d/d#(a"0;vp, d;vp)+(640,vp, d;vp)
—((a¥)z,a"30y, djvp)+2 Re(6%a"8vy, 3;vp)
—2 Re( {(ak)gizh_(y)x:;} Up, ‘lijaﬂ/p)’
and so, if we use the assumption iv) in (1.4),
the 2-nd term =— d/d#(a¥d,vp, d;vp)— (A +C1) (2¥0,vp, dvp)
—2C, |l vpll(@¥0,vp, Ojup) /2.

Next is the third term. Because that [07, 8]=30 4210201079+ X 1g121
CPbgyd™ ™,

2.5)

the 3-rd term =—4#» §1Cs’<s—1>IIuIIHI_slIuIIl

(2.6)
—432 CK sl

where |p| =/, [lu|lx= nl’;alliikllullq, >={s!"/(2p)*} A;; p and A, be some constants,
we assumed that |ale|<<lgl—1), 16%,|<<lg|>, and we used the relation:
Zlg=sCP=C

The 4-th term=2 Relqéqup(aqu)aiap‘qu, d;vp)

_2 Re Z qu(dgqj)atajap_qu, 'Up)
191=2

_2 Re Z qu(a(tg_{.gj)atap—q%, 'Up).
191=2
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To estimate the first term of the right side of this identity, we use the following
lemma, whose proof will be given in Appendix.

Lemma 2.1. (Cf. Oleinik, [1)) Let a¥(x)E B, be real-valued functions,
al(x)=a'"(x), and we assume the condition iii) in (1.3). Then, if |g|=1, it
holds that

(*) |(atd\0su, 00)| < const. ||l {(a¥d;0, )2+ lv|l}, for u, ve CF(R™).
Taking this lemma into account,
the 4-th term =—2C3/||u|,(a¥0,vp, 00p) 2 —2C L\ ullillvpll
2.7 —2%2||Up||8§zcsl<5_2>||%||l+2—s
—2n2|lﬂp”8§2€31<s_1>”u“l-{-l—g,

where we assumed that |afd|<<lg|—2).
In the fifth term, several commutators are contained. For simplicity, let
us see only about a typical one:

[[9?, atdy], a¥d;)u

peo, TLE gt l—ry s - » p—q
= 3 C % 3 er———ra(r)“(q—r)atajap u— 35 CoPdlalyye;0i0" u.
14122 Ir1=1 Pt g1=1

Therefore, if we assume that 3,C.%al,|lals_nl<<{ql—2,
2Re([[ap, a'dy, ﬂjaj]”y Up)g—'zﬂzuUp[|8§2Csl+l<3—2>[|%||z+z—s
—2nzl|vplls§16‘s’<s—1>Ilullz+1—s~

One can estimate the others in the same way, and can see that, as a whole,
the 5-th term =—(Cs/+ Ce/?) | 2elli | vl
—C78§Csl+2<5—2>||%||l+2—c||ﬂp“~
Thus by (2.4)~(2.8),
(=12 Re(x, Lo*[P05)=— d]dt | ully*+ @iy, 0,)}
—2y({+ Dl #llp?+(a¥d,vp, djwp)} — Callva|?
2.9 —Calllull2—(Col+Crof®) Nl llvpl
—611”7Jp||8§368l+2<5—2>||u||l+2—s
—Crallully T Ct M s—1) |41
§=2
where 2y=max{4+C,+C,, Cs}.

Next, multiply the both sides by ¢2”*tD¢ and integrate them from 0 to 7.
If we define [#],(7) and [vp](7) by

2= [ ulieyer s ia,

(2.8)

2.10) :
[oa)(r)2= [ ol (e e
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respectively and remark that #|,—¢=0, d;%|;—¢=0, vp|;=,=0, then
(—1)1’2Ref’<u’ Lo*[0P0))e? 4Dt
0

2.11) = —llullp(r)2e® WD — Colwp](r)2— Cgl[a] (7)*
—(Cyl+-Cro!»)[e]y[vp]
~ {Culdrt Call+Dlosl) ZEM Dl

where we used that CLf3<"{(/42)/3} CsHt1.
On the other hand, integrating by parts,

the left side of (2.11)=2Re [ (@, vpe s
—(—1)P2Re(x, §*[3Pvy]) s, D7
+8(—1)Py(/+1) Refof(u, §*[0Ppp))e2 U+ DIy
—8y%(/+1)*Re f 07(3’%, vp)e2 DLy,

Therefore, remarking that 8*[0%vp)|;—,=0%Pu|,_,,
the left side of (2.11)<<2Re f 0’(ap £ )DLy

=222 ]1p(7)?e® T8y (74 D)[ae]o(7)?
+{8y%(0+1)2+-8nA 1y (74 1)/} [u]i[v5]
8y (4 1)vp] T Ct 1 s—1D[x] rr1-s(T)E Y.

Now we prepare a lemma:

(2.12)

Lemma 2.2. It holds the following inequality:
(2.13) (I4+D[vp)(N=Cra[]i(7).
Proof. Since vp is the solution of (2.2), it is easily seen that
dldt||vpll=—(C1/2) lvpll —ll2]lp,
where (1 is the same constant as in (2.4). Therefore

”Z/p”(t) gf:”ullp(S‘)el/zcl(s_t)ds.

Denote the right side by ¢(#), then

[oal(r? = [ (06 ebeas,

Denote the right side by /2, then

f qu(t)z {2V} gy

0

2

1
I2— .t
2y(l+1)

_ —$(0)? 1 o
T 29(+1)  yUFD f . ()P (£)e> WDy,
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Because ¢'(£)=— ||« |l,(6)—(C1/2)d(2),

2

¢y
P gy
Since 2y=A4+ C1+Cs, 1—61/{2y(/+1)}2(/1-|-Cl)/(27>- So

2

A+C,
5 IP< % + 5 [2]u].

Thus (2.13) has been proved. q.ed.
If we use this lemma, by (2.11) and (2.12) we have that

12 || p(7)2e2 4+ D" < 2 Re f 7(af'f, p)eRY DL
0

+2&y(/4+1)[2] (1) + Cr5[2]i(m) Ri(7),
where £ (=8) is a constant independent of |p|=/, and
(2.15) (t)— C s — 1D [0e] 141 -5(£)e” 711

(2.14)

Finally we con51der the first term of (2.14). Let g be the solution of the
(hyperbolic) Cauchy problem

(2.16) 8[¢]=03%/, ¢l;=o=0.
Then, integrating by parts,

@.17) 2Re [ (0%, ve” SO Crlgallil,

where Lemma 2.2 was used again. Now that ¢, is a solution of (2.16), we can
easily see that

1921 (O= Cr [ 1F1ds, 0o

Therefore, if we define (f)(¢), #,(¥) by

@18)  (MO=[ IAN)ds, Fitp= [ (Duoperarias,

respectively, then
(2.19) [92]<C1:F5(2).

Thus we have obtained the following proposition.

Proposition 2.1. 7%e solution w(x,t)& D3:[0, 4] of the equation (2.1)
with null initial data satisfies that

(2.20) lae1,(&)2e2 P e 2y (14 1) [e]i(#)2+ 2K (] () F,(8)+ Ri(9)}

where y, k and K are constants independent of I=|p|.

Immediately we can get the
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Proposition 2.2. 7ke solution u(x, t)e D32[0, k] of the equation (2.1)
with null initial data satisfies that

(2.21) [“]l(t)éKf(:{Fl(s)+R,(s)}e’f"(”l)(“s’ds.

§3. Existence of a solution, under the assumption iv)
Let us prove the existence of a solution of the equation

(1.1 Llu)=f

with given initial data at #=0. We assume (1.3), iv) in (1.4). At first we
consider the case where initial data are null. We construct a solution by the

method of successive approximation. Namely we define #(x, ¢) by
@D Ly[u,]=/f, with null initial data
' Lo[ws)=M[u;_;], with null initial data, /=2,

where Ly=08%2—0,a%9;, M=6'9;+c. Then the formal sum X7_,u%(x, ¢) gives
a formal solution of (1.1) with null initial data. So let us examine its
convergence.

Successive estimate Suppose that
3.2) ”f”l(t)ev(Hl)tg 2t (/:"’)' Col? D] | BT+

where p, £ and y are the same constants as in the preceding section, C is a
constant, B is a constant which will be determined later, /, 7 and # are non-
negative integers. Under this assumption, let us estimate the solution #(x, £)
€ D3:[0, /] of the equation

2.1) Lol =f

with null initial data. For simplicity, we denote the right hand term of (3.2)

by ki, 14(2).
From the definition (2.18), it follows that

DD =kr1. +r(t)e"’(l+1)t

3.3)

Fl(t)ngk (Z+7’+1)Ki+l l-H’( )
Therefore
(3.4) Kf Fy(s)ek” @+ D=9 e - K . .
‘ : ~/2,€y(/+7+1) i+2,+r

If we use the proposition 2.2, we can prove the

Lemma 3.1. Assume (3.2) and take B=2A,K, then the solution u(x, t)
e D320, £) of (2.1) with null initial data satisfies that

(3.5) B gy arerd
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Proof. We show this by induction. For /=0, taking the proposition
2.2 into account, it is evident from (3.4). Next suppose that (3.5) is valid for
all /<</—1. Then
— 2K Y(s—1D¢
1>\/2,é'y(/+].—5+7’+].) Ki+2,l+1—8+f<t)e
1 C,lH1
225" W2ky(I+1—s+7r+1) CEY°

Sema - VI 1V2ky, because CHCHL < (I+1)/s, s(/+1—s+r+1)={+1).

Therefore

RO T Gl —
§=2

<24, Krcyia,146)A+-B2) 71 Z

(3.9 R(H< jggl 241Kk 19,14+ (#)(1+B2)7 L.

Therefore
24,K%i1+1

Kf Ry(s)ekratDe= Ods Sm i+2.l+r(t>

é’ m Kt+2,l+r(t)'

By the proposition 2.2, the inequality (3.5) follows from the above one and
3.4). q.ed.

Hereafter we fix the constant B=24,K. By the way, #,(¢) has an another
type of estimate as follows:

t1/2
3.7 FH< J2i+3 Kot 140(2)-
Therefore

KftFl(s)e""(”D(’_s)dsg K2
0

V2/+3(+5/2) Kit1,14(2).

In the same way as Lemma 3.1, by the proposition 2.2, we can prove the

Lemma 3.2. We assume (3.2). Then the solution w(x, t) of (2.1) with
null initial data satisfies that
2K73/2
3-8) [](H=

‘/2 +3(Z+5/2) K'l+1,l+r(t)

Now let us apply the obtained estimates to the inequality (2.20) in
Proposition 2.1. By (3.5),

2ky({+ D)2 4K Bipyn,140(2)2.

By (3.5) and (3.6),

2REAORDE Vo kisnaise
By (3.7) and (3.8),

2R () F () AK Py, (P
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Thus, by Proposition 2.1, we can get the

Proposition 3.1.  Assume (3.2), then the solution w(x, £)€D3:[0, %] of
(2.1) with nuil initial data satisfies that

(3.9) ll2¢1)(£)e” WK 114 45,144(2),

where K1 is a constant which does not depend on [, i and 7.
We need to estimate || dy||; too.

Lemma 3.3. /f we assume that
N2l ()" Vi< keq,14.4(8), 10%(x, 2) <L1g 1D,
then it follows that
l|aaell () W24 11cs,144(2).
Proof. Because 0P[au]= X qC*(0%2)0? u,
l| @zl < Zs Csls> |20 ge? G5+ D5t
=X CsisDres,1—g1r(2)e”®
=ZPTIRTC) Zs 27CHCstT <2 A k4,144 (D). g.ed.
Since 8%x¢=0,a%0;u-+f, one can verify by this lemma that
(3.10) 1182221, P2 A 1 K 1k pp,1r+2(8) F K4, 144(2),

where we assumed (3.2) and that [af},|<<|g|>and we used (3.9). Next let us
derive the estimate of [[8«(l;(#) from the above inequality. For this purpose,
consider the solution v(x, #) of the (hyperbolic) Cauchy problem

(31].) 8[7}]29, v| t=0=0'
We want to give the estimate of ||z |,(#), assuming that
(3.12) 111 ()" Tt <y, 144 (2).

One can easily show that
dldt||vlp=<}Cillv I+ ¢l +I11[07, 8]vl
é(‘%c1+7lf411)”2/|lz+|l9|lz+n8§268“'1<s—1>||v[|,+1_s,

where (' is the same constant as in (2.4). Because <K and because $C;+
y+ndl+yl<ty(l+1),

d|dt || vll,(H)e” TV <ly((4-1) | vl P+ g ll,e” HP- K T, (2),
where 7,(8)= 2 ;22Cs! T s— 1) || v]lj41—se” 4T85+ DE¥E~Dt - Therefore

” o I|l<t)ev(l+l)t§ft{” gIll(S)ZY(l+1)s+KTl<5)}ZkY(l+1)(t_3)dS.
0

If we use this inequality, we can prove the following lemma in the same way
as Lemma 3.1.
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Lemma 3.4. Assume (3.12), then the solution v(x,t) of (3.11) satisfies
that

3.13) 1o [1(2)e” H P <2np41,04¢(2)-

8u is a solution of (3.11) for g=62«. Therefore by the above lemma one
can get from (3.10) that

(3.14) l| 8¢ |lye” DA A Kyies g, 14040(8) F20411,144(2).
Since dpt=—a'd;u—b6°%4+8u, by Lemma 3.3, (3.9) and (3.14), we have the

Proposition 3.2. Assume (3.2), then the solution wu(x,t)e D70, k] of
the equation (2.1) with null initial data satisfies that

2
(3.15) 19t ly(£)e” IS K go'ft4-1+»,t+p+r(f),
where Ky is a constant which does not depend on [, ¢ and 7.

Finally we remark that by Lemma 3.3 one can easily show the
Proposition 3.3. Assume that

16| <1g1>, ley|<Lg 1>,

3.16
(5.16) N2 1" TPy, 14 (2),

then it follows that

3.17) | M) l1y()e” W < K grcs, 14140(2),

where M=>05%0;-+-c and K3 is a constant independent of [, ¢ and 7.
We are ready now to prove the existence of a solution of (1.1).

Existence of a solution In (1.1) we assume that

3.18) <12l c

me‘
It is evident that
I £11(£)e” T Pt 1(2).-
Apply Proposition 3.1, regarding ¢=»=0, then
[l 261 111(#)e” PP K 1¢0,(2).

Apply Proposition 3.3, regarding /=2, »=0, then

(| [241] 1,(2)e" W PP K g K 1, 141(8)-
Apply Proposition 3.1 again, regarding /=2, »=1, then

ll22g ()" WP K g K 1 Pg, 141 (2).

If we repeat this argument, we can get the

Proposition 3.4. Assume (3.18), then u(x, t) defined by (3.1) satisfies that
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(3.19) 2 1,()e” P K gt 1K gy, 1441 (2),
(3.20) I M o3] ()" HPEZ K gt K 1oy, 14.4(2).
By Proposition 3.2 and by (3.20), we have the
Proposition 3.5. Assume (3.18), then ux, ¢) satisfies that
(3.21) | 8ot lly(£)e” W< K, K gt 1 K40 éOKZi—l-I-v,H-i—l-i-v(t)’
Now let us examine the convergence of X7_,%(x, £) by means of (3.19).
gl” 24 ||z_§_i§1Kai_1K1tht,z+t—1(t)-

If we denote p~1e¥”2(1+4B7) by B, K3K1p 1e¥"2(1+4Bk) by By, K1Ce*(1+-Bk)
by B3, then

- 2 I 2 1—1(1+Z.jA1E
Elllut”zéf B3B, El(th ) T @)

2 B \Ie (9 g gayi-1 E—1D)!*
<oy 5 @ne CD"

where we used that C}Hi71<2+4-1 Remark that (7—1)!2/(22)!<<4-%"V, then
TSP BB 3 (214 By iG]
= i=1

Therefore, if 1=<<a<(2, the right hand term converges uniformly in [0, Z2]. If
a=2, there exists %y (</%) such that the right hand term converges uniformly

in {0, 4,).
Thus, if we put «(x, £)= L 7-1u4(x, £), we have
for 0<¢<<4, if 1<a<2
for 0tk if a=2.
The same consideration on 7_;119.24l; gives
for 0t/ if 1=<<a<2
for 0t/ if a=2,

where we used Proposition 3.5. Here, if neccessary, %, is supposed to be

(3.22) ll2]1(2) < const. (22 By) 122, {

(3.23) || 82211, < const. (2°B)H1(741)1%, {

replaced with a smaller one.

Thus the existence of a solution of (1.1) with null initial data has been
proved, which is a function of Gevrey class of order a with respect to x. More-
over we can prove that if /(x, £) belongs to I'[0, %], then the obtained solution
u(x, ¢) also belongs to I'*”[0, /%] (or to I'*[0, 4] in case of a=2), cf. [1].

Up to now, our consideration has been restricted to the case where initial
data are null. Now consider the Cauchy problem; L[u]=F(x, &), u|;—o=¢(x),
dyt|i—o=4(x). Assume that f(x,2)e I'[0, 4], $(x) and P(x)=I'x, then f(x, 2)
— L[¢+2#)] belongs to I'’[0, 4]. Therefore, as shown above, one can find a
solution v(x, #) of the equation

Llv]=f—L[$+4],
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with null initial data. Besides this solution »(x, #) belongs to I'’[0, 4], (or
to I'[0, 4g] in case of a=2). Put u=v+¢+#p, then u(x, #) gives a desired
solution.

Thus we have obtained the

Theorem 3.1. Assume (1.3), iv) in (1.4). Then, if 1<a<2, for any
fx, )eT(0, 4], and any initial data §(x), Y(x)E ', there exists a solution
u(x, £) of the equation (1.1) in Q whick belongs to I'[0, k] and satisfies that
1 ymo=0, Ot mo=4. If a=2, there exists hy (=h) such that there exists a
solution u(x, )eI' [0, k] of (1.1) in R™X [0, A,].

If we remark the lemma of Sobolev, we have also the

Corollary 3.1. Under the same assumptions as in Theorem 3.1, if 1<a
L2, for any f(x, £)Eye(Q) and any initial data ¢(x), Y(x)Syo (R"™), there
exists a solution u(x, ) of the equation (1.1) in Q which belongs to y“ () and
satisfies that u|—g=(x), Opt|s—o=(x). If a=2, there exists ho (Xh) such that
there exists a solution u(x, )Ey(R"X [0, &q]) of the equation (1.1) in R™X
[0, %o].

§4. Existence of a solution, under the assumption iv’)
We assume (1.3), iv’) in (1.4). Also in this case, one can prove the

existence of a solution in the same way as where iv) is assumed, except a few
points. We use the method of successive approximations, as well. Below we
only indicate the points different from where iv) is assumed.
At first, let us estimate the solution #(x, £)& D7:[0, %] of
(4. Lofa=f(x, #)
with null initial data. We start from the following identity:
2Re(9P8u, 0P Ly[n])=2Re(0P82, 8P8u)
4.2) —2Re(80Pu, 0,a419,0%2)+ 2 Re(0P8u, 0P, 8]6u)
—2 Re(0P8u, 9,[0?, a’)de) —2 Re([0?, 8]u, 0,at0;0%).
The 1-st term =d/dt||8u||p2— Cy || 8up2.
Here and hereafter we use C to denote a constant which does not depend on 2.
The 2-nd term = d/d#(a0,0%2, 3;0%1) — (640,072, 9,0%2)
— Cy(a%0,0Pu, 0;0Pu)— Cyllu ||,
where 6t1=_{a!l),+ak*(a'?)y,— (a7 ,a* —a'*(a?)y, .

The 3-rd term = —2%||8ulp 3 Cs"T s —1> |82 [l141—s,
8=1

where (&>={£!°/(2p)*} A4, ||8ul|k=?;a;>;ll8ullq and we assumed that |aly|<<

lgl—1>, 18%|<lgl>, 7 is a dimension of the space variable x=/(xy, -+, xy),
Ipl=L.
The 4-th term=—2 Re(apau, > qu{dgtlj)at+a(ilzj+eo}ajap_qu).
1a1=1
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When |g|=1, by Oleinik’s lemma in [7],
llat0,8,87 % [2<C, Z(a‘fala P44, 3,3,9P~0).
Therefore
the deth term 2= 24 I8ully 3 3 C2a3,3,07 %, 3,2,07~%)
—2n2||8ullp DG =D e,
where we assumed that |afd)| <{|g|—2).
As  9;[0%, 8]u=|qélcqpa(q,9iak8p qu—i— Z qub(q)aiap_qu
+ ImZle fal . en0,0P qu—l— |q>|:g1c P02 ¢10P ",
the 5-th term =—2(4%0,0%u, 0;0%2) /2 {ns§16‘81+1<s—1>]lulllﬂ_s
33 CIg1— 150,339 0u, 3,00 4u)13
+ 2, Calg1 (a3, u, 3,97~ %) 2},

where we used that |aly)| <{lg| — 1), 160, << ¢1), |a¥alyy enalyye 5| V2= lgl—1D,

@801 064 ep V2Ll g ).
Now we put £ p(£)2=||8u 2+ (a¥8,07u, 3,0%x), and denote max Z,(#) by
1PI=1

Ey(#). Then from the above consideration, we can get the following inequality.
& ESePZ2E Q)i+ (Cort ClYE(DR+Cylu 2
(4.3) TGEW Z G 1D En @)
+C9El(t)8§268’+2<s—2> 21425

where the condition iv") in (1.4) was used.
Next we put F,()2=E(£)24+(/4+1)2|l«|,(#)2. Because

% (4102 22,2 =2(7-+1)% Re(3P8u, 3P26)— 2 Re(/41)2(3P {a¥ay +4%) u, 9720)
20410282 [ly |l 2¢ ;4 C1 (74 1)2 | 2],
+27Z(,Z+1)2||”||ls§1€sl+1<é’“1>“u||z+1—3y
we have from (4.3) that

& FUP=2F O IA20-Hy)F 0P+ 2K (0 TCHKs— 1> Fraa ),

where yg, y and K are constants independent of /=|p|. Here we used the
followings: Cs't1(/+1)/(/+2—)ZCstt3, CH3U+2—5)Z Cstt2.

Therefore we have
(4.4) FH= f : {I1(8)+ K Ry(5)} 7ot DU,
where Ry(#)=3520Cs "2 s—1>F 41 4(2).
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Successive estimate Now in (4.1) we assume that

i |e
4.5) 1A= DY coramrainiy e,
ilp
where p is the same constant as in {£), C is a constant, 8 is a constant which
will be determined later, z and » are parameters which run over non-negative
integers. For simplicity, we abbreviate the right hand term to «;,;4,(9).
Remark that

t
fo I £11:(8)e ot PE=Dds Zaey 4, 144(2),

then, using the inequality (4.4), one can prove the following lemma in the
same way as Lemma 3.1.

Lemma 4.1. Assume (4.5) and take B=8A1K, then the solution u(x,?)
of (4.1) with null initial data satisfies that

(4.6) Fi()=2k411,11,(5).
Since |8« ;<< F,(#), it follows that
4.7 [182¢11,(£) < 2k4 1,140 (2)-

Next is the estimate of |[l«[,(#). Remark that 0ps+a*du—+060u=0u,
2)4=9=0, then one can easily verify that

dldt||ul; =(yo+yl)llu ||1+||3%||z+”8§2 Cs T s—1D Nl -
Therefore we have

Ilullz(t)éf(:{lwullz(:)-!-n T)(s)} erotr D=9,

where 77,()= 3 20Cs' P s— 1D || 2 |l141-5(2).
If we use this inequality and (4.7), by induction we can get the following
inequality:

4.8) Nl 22 11,(2) <Aker 0, 1442).

Moreover, if we remark that dpe= —a*dyu—05%%4+6u, we can get from (4.7)
and (4.8) that

4.9) 1|9 ()= Crodkrre,1+14r(8) FKit1,14r()},

where C1o is a constant independent of /, 7, 7.
Taking into account the above, one can prove the existence of a solution
in the same way as in §3. Namely we can obtain the

Theorem 4.1. Assume (1.3), iv') in (1.4), then for any given f(x, t)E
I'[0, 2] and any given initial data (u(x,0), dau(x, 0)ET,®, if 1<a<l2, there
exists a solution u(x, t) of the equation (1.1) in Q, which belongs to I'[0, 4].
If a=2, there exists hy (Zh) such that in R"X [0, &g) a solution u(x, t) exists,
whick belongs to I'[0, ).
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By the lemma of Sobolev, we can also get the corollary which corresponds
to Corollary 3.1.

§5. Uniqueness and dependence domain
Let Cpy, 1oy (%0, 29)E£2, be a backward cone defined by

Cxo,toz {<x’ t>EQ; H'lx_x0|<t0_t}1

where ,u_lz(xstl)g QIai(x, &+ Vali(x, HEEl.  Consider uy(x, £) defined already

=

by (3.1), assuming that f(x, £)=0 in C,,,. Taking into account the remark
1.3, it follows inductively that u,(x, #) and M[u;](x, #) vanish identically in
Caoter Therefore u(x, )= 7-1ui(x, )=0 in C,,;,- Thus we have

Proposition 5.1. Assume (1.3) and (1.4), then, if 1<a<2, the Cauchy
problem: L{ul=F, fEys?(82), (u(x,0), du(x, 0)Ey,*(R™), has a solution
w(x, Y D(Q) whick satisfies the following property:

If flx, )=0 in Cpypor (u(x, 0), e, 0))=0 0n 4,1 {t=0},
then u(x, £)=0 in Cgyy,-

By means of this proposition, we can obtain the

Theorem 5.1. (Uniqueness). Assume (1.3), (1.4) and that 1<a<l2.
Let u(x, £)E E? be a solution of (1.1) which satisfies that
L{u)(x, ©)=F(x, D=0 in Cy,4,,
(u(x, 0), 0(x, 0)=0 on Cg,,s N {=0},
then u(x, t) must be identically null in Cy,y,.

Proof. We show this by contradiction. We suppose that for some
(x1, 21) in Cgyypy, #(ay, 21)70. Consider the (backward) Cauchy problem:
(5.1 tL[v]=0 in R*X[0, #1], v|s=,=0, 0v|s=s,=0(x),
where 8(x)Eyy®(R™), supp [0(x)] C Cp,,, N {¢=#;}. By the transform of varia-
bles @: y=—x, s=—¢-}#;, this problem is reduced to the equivalent Cauchy
problem:

G1)  tLwl=0 in R*X[0, 4], wl,—g=0, 3,20],g——0(—),

where tL=tL(—y, —s+#; —0y, —35). One can easily verify that if L
satisfies (1.3) and iv) (or iv")) in (1.4), then t.L satisfies (1.3) and iv’) (or iv)
respectively) in (1.4). Therefore by the proposition 5.1, we can see that there
exists a solution z(x, £)Ey(R*X [0, #]) of (5.1), whose support is contained
in Czn)lon {lgl‘]_}

Taking the above into account,

0=f0tlfR”L[u]vdxdt=fot'fR”u‘L[v]dxdt—fknu(x, £)0(x)dx
- f JRICANCE)



Cauchy problem in Gevrey classes 529

On the other hand, since (%, #;)5-0, we can chose 6(x) such that

f u(z, 1)0(0)dx 0.
R”
This is a contradiction. g.ed.

Finally we remark that by the procedure of the partition of unity, we can
obtain the theorem 1.1.

Appendices

A.1. Remarks on the Oleinik’s theorem

We explain only our plan of the proof of the theorem stated in the remark
1.3, We use the same method as in [7], namely the method of elliptic regulari-
zation. Consider the Cauchy problem

(1) LO,s[u]ZLO[u]_EAuzf’ in 'Q) E>Ov

@ #l1mo=$(x), Il i=o=1h(x).
Since the equation (1) is strictly hyperbolic, this Cauchy problem is well-

posed in D3, also in € and there exists a finite domain of dependence.

Lemma. Assume the same as in the remark 1.3, then the solution u(x,¢)
of the Cauchy problem (1)-(2) satisfies that

3) lloe.(o, DIEZC NP NE4 1112 +C S, O)llp—sg
+C [ 1A, ) odt

where the constants C, C', C"' depend on k but does not depend on €.

The inequality (3) implies that {.(x, £)}.-0 is a bounded set in E74(2),
m=0,1,2,---. Therefore one can extract a subsequence {«, (x,2)};_;,.., >0
as j—oo, which converges weakly in &7(Q) for any »=0, 1,2, ... We can
see that there exists u(x, ) E3:(Q) (€ D70, %)) such that for any p and 4
and for any ve L3(Q)

(9P F . j, v) 2 —> (0POku, v)2qy, AS j—>00*®),
This gives a solution of the Cauchy problem
Lylu]l=f(x, ?) in Q,
ulimo=(x), Opt|i—o=1(x).
Let C%,,:, be a backward cone defined by

Bote= (%, HEQ; plx—2x|<ty—1},

)

* We used the following notations:
u(s, 1) ||p= 323,7u(s, )| 1.2, L £(s, ) Ik 0= 32f(s, £) || g2
[leel=, 2) |l IﬁH%Sk” tiu(e, )|z, |1£(+5 2)[lk,0 |ﬁTa§kH f (o) 2)l]Lg?
*%) Cf. [8], Chapter 2.
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where p,71=  sup _ la¥(x, HE+Val(x, DEEstel.  If for §0, flx, /=0 in
=L(x.t)e

Chotor p()=h(x)=0 on C},,,N {¢=0}, then for any e<(8, . (x, £)=0 in CL,,,
and therefore u(x, £)=0 in C},,,. Since §>0 is an arbitrary number, we have
the

Proposition. Assume the same as in the remark 1.3. Then for any
flx, HeC 0“({?) and any initial data $(x), Y(x)E Cy™(R™), there exists a solution
w(x,8)E C=(2) of the Cauchy problem (&), which satisfies the following property:

{/f S, =0 in Cypy, and if $(x)=i(x)=0 on
CroteN {2=0}, then u(x, )=0 in C,,;,.

If we use this proposition, we can prove the well-posedness in & and the
existence of a finite domain of dependence, in the same way as in §5.

A.2. Proof of Lemma 2.1.
We define the operators 4 and R;, j=1,2, -, %, by

Au=Fy_o[|€12(8)], Rpu—= gf—’xliz—}”'_ T%T ft(ﬁ)}
Then A=R;9;, 0;=—(2m)2R;A, Rj*=—R;, R;* R;=(2m)"2. Then
(alddn, d0)=(2m)*ald RiAu, R;Av)
=2m) (Au, at} R* R;Av)+(2m)4(Au, [R*, ald] R;Av)
<const. ||« {ll el RiRsAv]|+I|v |}
Here we used that R; and [Ry, a¥},]/ are bounded operators inZ,2.
By Oleinik’s lemma in [7], for |¢]=1,
llat) RiR;Av|2<const. (@ R; R Av, R;R Av).
By the way,
(@Y R RsAv, R;RNv)=(a¥ R Av, R;Rs* R Av)
+Re([a¥, Rs)RjAv, R;RAv)
<(2m)"%(a¥0v, d;v)+const. || |2 g.ed.
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Added in Proof.

After submitting this paper, the author was noticed that V. Ja. Ivrii had

succeeded, with the different method from ours, in removing the condition of
analyticity of the coefficients of the operator when the multiplicity of the
characteristic roots are at most double. This means that the condition (1.4)
may be removed.



