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1. Introduction.

Let f(z) be a function defined in the unit disk D(|z|<1). As in
[14], a point ¢ on the unit circle C(|z|=1) 1is called a Plessner
point of f provided each angular cluster set C(f, ) of f at ¢’ coin-
cides with the extended plane. Following [6], we call a point ¢’ a
Julia point of f provided in each Stolz angle 4 having one vertex at e
the function f assumes all values on the Riemann sphere except possibly
two. For z, 2°€D, we denote by p(z,2") the non-Euclidean metric

o(z, z')=—é-log [(14+a)/(1—a)], where a=|(2"—2)/(1—22")|. We call

p(z, 2’) the p-distance between z and 2. As in [9], a sequence 4(n)
of disks in D is called a sequence of cercles de remplissage for f
provided that the p-diameters of 4(n) tend to zero, and the images
f(d(n)) cover all of the Riemann sphere, with the possible exception of
two sets E(n) and G(n) whose spherical diameters tend to zero as
n—co. The sequence {z,} of centres of the disks {4(n)} is called a
sequence of p-points for f. A point e” is called a p*-point of f provided
each Stolz angle 4 with one vertex at e’ possesses a sequence of p-
points of f.

The content of this article has six more sections. In section 2, we
discuss the inclusion property among Plessner points, Julia points,
and p*-points. Then we present a sufficient condition of normal
functions in section 3. In section 4, we construct some holomorphic

*) This research was supported by NRC of Canada. I am indebted to Professors Piranian and
Seidel for valuable communication in this research.
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functions with all points of p*-points while in section 5 we deal with
dense sets of p*-points. After that we discuss some measurable and
topological properties among these three different sets. Finally, on the
last section, we study the relation between the asymptotic behaviour
and the distribution of p-points.

Recently, in this Journal (Kyoto University), we co-worked with
Gauthier on the distribution of cercles de remplissage for functions
having spiral asymptotic values. We solved a previous conjecture of
Gauthier about a function f which is meromorphic in D and approach-
es some value quickly on a spiral, then f has many sequences of
o-points. More precisely, we have shown the following two results [9,
Theorems 1 and 2].

Theorem A. Let f be a function meromorphic in D. Suppose that for
some spiral o, [ satisfies

™) | f(z) —w|=exp(—1/(1—|2]|))*** for zeo,

where a>1, e>0, and w is a complex number. Then either f=w or in
each Stolz angle of opening n/a, f has a sequence of p-points.

The same conclusion holds if we replace the condition (*) by a
restricted spiral and a function omitting some value vw. To state
the result precisely, we call ¢ a bounded hyperbolic spiral, if for any
point ¢ on C and any segment L in D with one vertex at e, the

sequence of points {z,}, where G{zn}zoﬂL, |z,] /1, satisfies lim sup

n=»oo

pﬂ<oo’ Where Aan:p(zn’ zn+l)‘

Theorem B. Let f be meromorphic in D and omit some value v.
Suppose that for some bounded hyperbolic spiral o, f tends to a value w
different from v along 6. Then either f=w, or in each Siolz angle, f
has a sequence of p-points.

The above Theorem B will be used to prove some holomorphic
functions having all points of C to be p*-points in Section 4. And the
farther extension of Theorem A concerning the relation between the
asymptotic behaviour and the distribution of p-points will be studied
on the last section.

2. Inclusion property.

For a function f defined in D, we denote the sets of all Plessner
points, Julia points, and p*-points by P(f), J(f), and p*(f) respectively.
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We have the following simple but interesting result.

Theorem 1. p*(f) CJ(f) CP(f).

Proof. Let e’ p*(f), 4 be a Stolz angle with one vertex at e”, and
4" be a proper subangle of 4 having one vertex at the same point e®.
Then by the definition of p*-point, 4" possesses a sequence of p-points
{z,} of £ Consider the corresponding sequence of cercles de remplis-
sage {4(n)}. Since the p-diameters of 4(n) tend to zero and 4" is a

proper subangle of 4, there is a positive integer N such that uA(n)C

4. Tt follows from a well-known result (see [9, Lemma 3]) that f as-
sumes every value on the Riemann sphere except possibly two infinitely

often in the union de(n). This shows that e?=J(f) and therefore

n=N
e*(f)CJ(f). The proof of J(f) CTP(f) follows immediately from the
definition of Julia point.

Naturally, we may ask whether the inclusion is proper. The follow-
ing two theorems answer this question.

Theorem 2. There exists a holomorphic function f in D such that
J(f) =¢ and mea.P(f)=2x.

Proof. Let f be the elliptic modular function which omits three
values 0, I, and oo in D. Clearly J(f) =¢. Moreover, by a theorem of
F. Bagemihl [1, Theorem 1], we know that mea.P(f) =

Theorem 3. There exists a holomorphic function f in D such that
o*(f)=¢ and mea.J(f) =2r.

Proof. Let F(2)=32*". Then we have

[F'(2)|=|14+22+42°+ 82"+ --- |
SI42r4+2(r+r) +2(7 + 17+ +17) 4 -
L2[1+r+ P+ + (o) 4 -]
=23r=2/(1-r)=2/(1—|z2|).

It follows that [F'(2)|/(14+|F(2) 1D <Z|F(2)| <2/(1—|2z])<4/(1—|z]|?).
By a theorem of Noshiro, Lehto, and Virtanen [21, p.87, Theorem 7],
we know that F is normal in D.

Now, applying a theorem of Littlewood, Paley, and Zygmund [7, p.
228], there is a choice of signs {¢,} such that the function f(&) =32
has a finite radial limit almost nowhere. By using the same method as
above, we find that



176 J.S. Hwang

7@/ A+1f(2) ) <4/(1—|z[*).

Therefore f(2) is also normal in D. According to [9, Lemma 1] f(2)
has no sequence of p-points. We thus have p*(f)=¢.

It remains to prove mea.J(f)=2x. By a theorem of Privalov [5,
Theorem 8.1 and Corollary 1], we know that the set of Fatou points
of f with Fatou value equal to infinite must be of measure zero, and
therefore the set of all Fatou points of f with finite or infinite Fatou
value must also be of measure zero. It follows from a theorem of
Plessner [5, Theorem 8.2] that the measure of P(f) equals to 2z. It is
sufficient to prove that J(f)=P(f). Let e’€P(f), if e’&J(f), then
there would be a Stolz angle 4 having one vertex at ¢ such that
f omits at least one value v in 4. By virtue of the Gross-Iversen’s
Theorem [5, Theorem 5.8], we can see that v is an asymptotic value
of f at €%, It follows from Lehto-Virtanen’s Theorem [15, Theorem 2],
f has the angular limit v at e which is absurd. We thus establish
that P(f) CJ(f) and therefore by Theorem 1, we have J(f)=P(f).
This completes the proof.

3. Gap series and normal functions.

The function F(2)= };2*" constructed in the previous theorem present
a method to find a sufficient condition of normal functions. For this,
we have the following general theorem.

Theorem 4. Let f(2)=Ya,2* be a holomorphic function in D. If
la,| <M and liminf k,/k,_,=k>1, then f(z) is normal in D.
Proof. From the given condition, there is a positive integer N such
that
k,>ck,_, provided n>N, where 1<c<k.
This in turns implies that
[ku/C] 2ku—l)

where n>N and [z] denotes the greatest integer<z.
For |z|=r>0, we have

£ ()| SM(Zy+ Tk, where 3= Zk,

<M,k r*, where M, is some positive number,
N
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SM {0 =1/c) by + (1 = 1/c) by ¥+t 4 ---},

-<—A/Iz{(1+r+__,+rk1v)+(r[ku+l/cj+...+rlN"’l)+...}
<M,/(1—r)=M,/(1—|2]|), where M,>M,.

Thus f(2) is normal in D on account of the same reasoning as in
Theorem 3.

With the help of Theorem 4, we are able to give an alternative
proof of Theorem 3 without using the theorem of Littlewood, Palay,
and Zygmund. Our method was suggested by Professor Piranian.

Theorem 5. There exists a sequence of positive integers {k,} such that
the function f(z)= Y 2* satisfies p* (f) =¢ and mea. J(f)=2rn, and further
f(2) has no finite asympiotic values.

Proof. Since lim(1—1/k)*=e"!, inductively we can choose a se-

k—>c0

quence of positive integers {k,} such that

0 ri<1/200,
) rirT e 487 2k, /2, and
3) Sk <ko/4,

where r,=1-1/2%,, s,=1—1/k,, and n=m, m+1,---.
Let f(2) = 2*, then we have

F(re) =f(5.6") | = | T (rir—sirde™|

> (rr—st) — [ 5 (=) + 3 (i—st)]

> (r,=s,) (i~ e bste ) = 8 (e —s) = 1/27%, (by (1))
> (ra=s.) [k/2= 3, (44557 1= (D), (by (2))
> 5y (ka/2= 5 k) 0 (1) 21/8—0 (D), (by ).

It follows that |f(r,.e") —f(s.e®)| >1/10, uniformly on [0, 2z], as m—>oco.
Thus the function f(z) has no finite asympotic values.

Now, by virtue of Theorem 4, f(2) is normal in D and therefore
we have p*(f)=¢. The proof of mea.J(f) =2z lies on the same pat-
tern as in Theorem 3.

Theorem 5 has an important application to the following problem
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asked by Lohwater and Piranian [16, p.16]:

Whether there exists a meromorphic (or holomorphic) function f(z)
that has no radial limits and whose Nevanlinna characteristic function
T(r, f) ([20]), as a function of 7, has arbitrarily slow growth.

This question has been answered by G.R. MacLane [17] and [18]
for meromorphic and holomorphic functions respectively. From a
well-known theorem of Nevanlinna [20, p.220], we know that T'(r, f)
<log M (r, f), where M(r, f)=Max | f(2)|, for |2z|=r. Therefore, for
holomorphic function, the above problem becomes to find a function f
that has no radial limits and whose maximum modulus has arbitrarily
slow growth. Naturally, we may ask whether we can require the
function f to be normal in D. The following theorem answers this
question.

Theorem 6. There exists a normal holomorphic function f(z) that
has no finite radial limits and whose maximum modulus has arbitrarily
slow growth.

Proof. Let 1<u(r) 1 co(r11) be given, Inductively we can choose a
sequence of positive integers {k} satisfying the equations (1), (2),
and (3) in Theorem 5, and also the inequality

lz[*<27"u(l2]), (0L |2|<D).
Then the function f(2) =Y 2" satisfies M(r, f)< 3 27"u(r)=p(r). The

conclusion now follows from Theorem 5.

This theorem is sharp because any unbounded normal holomorphic
function must have the Fatou value oo on a dense subset of C [4,
Corollary 17.

The function f(2) of Theorem 6 is only a special case of this class
of functions f,(z) = X krz*. In general, these functions f,(2) need not
be normal in D. We shall now prove a necessary and sufficient condi-
tions of f,(z) to be normal in D.

Theorem 7. Let f,(2) =D krz*, where k,/k,_,—oc0, as n—oco, then we
have f,(2) is normal if m<0 and conversely f,(z) is not normal if m>1.

Proof. The sufficient condition is an easy consequence of Theorem
4. We need only to prove that if m>1 then f,(2) is not normal in D.

Our proof comes from that of Hayman [11, p.22], we sketch it
here. Let |z|=e "*, then by [l1, p.22], we have

| fa(2) | =[(140(1))/e]k;—o0, and
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|fa 1/ A+ £u(2) ) = (e+0 (1)) /k7 7' —0.

It follows from [11, Theorem 6] that f,(z) possesses asymptotic values
at every point of C, and by the above estimate, these asymptotic values
must all be infinite.  Now, if f,(2) were normal in D, then by the
aforementioned theorem of Lehto-Virtanen, f,,(2) would have the angular
limit oo at all points of C. This contradicts to the aforementioned theo-
rem of Privalov.

Theorem 7 has an important application to the existence of a
non-normal function such that its intergral is normal. As in [12],
Hayman and Storvick answered a question of Drasin by showing that
neither the derivative nor the integral of a normal function is neces-
sarily normal.

Now, let f(2)= XY k,2*, k,/k,_,—o0, then by Theorem 7, we know
that f(2) is not normal in D. We set

F(2)= S:f(w) dw= S (k,/(k,+1)) 2+,

Again, by Theorem 7, we can see that the integral F(z) is normal in
D.

We now consider the function f(z) as the derivative of F(2). We
thus obtain

Theorem 8. There exists a normal function f(2) for which the deriva-
tive f'(2) is not normal and f'(2) possesses the asymptotic value oo at
every point of C.

Unfortunately, the above method cannot produce a normal function
such that its integral is not normal

Another application of Theorem 4 is to determine whether a gap
series has a point-tract or arc-tract [19, p.5]. In this connection,
MacLane [19, Example 5] proved that the function f(z) = >la,2', where
a,=(—1)"/n and k,=4", has no arc-tract. This result follows immedi-
ately from Theorem 4 and a theorem of MacLane [19, Theorem 17].

4. Holomorphic functions with all points of p*-points.

The functions constructed in Theorems 2 and 3 both give the result
p*(f)=¢. Therefore we may ask whether there is some function f
for which p*(f)2¢. This can be seen from the following function
constructed by Collingwood, and Piranian [6, Theorem 1], which
is a Tsuji function and possesses the property p*(f)=C,
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f(z)=2a./(z—=z,),

where z,= (1—n""2)¢' 8" q, are sufficiently small. However this function
is only meromorphic in D. The following theorem gives us a holomor-
phic function satisfying o*(f) =C, but f is not a Tsuji function.

Theorem 9. There is a holomorphic function f in D for which we
have o*(f)=C.

Proof. Let z,=1-—1/n?, C,={z:|2z|=z,}, 4 a Stolz angle having one
vertex at the point z=1, and let r,=C,—4. By joining the lower end

point of r, to the upper point of 7,,,, we can construct a spiral a in
D. Since

1 (N—z,z,.)+ (x, 01— x,)
= y Tppy) =5 1 -7 + et Al
=0l Tan) =g 08 (1 — (o)
_1 (n+1)*—1

2 log s’y

it follows that po,—0 as n—oo.

Clearly for any point e and any segment L with one endpoint at e”,
the sequence of points {2,}, where \U{z,} =anL, satisfies p,=p(z,,
2,41)—0. This shows that a is a bounded hyperbolic spiral.

Now, it is easy to see that @ belongs to the Arakélian’s class [10,
Definition 1. 8] and therefore by the Arakélian’s tangential approxima-
tion [10, Theorem 1.11], we can find a nonconstant holomorphic
function f which tends to zero along a. By virtue of [9, Theorem 2],
we can see for any point e” and any Stolz angle 4 having one vertex
at e, f possesses a sequence of p-points. We thus establish that e
Is a p*-point of f and therefore po*(f)=C.

5. Holomorphic functions with dense sets of p*-points.

The conformal mapping f* constructed by Lappan and Piranian [14]
has a dense set of Plessner points on C. However f* is normal in D
and therefore by [9, Lemma 1], it has no sequence of p-points. Thus
the set of p*-points of f* is empty. On the other hand, if E is a set of
measure 0 on C, then by [6, Theorem 3], there exists a Tsuji function
f of bounded characteristic for which every point of E is a p*-point.
But this function f is not holomorphic in D. For holomorphic function,
we shall prove the following result which generalizes to that of [14].

Theorem 10. If E is a countable dense set on C, then there is a



Plessner points, Julia points, and p*-points 181

holomorphic function f of bounded characteristic jor which every point of
E is a p*-point and mea.p* (f)=0.

To prove this theorem, we shall need three lemmas.

Lemma 1. If {R,}, m=1, 2,..., is a countable system of rays, there
is a sequence of points {p,)}, where |p,|=1—1/n? such that each ray R,
contains infinitely many of the points p, ., where {p,.} is a rearrange-
ment of {p,}, for which p,,=p®m.s Pnni)—0, as n—oo.

Proof. With respect to this order R,, R,, ..., we choose

(1=1/2%e"*e R, ,(1-1/3)e"?c R, (1-1/4)e®ER,,...,
(1—=1/n?)e»e R, (1-1/(n+1)")e™ SR, ..,
(I1=1/(n4a)?)e™+ =R, ...

Let p,= (1—1/n?) e, then clearly each R, contains infinitely many of

the points p,.
The distribution of the index set {n} reads as follows:

1, 2, 4,..., 1+n(n+1)/2,...
3, 5,
6,

m(m+1)/2 .y [t D)+ (n—1) @m+n—2)1/2,.. .

where n=0, 1, 2,..., and m=1, 2,... From this arrangement, we can
see for each ray R,, the sequence of points p,,E R, can be written as

Pm.=1—a, e, where a,,=4/[m(m+1)+ n—-1)2m+n—-2)]%

It iS ObViouS tllat P(Pm.us Pm.n+l) SMP(IPm.nl’ Ip'n.n+l|)’ fOr some pOSi-
tive number M, and therefore it is sufficient to prove that

p;.n:p(lpm,nl’ |Pm.n+l|)_)0, as n—>oo,
We have the following computation

1 (A= (=a,,) (1=au,)) + @, —anasr)

A 5o
frn=9 8 (1—(1=ay.,) (1=ap,01)) — (@ o= nir)
=_L am,n_am,nam.n-l-l_
2 log am.n+1_am.nair;,'r;:l-l
1 [m(m+1)+n@m+n—1)]*—4
=11 -
2 8 Tmt )t (i) @mbn—p—a O as noo
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This completes the proof of Lemma 1.

The next lemma is a result of the Contraction Principle as intro-
duced by Heins [13] which is based upon the following Harnack’s
inequality

w—2
| 1 -2

< [Elilﬁ.l,_,
1+ |wz|

w, z€D.

Lemma 2. For any Blaschke product

— ﬁn . pn_z
PO

there corresponds the Blaschke product

17 Pl —2
b@ =1 e

such that |b(r)|=m(r; b)<m(r;B) and M((r;B) <M(r;b)=b(—r),
where m(r; f) =min| f(re?®) |, M(r; f) =Max]| f(re) |, 0<6<2r.

The last lemma we need comes from that of Bagemihl and Seidel
[3, Example 3].

Lemma 3. The function f(z):exp(%—%)ﬂ—ftf;zz, where r,=1-—

1/n%, is of bounded characteristic in D for which lim|f(y,)|=oc0, where
ynz (xn+xn+1)/2'

Proof of Theorem 10. Since E=U {z,} is countable we can clearly
choose a countable system of rays R,, m=1, 2,..., such that every ray
R, has one endpoint at a point z,€E, and further such that every
Stolz angle with one vertex at such a point 2z, contains infinitely many
of the rays R,. By virtue of Lemma 1, there is a sequence of points
{p.}, where |p,|=1—1/n% such that each ray R, contains infinitely
many of the points p, , for which p, ,—0, as n—>oco. Since };(1—|p,|) =
21/n*< oo, the Blaschke product

— i)n Pn_z
B(z) _H pn l_ﬁnz

defines a nonconstant bounded holomorphic function in D with B(p,)
=0 for every n. We define the function f(2) =F(2) B(z), where F(2) =
exp(— X (2+=2,)/(2—=2,)n*). Evidently f(2) is holomorphic and bounded
characteristic in D, and therefore by Nevanlinna’s Theorem [5, Theo-
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rem 2. 18] f(z) possesses radial limits at almost all points of C, so that
mea.p(f)=0. Thus by Theorem 1, we have mea.p¥(f)=0.

It remains to prove that each point of E is a p*-point. For any
point ¢*E and any ray R, with one vertex at e'*, by virtue of [9,
Lemma 2], it is sufficient to find two sequence of points {P,}, {Q,}
such that P,, Q,, €R,, P,, Q,—¢*, p(P,, Q,)—0as n—o and X(f(P,),
f(QD))>M> 0,where x(a, a’) is the chordal distance between a and a’.

Now, let us consider the sequence {p,} and the subsequence {p,..}
of {p,} for which p,.€R,, m=1, 2,... We set P,=p, ., and Q,= (p...+
Pmni1)/2, then by Lemma 1, we have p, ,—0, as n—o0 which in turns
implies

p(Pn’ Qn)_)(), as n—oo.

Since f(P,) =0, it is sufficient to prove that lim|f(Q,)|>0.

Let F.(2) =exp((e’*+2)/(e*—2)) B(z), then by the property of
the function F(2), it is sufficient to prove that lim|F,(Q,) | >0.

To do this, we form the Blaschke product

by =11 |Bale" =z

I—[p.le7 2’

By virtue of Lemma 2, we know that b,(z) attains its minimum on the
radius [0, ] and [b,(re’) |=m(r; b,) <m(r; B). Lety,=|Q,|¢" and

fi(z) =exp ((e*+2) /(e —2))bi(2),
then by Lemma 3, we have lim| f,(y,) | =co. It follows that

lim | F, (y,) | 2lim | £ (3.) | = co.

Applying the same idea as in [3, Example 3], we can switch from
¥, to @, such that lim |F,(Q,)|=o. This completes the proof of

Theorem 10. "w

6. Measurable and topological properties.

For a function f defined in D, let F(f) denote the set of all Fatou
points of f. The well-known Plessner Theorem [5, Theorem 8.2]
claims that if f(z) is meromorphic in D, then almost all points of C
belong to F(f)\P(f). We may ask whether the analogous theorem
holds for either J(f) or p*(f) instead of P(f). The answer of this
question is negative. Actually this can be seen from Theorems 1 and 2.
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Let us make a precise theorem as follows.

Theorem 11. There exists a holomorphic function f in D such that
mea. F(f)UJ(f) = mea. F(f) Up*(f)=0.

This theorem shows that there is no analogous result regard to the
measurable property and therefore we may ask whether there is some
similar result concerning about the topological property. More pre-
cisely, we may ask whether the Meier’s analogue of Plessner’s Theorem
is true. For this purpose, let us recall to the definition of Meier
points [5, p.153]. A point e” is called a Meier point if (1) the cluster
set C(f, €”) is subtotal, and (2) the chordal cluster set C,u(f, €°)=
C(f, €*) for all values of ¢ in [—=/2, n/2]. We denote the set of all
Meier points by M(f). We shall prove

Theorem 12. If f(2) is meromorphic in D, then all points of C except
a set of first category belong to M (f) Up*(f), and therefore to M(f)U
J(H.

To prove this theorem, we first prove the following generalization
of Collingwood and Lohwater [5, Theorem 8.9].

Theorem 13. If f(z) is normal in D, then all points of C except a set
of first category belong to M(f).

Proof. Let e’ M(f)¢, the complement of M(f), then there is some
chord p(¢) for which C,u(f, €°)xC(f, ¢’). Since f is normal, by
virtue of [9, Lemma 1], f has no sequence of p-points. It follows from
[8, Theorem 1]

Cp(o)(f, e)=NC,(f, e,

where 4 varies over all Stolz angles which contain p(¢).
Evidently, there is some Stolz angle 4(¢) such that

Cow (f; €)% C(f, ).

According to the Maximality Theorem of Collingwood [5, Theorem
4. 10], the set M(f) is of first category. This completes the proof.

Proof of Theorem 12. Suppose on the contrary that the complement
(M(f)Up*(f))° is of second category. Then the closure (M (f) Up*(f))¢
contains an arc A of C. For any point e’ AN (M(f) Up*(f))¢, there is
a Stolz angle 4(0) which contains no sequence of p-points. By using
the same method as in [5, p.155], there can be found an annular
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trapezoid T for which A is a part of the boundary of T and T con-
tains no sequence of p-points.

Now, let 2=g(w) be a conformal mapping from D,(|w|<1) onto T
and let F(w)=f(g(w)). Then by [9, Lemma 5], F is normal in D,.
Applying Theorem 13, we thus conclude that M(F)€ is of first category
in g7'(4A) and so is M(f)¢ in A. This contradiction establishes our
assertion.

The proof of the above two theorems depends heavily on Colling-
wood’s Theorem. Naturally we may try to find some sort of analogous
result of Collingwood’s. By applying the same method as in the proof
of Theorem 12, we obtain the generalization of Collingwood [21, p. 65,
Theorem 8] concerning the dense set of Plessner points.

Theorem 14. If f(2) is meromorphic in D and p*(f) (or J(f)) is
dense on an arc A of C, then p*(f) (or J(f)) is residual on A.

Now, let W,(f) be the set of all points e of C for which the
radial cluster set C,(f, €') is total. Collingwood [21, p.65 Theorem 9]
proved that if f(z) is meromorphic in D, then the set W,(f) and P(f)
differ by a set of first category on C. But the same thing is not true
for p*(f) or J(f) instead of P(f) due to Theorem 2 and another theorem
of Bagemihl and Seidel [2, Theorem 5].

7. Spiral asymptotic and distribution of p-points.

In this last section, we are going to prove some relations between
the asymptotic behaviour and the location of p-points.

Theorem 15. If f(2) is a nonconstant meromorphic function in D and
has an asymptotic value ¢ along a spiral a, then there is a residual set
of radii such that each one of them contains a sequence of p-points.

To prove this theorem, we need a uniqueness theorem for normal
functions which is characterized by a sequence of Jordan arcs {J,}
such that J, tend to an arc on C uniformly. Such a sequence of
Jordan arcs is called a Koebe sequence. The following theorem was
first stated and proved by Bagemihl and Seidel [4, Theorem 1], but
our method is different from them.

Theorem 16. Let f(2) be a normal meromorphic function in D. If
f(2)—>c along a Koebe sequence of arcs {J,}, then f(z)=c.

Proof. Let J,»A={e": 0,<0<0,} as n—ooo, d={z :0< 2| <1, 6,<
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arg 2<0,}, and let T,,(A) be the domain consisting of all points of 4
where the harmonic measure of A with respect to 4 is at least 1/2.
Then by a result of Hayman [l1, Lemma 6], the function g(2) = (f(2) —
¢)/(14+c¢f(2)) is holomorphic and bounded by l in T,,(A) and g(2)
tends to zero along J,.

Now, let z=h(w) be a conformal mapping from D, onto the region
bounded by A and the subtended chord. Then the function F(w)=
g(h(w)) is bounded holomorphic in D, and tends to zero along A~'(J,)
which is clearly a Koebe sequence in D,. It follows from the unique-
ness theorem of Koebe’s Lemma [5, p.42] that F(w) =0, so is f(2)=c.

Proof of Theorem 15. Let S be a sector bounded by two radii and
a portion of C. We want to prove that S contains a sequence of
o-points. To do this, we denote 2=h(w) a conformal mapping from D,
onto S. If S did not contain a sequence of p-points, then by [9,
Lemma 5], the function F(w)=f(h(w)) would be normal in D,. Clearly
the intersection a« NS is a Koebe sequence in D and so A27'(aNS) in
D,. By virtue of Theorem 16, we would have f(2) =c which is absurd
and therefore we conclude that S possesses a sequence of p-points.
The assertion now follows from [2, Theorem 5].

In view of the above proof, we find that

Corollary. Under the hypothesis of Theorem 15, the set p*(f) is
dense on C.

Theorem 15 describes that how many of the radii possess a se-
quence of p-points. But it does not tell us how many of rays with one
vertex at a point of C possess a sequence of p-points. The following
two theorems will give some answers of this problem.

Theorem 17. Under the hypothesis of Theorem 15, there exists a resid-
ual set of points {z,} on C such that for each z,, there is a residual set
of rays R, terminating at z, for which every R, possesses a sequence of
p-points.

Proof. According to Theorem 14 and the above Corollary, we can
see that o*(f) is a residual set on C. The assertion now follows from
[2, Theorem 9].

Now let us recall to the definition of bounded hyperbolic spiral [9]
as was mentioned in the proof of Theorem 9. With the help of this
special spiral and an application of [9, Theorem 2] and [2, Theorem
9], we can improve Theorem 17 as follows.
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Theorem 18. Suppose that f(z) is a nonconstant meromorphic function
and omits one value v in D. If f(z) tends to a limit wxv along a
bounded hyperbolic spiral a then for each point € of C, there is a resid-
ual set of rays R, terminating at e such that each R, possesses a se-

quence of p-points.
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Added in proof: Open problem.

Let f,(2) be the function defined in Theorem 7, where %,/k,_,—K>1.
We conjecture that f, is normal if and only if m<0. We posed this
problem for K=co in the Detroit Meeting and recently, it has been
solved by L. R. Sons [22].



