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1. Introduction.

Let f ( z )  b e  a function defined in the unit d isk  D a  z  I  < 1 ). As in
[ 1 4 ] ,  a poin t e'" on  th e  u n it c ir c le  C (1 z 1  = 1 )  is  c a lle d  a  Plessner
po in t o f f  provided each angular cluster set C ( f ,  e " )  of f  a t e "  coin-
cides w ith  th e  ex tended  plane. F o llo w in g  [6 ], w e  c a ll a  point e "  a
Julia point of f  provided in each Stolz angle d  having one vertex a t  e"
the function f  assumes a ll values on the Riemann sphere except possibly
two. F o r  z , z 'E D , w e  d e n o te  b y  p (z , z ')  th e  non-Euclidean metric

p(z , z ')
I  

1o g  [(1 + a )/ (1 — a)], w h ere  a= I (z'—z)/(1—zz') W e ca ll
2

p ( z ,  z ')  the p-distance betw een z and z'. A s in  [9 ] ,  a  s e q u e n c e  (n)
o f d isks in  D  i s  c a l le d  a  sequence of cercles de rem plissage for f
p ro v id ed  th a t th e  p-d iam eters of ( n )  tend to  zero, and the images
f  (4  (n ) )  cover all of the Riemann sphere, with the possible exception of
tw o  sets E  ( n )  an d  G  (n )  w hose spherical d iam eters tend to  zero as

co Th e sequence {z„} o f cen tres  o f th e  d isk s  { 4 (n )}  is  c a lle d  a
sequence of p-points for f .  A point e "  is called a p*-point of f  provided
each Stolz angle 4  w ith  one vertex a t  e "  possesses a  sequence o f  p-
points of f .

The content of th is  article h as six more sections. In section 2 , we
d iscu ss the inclusion p ro p erty  am o n g  P lessn er points, Julia points,
a n d  p*-points. T h e n  w e  p re se n t a  suffic ien t condition of normal
functions in section 3. In  section  4 ,  we construct som e holom orphic

* )  This research was supported by NRC of Canada. I  am indebted to Professors Piranian and
Seidel for valuable communication in this research.
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functions w ith  all points of p*-points w h ile  in section 5 w e deal w ith
dense sets of p*-points. A fter th at w e d iscu ss so m e m easu rab le  and
topological properties am ong these three different sets. Finally, on the
la s t section, w e  s tu d y  the relation betw een the asymptotic behaviour
and the distribution of p-points.

R ecen tly , in  th is  Jo u rn a l (Kyoto University), w e co-w orked w ith
Gauthier on the distribution of cercles de rem plissage for functions
hav ing spiral asym ptotic values. W e so lv ed  a  prev ious conjecture of
Gauthier about a function f  w h ich  is meromorphic in D  and approach-
e s  so m e  value q u ick ly  on  a  sp ira l, th en  f  h as  m an y  seq u en ce s  of
p-points. More precisely , w e have shown the fo llow ing tw o results [9,
Theorems 1 and 2].

Theorem A .  L e t f be a function meromorphic in D . Suppose that for
some spiral a, f satisfies

(* ) f ( z )  —  w  =  e x p  ( —  1  /  ( 1  —  I z!))'+ • for zca ,

w h e re  a l, s > 0 , and w is a  complex number. T h e n  e ith e r  fa - w or in
each Stolz angle of opening f  h a s  a  sequence of p-points.

The sam e conclusion h o ld s  i f  w e  rep lace the cond ition  (*) b y  a
restricted  spiral and a function om itting som e va lu e  v=  w . To state
the resu lt precisely, w e call a a bounded hyperbo lic sp ira l, if fo r any
point e "  on C  and a n y  segment L  in  D  w ith  one vertex  a t  e " ,  the

sequence o f po in ts  {z„}, where u  (z„) =a r1L , Iz n 1 7 1 ,  satisfies lim sup

p„<co, w here p„ , p(z„, z„,).

Theorem B .  L e t  f  be meromorphic in  D  a n d  o m it  some value v.
Suppose that fo r some bounded hyperbolic spiral a ,  f  tends to  a value w
different from v along a. Then either f  w ,  o r  in  each Stolz angle, f
has a  sequence of p-points.

T h e  above T heorem  B  w ill b e  u se d  to  p ro v e  so m e  holomorphic
functions having all points of C to  b e  p*-points in  Section 4. And the
farther extension of Theorem  A  concern ing the relation betw een the
asymptotic behaviour and the distribution of p-points w ill be stud ied
on the la s t  section.

2. Inclusion property.

For a function f  defined in  D ,  w e  d e n o te  the sets of a l l  Plessner
points, Julia points, and p*-points by P ( f ) ,  J( f ) ,  and p * (f ) respectively.
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W e have the following simple but interesting result.

Theorem 1. p* (f) CJ (f) OEP (f).

P ro o f. Let e"E p* (f), 4  b e  a  Stolz angle w ith  one vertex a t  e " ,  and
4' b e  a proper subangle of 4  h av in g  one vertex a t  the sam e point e".
T hen by the definition o f p*-point, Zr possesses a  sequence o f p-points
fz,J of f . Consider the corresponding sequence o f cerc les  de remplis-
s a g e  {4 (n)}.. Since the p-diameters o f 4 ( n )  tend to  zero and i s  a

-
proper subangle o f 4, th e re  is  a positive integer N  such  that v 4 (n )

n  N

4. It follows from a  w ell-know n  resu lt (see  [9, Lem m a 3 ]) that f  as-
sumes every value on the Riemann sphere except possibly two infinitely

-
often in the union v  4(n). This shows th a t  e E J ( f )  and therefore

n  N

p* (f ) cJ (f ).  The proof o f  J ( f )  c P  ( f )  follows im m ediately from  the
definition of Julia point.

N aturally, w e m ay ask w hether the inclusion i s  proper. The follow-
ing two theorem s answer this question.

Theorem 2. There exists a  holom orphic function f  i n  D  such that
J ( f )  =0  an d  mea.P(f) =27r.

P ro o f. Let f  b e  th e  ellip tic  m odu lar function  w h ich  om its th ree
values 0, 1, and co  in D .  Clearly J  ( f )  = 0 .  M oreover, by a theorem of
F. Bagemihl [1, Theorem  1], w e know  that mea.P(f) =27c.

Theorem 3. There exists a  holomorphic function f  i n  D  such that
p*(f )=Ø  a n d  mea.J ( f) =27r.

P ro o f. L e t  (z ) = E zz". T hen w e have

I F'(z)1 =11+ 2z+ 4z 3 + 8z7 + •••
_G1+2r+2(r 3 + r 3) +2 (r 7 + e + r 7 +r 7 ) +•••
< 2 [1 + r+  (r'+71+ (7 4 -1-r5 d-r6 -kr7 ) +•••]
=2Er' , 2/(1 —r) =2/(1— 1z1).

It fo llow s that IF  (z) 1 / (1 +  F  (z) 1 2 ) 1 F (z) 1 2 /  —  I z I ) (1— I z 12).
By a  theorem  of Noshiro, Lehto, and Virtanen [21, p. 87, T h eorem  7],
w e know  that F  is  normal in D.

Now, applying a  theorem o f Littlewood, Paley, and Zygmund [7, p.
228], th e re  is  a  choice o f s ig n s  fe,J such that the function f  (z ) = Ez„z3"
has a f in ite  radial lim it a lm ost now here . B y using  the same method as
above, we find that
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I['(z) 1 /(1+ 1 f (z) I zI 2 )•

Therefore f ( z )  is  a lso  normal in D .  A ccording to  [9, Lem m a 1] f (z )
has no sequence o f p-points. W e thus have p* (f) =0.

It rem ain s to  p ro ve  mea. J (f )=  2r. B y  a  theorem  o f  Privalov [5,
Theorem 8.1 and Corollary 1 ] ,  w e know  that th e  s e t  o f Fatou points
of f  w ith  Fatou value equa l to  in fin ite  must b e  o f  m ea su re  zero, and
therefore the set of a ll Fatou points of f  w ith  f in ite  o r  in fin ite Fatou
value must a ls o  b e  o f  m easure zero. It fo llow s from  a  theorem  of
Plessner [5, Theorem 8.2] that the m easure of P ( f )  equals to  2z. It is
su ffic ien t to  p rove that J ( f ) = P ( f ) .  Let P E P ( f ) ,  if e " E J ( f ) ,  then
there w ou ld  be a  Sto lz angle J  h av in g  one vertex a t  e "  such that
f  om its at least one va lue y in  J. B y  v i r t u e  o f  th e  Gross-Iversen's
T heorem  [5, Theorem 5.8], w e can  see  th at y  i s  an  asym ptotic value
of f  a t  e " .  It follows from Lehto-Virtanen's Theorem  [15, Theorem 2],
f  has the an gu la r  lim it y  a t  e "  w h ic h  is  absurd. W e thus estab lish
that P ( f ) c J ( f )  and th ere fo re  b y  T h eo rem  1, w e  have J ( f )= P ( f ) .
This completes the proof.

3. Gap series and normal functions.

The function F (z ) ,  E z"  constructed in the previous theorem present
a method to find a  sufficient condition of normal functions. F o r  this,
w e have the following general theorem.

Theorem 4 .  Let f ( z ) ,  Ea„2" be a  holomorphic function i n  D. I f
la„1_<M and liminf k„/k„_1 = k > l ,  then f(z) is normal in D.

Proof. From the given  condition, th ere  is  a positive in teger N  such
that

k„>ck„_i provided n > N , w here 1<c<k .

This in turns im plies that

[k„/c]>k„_„

w here n > N  and [ x ]  denotes the greatest integer <x.
For I z j = r>0, w e have

N

If (z ) I _.-/1/(E1+ Ek„r" - 1 ) , w here E i =

<M ,Ek„r", w here M , is som e positive number,
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.1t12 1(1-1/c)k„,7 - kAr + (1-1 /c)k ,,,,,r 1"1 +1 + •••},

w here M '

<M ' t o  + r _ E r k N (r DN +3/c3+ rk N  +1) ±  ...}

GM ,/(l— r) = M 3/ (1 —  I z ,  where /14-3>M2.

T h u s  f (z )  is  n o rm a l in  D  o n  account o f  t h e  sam e reason ing a s  in
Theorem 3.

W ith  th e  h e lp  o f  T h eo rem  4 , w e  a r e  a b le  to  g iv e  an alternative
proof o f  T h eo rem  3  w ith o u t u s in g  th e  theorem  of Littlewood, Palay,
and Zygmund. Our m ethod was suggested by Professor Piranian.

Theorem 5. T here ex ists a  sequence of  positiv e integers { k„1 such that
the function f (z ) ,  E z "  satisf ies p*(f )=0 an d  mea. J(f )=27r, an d  f urther
f ( z )  h as  no f inite asym ptotic values.

Pro o f . Since lim (1-1/k)k= e - 1 , in d u c t iv e ly  w e  c a n  c h o o s e  a  se-

quence of positive integers tk„} such that

(1) it+1<1/2—",
(2) r;',7-1+•••+.5;',7-' k./2, and

(3)
n= 1

w here r„, =1—  1/2k., s„,=.1— 1/k., an d  n =m , m +
Let f (z ) ,  E z  th en  w e have

-

1.f(r.e")— f(s.e") I =  I E 4.)P° I
n=1

n1-1 no

> [ E  (r — s)-f - ( r t— s")]
n =1 n-=m +1

m - 1

> (r,, —s,) (7t,- - 1 + • • • +.5r0  —  E —

> (r,„— s„,)[k ./2— E (r:rid -•••+st - in - 0 (1 ) ,
n=i

1  >
2 k  

(k„,/2— Ek„) — 0(1) .1/8— o(1),
„, n= 1

(b y  (1 ))

(b y  (2 ))

(b y  (3 )) .

It fo llow s that If (r.e")— f(s,ne'')I >1/10, uniformly on [0, 27r] ,  as m—›oo.
Thus the function f ( z )  h as no finite asympotic values.

Now, by v irtue o f Theorem  4, f ( z )  i s  n o rm a l in  D  a n d  therefore
w e have p* (f) =95. T h e  proof o f m ea.J(f) = 27r lies on  the sam e pat-
tern  a s  in  Theorem 3.

Theorem  5 has an  im p o rtan t ap p lica tio n  t o  th e  following problem
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asked  by Lohwater an d  Piranian [16, p. 16]
W hether there exists a  meromorphic (o r holomorphic) function f (z )

th a t h a s  no ra d ia l l im its  and  whose Nevanlinna characteristic function
T ( r,  f )  ( [2 0 ]) , a s  a  function of r,  has arb itrarily  slow growth.

This question has been answ ered by G . R . M acL ane [17 ] a n d  [18]
fo r  meromorphic a n d  holomorphic functions respectively.  F r o m  a
well-known theorem of Nevanlinna [20, p. 220], w e  k n o w  th a t T (r, f )
<log M (r, f ) ,  w here M ( r, f ) =M ax  f ( z ) ! ,  f o r  lz I T h e r e f o r e ,  for
holomorphic function, th e  above problem  becom es to find a  function f
that has no  rad ial lim its  a n d  whose m axim um  m odulus has arbitrarily
s lo w  growth. N a tu r a l ly ,  w e  m a y  a s k  w h e th e r  w e  c a n  r e q u ir e  the
function f  t o  b e  norm al in  D. T h e  follow ing theorem  answers th is
question.

Theorem 6. T h e re  e x is ts  a  n o rm a l holomorphic f unc tion  f ( z )  that
h as  no f in ite  radial lim its and  w hose m axim um  m odulus has arb itrarily
slow growth.

P ro o f .  L e t 1< p ( r )  0 0 ( r  I )  be given. Inductively we can choose a
sequence o f positive  in teg e rs  ( k „ ) satisfy ing  th e  equatio n s (1 ), (2 ),
a n d  (3 )  in  Theorem 5, and  also th e  inequality

(0 < lz1 < l).

Then the function f (z ) = E z "  satisfies M ( r,  f ) < E 2,u(r) =  p ( r ) .  The
conclusion now follows from Theorem 5.

T h is theorem  is sharp because any unbounded norm al holomorphic
function m ust have the Fatou value co o n  a  d e n s e  su b se t o f  C  [4,
Corollary 1].

The function f ( z )  of Theorem 6  is only a  special c a se  o f  th is class
of functions f„,(z) = E k T z " .  In  general, these functions f„ ,(z ) need not
b e  norm al in D .  W e shall now prove a  necessary an d  sufficient condi-
tions of f„,(z) to  b e  norm al in D.

Theorem 7. Let f „,(z )=EleT z ", w here k„/k„,— ›co, as n—>co, then  w e
have f„,(z ) is  normal if  m < 0 and conversely f ,„(z ) is  n o t  norm a l if m >1.

P ro o f .  T h e sufficient condition is  an  easy consequence o f Theorem
4. W e need only to  prove that if m > 1  then f „,(z ) is  no t norm al in D.

O ur p roof com es from  that o f  H aym an  [1 1 , p . 2 2 ], w e  sketch  it
h e r e .  L e t  Iz  =e - " ,  th en  b y  [11, p. 22], w e have

I f,„(z)j=[(1-Fo (1)) / e]k7 --> co, and
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(z)1/(1-F1f,„ (z)1 2 ) = (1) )

It fo llow s from  [11, Theorem  6] that f,„(z) possesses asym ptotic values
at every  point of C, and b y  the above estimate, these asymptotic values
must all be infin ite. Now, if f„ ,(z) w e r e  norm al in  D ,  th e n  b y  the
aforementioned theorem o f Lehto-Virtanen,f,„(z) would have the angular
lim it 0 0  a t a ll points of C .  This contradicts to the aforementioned theo-
rem  o f Privalov.

T h eo rem  7  h a s  an important application t o  the ex istence o f a
non-normal fu n c t io n  s u c h  th a t  it s  in te rg r a l is  n orm a l. A s  in  [12],
Hayman and Storvick answered a question of D rasin  by show ing that
neither the derivative nor th e  in teg ra l of a normal function is neces-
sarily  normal.

Now, let f(z) =  E k„z", kik”_ 1 --->00, th en  b y  T h eo rem  7 , w e  kn o w
that f ( z )  is  no t normal in D . W e set

F (z) =1:f (w) dw = E (k  (k  n + 1)) z 1 .

A gain , by T heorem  7 , w e can  see that the in t e g r a l  F (z )  is  normal in
D.

W e n o w  co n sid er the function f ( z )  as the derivative o f F ( z ) .  We
thus obtain

Theorem 8. There exists a normal function f (z )  for which the deriva-
tive f ' (z )  is  not norm al and f' (z) possesses the  asymptotic value 00 at
every point of C.

Unfortunately, the above m ethod cannot produce a  normal function
such  that its  in tegra l is  no t normal.

Another application of T h eo rem  4  is  to  d eterm in e  w h eth er a  gap
s e r ie s  h a s  a poin t-tract or arc-tract [1 9 , p . 5 ] .  In  th is  connection,
M acL ane [19 , Exam ple 5] proved that the function f (z ) ,  Ea n z", where
a „= (-1 )n / n  and k„=4", h as no arc-tract. Th is result follows immedi-
ately from  Theorem  4 and a theorem o f M acL ane [19 , Theorem 17].

4. H olom orphic functions with all points of p*-points.

The functions constructed in Theorems 2 and 3 bo th  g ive  the result
p * ( f )= 9 5 .  T h erefo re  w e m ay ask  w h eth er th ere  is  so m e fun ctio n  f
fo r  w h ich  p* (f)k95. T h is  can  b e  seen  fro m  the following function
constructed  by C o llingw ood , a n d  P ir a n ia n  [6 , T h eo rem  1 ], w h ich
is  a  Tsuji function and possesses the property p * ( f ) , C ,
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f ( z )=E a„/(z — z „) ,

where z„= n-
1 / 2 )  e i  l o g  . ,  

a„ are sufficiently small. However this function
is only meromorphic in D .  The following theorem  gives us a holomor-
phic function satisfying p* (f ) = C, but f  is  no t a Tsuji function.

Theorem 9. There is a  holomorphic function f  in  D  fo r  which we
have p * ( f )=C .

P ro o f. Let x„=1—  l/ n ', C„= {z :1 zl =x„} , 4 a  Stolz angle having one
vertex a t  the point z = 1 , and let rn = C „- - 4 .  B y  jo in in g  the lower end
point of r„ to  the upper poin t o f r„ , „  w e can  construct a spiral a  in
D. Since

1 (1— x „x „,)±(x „,1— x „)p„, p(x„, x„ + ,) — log
2 (1 — x„x„,,) — (x n + , —x„)
1 (n + 1 ) '-1=  
2  

l o g  

n
2

—I

it follows that p„—›0 as n—>co.
Clearly for an y point e '' and an y  segment L  with one endpoint at e",

the sequence o f p o in ts  k n I ,  w here v [z„}  , a n L ,  satisfies pn =p(z „,
z „ ) - -> 0 . This shows that a  is  a bounded hyperbolic spiral.

Now, it  is  e a sy  to  s e e  th a t  a  belongs to the A raké lian 's  class [10 ,
D efin ition  1 . 8 ] and therefore by the Aralcélian's tangential approxima-
t io n  [10, T heorem  1.11], w e  c a n  f in d  a  nonconstant holomorphic
function f  w hich tends to  zero along a. B y v irtue o f  [ 9 ,  Theorem 2],
w e can  see  fo r an y point e '  and any Sto lz angle Z1 h av in g  one vertex
a t  e " ,  f  possesses a  sequence o f  p-points. W e  th u s  e s tab lish  th a t e"
is  a  p*-point of f  and therefore p* (f ) =C.

5. Holom orphic functions with dense sets of p*-points.

The conformal mapping f *  constructed by Lappan and Piranian [14]
has a dense set of Plessner points on C .  However f *  i s  norm al in D
and therefo re by [9 , L em m a 1 ], it has no sequence o f p -p o in ts . Thus
the set of p*-points of f *  is  em pty. On the other hand, if E  i s  a set of
m easure 0 on C , then  by [6 , T heorem  3], there ex ists a  Tsuji function
f  o f bounded characteristic for w h ich  every  p o in t o f E  is  a  p*-point.
But this function f  is not holomorphic in D .  For holomorphic function,
we shall prove the follow ing result which generalizes to that o f [14].

Theorem 10. I f  E  i s  a  c o u n tab le  dense set on C , th e n  th e re  is  a
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holomorphic function f  o f  bounded characteristic for which every p o in t o f
E  is a  p*-point a n d  mea.p* ( f )  =0.

To prove this theorem , we shall need three lem m as.

Lemma 1. I f  {R„,1, m=1, 2 , . . . ,  is a  countable system o f  rays, there
is a  sequence of points fp n l ,  where I pn 1 — 1/722 ,  such that each ray R„,
contains infinitely many o f  th e  p o in ts  p .  „ ,  where t p .  j  is  a  rearrange-
ment o f  (AL f o r which p„ = p ( p ,  p . , ) - - › 0 ,  as  n--->oo.

P ro o f .  W ith  respect to  th is o rder R „  R „  „  we choose

(1— 1/2 2 ) e "  R „ ( 1 - 1 / 3 2 ) e ` " E  R „  (1-1/ 4 2 )e '"E  R 2 , • • • ,

(1— 1/n') e'°'»  R „  (1 -1/  (n+1 ) 2 )e i " ' E  R.. •
(1 -1 / (n + a ) 2 ) eko - .E R “ ,„ ...

Let p„ ,  (1— 1/n2 )e 1 0 *., th en  c learly  each  R. con tain s in fin ite ly  m any of
the points p„.

The distribution of the index set fn l  reads as follows:

1 , 2 , 4 ,..., 1 ± n (n + 1 )/ 2 ,...
3, 5,
6,

m (n + 1 )/ 2 ,... ,  [m (m + 1)+  (n -1 )  (2 m + n -2 ) ]/ 2 ,.. .

w h e re  n = 0 , 1 , 2 ,..., and  m = 1 , 2 , . . .  F ro m  th is  arrangem ent, w e can
see for each  ray  R,n ,  th e  sequence of points p . ,„ E R . can  be w ritten  as

( 1 — a ) e 1 9 — , where tz =4/[m(m-1-1)-F (n-1) (2m+ n —2)] 2.

It is obvious that D, fo r  some posi-
tive num ber M , and therefore it is sufficient to prove that

IP 11) — >0 , as  n--->oo.

W e have the following computation

, 1
l o g  

(1— ( 1 — a.,n )( 1 - 6 1 ...+1))+
2(1 —  (1  — a m ) (1  — a .1 ) )  —
1 log
2 a , — a a „ ,

1 [ m ( m - I - 1 ) ± n ( 2 m + n - 1 ) ] '- 4=  2 lo g   4 --> 0, a s  n—>09.[m (m +1 ) +  (n -1 ) (2m + n  —2)]2—
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This completes the proof o f Lemma 1.

T h e  n e x t  le m m a  is  a  result of the Contraction P rinc ip le  as intro-
d u c e d  b y  H e M s [1 3 ] w h ic h  is  b a se d  u p o n  th e following Harnack's
inequality

—1z1
I wz I

  

-

 

< 1w1+ 1z1 w, zED.1-1-1wz1

 

1—i-Oz

    

Lem m a 2. For any Blaschke product

B (z )= I IP "  •  P ' z
p„

there corresponds the Blaschke product

b (z ) ,  I I  I P" 1 z
1 — IP.Iz

such  tha t lb (r )I= m (r  ; b ) < m (r  ;B ) a n d  M(r ; B) <M(r ; b) =b(— r),
where m (r ;  f ) ,  min1f(re 10 )1 , M (r ;  f )=  Max I f (re '°)I, 0 6<27r.

T he last lem m a w e need  com es from  that o f  Bagem ihl and Seidel
[3, Example 3].

H
'

x„—zLem m a 3. The function f (z )= e x p  
1

(  1 + z  

)
 w h e r e  x„=1—— z 

1/712 ,  is o f bounded characteristic in  D  f o r  which 1im1f(y„)1=00, where

y„ ,  (x„±x„.„,) /2.

Proof of Theorem 1 0 . Since E =  U lz„1 is  c o u n ta b le  w e  c a n  c le a r ly
choose a  countable system o f rays R,„, m=1, 2 ,. .., su ch  th at every  ray
R . has one e n d p o in t  a t  a  p o in t z„E E , and further such  that every
Stolz angle w ith  one vertex at such  a point z„ contains infinitely m any
of the ray s  R„,. B y v irtue o f L em m a 1 , th ere  is  a  sequence of points
(p„}, where I p„1=1 —1/n2 ,  s u c h  th a t  e a c h  r a y  R „, contains infinitely
m any of the points p,,,„ for w hich pn, „—>O, as n > oo. Since E (1— IP.I) =
El/7/2<o°, the Blaschke product

B (z )= H P" p , —z
p” l—p n z

defines a nonconstant bounded holomorphic function in D  w ith  B(p,)
=0  fo r every n .  W e define the function f (z )= F (z )B (z ),  where F(z)
exp ( — E (z+z”)/(z— z„)//2). Evidently f ( z )  is holomorphic and bounded
characteristic in D , and therefore by N evan linna's T heorem  [5 , Theo-
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rem 2. 18] f ( z )  possesses radial lim its at alm ost all points of C , so that
m ea.p(f) =0. Thus by Theorem  1, w e have mea.pt (f) =0.

It rem ain s to  p ro ve  th at each  point of E  i s  a  p*-point. F or any
point e E E  and a n y  ra y  R,„ w ith one vertex a t  è e*, b y  v ir tu e  o f  [9,
Lemma 2 ], it is  su ffic ien t to  fin d  tw o  sequen ce  o f p o in ts  {P„I , t62„}
such that P„, Q „, E  R ,,,, P„, Q„-->e", p(P„, Q„)—>0 as n—>oo and X (f (P„),

f (Q „ ) )> m >  0, w h e re  x (a, a ')  is  the chordal distance between a and a'.
Now, let us consider the sequence {p„} and the subsequence tp,,1

o f  Ip„I for w hich p,, E R ,„  ni= 1, 2,... W e set P „ , p „  and Q„= ( p „ +
p” + 1)/2 , then  by Lem m a 1, w e have p,„,„—>0, as n—>00 w h ic h  in  turns
implies

p(P„, Q„)-->0, as n—>oo.

Since f ( P J  =0 , it is sufficient to  prove that lirn l f(Q .)1 > 0 .
L e t  F,(z ) =ex p((e"*+ z ) / (e"*—  z )) B (z ), t h e n  b y  th e  property of

the function F ( z ) ,  it is sufficient to  prove that lim F,(Q „) 1>0.

T o do th is, w e form  the Blaschke product

b,(z ) n
e " h

1— IP, , Ieohz

B y v irtue o f Lemma 2, w e know  that b ,( z )  atta in s its  minimum on the
radius [0, e"k ] and I b, (re"*) 1 = m  (r ; b,) <_m  (r ; B ). Let y„ = I Q „

 I ei" and

.f,(z)=exP ((e" h ± z)/(e " h — z))bk(z),

then by Lem m a 3, w e have lim I f k ( y „)1 =o o . It follows that

lim f k  (y,) I c o .
n—I•oa

Applying the sam e idea as in  [3, Example 3], w e can  sw itch  fro m
y, t o  Q„ su c h  th a t  lim F, (Q.) I ( x) • T h is  co m p le te s  th e  p ro o f of

Theorem 10.

6. Measurable and topological properties.

For a function f  defined in D , let F ( f )  denote the set o f  a ll Fatou
p o in ts  o f f . T h e  w ell-know n Plessner T h eo rem  [5, Theorem  8.2]
claim s that if f ( z )  is  meromorphic in  D ,  th en  a lm o st a ll points of C
belong to F ( f ) v P ( f ) .  W e  m a y  a sk  w h e th e r  the analogous theorem
holds fo r either J ( f )  or p *  ( f )  in stead  o f  P ( f ) .  T h e  answ er o f  this
question is negative. A ctually th is can be seen from  Theorem s 1 and 2.
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L et u s m ake a  precise theorem  as follows.

Theorem 1 1 .  There exists a  holomorphic function f  in  D  such that
m ea. F (f ) U  J(f ) = m ea. F (f) U p* (f) =O.

T h is theorem shows th a t th e re  is  n o  analogous result regard  to  the
measurable property and  therefore w e m ay ask  w hether there is som e
sim ila r resu lt co n cern in g  ab o u t th e  topo logical p roperty . M o re  pre-
cisely, w e m ay ask w hether th e  M eier's analogue of Plessner's Theorem
i s  true. F o r  th is  p u rp o se , l e t  u s  re c a ll to  th e  defin ition  of M eier
p o in ts [5 , p . 153 ]. A  p o in t e "  is called  a M eier po int if (1) the cluster
set C ( f ,  e " )  is  sub to ta l, a n d  (2 )  th e  chordal c lu ste r  se t Cg c ( f , e 16) ,
C ( f ,  e )  fo r a ll values of 0 in [--7r/2, 7r/2]. W e denote th e  s e t  o f  all
M eier points b y  M ( f ) .  We shall prove

Theorem 1 2 .  If  f ( z )  is meromorphic in  D , then all points of C except
a set of first category belong to 114 (f ) u p* (f ), a n d  therefore to 114(f) U
J( f ) .

T o prove th is theorem , w e first p rove th e  following generalization
of Collingwood and Lohwater [5, Theorem 8.9].

Theorem 1 3 .  If  f ( z )  is normal in D, then all points of C except a set
of first category belong to M (f ) .

P ro o f. L et e "E M (f )c , the complement o f M ( f ) ,  then there is som e
chord  p ( 0 )  f o r  w h ic h  Cg c ( f , e ° )# C (f , e " ) .  S in ce  f  i s  norm al, by
virtue o f [9 , Lem m a 1 ], f  has n o  sequence of p-points. It follows from
[8, Theorem 1]

(f , e") = n C4 (f , e"),

w here 4  varies over all Stolz angles which contain p(0).
Evidently, there is som e Stolz a n g le  4 (0 )  such that

C, (Ø) ( f , e ")#C (f , e ") .

According to the M axim ality Theorem  of C ollingw ood [5 , Theorem
4 . 10 ], th e  se t M ( f )  is  of f irs t ca tego ry . T h is  completes th e  proof.

Proof of Theorem 1 2 .  Suppose on the contrary that th e  complement
(M ( f ) U P*  (f )) c  is  of second category. Then the closure (M ( f ) U p* ( f ) ) c
contains an  arc  A  o f C. For an y  point e"E A n (m(f) u p *  ( f ) Y ,  there is
a  Stolz ang le  4 (0 )  w hich  con tain s n o  sequence o f p -p o in ts . By using
t h e  sam e m ethod  a s  in  [5 ,  p .  1 5 5 ] ,

 th e r e  c a n  b e  fo u n d  a n  annular
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trapezoid T  for w hich  A  is  a part of the boundary o f  T  a n d  T  con-
ta in s no sequence o f p-points.

Now, let z = g ( w )  b e  a  conformal mapping from D„,(1wl < 1 )  onto T
and let F ( w ) =f  ( g ( w ) ) .  T h en  b y  [9 , Lemma 5 ] ,  F  i s  normal in D,o .
Applying Theorem  1 3 , w e thus conclude that M (F)c  is of first category
in g - 1 (A )  and so is M ( f )  in A. T h is  con trad ic tion  establishes our
assertion.

The proof o f  th e  above tw o theorem s depends heavily on  Coiling-
w ood's Theorem . N aturally w e m ay try to  find som e sort of analogous
result of C ollingw ood 's. B y app lying the sam e m ethod as in  th e proof
o f Theorem  12, w e obtain  the generalization o f  C ollingw ood [21, p. 65,
Theorem 8 ]  concerning the dense set of P lessner points.

Theorem 1 4 .  If  f ( z )  is  m erom orphic in  D  a n d  p *  ( f )  (or J ( f ) )  is
dense on an a rc A  o f C , then p * ( f )  (or J ( f ) )  is residual on A.

N ow , l e t  147 , ( f )  b e  th e  s e t  o f a l l  points e "  o f  C  fo r  w h ich  the
radial cluster set Cp ( f ,  e " )  is  total. C ollingw ood [21 , p . 65  Theorem  9]
proved that if f ( z )  is  m erom orph ic  in D , then  the set 147,(f ) and P ( f )
differ by a set of first category on C .  But th e  sam e th in g  is  n o t true
for p* (f) or J ( f )  instead of P ( f )  due to Theorem 2 and another theorem
o f B agem ihl and Se id e l [2 , Theorem 5].

7. Spiral asymptotic and distribution of p-points.

In  th is  la s t section, w e are go ing  to  p rove som e relations between
the asymptotic behaviour and the location of p-points.

Theorem 1 5 .  I f  f ( z )  is a  nonconstant meromorphic function in D and
has an asymptotic value c  along a spiral a, then  there  is  a  residual set
of radii such that each one of them contains a  sequence o f p-points.

T o prove th is theorem , w e need  a  uniqueness theorem  for normal
fun ctio n s w h ich  is  ch aracterized  b y  a  sequence of Jordan arcs {J,}
su c h  th a t J „ tend t o  a n  a rc  on  C  uniformly. S u c h  a  sequence of
Jordan arcs is  ca lled  a  K o e b e  sequence. T h e  follow ing theorem  was
first stated  and proved by B a g e m ih l an d  S e id e l [ 4 ,  T heorem  I ] ,  but
our method is different from them.

Theorem 1 6 .  Let f ( z )  be a norm al meromorphic function in  D .  I f
f (z ) - >c along a  Koebe sequence of arcs { J„), then f (z )=-c.

P ro o f. Let J ,-+ A =  te" : 0 1 <0 < B A  a s  n-*co, {z :O < 01<
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arg z<6 2 ) ,  and let T o (A )  b e  the domain consisting o f a l l  points of
w here the harmonic measure of A  w ith  respect to  4  is  a t  le a s t  1 / 2 .
T hen  by a result o f H aym an [11, Lem m a 6], the function g(z) , (f(z )—
c )/ (1 + c f (z ) )  is holomorphic and bounded  by 1  in  T 112 ( A )  and g(z)
tends to  zero along J„.

Now, let z= -h (w ) b e  a  conformal mapping from D .  onto the region
bounded by A  and the subtended chord. T h en  the function  F(w)--=
g (h (w )) is bounded holomorphic in D . and tends to  zero along h - ' ( J )
w hich  is c learly  a  Koebe sequence in D .  It fo llow s from  the unique-
ness theorem o f Koebe's Lem m a [5 , p . 42] that F (w )= 0 , so is f (z )= -.c.

Proof o f Theorem 1 5 . Let S b e  a  secto r bounded  by tw o  rad ii and
a  p ortion  o f C. W e w an t to  p ro v e  th a t S  contains a  sequence of
p -p o in ts . T o  do this, we denote z  h  (w ) a conformal mapping from D.
onto S. I f  S  d id  n o t c o n ta in  a  sequence o f  p-po ints, th en  b y  [9 ,
Lem m a 5], the function F (w ) , f (h (w ) )  w ould be normal in D .  Clearly
the intersection a n S  is  a Koebe sequence in  D  a n d  s o  h - '(c rn S ) in
D .  B y v irtue o f Theorem  16, w e w ould have f (z )  = c  which is absurd
and  th erefo re  w e  co n c lu d e  th a t S  possesses a  sequence o f p-points.
The assertion now follows from [2, Theorem 5].

In  view  of the above proof, we find that

Coro llary . Under th e  hypothesis o f  Theorem 15, the set P* (f)
dense on C.

T heorem  15  describes th at how  m any o f  th e  rad ii p o ssess  a  se-
quence o f p -p o in ts . But it does not tell us how m any of rays with one
vertex a t  a point of C  possess a  sequence o f  p -p o in ts . The following
two theorem s w ill give som e answers o f this problem.

Theorem 17. Under the hypothesis o f Theorem 15, there exists a resid-
ual set of points fzp}  on  C such that fo r each zo  there  is  a  residual set
o f rays R„ terminating at z g Ibr which every R, possesses a  sequence of
p-points.

P ro o f. A ccording to Theorem  14 an d  th e  above Corollary, we can
see that p *  (f ) is  a  residual set on C .  The assertion now follows from
[2, Theorem  9].

Now let us recall to  the definition o f bounded hyperbolic spiral [9]
as was m entioned in  th e  proof o f  T h eo rem  9 . W ith  the help  o f  this
special spiral and an application of [9 , T h eo rem  2 ] and  [ 2 ,  Theorem
9], we can im prove Theorem  17 as follows.
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Theorem 1 8 .  S uppose th at  f ( z )  is  a nonconstant m erom orphic function
a n d  o m its  o n e  v a lu e  y  in  D .  I f  f ( z )  tends to a  l im i t  w # v  a lo n g  a
bounded hy perbolic s p iral  a  then f o r each p o in t  e "  o f  C , there is a  resid-
u al set o f  ray s  R „ te rm in atin g  at e "  su c h  th at e ac h  R „ p o sse sse s  a  se-
quence of  p-points.
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Added in proof :  Open problem.
Let f„,(z ) b e the function defined in Theorem 7, where k„/k„_ 1 —>K>1.

W e conjecture that f„, is normal i f  an d  o n ly  if m  < O . W e p o sed  th is
problem fo r  K= 00 in the D etro it M eeting and recen tly , it h as b een
so lved  by L . R . Sons [22].


