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Introduction. Let S be a minimal nonsingular projective surface of
general type defined over an algebraically closed field £ of characteris-
tic 0. We denote by p, and K, respectively the geometric genus and
the canonical divisor of S. In a series of papers [5], [6] and [7],
Horikawa studied the structure (the number of moduli, the deforma-
tion type, etc.) of minimal nonsingular projective surfaces S of general
type satisfying the equality: 2p,= (K*)+3 or 2p,=(K?)+4. The sur-
faces studied by Horikawa are, however, the extreme cases in the
sense that if the value of p, is given, (K?)=2p,—3 or 2p,—4 is the
smallest possible value of (K?) (cf. [3], Theorem 9). In the present
article, by employing the methods introduced in [5] and used effec-
tively in [6] and [7], we shall study the structures of minimal nonsin-
gular projective surfaces of general type satisfying the equality 2p,=
(K?»)+2, of which we shall give a description under several mild
restrictions. In the first section of the present article, various results
are collected, which we use below frequently and sometimes without
specified references. In the second section we prove that the irregu-
larity ¢ vanishes for minimal surfaces of general type with 2p,=(K?) +
2. In the third and fourth sections we have to limit ourselves to the
case where |K| has no fixed component. This assumption implies
that | K| is not composed of a pencil. On the other hand, |K| has at
most two base points. In the third section we consider the case where
|K| has no base point and 7n:=p,—1>3. Then, morphism ¢:=,:
S——Vc P (where V:=¢(S)) defined by | K| is a morphism of degree
2 except when 7=3 and deg ¢=3. If one assumes that #>3 and deg ¢
=2 then V is a Del Pezzo surface of degree 7; thus 7<9. The
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construction of minimal surfaces S of this kind is given in Theorem
3. 7. Assuming that the Del Pezzo surface V is nonsingular and the
branch locus B, is general (see 3. 8), we study the elliptic curves on
the surface S (cf. Theorem 3. 9). In the fourth section we consider
the case where |K| has base points and n:=p,—12>3. Then |K| has
exactly two base points. Let 7: S—>S be a composition of blowings-
up with centers at the base points of |K| such that the variable part
|L| of |#*K| has no base point, and let ¢:=®,: S—>VCP"(where
V:=¢(S)) be the morphism defined by |L|. Then, deg ¢=2 and V
i1s an irreducible surface of degree »—1 in P” studied by Nagata [10].
Now, using the structure theorem on V and employing the methods
from [5], we can describe the structures and constructions of minimal
surfaces S of this kind under an additional assumption that S is the
canonical resolution (cf. 1. 3) of the double covering of V with branch
locus B,(cf. Theorem 4. 15).

The notations and the terminology which we use below are as
follows: % is an algebraically closed field of characteristic 0, which we
fix throughout the paper; every surface considered below are projective
surfaces unless otherwise mentioned. Let S be a nonsingular projective
surface and let D be a divisor on S. Then |D| denotes the complete
linear system defined by D. If z, ..., x, are points on S and if m,, ...,
m, are positive integers, |D|— Y mx, is the linear subsystem of |D]
consisting of members of |D| which pass through z,s with multiplicity
>m, If every member of |D|—}mx, passes through some points
among z,'s with multiplicities greater than the assigned ones, or passes
through new points other than the assigned base points, we say that
|D| — Ymx; has accidental base points. Let f: S——V be a morphism of
finite degree. Then, for an irreducible curve C on S we denote by
f(C) the set-theoretic image ; for a divisor D on S we denote by f, (D)
the direct image as a cycle; for an irreducible curve C' on V we
denote by f7'(C’) the set-theoretic inverse image; for a divisor D’ on
V we denote by f*(D’) the inverse image as a cycle; if f is birational
and if A is an irreducible curve on V, f'(A) denotes the proper trans-
form of A by f. The other notations are as follows :

p, (or p,(S)) : the geometric genus of S,

g (or ¢s): the irregularity of S,
K (or K, or K(S)) : the canonical divisor of S,

X(05) (or X(S, @5)): the Euler-Poincaré characteristic of S,

e.g. (D-D’) (or (D?): the intersection number of D and D’ (or D
with itself),
D~D’: D is linearly equivalent to D,
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D=D': D is algebraically equivalent to D',

@ (D) : the invertible sheaf associated with D,
p.(D) : the arithmetic genus of D,

[ ]: the Gauss symbol

§ 1. Preliminaries

In this section we shall summarize various results which we fre-
quently use below.

1. 1. Lemma (Bombieri [3]). Let S be a minimal surface of general
type. We have then the following:

(1) Assume that | K| is not composed of a pencil.
If |K|=|C|+ X with a fized part X we have

Legypo—ty_Likxy_1c.
1< (K +2— g = (K-X) =1 (C- X),

and (C-X)>=2 if X>0.
(2) If ¢=2 and if | K| is composed of a pencil plus a fixed part we
have

£.< 5 (K
provided that (K?) is even.

C(3) If g1 then X(03)<%(K2); if =1 we have p,<—é—(K2).

(4) If q=0 and S has a torsion group of order m then we have

1 gy, 3

1. 2. Lemma (Horikawa [5]). Let S be a minimal surface of generai
type with p, >3 such that | K| is not composed of a pencil. Let m: S—S
be a composition of quadric transformations such that the wvariable part
IL| of |=*K| has no base point. Then we have 2p,—4< (L*) < (K?).
Moreover,

(1) if (L) =(K?) then |K| has no base point,

(ii) if (L?)=2p,—4 then any general member of |L| is a hyperelliptic
curve.

1. 3. The results of this paragraph are mainly due to Horikawa [5],
[6]. Let f: S——W be a surjective morphism of degree 2 between
nonsingular algebraic surfaces. Assume that there is no exceptional
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curve of the first kind on S which is mapped to a point by f. Let R
(or R,) be the ramification divisor of . Then R~K;—f*(K,); R is
a sum (as cycles) of irreducible curves C on S such that either f(C) is
a point or f*(f(C))=2C+F with F>0. Since deg f=2, any component
C of R such that f(C) is a curve has coefficient 1. Define the branch
locus B (or B;) by B=f,(R,). Then B is a reduced divisor on W
and f*B—2R is a non-negative divisor. If there is a divisor F on W
such that B~2F and if there is a non-negative divisor Z on S such
that f*B—2R=2Z and R+Z& |f*F| then f factors through the double
covering of W with branch locus B, f': S——W (see [5], p.48 for the
construction of f': S'—— W), which is the normalization of W in k(S).
Moreover, the condition that Z=0 is equivalent to one of the following:

1) S has at most rational double points as its singularities,

2) B has no singular point of multiplicity>4; every triple point
w of B (if any) decomposes into a singularity of multiplicity<2 after a
quadric transformation with center at w.

When the condition 2) is satisfied, we say that B has no infinitely
near triple point.

Conversely, let B be a reduced (effective) divisor on W such that
B~2F for some divisor F on W. Then we can construct explicitly the
double covering f': 8—— W with branch locus B (cf. [5], p.48). If B
is nonsingular then S" is nonsingular too, and the canonical divisor Kj
is given as f*(Ky+F). If B has a singular point w, of multiplicity m,,
let ¢,: W,——W be a quadric transformation with center at w, Set

B.— gt (B)—ZI:EI‘A]EI and F,=g (F)_[ﬁ]El, where E,=g¢'(w,) and [Z’.ﬁ]

2 2 2
. . m
is the greatest integer not more than =<, Then B/~2F, and we can
g g 5

construct the double covering f;: S;—— W, with branch locus B,. More-
over, there exists a birational morphism p,: S;——S" such that f'-p,=
g,-fi. If B, is not nonsingular we repeat the above process for S;. After
a finite number of these processes we have the following commutative
diagram,

Doy b, b,

S* =8 585 ... — 5§ — 5
[ = o
weew, Low Iy & w 2w

where g,: W,——>W,_, is a quadric transformation with center at a
singular point w, of B,_, with multiplicity m,>1 for i=1,..., n, and
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B*=B, is nonsingular. We call S* the canonical resolution of S'. The
numerical characters of S* are given as follows:

Lemma. With the above notations we have
1 1 m,;| [ m,
X(S*, 0) =5 (F- Ky + )+ 20(W, 0) 5 20 | (7]~ 1)
(Kia) =2((Ky+ 1) =23 (5]~ 10"

Moreover, if p,(W)=q,=0 and if B has no infinitely near triple point
then we have:

2,(S*) =dim H'(W, 0(Ky+F)),
gsx=dim H'(W, 0 (K, +F)),
(K3) =2((Ky+F)?).

1. 4. Lemma (Castelnuovo [4]). Let C be an irreducible (not necessarily
nonsingular) curve of degree d in the projective n-space P*", but not in
any hyperplane. Let X be the smallest integer not less than (d—n)/(n—1).
Then the (geometric) genus g(C) of C is equal to or less than

X{d—n—%(n—l) (2=D)J.

1. 5. Let X, denote the Hirzebruch surface of degree d; %, is a
P*-bundle over P! which has a section M such that (M?)=—d. We
denote by / a fibre of the projection JX,——P'. We make use of the
following three lemmas:

1. 5. 1. Lemma (Nagata [10]). Let V be an irreducible surface of
degree n—1 in P, but not in any hyperplane. Then V is one of the
followings :

(i) n=2 and V=P2;

(ii) n=5 and V=P? embedded in P°* by |2H| where H denotes a
line on P?;

(i) n=3, 4, ..., V=2, where n—d—3 is a nonnegative even integer;

V is embedded into P* by |M+—(1’_—21ﬂl[ ;

(iv) n=3,4,..., and V is a cone over a rational curve of degree n—1

in P

1. 5. 2. Lemma (Nagata, ibid.) Let V be an irreducible surface of degree
n in P", but not in any hyperplane. Then V is one of the followings:
(1) A projection of one in Lemma 1. 5. 1 with center outside of the
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surface V;

(i1) The system L of hyperplane sections of V is represented on P? as
a system of cubic curves with at most 6 base points and whose general
members are nonsingular cubic curves;

(ii1) n=8 and V=2,; the Veronese transform of %, in P?;

(iv) n=8 and V is biregular to a cone in P* with a nonsingular
plane conic as a base curve; the Veronese transform of the cone;

(v) Visa cone with a nonsingular elliptic base curve.

The surface V is normal if V is not of type (i).

1. 5. 3. Lemma (Nagata, ibid.). Let P, ..., P,(0<s<6) be points such
that dilp, .. s, (see [10] for the notation) is well-defined on P*. Then
the system L* of cubic curves on P® with pre-assigned base points P,
.o P, represents such an L as in Lemma 1. 5. 2, (ii), if and only if the
P, satisfies the following two conditions:

(1) Any four points among the P, are not collinear.

(ii) For each j, dil,, P; carries at most one of the P,

1. 6. Lemma (Hurwitz's formula). Let f: S——W be as in 1. 3. Let
C be an effective divisor, and let D=f*(C). Then we have:

2(£.(D) —1) =4(p.(C) = 1) + (B-C).
1. 7. Lemma. Let r and s be nonnegative integers. Then we have:
(r+1) (s+1)—%r(r+l)d if s=rd

dim H°(Z,, 0(rM+sl)) = |
@+1) (s+1) —ga@+)d  if s{rd,

0 if s>rd
dim H'(Z,, 0 (rM+sl)) =

(r—a) {%(r+a+l) —(+D)}) i s<rd,

where a=[—:l-,-:| (the Gauss symbol). Moreover, we have the following :

(1) | M+4nl| is very ample if n>d.

(2) Let p:=@ppan: 2;——VC P, Then p is a morphism, and V=
o(2,) is a cone over a nonsingular rational curve of degree d in P?, whose
vertex is p(M).

The proof of 1. 6 is easy; the proof of the first assertion of 1. 7 is
tedious but standard; the remaining assertions of 1. 7 are well-known
and not hard to show. We omit the proofs of 1. 6 and 1. 7.
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§2. Vanishing of the irregularity

2. 1. Let S be a minimal surface of general type defined over % such
that 2p,=(K*)+2. Set p,=n+1 and (K?)=2n, where n>1. In this
section we shall prove

Theorem. The irregularity q of S is zero.

The case where n=1 was proved by Bombieri ([3], Theorem 12).
Hence we shall assume below that 7n>2. The proof consists in showing
in several steps that the assumption ¢>>0 leads us to a contradiction.
We assume that g>0.

2. 2. Lemma. The following assertions hold :

(1) g¢=2.

(2) | K| is not composed of a pencil.

(8) | K| has no fixed component.

(4) |K| has at most two base points, one of which is possibly an
infinitely near poini.

Proof. If g=1 then p,<%(Kz), which contradicts our assumption
(cf. 1. 1, (8)). Hence ¢g=2. If |K| is composed of a pencil plus a
fixed part then P,<%(K’), which is again contradictory (cf. 1. 1, (2)).

Hence | K| is not composed of a pencil plus a fixed part. If |K|=|C]|
+ X with the fixed part X >0, then we have

1 1 1 1
< - (K X)——=n4+— (K. X
n+1<n4+2-1 2( ) 5 n+2 2( )
which follows from 1. 1, (1). Since (K-X)>0 (cf. [3], Prop. 1), this
contradicts our assumption. Thus, | K| has no fixed component, and
we have

1 1
< (K _—
A (K*)+2 54
from which follows that g=2. The last assertion follows from 1. 2.
Q. E. D.

2. 3. Let ! be a prime number, and let f: S——>S be a nontrivial
cyclic covering with group Z, (=the cyclic group of order /). Such
a nontrivial covering exists because ¢>0 and H} (S, Z,) =Pic(S),(=the
group of I-torsion elements). Then the surface S satisfies the condition
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of the following:

Lemma. Let S be as above. Then S is a minimal surface of general
type with p,(S)=In+1, gs=2 and (K3})=2In.

Proof. Tt is well-known that § is a minimal (nonsingular) surface
satisfying X (S, 0s) =X (S, 05)=In and (K})=I[(K%) =2In. Moreover,
f*|Ks|C|f*Ks|=|Ks| and ¢gs>2. Since 2,(S) >3 we know that S is a
surface of general type (cf. [3], Theorem 1). Since f*|K;| is a linear
subsystem of |Ks| and since |Ks| has no fixed component, |Ks| has
no fixed component. Similarly, since |K;| is not composed of a pencil,
| Ks| is not composed of a pencil. Then we have,

£.(8) < (K3 +2— s
whence follows that
ln+qg—1<ln+2—%43.

Hence gs=2 becaue ¢s>2, and p,(S) =In+1. Q. E. D.

2. 4. In the paragraphs 2. 4~2. 8 we assume that |K| has no base
point. We let p:=® : S—>VC P" denote the morphism defined by
| K| with V=¢(S).

Lemma. Assume that | K| has no base point. Then ¢ is not birational.

Proof. Assume that deg ¢=1. Then deg V=2n. Let H be a general
hyperplane of P" and let C=H.V, which is an irreducible curve of
degree 27 in P! but not in any hyperplane of P"'. We apply 1. 4
to the curve C when p=5. Then

g<C><2{2n—<n—1>—§<n—2>} —n4d,

while g(C) =p,(K)=2n+1 because C is birational to a general member
of | K|, which is a nonsingular irreducible curve. This is a contradic-
tion if #>=5. Assume that #=4. Then V is an irreducible surface of
degree 8 in P‘. Hence there exists at most one quadric hypersurface
of P* containing V. This implies that if {S, §, ..., 5} is a basis of
H°(S, ©(K)) then there is at most one linear (dependence) relation
among s;;s (¢, j=0, ..., 4). Hence, the bigenus P, of S is

P2><g>-— 1=14,
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while P,= (K*) +X(0;) =8+ (1—2+5) =12 (cf. [3], Cor., p. 185). This is
a contradiction. Assume that #=3. Then V is an irreducible surface
of degree 6 in P° Since a quadric hypersurface of P?* is rationnal,
there is no quadric hypersurface of P* containing V. Hence,

P2><g)= 10,

while P,= (K?*)4+2(0,)=9. This is a contradiction. If n=2, it is clear
that ¢ is not birational. Q. E. D.

Lemma. Assume that |K| has no base point. Then we have one of
the following cases:

(1) n>4, deg ¢=2 and deg V=n; V is either a normal rational
surface or an elliptic cone.

(i1) n=3, either deg ¢=2 and deg V=3 or deg ¢ =3 and deg V=
2; V is either a normal rational surface or an elliptic cone.

(ii1) n=2, deg ¢=4 and V=P

Proof. Note that deg ¢-deg V=27 and deg ¢>2. On the other
hand, deg V>n—1, for, if otherwise, V would be contained in a hyper-
plane of P". Hence, if >4 we have deg ¢=2 and deg V=n; if n=3,
either deg ¢=2 and deg V=3 or deg ¢=3 and deg V=2; if n=2 we
have deg ¢=4 and V=P* If deg ¢=2, V is an irreducible surface of
degree 7 in P but not in any hyperplane. Note that the case (i) of
1. 5. 2 does not occur in the present situation because ¢*L is not a
complete linear system, where L is the system of hyperplanes of P-.
Hence, if deg ¢=2 then V is either a normal rational surface or an
elliptic cone by virtue of 1. 5. 2. If n=3 and deg V=2, V is isomorphic
to either 3, or a quadric cone in P> Hence, V is normal. Q. E. D.

2. 5. In order to derive a contradiction from the assumption that gs>0
we may assume by virtue of 2. 3 that n>4. Then we have the follow-

ing

Lemma. Assume that S satisfies the conditions:
(1) ¢s>0 and p,=n+125,
(i1) | K| has no base point,
(ii1) 'V is a normal rational surface.
Then we have a contradiction.

Proof. Our proof consists of six steps.
(@) Let I be a sufficiently large prime number, and let f: §——S be
a nontrivial cyclic covering of S with group Z,. Let ¢:=®: S—V
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C P be the morphism defined by | Ks|, where V:gb(g) (cf. 2. 3). (Here
note that | Kg| has no base point because f*|K;|C|Ks| and |K,| has
no base point.) Then deg ¢=2, deg V=I{7 and V is a normal surface.
On the other hand, the group Z, acts on V, and ¢ commutes with the
actions of Z, on § and V, because the action of Z, on S induces a
linear representation on H°(S, ©(Ks)) ; the action of Z, on V is non-
trivial because deg ¢=2. We have thus the following commutative
diagram

§ L v — pr

v

14

S 5V — P

where % is a projection corresponding to the inclusion f*|K;|C|Ks|,
and where both f and & kill the actions of Z,. Noting that [k(V):
kE(V)1=1/, we know that 2(V) is a Galois extension of 2(V) with group
A

(II) We claim that & is a finite morphism. In fact, assume that an
irreducible curve Z on V is mapped to a point on V by k. Let 2=
¢7'(Z), and let E be an irreducible component of 2. Then E is dis-
joint from a general member of f/*|K,|, and hence, (E:Ks)=0. This
implies that gb(E) (hence ¢(Z)) is a point on V. This is a contradic-
tion. Thus, 2 is a finite morphism.

(III) We claim that 2 is unramified at a point of V of codimension 1.
In fact, let C be an irreducible curve on V, and let 0=0.,. Let & be
the normalization of 0 in k(V); then 8= N O,, if Supp(h'(C)) =

1<i<t

U C,-, C,- being an irreducible component of A7'(C). Letl 6,=04¢, ¢
1<i<t
for 1<i<t, and let e; and g be respectively the ramification index

and the residue field degree of 8, over 0. Since E(V) is a Galois
extenison of k(V), the Galois group Z, acts transitively on {3, ..., 8},
whence e,= ... =¢,(:=€), py=...=p,(:=p) and tep=L If either t=I/
or u=! then & is unramified at C. If e=/ (hence t=p=1), each place
b of k(S) dominating C is easily seen to have the ramification index
at least / over 0 on the one hand and at most 2 over 0 on the other
hand. This is a contradiction because / is sufficiently large.

(IV) Let U=V—Sing(V). Then I'(U, 0%) =k* and H!, (U, Z,) =Pic(U),.
In fact, since V is a normal surface and hence, Sing (V) consists of
finitely many points, we know that I'(U, 0})=k*. Then, the isomor-
phism H (U, Z) =Pic(U), follows from the exact sequence :
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x 1
x [
——Pic(U)——Pic(U).

(V) Pic(U) is a finitely generated abelian group; hence Pic(U),, is
a finite group. To show this assertion, note that U is embedded as a
dense open set into a nonsingular projective rational surface Y, and
that the restriction map, res: Pic(Y)——Pic(U) is surjective. Since
Pic(Y) is a finitely generated free abelian group, Pic(U) is a finitely
generated abelian group.

(VD) We may assume that />|Pic(U),,|. Then Pic(U),=(0). Hence,
there is no nontrivial cyclic covering of U with group Z, However,
if we set U=h"(U), h|,: U—U is a nontrivial étale finite covering
with group Z, as we observed in the steps (II) and ). (&, is
unramified everywhere on U by purity of branch loci.) This is a
contradiction. Q. E. D.

2. 6. The following lemma together with Lemma 2. 5 shows that the
assumption that ¢s>>0 and | K| has no base point leads usto a contra-
diction.

Lemma. Assume that S satisfies the conditions:
(1) gs>0, p, =>4 and | K| has no base point,
(ii) V is an elliptic cone.

Then we have a contradiction.

2. 7. In order to prove the above lemma we need the following auxiliary

Lemma. Let CCP ! be the base curve of the elliptic cone V, which
is a nonsingular elliptic curve, not in any hyperplane of P™', and let 6=
C.H' be a hyperplane section of C, and let X :=Proj(0.D0O;(6)). Then
Y is the minimal resolution of singularities of V; that is, there exists a
birational morphism q:2X——V which is the contraction of the section Z
to the vertex of V, where (Z*)=—n and (Z-1)=1 for any fibre | of the
projection p: F——C. Moreover, there exists a morphism ¢:S——3 such
that ¢p=q-¢.

Proof. Taking a hyperplane H' of P"™' to be general, we may as-
sume that 6 is a sum of distinct 7 points P, ...., P, on C. Then ¥ is
obtained from the direct product P'x C by performing elementary trans-
formations at the points P,..., P, on the section C.= (o0) X C, which is
identified with C, (cf. Maruyama [9], Prop. 4. 1). The proper trans-
form of C. is the section Z. Hence, (Z!) = —n, and K;~—2Z—p"1(0) =
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—2Z—nl. Moreover, it is not hard to see that dim |Z+p7'(d)|=7 and
that |Z+p7'(8)| has no base point. Then, the morphism @ ;,,-14):
Y——P" gives us the morphism ¢: ¥——V which contracts the section Z.

To prove the second assertion we may assume that the vertex Q of
V is the point (1, 0, ..., 0) and the base curve C is contained in the
hyperplane X,=0. Let L be the linear system of hyperplanes of P~
through Q, and let L=¢*(L). L is then a linear subsystem of |K].
Choose a basis {z, z,, ..., ,} of H'(S, 0s(K)) such that {z, ..., z,}
spans the module of L. Let G be the fixed part of L, and let L=
L—G. Then it is not hard to show:

(i) L is composed of a pencil 4 parametrized by C,

(i1) (x)=22D;;+G for 1<i<n, where D,;€1 for 1<j<n,

i) Supp((z,)) NSupp(G) =¢.
Let D be a general member of 4. Then Ks=nD+G. We shall show
that (D?*) =0, (D-G)=2 and (G?)=—2n. In fact, we hav (G-K)=0 by
virtue of the above condition (iii). If G=0, we have ((nD)?)=2n,
whence (D?)=2/n. This is a contradiction since 723, Thus G>0.
Then (G?)<—2 by the Hodge index theorem. On the other hand,
(G-K)=0 implies that n(D-G) = — (G?) >2. Moreover, we have :

n=((nD+G)?) =n*(D?) +n(D-G)
or 2=n(D*) + (D.G).

Since (D?) =0, (D-G)>=1 and 7n>3, we must have: (D?) =0 and (D-G)
=2. Then (G*)=-—2n, and 4 has no base point. Then p:=@,: S
——Cc P is everywhere defined, and p*(0.(8))=0s(X7., D,;)) for
I<ig<n. Let tr be a section of H°(S, @(G)) corresponding to G.
Then, (7, 2,): O ——> 0 (G)D O(K) defines a section o: S—sSx %

c
because Supp((z,)) NSupp(G) =¢. Let ¢=p,-0: S—23, where p, is the

projection of Sx 23 on the second factor. Then it is easy to see that
C

¢=q-¢ up to an automorphism of P». Q. E. D.

2. 8. Proof of Lemma 2. 6. Let us compute the branch locus B, of
the double covering ¢: S——2. For this purpose, note that ¢*(l) ~De
and ¢*(Z)=G. Then, the ramification locus R, is given as R,~K;—
o* (K;) =nD+ G+nD+2G=2nD+ 3G, whence B,~4nl+4+6Z. On the other
hand, since B, is a reduced divisor, we must have: (B,:Z2)>(Z}) = —n.
Hence, 4n—6n>= —n, i.e., n<0. This is a contradiction.

2. 9. Finally, we consider the case where |K | has base points. We
have then the following:

Lemma. Assume that S satisfies the conditions :
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(1) gs>0 and p,23,
(i1) | K| has base points.
Then we have a contradiction.

Proof. Let [ be a sufficiently large prime number, and let f: §——S
be a nontrivial cyclic covering of S with group Z, (cf. 2. 3). If | K|
has no base point we have a contradiction as we saw in the previous
argument. If |Kg| has base points, then S should have more than !/
base points because Z, acts freely on S. This contradicts the assertion
(4) of 2. 2. Q. E. D.

§3. Double Del Pezzo surfaces

3.1. Let S be a minimal surface of general type such that p,=n+1
and (K?)=2n with n=3. In the following, we assume :

(1) |K| has no fixed component.

Then, | K| is not composed of a pencil. For the proof of this fact, see
[3], the first three lines of the proof of Lemma 13. Then, | K| has at
most two base points (cf. 1. 2). In this section, we assume more
strongly :

(i) | K| has no base point.

Let ¢ : S——VCP" be the morphism defined by | K|, where V=¢(S).
Then, as in Lemma 2. 4, deg ¢=2 and deg V=n if n>4; either deg ¢
=2 and deg V=3 or deg ¢=3 and deg V=2, if n=3. We assume that

(i1) dege=2 and deg V=n.

Then V is an irreducible surface of type (ii), (iii) or (iv) of 1. 5. 2
because ¢g=0. (The case (i) of 1. 5. 2 does not occur because ¢*L is
not a complete linear system, where L is the system of hyperplanes of
P*.) Moreover we have 3<n<9 by virtue of 1. 5. 2.

3.2. Lemma. Let V be an irreducible surface of degree n in P satisfy-
ing one of the conditions (ii), (iii) and (iv) of 1. 5. 2 Then we have:
(1) V is a normal surface having at most rational double points as
singularities
(2) The canonical divisor K, of V is linearly equivalent to —H,,
where H, is a hyperplane section of V. Therefore, — K, is a verv ample
divisor of V.

Proof. Since the assertions are clearly true for the surface V of
type (iii) or (iv) we only consider the surface V of type (ii). Let
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W=dil, . ry P? let p: W——P? be the inverse of dilp, . s, and let
qg: W——V be the contraction map such that g:p7': P>——V is the
representation of V given in 1. 5. 2. It is easy to see that if C is an
irreducible curve on P? such that the proper transform p'(C) of C is
contracted to a point on V by ¢ then C is one of the following:

(1) s=6; C is a conic passing through all P/,

(2) s23; C is a line passing through three of Ps.
Let I be the union of

1) irreducible components of dilg, . p, (P, ..., P,) with irreducible
exceptional curves of the first kind deleted off,

2) the proper transform C'=p'(C) if C is an irreducible conic
passing through all P/s (s=6),

3) the proper transforms A'=p’(4) of lines 4 which pass through
three of P;'s (s=3).
The conditions (1) and (i1) of 1. 5. 3 imply that every irreducible
component of I' is a nonsingular rational curve with self-intersection
multiplicity —2, and Lemma 1. 5. 2, (ii) implies that I" is the union
of all irreducible curves on W which are contracted to points by gq.
Moreover, by virtue of the condition (ii) of 1. 5. 3 and the fact that
s<6, we know that the weighted graph of every connected component
of I' is a linear chain except only when:

s=6; three ordinary points P, P,, P, lie on a line 2 and the other
three points P,, P;, P, are infinitely near to P, P, P, respectively.

The weighted graph of this case is:

Therefore, the contraction g: W——V produces as many rational double
points on V as the connected components of I'. This completes the
proof of the first assertion. In order to show the second assertion note
that :

a) K, is a Cartier divisor; q.(Ky)~K,; ¢*(K,)~Ky ; we may take
K, so that Supp(Ky) NI'=¢, (cf. Artin [1], Theorem 2. 7),

b) — Ky~the proper transform by p of a nonsingular cubic curve
on P? passing through the pre-assigned base points.
Therefore, we have: K,~—H,. Q. E. D.
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An irreducible surface V of degree n in P, which is of type (ii),
(iii) or (iv) of 1. 5. 2 is called a Del Pezzo surface. A nonsingular
projective surface S is called a double Del Pezzo surface if there exists a
surjective morphism ¢: S——V of degree 2 onto a Del Pezzo surface V.

3. 3. Let ¢: S——>V be as in 3. 1. The authors do not know whether
or not ¢ factors through ¢: W——V (cf. 3. 2), that is, whether or not
there exist a morphism ¢: S— W such that ¢=g¢-¢, except in the
following case :

Lemma. Suppose that V is of type (iv) of 1. 5. 2. Then there exists
a morphism ¢: S——W (=the Hirzebruch surface 2, of degree 2) such
that ¢=q-¢.

Proof. The proof is essentially the same as the one in ([5], p.46),
except some minor modifications. Since V 1is biregular to a quadric
cone in P? there exists a linear system L on S such that:

a) dim L=3, and 2LC | K{|,

b) L is generated by 4 elements (x,) =2D+G, (x,) =2D,+G, (z,) =
D+ D,+G and (z,), where D, D, and G have no common components,
and Supp((z,)) NSupp(G) =¢, esp., (G-K)=0.

Since 16=(K?) = (4D-4D+2G), we have:

2(D*)=(D-G)=2.

Since (D?)>0 and (D-G)>=0, we have (D*)=0 or 1. Suppose that
(D*)=1. Then (D:G)=0. By the Hodge index theorem, we have
(G <0, while 2(G*) =(G+-4D+2G)=(G-K)=0. Thus G=0. This case
leads to a contradiction as follows: Since K~4D, we have p,(D)=
(DD+K)/241=7/2, which is a contradiction because p,(D) is an
integer. Therefore, G#0; and we have (D?) =0, (D-G)=2 and (G?) =
—4. Now, by a similar argument as in ([5], p.46), we have a mor-
phism ¢: S——2, such that ¢=g-¢. Q. E. D.

In the following paragraphs we assume that

(ii1) there exists a morphism ¢: S—— W such that ¢=q-¢ when V
is singular and of type (ii) of 1. 5. 2, where q: W——V is the morphism
given in 3. 2.

When V is nonsingular we understand that W=V and ¢=¢. We let
H, denote q*H,, where H, is a hyperplane section of V.

3. 4. We denote by R, and B, respectively the ramification locus and
the branch locus of ¢: S——W. Then we have
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Lemma. With the above notations and assumptions, R,~2K; and
B,~4Hy. Moreover, a general member of |4Hy| is a nonsingular irredu-
cible curve of genus 6n+1.

Proof. We have Ry~ K;—¢*(Ky)~ Ks— ¢*(q* (Ky)) = Ks— ¢*(Ky) ~
K+ o* (Hy) ~2K; (cf. 3. 2). Hence B,=¢,(R,)~4H,. It is clear that
a general member of [4Hy| is a nonsingular irreducible curve. Then
p.(4Hy) = (4Hy+3Hy) /24+1=06n+1. Q. E. D.

3. 5. Lemma. S is isomorphic to the canonical resolution S* (cf. 1. 3)
of the double covering of W with branch locus B,.

Proof. With the notations of 1. 3, we have:

2, 0w =n+2- 15[ 7| (%]-,

(Kz*>=2n—2;<[%]—il)z.

Since x(S* @) =x(S, O5)=n+2, we know that [%]:1 for all indi-

ces . Namely, B, has no infinitely near triple point. Then (KZ«)=2n
= (K$). This implies that the natural birational morphism p: S§*——S,
whose existence follows from the minimality of S, is an isomorphism.

Q. E. D.
3. 6. As for the existence of surfaces S, we have the following:

Lemma. Let B be a reduced divisor of |4Hy| such that B has no
infinitely near triple point and Supp(B) NI'=¢ (cf. 3. 2). Let S be the
canonical resolution of the double covering of W with branch locus B.
Then S is a minimal surface of general type with p,=n+1 and (K% =2n.
Moreover, S satisfies the assumptions (') and (ii) of 3. 1 and (iii) of
3. 3.

Proof. Let ¢: S——W be the natural morphism. Then, by virtue
of Lemma 1. 3, we have K;~¢*(Hy), which implies that S is minimal.
Moreover, p,(S)=dim H*(W, 0(Hy))=dim H'(V, 0(H,))=n+1; and
(K?)=2(H})=2n. Thus, S is a minimal surface of general type with
p,=n+1 and (K§)=2n. The remaining assertions are clear. Q. E. D.

3. 7. Summarizing the above results, we have

Theorem. Let S be a minimal surface of general type such that p,=
n+1 and (K?)=2n with n>=3. Assume that the conditions (i), (ii) of
3. 1 and (iii) of 3. 3 hold. Then we have the following :
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(1) 3<n<9.

(2) The surface V which is the image of S by ¢:=@g: S—>P", is a
Del Pezzo surface of degree n.

(3) According to the condition (iii) of 3. 3, split ¢ into S—>W—5V,
where q: W——V is the smallest blowings-up which resolve the singular
points of V. Then the branch locus B, is linearly equivalent to 4Hy,
where Hy, is the total transform by q of a hyperplane section of V; B, has
no infinitely near triple point; S is the canonical resolution of the double
covering of W with branch locus B,.

(4) Conversely, if B is a reduced divisor of |4Hy| such that B has no
infinitely near triple point and that B does not meet any curve contractible
by q, the canonical resolution of the double covering of W with branch
locus B is a minimal surface with p,=n+1 and (KZ2) =2n satisfying the
conditions (1'), (ii) of 3. 1 and (ii1) of 3. 3. Such a surface exists for
every Del Pezzo surface of degree n with 3<n<9.

3. 8. In the following paragraphs of this section we shall study nonsin-
gular elliptic curves lying on S. For the sake of simplicity we assume
that V is nonsingular and that the branch locus B:=B, is a general
member of [4H,|; hence, B is an irreducible nonsingular curve. Then
¢: S—>V is a finite morphism of degree 2. Let C be a nonsingular
elliptic curve on S. C is said to be accidental if ¢,(C)=¢(C), and
non-accidental if otherwise. Then we have the following

Lemma. With the above notations and assumptions, we have the
Jfollowing :

(1) If C is a non-accidental elliptic curve on S then D:=¢(C) is a
lineon V. Conversely, if D is a line on V then ¢~*(D) is a non-accidental
elliptic curve.

(2) If Cis an accidental elliptic curve on S then D:=¢(C) is an
irredurible curve, whose singular points (if any) are cuspidal singular
points centered at the points in BND; B-D is a divisor on B (or D) of
the form 2(),b.P,) with integers b,>0. Conversely, if D is a nonsingular
elliptic curve on V such that B-D=2(}b,P;) with b;,>0 and that ¢* (D)
is of the form C+C’, then C is an accidental elliptic curve.

Proof. (1) Since B is a nonsingular curve of genus 6n+4+1 (=19),
DZ Supp(B). Hence ¢,(C)=2D. Since (C)=-—(C-K;), (C-K;)=
(p* (D) -¢*(Hy))=2(D-Hy) and (C*)=2(D*), we have: (D*)=—(D-H,).
Hence p.(D) = {(D*) — (D-Hy)}/2+1=1—(D-H,) >0, which implies that
(D-Hy)=1. Thus D is a line on V. Conversely, if D is a line, (D-B)
=4 because B~4H,, and D and B meet transversally each other because
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B is a general member of [4H,|. Hence C:=¢ (D) is a nonsingular
elliptic curve which is non-accidental.

(2) Let ¢ be a generator of Gal(k(S)/k(V))=Z, which acts on S.
Since ¢,(C)=¢(C) and ¢(C)ZSupp(B), we know that ¢*(D)=C+C’
(C+#C) with C'=¢(C)=C, where D=¢(C). It is clear that D is non-
singular outside of BN D, and that D has at most cuspidal singularity at
a point P of BND because there is only one point P above P. Noting
that ¢*(B) =2R with ramification locus R we have:

(D-B),(:=i(D, B; P)) = (¢ (D)9 (B)),
=5 (C+C-2R)=2(C-R)».

Therefore, D-B is a divisor on D of the form 236,P, with integers
b,>0. Conversely, let D be a nonsingular elliptic curve such that D-B
=23b.P, with b,>0. Let PEDNB, and let x, y be a system of local
parameters at P such that

(i) =0 is a local equation of B at P,
(i1) y=2z" is a local equation of D at P.

Let 0=k[[z, y]]1= 0 ,,, and let 3= @, 5, where P is a unique point of
S above P. Then 0=Fk[[¢ z, y]]/(#*—y). Hence we have
r=x"*+ (y—zx*) in 0.

This implies that ¢='(D) has two smooth analytic branches t=z* and
t=—az* at P, which intersect each other with multiplicity 4. Thus, if
¢*(D)=C+C (C#C’), both C and C' are nonsingular. On the other
hand, we have:

D)= (CH+(C-C), (C-Ks)=(D-Hy) = (D,

(C.C")=2b; and 26,=2(D",
where the last equality follows from (D~B)=22b,., B~4H, and (D% =
(D-H,). Then we have:

p.(C)=(C-C+Ky)/2+1={— (D) + (D)} /2+1=1.
Therefore, C is an accidental elliptic curve on S. Q. E. D.

The authors do not know whether or not there exist accidental
elliptic curves on S, under the assumptions that V is nonsingular and
that B is a general member of |4H,].

3. 9. Theorem. With the same assumptions on V and B as above, the
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number N of non-accidental elliptic curves on S is given as in the following
table :

n'3‘4 5‘678[3]9

V=3, V=3,

1

none

27|16 10‘6 3

Proof. By virtue of 3. 8, (1), N is equal to the number of lines
lying on V. Hence we have the table as above, a part of which is
given in Manin [8], p. 136. Q. E. D.

§4. Double coverings of Hirzebruch surfaces

4. 1. Let S be a minimal surface of general type such that p,=n+1
and (K?)=2n with n=23. We assume that S satisfies the condition (i)
of 3. 1 and that |K| has base points. By virtue of 1. 2, | K| has at
most two base points. More precisely, we have the following

Lemma. With the assumptions as above, |K| has necessarily two base
points,

Proof. Assume that |K| has only one base point P. Let 7: S——S
be the blowing-up with center at P, let E=z"'(P) and let |#*K|=|L]|
+E. Then (IY)=2n—1. Let ¢:=9,,,: S—>VCP" be the morphism
defined by |L|, where V=¢(S). First of all, we shall show that ¢ is
not birational. In fact, assume that ¢ is birational. Let C be a general
hyperplane section of V. Then C is an irreducible curve of degree
2n—1 in P ', but not in any hyperplane of P"~'. By virtue of 1. 4,
the (geometric) genus g(C) of C satisfies:

n+2 if n=>4
g(O<1g if n=3

However, since C is birational to a general member of |L| which is
an irreducible nonsingular curve of genus p,(K)=2n+1, we have a
contradiction. Therefore, deg ¢=3 because deg ¢-deg V=2n—-1. If
n>=5 then (2n—1)/deg ¢<n—2. This implies that V is contained in a
hyperplane of P" if n>5, which is a contradiction. If n=4 or 3, then
deg V=1 because deg ¢-deg V=2n—1 is a prime number and deg ¢
>3. Hence V is contained in a hyperplane of P". Thus, we get a
contradiction in both cases n=4 and n=3. Q. E. D.

4. 2. In the following paragraphs we assume that:

(iv) | K| has two base points.
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Let 7: S——S be a composition of blowings-up with centers at the base
points of | K| such that the variable part |L| has no base points if
we write |7*K|=|L|+ X, where X is the fixed part of |#*K|. Then
(L) =2n—2. Let ¢:=0,,,: S—>VCP" be the morphism defined by
|L|, where V=¢(S). Let P, and P, be base points of | K|, where P,
is possibly infinitely near to P,. Let m: S——S and m,: S—S be
the blowings-up with centers at P, and P, respectively. Then n=mr, -7,
Let E,==,(z*(P,)) and E,==;'(P,). Noting that a general member of
| K| is an irreducible nonsingular curve and that, if P, is infinitely near
to P,, two general members of |K| meet each other at P, with inter-
section multiplicity 2, it is easy to show that

E+E, with (E)=(E)=—1 and (L-E) =
(L-E,)=1 if P, is not infinitely near to P,
E1+2E2 with (Ef) =-2, (E:) =-1, (L'El) =0
and (L-E,) =1 if P, is infinitely near to P,

X=

4. 3. Lemma. With the notations as above, we have
deg¢=2 and deg V=n—1.

Proof. Assume that ¢ is birational. Let C be a general hyperplane
section of V; then C is an irreducible curve of degree 2n—2 in P"7,
but not in any hyperplane of P*~'. By virtue of 1.4, the (geometric)
genus g(C) of C is not larger than n. However, since C is birational
to a general member of |L| which is an irreducible nonsingular curve
of genus p,(K)=2n+1, we have a contradiction. Thus, deg¢>2. We
shall show that deg¢=2. In fact, if deg¢9=>3 and n>4 then deg V<
n—2, which is impossible. If n=3 then deg ¢-deg V=4. Since deg V
#1, we must have: degop=2. Q. E. D.

Therefore, V is an irreducible surface of type (ii), (iii) or (iv) of
1. 5. 1.

4. 4. Lemma. V is not of type (ii) of 1. 5. 1.

Proof. Let us compute the branch locus B, of ¢. Let 2 be a line on
P2, Then the ramification locus R, of ¢ is given as follows:

R,~Ks—¢* (Ky) ~L+2X+¢* (30) ~5¢* (2) + 2 X.

Hence B,= ¢4 (R,)~1024+2¢,(X). Write B,~a4 with an integera. Since
$.(22) =0 and p,(L)=2n+1=11, we have by the Hurwitz’s formula:

2(11-1)=—4+42a,
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whence a=12. Therefore, ¢, (X)~4, and hence, ¢,(X) is a line on P2
Note that both ¢(E,) and ¢(E,) are irreducible curves if P, is not
infinitely near to P,, and that ¢(F,) is an irreducible curve and ¢(E,)
is a point on ¢(E,) if P, is infinitely near to P,, (cf. 4. 2). Thus, we
get a contradiction. Q. E. D.

4. 5. In the paragraphs 4. 5~4. 11 we assume that V is of type (iii)
of 1. 5. 1. We use the notations of 1. 5. We shall list up all possible
cases in the following:

Lemma. If V=2, we have one of the followings:

() X=E+E; n>2d-7; R~3pt ) +( 7T o0 ) 425 B,

~6M+ (n+7+3d)!; ¢ . (E) =1 and ¢, (E,) =1, with [ ~I,~1; moreover,
if Li#1, both I, and I, are contained in Supp(B,), and if L,=1[, we have
L, & Supp(B,).

(2) X=E+E,; n=d+3 with 0<d<2; R,~3¢*(M)+ 2d+3)¢*()
+2X; B,~8M+ (4d+8)1; either ¢, (E,) =M and ¢, (E,) =l,~1, or ¢,(E,)
=l~I and ¢,(E,) =M ; moreover, both M and I, are contained in Supp
(B,).

(8) X=E+E,; d=1and n=4; R~3¢*(M)+5¢*())+2X; B~10M
+101; P (El) =Cx (Ez) =M and MnN Supp(Bv) =¢'

(1) X=E+2E; n>2d-7; R~3¢* ) +( 7383 )00 () 12X B,
~6M+ (n+74+3d)1; ¢ (E,) =l~I, and ¢(E)) is a point on I,; |,CSupp
(B,).

(8) X=E,+2E,;d=1and n=4; R,~3¢*(M)+5¢*())+2X; B,~10M
+107; ¢, (E,) =M and ¢(E)) is a point on M ; MC Supp(B,).

Proof. Since Lo M+~ F40) K~L42X and Ko~—2M-
(d+2)!, we have:

R~30* () + (253 r (1 42X,

B~6M+ (n+3+3d) I+ 20, (X).

Writing B,~aM+bl with integers a and b, we shall determine a and
b by virtue of the Hurwitz's formula. Since p,,<M+%+‘il>=0 and
p.(L)=2n+1 we have:

—1-d
b _ﬂ___) - X
+< 9 a=4n-+4
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On the other hand, since (L-X)=2 and |M+d/| is a linear system
with no base point, we have:

(0* X0+ (o (- ) =2

(o* (M) - X) +d (¢* () - X) =0,
where (¢*(l)+X)>0. Therefore, we have:

(=Y e 0-n<,

where 2< (n—1—d) because n—d—3 is a nonnegative even integer.
Here, we consider the cases X=E +E, and X=E,+2FE, separately.
Case: X=E,+E, (1) Assume that (p*(/)+X)=0. Then p,(¢*())
=2. Hence, applying the Hurwitz’s formula to / and ¢*(/) we have
a=6 and b=n+7+3d. Then ¢,(X)~2l, whence follows that ¢, (E,) =1
and ¢, (E,) =1, with /,~[,~/ because ¢(E,) and ¢(E,) are irreducible
curves. Here, note that if ¢ is a generator of Gal(k(S)/k(V))=Z,
which acts on § by minimality of S, then either both P, and P, are
fixed by ¢, or we have ¢(P,) =P, This remark implies that ¢ acts on
S, and that either both E, and E, are fixed by ¢ or ¢(E,)=E, Hence
we know that either [,#/, and [, ,CSupp(B,) or [,=0LZSupp(B,).
Moreover, since B, is a reduced divisor, we have (B,-M)> —d, whence

nz2d—7. (2) Assume that (¢p*({)-X)=1. Then <n_—é_—(—i—):l or 2,

i. e, n=d+3 or n=d+5, and p,(¢*(l))=3. By the Hurwitz’s formula
applied to / and ¢*(!) we have a=8. Assume that n=d+3, and hence
b=4d+8. Then ¢,(X)~M+/l, which implies that either ¢,(E)=M
and ¢, (E,) =L~ or ¢,(E)=0l~I and ¢,(E,) =M, where M, [,CSupp
(B,) by a similar argument as in (l). Moreover, (B,-M)>—d, i.e,
0<d<2. Assume that n=d+5. Then, b=4d+8 and ¢,(X)~M. This
is impossible because ¢(X) is a reducible curve. (3) Assume that
(p*(D)-X)=2. Then we have: n=d+3, p.(¢*(l)) =4, and hence a=10
and b=4d+6. Moreover, ¢,(X)~2M, whence ¢,(E) ~ ¢,(E,)~M.
Since (B,»M)> —d, we have: d=0 or 1. If d=1, we have ¢,(E)=
o« (E,)=M; since (B,»M)=0 and M& Supp(B,), we have M N Supp(B,)
=¢. If d=0 (hence n=3), either ¢, (E,) =1 and ¢, (E,) =/, with [}/,
or ¢, (E)=0¢,(E,) =10, where I'(~[i~1,) is a fibre of X, perpendicular to
Iy if Li#1[, then [, [,CSupp(B,); if ¢.(E)=¢.(E,) then '¢Supp(B,).
This is the case (1) above, where the roles of [ and /' are interchanged
with each other.

Case: X=E,+2E,. (1) Assume that (¢*(/)-X)=0. Then we have
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a=6, b=n+7+4+3d (n>2d—7) and ¢,(X)~2/ as in the case (1) above.
Since ¢(E)) is a point on ¢(E,), we have o, (E,) =~/ with [,CSupp
(B,). (2) Assume that (¢*(/):X)=1. Then n=d+3 or n=d+5, a=8
and b=4d+8 with 0<d<2. If n=d+3, we have ¢,(X)=2¢,(E)~M
+1I, which is impossible because 2(¢,(E,)-D)=M+!I1-l)=1. If n=d
+5, we have ¢,(X)=2¢,(E,)~M, which is impossible. (3’) Assume
that (¢*(/)+X)=2. Then we have a=10, b=4d+6 (d=0 or 1) and
0 (X) =20, (E,)~2M. Hence ¢,(E,)~M. If d=1 (hence n=4), ¢, (E,)
=M and MCSupp(B,). If d=0 (hence n=3), ¢,(E,) =/ which is a
fibre of 3, perpendicular to /. This is the case (1’) above, where the
roles of / and ' are interchanged with each other. Q. E. D.

4. 6. In this paragraph and the next, we shall study the surfaces of
type (1) of 4. 5.

Lemma. Assume that ¢: S——V satisfies the conditions (1) of 4. 5.
Then we have:

(1) If L,#l, and if S is the canonical resolution of the double covering
of V with branch locus B,, the surface S can be constructed as follows:

(1) Let q: W——V be the blowing-up with centers at z, and x,
on the fibres 1, and I, respectively, and let q,: W——W, be the blowings-
up with centers at vy, and y, on q,(l,) and q,(l,) respectively, which may
be infinitely near to x, and x,. Let q=gq,-q, and let E,k=q'(z;) and
Esv,-=qz_l(yi) for i=1, 2.

(ii) Let B be a reduced divisor of |6q*(M)+ (n+7+3d)q* (D) —4E.,
—4E, —4E, —4E, |, which has no infinitely near triple point. Let S be
the canonical resolution of the double covering of W with branch locus B.
The proper transforms of I, and I, by q are necessarily nonsingular compo-
nents of B, which give rise to two exceptional curves E, and E, of the
first kind on S. Contracting E, and E, we get a minimal surface S of
general type with p,=n+1, ¢=0 and (K%) =2n.

(2) If =1, S is not the canonical resolution of the double covering
of V with branch locus B,.

Proof. Let S* be the canonical resolution of the double covering of
V with branch locus B,. By virtue of Lemma 1. 3, we have:

n+2=1 (8%, 0,) =n+6- 5 [ 2] (2] - 1),

(K;*)=2n+6—2;([lg:]— 1)

Hence, we have Z[%{l([%]—l):& and we know that one of the



160 M. Miyanishi and K. Nakamura

following two cases takes place;
1) there are four indices, say i=1, 2, 3, 4, such that [%}zZ for

i=1, 2, 3, 4 and [%]:1 for i1, 2, 3, 4;

2) there are two indices, say =1, 2, such that [zl-‘]=3, [172_2]=2

2 2
and [%—‘]:1 for i1, 2.

Then (Ki«) =2n—2 in the first case; (K%)=2n—4 in the second case.
On the other hand, it is easily seen that the natural morphism p:S*—
S, whose existence follows from the minimality of S, factors through S,
ive, p: S*2 58 " .S, Thus, S=S* in the first case ; p is a composition
of two quadric transformations in the second case.

We shall show that /,#/, in the first case. Let F: =3M+ <n+;+ Bd) I

and let Z:=¢*(,) +0*(},) —2X>0. Then it is easy to see that ¢*(B)
—2R~2Z. Since any irreducible component of ¢*(B)—2R is a curve
contractible to a point by ¢ and since ¢*(B)—2R>0, we know that
dim |¢*(B) —2R|=0. Hence ¢*(B)—2R=2Z. Since S has no torsion
by virtue of 1. 1, (4), we know that R+Z&|¢*F|. Moreover, we have
(Ey+2)=(E,»Z)=2. Let & be a point of E,NSupp(Z), and let z,=
o&)el. Let o: V,——>V be the blowing-up with center at =z, and
let D=¢"'(x,). Then there exists a morphism ¢: S——V, of degree 2
such that ¢=0+¢. Since R,~R,—¢*(D), and ¢,(E,) and ¢,(E,) are
respectively the proper transforms of /, and /, by ¢, we can easily show
that :

B _{60*(M)—|—(n+7+3d)a*(l)~4D if L+#1,

7 60* (M) 4+ (n+7+3d)e* (1) —6D if =1,

and hence

4 if [+,

(B*"D):{e; if 1,=1,

Let B,:=B,— (l,+1,) if ,#1, and B,:=B, if /,=/. Let p be the multi-
plicity of a reduced divisor B, at x,, Then B, is written as:

o (B)+0 (W) +0* (1) + (ut 1= £ D if 1,

B,=
7B+ = §PD it L=t

Moreover, p< (/,+B,) =6. Thence, we conclude that =3 or 4 if [,#],

and =6 if [,=/. However, £=6 is impossible because [73‘]<2 for all
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i. Therefore, /,#/, in the first case. If [ #/, and $=S* the same

arguments as in ([5], p.51) leads us to the construction stated as
above. Q. E. D.

4. 7. We shall consider when there exists a reduced divisor B having
no infinitely near triple point (cf. the case (1) of Lemma 4. 6). Write
B=B,+1,+1, where [, and [, are respectively the proper transforms of
l, and [, by ¢, and B, |6¢*(M)+ (n+5+3d)q* () —3E, —3E, —3E,,—

3E,,|. In a similar fashion as in [7] we can show the following

Lemma. (1) Assume that n>3d—5, and when d>0 assume also that
Zy, ¥, X, and y, do not lie on M. Then the linear system |B,| has no
base point. Hence its general members are nonsingular.

(2) Assume that 3d—5=2n>2d—1 and that both z, and z, are on M
but neither y, nor y, is on M. Then any general member of |B,| has
no infinitely near triple point and is disjoint from I, and I,

(8) Assume that 3d—5>n and that not both of x, and x, are on M
and neither y, nor y, is on M. Then any divisor of |B,| has multiple
components.

(4) Assume that 2d—1>n. Then any divisor of |B| has a multiple
component.

Proof. (1) Assume that d>0. We shall show that any general member
of the linear system A:=|2M+2dl|— (z,+y,+z,+y,) 1s an irreducible
nonsingular curve and 4 has no accidental base point. In fact, since
|IM+2(d—1)I|+ M+ 1+, is a linear subsystem of 4, the fixed com-
ponents of A (if any) are possibly M, /, and /. If M is a fixed com-
ponent of 4, then dim A=dim|M+2d!| — (z,+y,+z,+y,) =3d—3. [Since
(M+2d!l-l)=1, [, and [, are then fixed components of |M+2d!|— (z,
+y,+2,+y,). Hence dim|M+2d!| — (z,4+y,+x,+y,) =dim| M+ (2d—2)|
=3d—3 (cf. 1. 7)] Hence M is not a fixed component of 4 because
dim A>3d—2. Neither /, nor /, is a fixed component of 4, for, if
otherwise, M is also a fixed component of 4, which is impossible as
shown in the above argument. Therefore 4 has no fixed component.
A is not composed of a pencil because |M+ (2d—2)!|+M+1+., is a
linear subsystem of 4. On the other hand, since |M+ (2d—-2)I|+M
+ 1,4+ ,C 4, accidental base points of A4 (if any) lie on M, I, or I,
However, there is no accidental base point on /, or [, for, if otherwise,
l, (or 1) is a fixed component of 4. Similarly, there is no accidental
base point on M, because (M:2M+2d/)=0 and a general member of
A is irreducible by Bertini’s Theorem. Therefore, 4 has no accidental
base points. Thus, we obtain our assertions by Bertini’s Theorem.
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Let 4 be a general member of |2M+2d!| — (z,4+y,+x,+y,). The linear
system |B,| contains a linear subsystem | (n4+5—38d)q* (1) | +34, where
4 is the proper transform of 4 by g. On the other hand, the same
linear system contains a linear subsystem |4g*(M)+ (n—143d)q*(]) |
+2¢* (M) +31,+31,. Two linear systems | (n4+5—3d)g*(])| and |4g* (M)
+ (n—143d)g* ()| have no base point, while, on the other hand, the
support of 4 does not meet that of 2¢*(M)+3Il,+3I,, Hence |B,| has
no base point. If d=0, we can make a similar argument by replacing
|2M+2d!| by |2M+2!|, where M is now a fibre of %, perpendicular
to L

(2) Let M be the proper transform of M by g. Then M is a fixed
component of |B,]. Hence we write B,=M+C with Ce&|5¢* (M) + (n
+5+3d)q* () —2E, —2E, —3E, —3E, |. We shall show that |C| has no
base point. Let 4 be a general irreducible member of |M+dl|—y,—y,.
[It is not hard to show that a general member of |M+dl|—y,—y, is
irreducible and nonsingular.] Then |C| contains a linear subsystem
| (n45)q* (1) | +2M+34, where 4 is the proper transform of 4 by gq.
On the other hand, |C| contains a linear subsystem |5¢*(M)+ (n+1+
3d)q*(l)—E, —E, | +2I,+2l,. Since n>2d—1, |5M+ (n+1+3d)l|—y,
—y, contains a linear subsystem |(n+1—2d)I|+ (|5M+5dl|—y,—y,).
Thence, it follows that [5M+ (n+143d)!|—y,—y, has no base point
other than y, and y, and that any general member of |5M+ (n+1+
3d)l| —y,—y, passes simply through y, and y, Hence |[5¢*(M)+ (n+
1+3d)q* (Z)—E,‘—Eyzl has no base point. These facts imply that |[C]|
has no base point. In view of the equality (C-M) =n+1-2d, C
intersects M unless the equality n=2d—1 holds. By the same argu-
ment as in ([7], p. 125) we can show that if C is a general member
then C intersects M transversally. Thus, B,=M+C has no infinitely
near triple point.

(3) It is easy to see that the proper transform M of M is a fixed
component of |B,| and that either /, or I, is a fixed component of
|B,—M|.

(4) The assumptions that n—3—d is a nonnegative even integer
and that n<{2d—1 imply that d>4. But, for later use, we only assume
that d>4. Then, in view of (3) above, we have only to consider the
case where both z, and x, lie on M. Then, neither y, nor y, is on the
proper transform M of M by ¢, whence (M-E,):(]\ZoE,z):l. Note
that M is a fixed component of |B,|. Since -B,—M)=—5d+ (n+
54+3d) —2—2=n+1-2d<0, M is a multiple component of |B,].

Q. E. D.
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4. 8. In this paragraph and the next we shall study the surfaces of
type (2) of 4. 5.

Lemma. (1) If d=2 there do not exist the surfaces of type (2) of
4. 5.

(2) If d=0or 1, S is the canonical resolution of the double covering
of V=2, with branch locus B,.

(38) If d=1, the surface S can be constructed as follows:

(i) Let z,=MnNI, let q,: Wi——V be the blowing-up with center at
z,, and let g,: W——W, be the blowing-up with center at a point x, on
q:(l,), which may be infinitely near to x,. Let q=gq,*q, and let E, =
97" (x) and E,,=q;"(z,).

(i1) Let B be a reduced divisor of |8q*(M)+12g*()) —6E, —4E,,|,
which has no infinitely near triple point. Let S be the canonical resolution
of the double covering of W with branch locus B. The proper transforms
M and I, of M and 1, by q respectively are nonsingular components of B,
which give rise to exceptional curves E, and E, of the first kind on S.
Contracting E, and E, we get a minimal surface S of general iype with
p.,=95 g=0 and (K})=8.

4) If d=0, the surface S can be constructed as follows :

(1) Let x,=M® N1, let q,: W,——V be the blowing-up with center
at x,, and let g,: W——W: be the blowings-up with centers at x, and v,
on ¢;(4,) and q,(M) respectively, which may be infinitely near to x,. Let
4=¢,*qy and let E, =q7' (), E.,=q;'(z,) and E, =q;'(3,).

(ii) Let B be a reduced divisor of |8¢* (M) +8g*(l) —6E, —4E,,—
4E, |, which has no infinitely near triple point. Let S be the canonical
resolution of the double covering of W with branch locus B. The proper
transforms M and I, of M and I, by q respectively are nonsingular com-
ponents of B, which give rise to exceptional curves E, and E, of the first
kind on S. Contracting F, and E, we get a minimal surface S of general
type with p,=4, q=0 and (K}) =60.

Proof. Let S* be the canonical resolution of the double covering of
V with branch locus B,. By virtue of Lemma 1. 3 we have:

d+5=y (S*,04) = 10—%2[?"-21]([%]— D,

i

(K;*)=16-2>;([%]—1)2.

*) Note that M is a fixed fibre of Xy perpendicular to I
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On the other hand, it is easy to see that the natural morphism p:S*——
S, whose existence follows from the minimality of S, factors through S,
e, p: S*—2 58 "5SS Hence we have (K24)< (K2 =2d+4. Taking
this inequality into account, we can easily show that;

1) if d=2, there is one index, say ¢=1, such that [%—‘]:3 and [—"21-]

=1 for all other indices,
2) if d=1, there are two indices, say i=1, 2, such that l:—"ﬂ]=3,

2
m,|_ m;]_ .
[—2 ]—2 and [——2] 1 for i#1, 2,

3) if d=0, there are three indices, say i=1, 2, 3, such that [%]:3,
Mo || s | = = ] .
[7]_[2] 2 and [2] I for 1%1, 2, 3

In each case, (Ki«)=(K3), whence p: S*— S is an isomorphism.

Now, note that M and /[, are irreducible components of B, and

that the point ;=M N/, should be blown up in the process ¢: V*——7V,
which is the shortest composition of blowings-up such that the (new)
branch locus B* is nonsingular (cf. 1. 3). Let M* be the proper
transform of M by §. Then (M*)< —d—1. On the other hand, since
we may assume that M* gives rise to E,, we have (M**)=—2. Then,
since the proper transform [¥ of /, by ¢ gives rise to E, we have (/?)
= —2. This shows that;

1) if d=2, there do not exist surfaces of type (2) of 4. 5,

2) if d=1, x, is the only point on M which is blown up in the
process ¢ ; there is exactly one more point z, on [, which is
blown up in the process ¢;x, may be infinitely near to z,,

3) if d=0, there are points z, and ¥, on [, and M respectively,
which may be infinitely near to z,; the points x,, x, and y, are
the points on ,U M, which are blown up in the process §.

Now, by the same arguments as in ([5], pp.51—52) and the above
observations taken into account, we have the constructions of surfaces
S given in the above statements. Q. E. D.

Let B:=B,—I,— M, and let p, p, and v, be respectively the mul-
tiplicities of B at z,, x, and y,, when d=0. Assume that both z, and
y, are infinitely near to x,. Then, the argument as in the proof of
Lemma 4. 6 shows that either y¢,=4 and g,=v,=3, or g#,=5 and =y,
=2. However, the first case is apparently impossible.

4. 9. We shall consider the existence of a reduced divisor B having

no infinitely near triple point, whose existence was assumed in Lemma
4. 8. Write B=B,+M+1, where B,c|7¢* (M) +11q* (/) —4E, —3E, | if
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d=1, and B,e|7¢* (M) +7¢*()—4E, —3E,,—3E, | if d=0. Then we
have the following:

Lemma. (1) Case d=1. The linear system |7q*(M)+1l1q*(l) —4E,,
—3E, | has no base point. Hence its general members are nonsingular
and irreducible ; moreover they are disjoint from M and I,

(2) Case d=0. Assume that not both of x, and vy, are infinitely
near to z,. Then the linear system |7q*(M)+7q*(l) —4E, —3E,,—3E, |
has no base point. Hence its general members are nonsingular and irre-
ducible ; moreover they are disjoint from M and I,

Proof. (1) We shall show that any general member of |2M+43/|—
z,—, is a nonsingular irreducible curve and that [2M+43!|—x,—ax,
has no accidental base point. In fact, since |2M+2I|+/, is a linear
subsystem of |2M+3!/| —x,—x, and |2M+2/| has no base point, the
fixed component (if any) of |2M+3!| —x,—x, is possibly /. However,
since dim|2M+3/| —x,— 2,26 and dim|2M+2!| =5, |2M+3l| —z,—=x,
has no fixed component. Moreover, since |2M+3!/|—x,—z, has a
linear subsystem |M+2l|+M+/, and |M+2/| is very ample, |2M+ 3!
—z,—x, is not composed of a pencil. Since ((2M+3/)?)=8 and dim
|2M+38l| —z,—x,26, |2M+3l| —x,—z, does not have accidental base
points. Hence we get our assertions by Bertini’'s Theorem. Let 4 be
a general member of |2M+3/| —z,—z,, and let I be a general mem-
ber of |M+2l| —x, which meets [, transversally, Let 4 and I" be
the proper transforms of 4 and I" by g respectively. Then 34+ is a
member of |B,]|. On the other hand, |7q* (M) +8¢* () —E, | +3], is a
linear subsystem of |B,|, and |7¢* (M) + 8¢* (l)—Ele has no base point
because |7M+8l| is very ample. Then, since ,N(dU ") =¢, we know
that |B,] has no base point.

(2) Since one of z, and y, is not infinitely near to =z, we may
assume that y, is not. Let /, be a fibre passing through y, and linearly
equivalent to /. Now, we shall show that any general member of |2M
+2l| —x,—x,—y, is a nonsingular irreducible curve and that |2M+
2l| —x,—x,—y, has no accidental base point. In fact, since |2M|+
+1, is a linear subsystem of |2M+42/|—z,—x,—y, and |2M| has no
base point, a fixed component of |2M+2l| —x,—z,—y, is possibly /, or
I, However, since dim|2M+2!| —z,—z,—y,=5, dim|2M~+!|+l,—y,=4
and dim|2M+!|+/,—x,—x,<4, we know that neither [, nor [, is a
fixed component of |2M+2/|—x,—x,—y,. Since |M+I|+M+1,C|2M
+2/| —x,—x,—y, |2M+2l| —x,—x,—y, is not composed of a pencil
Moreover, since dim|2M+2/| —z,—x,—v,>25 and ((2M+2)?) =8, we
know that |2M+2/| —x,—x,—y, has no accidental base point. Thus we
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get our assertions by Bertini’s Theorem. Therefore, |2¢* (M) +2q9* ({)
—E,—E,—E,| has no base point. Note also that |g*(M)-+q*())—
E, | has no base point. Then, since 3|2¢*(M)+2¢9*()-E, —E, —E,|
+1q* (M) +q* (D) —E.,|C | Tg* (M) +7q* (1) —4E, —3E,— 3E, |, we know
that |B,] has no base point. Q. E. D.

4. 10. Lemma. There is no surface of type (3) of 4. 5.

Proof. The conditions imply that X=¢*(M). Then, Ks~¢*(M+2])
+2X~¢*(3M+2l). Hence p,(S) :p,(g) >dim H'(Y, 0 (BM+2]))=dim
H°(%, 0 (2M+2[)) =6, which contradicts the assumption that p,(S)=>5.

Q. E. D.

4. 11. Lemma. Let S (or S) be a surface of type (1') of 4. 5. Then S
is not the canonical resolution of the double covering of V=23, with branch
locus B,.

Proof. Let S* be the canonical resolution of the double covering of
V with branch locus B,. Then there exists a birational morphism 5:
S*——S such that 7-p: S*——S is the natural morphism, whose exist-
ence follows from the minimality of S. By virtue of 1. 3, we have:

n+2= 108, 00 =n+6- 5 5[ 2] %],
(Kia) =21+6-23 ([’_;5]— 1

Thence, we have one of the following two cases;
(i) there exist four indices, say i=1, 2, 3, 4, such that m":l=2 for
i=1, 2, 3, 4 and [m']=1 for i#l, 2,3, 4; (K)=2n—2; p: S*—8

2
s an isomorphism,
(ii) there exist two indices, say ¢=1, 2, such that [—"5—‘]:3, [—’722—2]=2
m;

and [_2_]=1 for 7#1, 2; (Kis)=2n—4; p is a composition of two

quadric transformations. :
Assume now that the first case takes place. By 1.3 (cf. the proof of
Lemma 4. 6), we have an effective divisor Z on S such that Z=2¢*(/,)

—2X, ¢*(B,) —2R,=2Z and R, +Z€E |¢*F|, where F:=3M+<%+3d>l.

Then, (Z-E,)=0 and (Z-E,)=2. Let £€LE,NSupp(Z) and let z=¢(&).
Let 0: V,——V be the blowing-up with center at . Then, there exists
a morphism ¢: S—V, of degree 2 such that ¢=0¢; R,=R,—¢*(D),
where D=0¢7"(z). Then B,~¢*(B,) +2¢.(E,) —6D. Hence we have:
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1) (By+D)=6 if z#0o(E),
2) (B,-D)=4if ¢(E)=D and ¢.(E)=D,
3) (B,:D)=2 if ¢(E)=D and ¢,(E,)=2D.
We shall show that none of these cases takes place. Case 1). Let ¢ be

the multiplicity of B, at x. Then, [-2ﬁ]=3 (cf. the proof of Lemma 4. 6),

which contradicts the condition (1). Case 2). Let ¢ be a generator of
Gal(k(S)/k(V))=Z,, which acts on S (and hence on S). Since E, is
¢c-stable, the condition 2) says that D is branched, i.e., DCSupp(B,).
Then the point ¢'(/,) N D should be blown up in the process ¢: V*—
V, which is the shortest composition of blowings-up such that the (new)
branch locus B* is nonsingular. This implies that E,NE,=¢, which is

a contradiction. Case 3). Let p be as above. Then, [—5—}:1, whence

p#=2 or 3. Assume that y=2. Write B,=/+B,, Then /, and B, inter-
sect each other transversally at x. Since (B,-/)=6, BN/, contains
another point y distinct from x. If B,N/, contains the third point z(#
z, y), then, 4(E}) < —6, which is a contradiction. Thus, B N/= {z, y}
and (B, /,; ¥y)=5. The multiplicty v of B, at y must be 5, for 4(E2) <
—6 otherwise. Then the multiplicity of B, at y is 6, which contradicts
the condition (i). Assume that g=3. Then, DCSupp(B,), which is a
contradiction again by the same reason as in the case 2). Therefore,
the case (i) does not take place. Q. E. D.

4. 12. Lemma. There is no surface of type (3') of 4. 5.

Proof. We shall show that ¢*(M)=X. Then, we get a contradiction
by the same reason as in 4.10. Let S* be the canonical resolution of
the double covering of V=2, with branch locus B,. If ¢: V*—V is
the shortest composition of blowings-up such that the (new) branch
locus B* is nonsingular (cf. 1. 3), we have the following commutative
diagram ;

S* > V*

bl

S —— V

where ¢ is a finite morphism of degree 2; the existence of p was
mentioned repeatedly (cf. 4. 6, 4.11). By virtue of 1. 3, we have;

6=1(5%, 01 =7— S 22| ]- 1),
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(K2 =6—2;<[”2""]— .

Hence there exists one index, say ¢=1, such that [%-‘]:2 and [%]:1

for i#£1. Then (Ki«) =4<(K}%) =6, which implies that p is a composition
of two quadric transformations. On the other hand, M is an irreducible
component of B,. Write B,=M+B, with B~9M+10/ and (B,-M)=1.
Then, M and B, meet each other only in one point z, at which B, is
nonsingular. The point is nothing but ¢(E,), because ¢(E,) must be
blown up in the process §. Noting that § is the shortest process to get
the nonsingular branch locus B*, we know that no points on ¢'(M) and
D are blown up in the process §, where o: V,——V is the blowing-up
of V with center at x, and D=0¢""(x). Then, it is easy to sce that
¢*(D+0'(M)) is a divisor on S* having the same property as X. This
implies that the support of ¢*(D+¢’(M)) does not meet any fundamental
curve of p. Thus ¢*(D)=X. Q. E. D.

4. 13. In the remaining paragraphs of this section we shall assume that
V is of type (iv) of 1.5, 1, i.e.,, V is a cone over a nonsingular rational
curve of degree n—1 in P

Lemma. Let g: W:=2%,_——V be the minimal resolution of singu-
larities of V. Then, there exists a morphism ¢: S——>W of degree 2 such
that p=q-¢.

Proof. Our proof is almost parallel to the proof of Lemma 1.5 of
[6]. There exists a basis {zy 2, ..., z,} of H'(S, ®(L)) such that

where z,/z, defines a rational function g on S. Write (g)=D-D,
where D and D, are effective divisors without common components.
Then we can write

(x)=((n—-19)D+ (GE-1)D,+G for 1<i<<n.

Since |L| has no base point, we know that Supp((z,))NG=¢, esp.,
(L+G) =0, and, noting that (L-X)=2, we know that

(i) if X=E+E, neither E, nor E, is a component of G,

(i1) if X=E +2E,, E, is not a component of G.
In any case, (G-E,)>0. Since (L-E,)=1, (D-E,)>0 and n>3, the
equality

=n—-1) D-E)+(G-E)
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implies that (D+E,)=0 and (G-E,)=1. (If X=E,+E, we have (D-E))
=0 and (G-E)=1.) On the other hand, (L-D)=2 because (L?) =
(n—1)(L-D)+(L-G)=2n—2. Hence, we have:

(n=1) D)+ (D-G)=2.

If n>4, this implies that (D*)=0 and (D-G)=2. If n=3, (D*)=1 and
(D-G)=0 then we have (G?*)<0 by the Hodge index theorem. Then
(G*) =0 because (L:-G)=(n—-1)(D-G)+ (G*) =0. Hence G=0, which is
contrary to (G+-E,)=1. Hence (D*)=0 and (D:G)=2 if n=3. Then,
the same argument as in [6] shows the existence of ¢. Q. E. D.

As a consequence of the above lemma we know that ¢*(M)=G and
¢* ())~D, where M is the section of X,_, with (M?) =— (n—1).

4. 14. Let R, and B, be respectively the ramification locus and the
branch locus of ¢: S—>W=2,_,. Since Ky~—2M— (n+1)/ and L~
o*(M+ (n—1)I) we have:

R,~3¢* (M) +2nd* (I) +2X,
B,~6M+4nl+2¢, (X).

Write B,~aM+bl with integers a and 6>0. Since p,(L)=2n+1, the
Hurwitz’s formula tells us:

202n) = —4+ @M+bl-M+ (n—-1)10),

whence b=4n+4. On the other hand, since ¢,(/)~D and p,(D)=2,
we have a=6. Therefore, B,~6M+ (4n+4)/, and ¢, (X)~2L If X=E,
+E,, then ¢, (E,) =/ and ¢, (E,) =1 with [ ~[,~I; if [+, both /, and
l, are contained in Supp(B,); if ,=/, then [ &Supp(B,). If X=E +
2E,, ¢, (E,)=IL~! and ¢(E,) is a point on [; [, CSupp(B,). Since
(B,»M) = — (n—1) we have n<9. Now, the same observations in Lemmas
4. 6, 4.7 and 4. 10 lead us to the following

Lemma. (1) Case X=E,+E, If L#1l, and if S is the canonical
resolution of the double covering of W with branch locus B,, the surface
S can be constructed as in Lemma 4. 6, (1) with d replaced by n—1; n
is necessarily 3 or 4. If L =1, S is not the canonical resolution of the
double covering of W with branch locus B,.

(2) Case X=E,+2E, S is not the canonical resolution of the double
covering of W with branch locus B,

Proof. In applying Lemma 4. 7, (4), note that n—1>4 (cf. its proof).
The same lemma implies that there exists a nonsingular curve B, if
n<4. Q. E. D.
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4. 15. Summarizing the above results 4. 1~4. 14 we have the following

Theorem. Let S be a minimal surface of general type such that p,=
n+1 and (K?*)=2n with n>=3. Assume that | K| has no fixed component
and that | K| has base point. Then we have the following :

(1) | K| has exactly two base points, and |K| is not composed of a
pencil.

(2) Let P, and P, be base points of | K| with P, possibly infinitely
near to P, let m,: §,——S and w,: S—>S, be the blowings-up with
centers at P, and P, respectively. Let nm=m+m, let E =m,(z'(P,)) and
let E,==n;'(P,). Let |[#*K|=|L|+ X with the fixed part X, and let ¢:=
?,,,:S——Vc P with V=¢(S). Then either X=E,+E, or X=E,+2E,
respectively P, is not, or is infinitely near to P,; dego=2 and deg V=
n—1; V is a surface of type (iii) or (iv) of 1. 5. 1.

(8) If X=E,+2E, S is not the canonical resolution of the double
covering of V (or, the minimal resolution W of V if V is singular) with
branch locus B, (or B,), (cf. Lemmas 4. 6 and 4. 13).

(4) If X=E,+E, and if S is the canonical resolution of the double
covering of V (or the minimal resolution W of V) with branch locus B,
(or B,) we have the following three cases: '

(1) V=2,;, n—3—d is a nonnegative even integer, and n>2d—1;
B~6M+ (n+7+43d)!; ¢« (E) =!I, and ¢,(E,) =1, such that l~l,~I[; [,
#1, and [, [,CSupp(B,), (the construction of such surfaces is given in
Lemma 4. 6, (1)).

(ii) V=2,; d=0 or 1, and n=d+3; B,~8M+ (4d+8)!; either
0. (E) =M and ¢, (E,) =1, or ¢, (E) =1, and ¢, (E,) =M, where l,~I] and
M, [,cSupp(B,), (the construction of such surfaces is given in Lemma
4, 8).

(ii1) V is a cone (cf. 1. 5.1, (iv));n=3 or 4; let q: W:=2Y _—>V
be the minimal resolution of singularities of V, and let ¢: S—W be a
morphism such that ¢=q-¢; B~6M-+ (4n+4)1; ¢ (E)=I and ¢,(E,)
=1, such that [~l,~I, l,+1, and [, [,CSupp(B,), (the construction of
such surfaces is given in Lemma 4. 6, (1)).
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