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§ 0 .  Introduction

After studying ample vector bundles on algebraic varieties, R. Hartshorne has
posed the following problem in [ 5 ]  and now  it is know n as the conjecture of
Harshorne's.

(H -n )  I f X is an n-dimensional non-singular projective algebraic variety with ample
tangent vector bundle defined over an algebraically closed field k, then X is

(algebraically) isomorphic to I"  over k.

In the case k=C  (the complex number field), it is known that this conjecture
is deeply connected with the following famous conjecture of Frankel's in complex
differential geometry.

(F -n )  A compact Kaehler manifold X  of dimension n  w ith positive sectional
curvature is biholomorphic to the complex projective space 13 7 2 (C).

From now on, we assume that the characteristic of k is O. (H -1 ) and (F-1)
are obvious. Using classification of algebraic surfaces, (H-2) and (F-2) are solved
affirmatively by R. Hartshorne [5] and by Frankel and Andreotti [3 ]  respectively.
Recently, T. Mabuchi has succeeded in proving (H-3) under the assumption that
the second Betti number of X  is equal to 1  [9]. In this paper, we will prove that
(H-3) holds true without the assumption on the second Betti n u m b e r. The keys
to our proof of (H-3) are the following.

(1) A criterion for P ic  (X )= Z : Let X  be a non-singular projective algebraic
variety with ample anti-canonical divisor c1 =c 1 (T x ). Then the Picard number
p(X) of X is equal to 1 if and only if every effective divisor on X is ample (Theorem
3). Using this criterion, we prove that if the tangent vector bundle Tx  of X is ample,
then the Picard number p(X) of X is equal to 1 (Theorem 4).

(2) A characterization of projective sp aces: If a non-singular projective alge-
braic variety X has a non-zero global vector field vanishing on an ample irreducible
effective divisor D on X, then X  is isomorphic to a projective space I"  and D cor-
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responds to a hyperplane in Pn (Theorem 8).
(3) Bialynicki-Birula's results on Gm -actions [2] and T. Mabuchi's argument:

We use T. Mabuchi's argument in simplified form on vector fields.
Finally we note tha t the conjecture (H-2) is proved by our method without

using the classification of algebraic surfaces and it seems that our method might
work in higher dimensional cases.

Notations

T x : the tangent vector bundle of a non-singular algebraic variety X , i.e., a locally
free e x -sheaf with rank =dim X.

cl = c ,(T x ) :  the anti-canonical divisor of X , i.e., the first Chern class of T .
K x : the canonical divisor of X , i.e., K x = —c 1 .
H i(X , F ): i-th cohomology group for a coherent O x -sheaf F.
hi(X, F), hi(X, D)=W(D): hi(X, F)= dim Hi(X, F), D)= hi(X, x (D )) for a

divisor D on X.
x(F): the Euler-Poincare characteristic of a coherent O x -sheaf F, i.e., x(F)= E( -

hi(X, F).
Pic (X ): the Picard group of X.
(D. C ): intersection number of a divisor D and a curve C in a non-singular projec-

tive algebraic variety.
Aut (X ), Aut(X)°: the automorphism group of an algebraic variety X  and the con-

nected component of Aut (X ) containing the unit element.
XG: G-fixed points scheme with reduced structure of an algebraic variety X  on

which a linear algebraic group G acts.
D.,(F): the closed subscheme defined by a homogeneous ideal 9I(c R) in

Proj (R) (R being a graded ring) and the open subscheme defined by a homo-
geneous element F in Proj(R).

§ 1 .  A criterion for P ic (X )  Z

Let X  be a non-singular projective algebraic variety defined over an algebra-
ically closed field of characteristic O. I n  t h i s  section, we will give a criterion for
Pic(X) to be isomorphic to Z when the anti-canonical divisor c1 =c 1(T x )  o f X  is
ample and using it, we will prove that the ampleness of the tangent vector bundle
Tx  of X implies Pic (X )= Z.

Before stating our criterion, we shall begin with the following lemmas.

Lemma 1. L e t D  be  an  am ple  div isor o n  X (n =dim X). T h e n  h°(inD-
c1)00 f or some integer m with 1<in <n +1.

Pro o f . For every integer in, we put P(m)=x(mD— c1)_ x(mD+K x ). Since D
is  ample, P(m)= 

 D "
 m"+ ••• is  a numerical polynominal of degree n in ni by then!

Riemann-Roch theorem and hence P(m )=0 has only n roots. W e have hi(mD+
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K x )= mD) = 0  f o r  i(1 < i< n )  a n d  m (>1) b y  Serre duality  a n d  Kodaira
vanishing theorem. Hence P(m)-h°(inD— c 1)(n i>1) and h°(mD—c 1 ) 00 for some

q. e. d.

For a divisor D on X, we write D >0 if D is ample and D >0 if D is numerically
effective, i.e., (D • C)>0 for every effective curve C in X.

Lemma 2 .  A ssum e th a t  th e  anti-canonical div isor c 1 =c 1(Tx ) is  am p le .
Then we get the following:

(1) linear equivalence=numerical equivalence for div isors on X .
(2) For a divisor D>0 on X , there is a positive integer m such that h°(mD)>1.

Pro o f . ( 2 )  Let D  be a  numerically effective divisor on X .  L et P(x) be the
polynomial such that P(m)=x(mD) for every integer m .  Since c , is ample, P(0)=

Dnz(e) x )--- 1 a n d  P ( tn ) =- -
n !

m"+ • •• +1. h i (m D )=h''(—  inD +K x )=-11"- i( —(mD+
e1))=0  fo r a ll i>0 because n/D+c, is  am ple for every m (> 0 ).  Hence P(in )=
11°(InD)>0 fo r m(>0) and  h°(mD)> I for some integer m (> I). (1) Let D  be a
divisor which is numerically equivalent to 0. Then we see easily that h°(e x (D))= I
and h°((9 x ( D ) ) =  1 because c, = c ,(Tx )  is a m p le . Hence D  is linearly equivalent
to O. q. e. d.

Let A 1(X )=N (X )® R  where N (X ) is the Neron-Severi group o f  X  and let p
be the Picard number of X, i.e., p = A  ' ( X )  ( [7 ] ) .  Now we shall give a  theo-
rem which implies p =1 under some condition.

Theorem 3. L et X  be a non-singular projective algebraic variety defined over
an algebraically  closed f ield of  characteristic 0 and let the anti-canonical div isor
c, =c,(T x ) be am p le . Then the following are equivalent.

(1) P= 1

(2) Every effective divisor on X  is ample.

Pro o f . W e have only to prove (2)-+(l). Assuming that there is an ample
divisor D on X  so that DEE R e, in A '(X ), we will get a contradiction. By virtue of
Lemma 1 and  our assumption, we have (n+ I )/) — e , >0  and  (n + 1)D — c, >0 be
cause D R c , .  Let (n +I)D =c ,+D , in A '(X ), D , being an ample divisor on X.
Then D 1 R e , .  A p p ly in g  the same process to D ,, we get (n+ I)D, = c„ + D 2 , D,
being an ample divisor on X .  Repeating this process, we obtain

(n+1)D  =c ,+D ,

(11+1)D 1 =c 1 -1-D
• •
• •

•

(n+ 1 )D,„_1=---c1+D,,.
•

Hence, D -
1 — ( 1 1 ( n + 1 ) ) ' " + '

 c, +(11(ii +1))"'+'D„, where D„, is an ample divisor
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o n  X .  Taking !n—* co, D> c- i ,  i.e., nD—c 1 > 0 .  By virtue o f  Lemma 2 and our

assumption, nD—c,> 0 because D Rc 1 . Hence, nD—c,> 0 for any ample divisor
D which is not contained in R c ,. Applying the above argument to  th is situation
again, we get (n —1)D — c, > 0 .  Repeating this argument, we finally get that D —
c >0 if D is an ample divisor and D e O lc ,. Now we have D=c 1 +D,, D 1 =c 1 +
D2, ... (Dm  is an ample divisor for every m.). Then D=mc i + D ,„ . Since c, is ample,
D,„=D— ms, is not ample for a sufficiently large in, which is a contradiction.

q. e. d.

Now we will prove the following theorem.

Theorem 4. Let X  be a non-singular projective algebraic variety with ample
tangent vector bundle T x  def ined over an  algebraically  closed f ield of  character-
istic 0. Then Pic (X )= Z.

Before giving the proof, we shall show three lemmas and fix some notation.
The following lemma is well-known and hence we omit the proof.

Lemma 5. L et D  be an  irreducible div isor on X . T h e n  D  is  am ple if  and
only  if  6,(D)0(9 0  is  am ple and (D•C)>0 f o r every curve C in X .

Let A i (X)=(Z,(X)INum.equiv.)OR where Z ( X )  is  the group generated by
cycles of codimension (n -1 ), i.e., curves in  X .  Then A 1 (X ) is the dual space of
A l(X ) b y  the intersection pairing: A ' (X )0 A ,(X) E (D, C)--*(D C)E R a n d  dim
A i (X )=p , p  being the Picard number o f  X .  We define a  norm  1111 in A 1 (X )  by

C I= \
/E x i  fo r C = E x i Ci , where {C 1 ,..., Cp } is a  fixed basis of A l (X).

i=1
S. Kleiman gave a useful criterion for a divisor D on X  to be ample, i.e., D is

ample if and only if there exists a positive number s such that (D • C)> 8 11Cil for every
effective curve C in X ( [7 ] ) .  C. Barton extended the criterion to vector bundles on
X ([1]).

Lemma 6 (B arton ). L e t E  be  a  v ector bundle  on  X . T he f o llow ing  are
equivalent to each other.

(1) E is ample.
(2) There exists a positive number e such that d(f*(E)) f  , „ (C ) I I  f or every

f in ite  morphism f: C  b e in g  a  non-singular projectiv e curv e, w here
d(f*(E)) denotes the minimum of degrees of quotient line bundles of  f*(E ) on C.

The following lemma is obvious and we omit the proof.

Lemma 7. L et A  be a  commutative noetherian rin g ,  I  a  prim e ideal in A
and le t D  be a deriv ation on  A . T hen , D(I(m) )OEI ( m- ' ) w here 1( " ) are  th e  m-th
sym bolic powers of  I (m=1, 2,...) and the induced homomorphism I ( n)llon+ —*
1(m- olI ( m) is A ll-linear.

Proof of  Theorem 4. Since c1 =c 1 ( Tx )  is ample, we have only to prove that
every irreducible divisor D on X  is ample by virtue of Theorem 3 .  Using Lemma
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5, we will check the following two facts (i) and (ii).
(i) x (D)®0„, is a m p le :  We prove that there exists a positive number E such

that (D  C )>  em(C) for every irreducible (reduced) curve C in D, m(C)= max mult AC)
P eC

([5], Seshadri's criterion for ampleness of divisors). Let I ,  D  be the sheaves of
defining ideals of C, D in  X  respectively and let m be a  natural number such that
Pcm ) D ,  1(cm + 1 )  I  D ,  where Pci )  a r e  th e  / - th  symbolic powers o f  / c  (1=1, 2,...).
Then, m  mult,,(D) for a general point P  in C .  The natural homomorphism I D ®
e c =I D I1c ID --*1(en) 14T+ 1 )  induces a non-zero map at the generic point of C  and the
induced homomorphism a: .Y 6 ., , ( (dn ) /Pcm+1 ) , 0 c ) - ) , i6 m c c (I D/Ic l„ , 0 c )= 0 x (D )O e c

is also non-zero at the generic point of C .  By virtue of Lemma 7, we have an Oc

-homomorphism Sm(T x )0  c 9  D 1 0. • • ®D  m + [g  D  1(• • • (Dm(g)). • •)] E c (I (Zn)1

Pcm+1 ) , 0c ) and a • 13: Sin(Tx )0 0 c -(9 x (D)0(9 c  is  non-zero at the generic point of C.
Let f :  C' ->C be a desingularization of C .  Since f *(Sm(Tx ))-4*(0 x (D)) is a  non-
zero homomorphism and Sm(Tx ) is ample, there is a positive number a' such that
(D. C ) >  C II by virtue of Lemma 6. a' may depend on the integer m .  However,
considering the Samuel function on  D, we see that these integers m are bounded.
Since m(C)<21101 (A> O) for every curve C  in X, we get a positive number E such
that (D. C )> em (C ) for every irreducible curve C in D.

(ii) (D • C )> 0  for every curve C in X :  Since e x (D)OO D is  ample, Ox (ID) is
generated by global sections for a sufficiently large integer I. Let C be an irreducible
curve in  X .  L et ID ( -  denotes linear equivalence), D i being irreducible
divisor so that D i n c (I) for some i. If D i = C , then (D i . C)> 0 by virtue of (1).
Hence, we get (D C)> O. q. e. d.

§ 2 .  A characterization of P n

In this section, we will give a  characterization for a non-singular algebraic va-
riety X to be isomorphic to a projective space by using global vector fields on X.

Theorem 8 .  L e t X  be a n  n-dimensional, non-singular projective algebraic
variety defined over an algebraically closed f ie ld  k of characteristic O. I f  there
is a non-zero global vector field on  X  vanishing on an ample irreducible*) effec-
tive divisor D  in  X , i.e., 11°(X, Tx 0t9 x (-D ))0 0 , then X  is isomorphic to P" and
D is a hyperplane in  P".

P ro o f.  Let G= Aut (X)° and let G' = E GI every point of D  is fixed by gl.
Then, G' is a linear algebraic subgroup of G and the tangent space of G' at the unit
element =H°(X, Tx 0(9 x ( -  D )) . Therefore, we consider the  following two cases,
(I) and (II).

(I) Gm  acts non-trivially on X  and D c  X G -: Since Pic (Gm) = 0, there is a G,,,-
linearization on & ( D )  a n d  we fix this linearization on (D ) .  L et R= H°(X,

0 x (vD)), R v = H ° (X ,  x (vD )). Then R is a finitely generated graded ring over k and

*) The irreducibility can be om itted. W e have only to assume that I N D , D)-24,k.
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each R,,, the homogeneous part of degree v in R(vEZ, V > 0), is a rational G m -module.
Now let {F 0 , F,  ,  Fr }  be a  minimal set of Gm -semi-invariant homogeneous gen-
erators of R over k, Fde R 1)  being the element corresponding to D .  For a  semi-
invariant element F(00), we denote the weight of F  b y  z(F ), i.e ., r(t)F=tx(F)F
(t E Gm ). W e prove that R =k[F 0 ,..., Fr ] is a polynomial ring over k, r=n, deg F.
1 ( 0  i __n) and x(F,)/deg F 1 = ••• = x(F„)/deg F„, x(F,,)/cieg F o  x (F ,)/deg  F,.

Lemma 9 .  z(F )/deg F = • • • = x(Fr )/deg F„ x(F 0 )/degF0 ' x(F 1)/deg F 1 .

P ro o f . {F,,..., Fr } is a minimal set of semi-invariant homogeneous generators
of the quotient ring R/(Fo )  where F i is  the image of F i in RI(F 0 ) ( 1 < i < r ) .  Let
( Y, L) be a  polarized algebraic scheme over k with a  Gm -action such that H°(Y,
e y ) =k  and L  has a G„,-linearization. Then the action of G„, on Y is trivial if and
only if there are characters x v o f  Gm  such that the action of G„, on H°(Y, Lov) is a
multiplication by x„ for every H°(Y, 0100 (v E Z) such that all the xy /v  are equal
to each other. Therefore, x(F,)/degF, =••• = x(F,.)/deg Fr because the action of G„,
on D '..•-.„-Troj (R/(Fo )) is trivial and x(F 0 )/deg(F 0 ) 0x(F 1)/degF , because the action
of G„, on X is non-trivial. q .  e .  d.

Hence, F, is transcendental over (F 1 ..... F r }.

Lemma 1 0 .  r= n  an d  {F 0 , F, ...... Fr }  is algebraically  independent over k.

Pro o f . Since F o is transcendental over {F,,..., F r }, Fr)= {P } where
P  is  a  closed p o in t  in  X  P r o jR  a n d  Pe  D.,(Fo ) = Spec k [F ,..., F ',.] (F-=
F i lFgegFi, i < r). N o w  le t  k[F',,..., Yr]//, where {Y,...., Y,.} is
algebraically independent over k and let M  be the maximal ideal in k[Y,,..., Yr]
generated by (Y,,..., Y,.). Then the regular local ring (0 x ,p, in,,) is equal to (k[Y] m /
lk [Y ] m , Mk[Y] m lIk [Y ] m ). We claim that r= n and 1 = 0 .  Indeed if / t M 2 , then
we may assume that there is a  non-trivial, G m -semi-invariant relation such that

F +  E aiF;+ F',.)=0 2).

By virtue of Lemma 9, we can easily prove that f(Y,,..., )Ç) does not contain the
monomial which is divisible by Y, and the relation

1: 1+  E a1 F1 +f (F2 ,.... Fr)=()
i 2 2

h o ld s . This contradicts to the fact that {F 0 , F1,•••• Fr} is a minimal set of semi-
invariant homogeneous generators o f  R .  Hence I M

 
2 . Then dim k

climk(Mk[Y]m1M 2k[Y ]m )=n implies that r= n  and I= 0. T here fo re . { F 0 .............  F r }
is algebraically independent over k. q e. d.

Lemma 1 1 .  deg F = 1 (0 _ < n ).

P ro o f . For every i(1 < r), put Di to be the divisor defined by F i in X .  Then
Di is linearly equivalent to deg FiD .  Let C1 b e  the curve defined by (F1,••••
F„) (1 Then (Di . C1) =1 and deg Fi = I. q.e.d.
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By the above results, we have completed the proof of the assertion in case (I).
We consider the other case.
(II) Ga acts non-trivially on X and D =X G - : Since Pic (G„)= 0, there is a Ga

linearization on Ox (D) and we fix this linearization o n  x (D) and as in the case (I),
we consider the finitely generated graded ring R =  H ° ( X ,  x (vD)), R v = H°(X ,

v c)
0 A (v D )) . Let {F 0 , F,,..., F,.} be a minimal set of homogeneous generators of R,
F o ( e R , )  being the element corresponding to D .  Since Ga a c ts  on D..-L-Proj(R/
(Fo )) trivially, the action of Ga on the quotient ring R/(F0 )  is trivial, i.e., T(t)F-
F e(F o ) Ga )  for every homogeneous element F  in R .  Now we define d (F)=
(r(1)F — F)IF 0 ( E R )  and x(F)=deg, [x (t)F ] fo r every homogeneous element F.
Since F o  i s  Ga-invariant, -r(t)(d(F))=(t(t +1)F —  t(t)F))/F 0  a n d  x(A (F))=x(F)—  I
if x ( F ) 0 0 .  By the induction on the degree of F, we see that deg F > x (F) in general.

Lemma 12. max {x(F i)/deg F i l = I.

P ro o f . Assuming that max {x(F i)idegF,}=bla < 1, (a, b ) =I ,  a> I, we will
get a contradiction. For a general point P  in X , t(oo)(P)e 1/± (F i x(F i )ideg F i <
bla). Since a and b are coprime, deg F. ; is divisible by a if x(F i )idegF i = b la . Hence
t(oo)(P)e 17,(R N a „. 1 )  for every N > 0 .  Since D  is  ample, VR N R  i s  an irrelevant
prime for every sufficiently large integer N  and this is a contradiction. q. e. d.

Operating 21 if necessary, we may assume that there is an element F (  0) with
deg F=1  and x ( F ) = 1 .  Hence, after changing generators appropriately, we may
furthermore assume that t(t)F, =F 1 + tF o  (t e Ga ) and deg F i = 1.

Lemma 13. For every homogeneous element F , there exists a unique set of
Ga-invariant homogeneous elements {Go , G 1 ,..., G„,}  such that

F— G Y, Fi lF 1 —F01.••{F i — (v— I)F0
} tin =7,(F)).

v =0 v

P ro o f  We prove the assertion by the induction on x ( F ) .  If x(F)=0, i.e., F
is Ga-invariant, it is obvious. Applying the induction hypothesis on 4 (F), we have
a unique set {G,,..., G,„} (G i : Ga-invariant and homogeneous) such that d(F)=

GE   v +,1 F i .••{F,—(v—i)F o }= e [ i  —G ILF
I

 •••{F,—(v-1)F o } l .  Hence G o =F —
v o V . v=1 11!= 

v=1

G
YF •••{ F — (v -1)F 0 }.v. q. e. d.

For every homogeneous element F, we denote by a(F) the element G o given in
Lemma 13. Then Lemma 13 implies that F — a(F)E (R ),+ k [F o , F i ], (v = deg F),
where R ,=  the ideal (F o , F i ,..., Fr )  in R .  Applying the above relation, we can
take a good minimal set of homogeneous generators of R.

Lemma 14. There is a minimal set of  homogeneous generators {F0 , F 1 , F 2 , . . . ,

Fr } of R  such that {F0 , F 2 , . . . ,  Fr } are Ga -inv ariant and -r( t)F,=F i +tF o (tEG a ).

P ro o f . Let F 0 =F 0 , F 1 = F 1 and Pi =a(F i), deg F i S  deg F i ± i 2 ) .  Then Fi
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e kri + k[F 0 , F 1], (v= deg F1). Therefore, we can prove that k[r 0 ,
Fd =k [F o , F 1 ,..., F 1]  for every i ( 0 <i<r)  by the induction on i  and {P0 , P 1 ,...,
.F,.} is the desired minimal set of homogeneous generators of R. q. e. d.

By virtue of Lemma 14, F , is transcendental over {Fo , F 2 ,..., F,.} and 17 ,(F 0 ,
F 2 ,..., F,.)= {P}  (P is a closed point in X ) .  By the same argument used in the case
(I), we can prove that r= n, { F0 ,..., F r }  is algebraically independent over k  and
deg F1=1 (0 < i < n). Therefore, X  is isomorphic to P" and D  corresponds to  a
hyperplane in I". q. e. d.

§ 3 .  Application

T. Mabuchi has succeeded in proving that the conjecture (H-3) holds true under
the assumption that the second Betti number=  1 [9]. Our Theorem 4 implies that
the second Betti number =1, if the tangent vector bundle Tx  of X  is ample. Com-
bining his result with ours, we can now prove that the conjecture (H-3) is true. I n
this section, applying our previous results, we shall give another proof which is
simpler than M abuchi's [9]. It seems that ours might work in higher dimensional
cases. The keys to our proof are the results of Bialynicki-Birula's on Gm-actions
[2] and the arguments of Mabuchi's.

Theorem 1 5 .  I f  X  i s  a 3-dim ensional, non-singular projective algebraic
variety  w ith am ple tangent vector bundle Tx  defined over an  algebraically  closed
field of  characteristic 0, then X  is isomorphic to P 3 .

P ro o f . Let P=P(T x ) be the projective fiber bundle of Tx  over X  and let L be
the tautological line bundle of T .  T h e n  L  is ample because ;  is ample and the
canonical line bundle of P  is isomorphic to L0 - 3 . Hi(X , T x ) =H i(P, L )=H 5 - '(P,
L0 - 4 ) =0 for i (1 <i < 3) by Serre's duality and Kodaira's vanishing theorem. Hence

dim H°(X , T )= x (X , T x )-= - 2c l c 2 + c 3 ) + 5, c, (1 i 3 ) being the i-th Chern
class o f ; ,  by the Riemann-Roch th e o re m . c ;-2 c 1c2 +c 3 i s  a positive integer
([3]). Hence, dim H°(X , T x ) > 6. N ow  let G =A u t° (X ) . Since the irregularity
of X (= h '(X , x )) is 0, G is a linear algebraic group and dim G = dim H°(X , T x )> 6.
We consider the following two cases.

(I) G  G„,

We use the useful results of Bialynicki-Birula's on Gm-actions [ 2 ] .  As for the defi-
nitions of (+  )-decomposition (resp. (-)-decomposition) o f X  and Gm-fibrations
y t: X t.-4X ?- (resp. yT: X1- 4Xf - ), we refer to his paper. Let X G- be the fixed

point scheme of X  and let XG- = Ci X?"' be the decomposition of connected com-

ponents. Then every component X?" ,  is sm ooth  [6]. Following the Bialynicki-
,

Birula's results ([2], Theorem 4.3 and Corollary 1), let X  =  X t  (resp. X =
i=i i=1

(X t)G- = (resp. X ?") be the unique (+  )-decomposition o f  X  (resp.
(-)-decomposition of X ), y t: X t--9X ?- (resp. y t: X t-O C F-) a G„,-fibration and
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let U = X I be the dense G.-invariant locally closed subscheme of X .  For simplici-
ty, we p u t Y=X e-=  UG- and denote the G.-fibration by y: U-> Y. S in c e  y is a
sm ooth morphism, w e have a surjective homomorphism: T u = T

x iU->y*(Ty ) (U
being an open subcheme of X ) .  Restricting these vector bundles to Y, we see that
there is a surjective homomorphism: T I  Y-> Ty  an d  hence Ty is  a m p le . Since the
action of Gm  is  non-trivial, dim Y=0, 1 or 2.

(i) dim Y = 2 .  By virtue of our Theorem 8, X  P 3  and Y  a hyperplane in P 3 .
(ii) dim Y = 1 .  Y is  a  non-singular curve with the  am ple tangent bundle.

Hence, Y 1 ) 1. Let H  be the closure of y-  l(P) for a point P in  Y . Then, the inter-
section number (H. Y )= 1 and so H  is the ample generator of Pic(X )=Z (cf. Theo-
rem 4). Put c1 =aH  (a being a positive integer). We see that  x > 4 by considering
the exact sequence: 0 - . T y - + T x 1 Y - > N y 1 , - > 0  and the fact that Y P 1. B y  v irtue  of
Kobayashi-Ochiai's theorem ([8], Corollaries to Theorem 1.1 a n d  Theorem 2.1),
X

(iii) dim Y = 0 .  I n  th is  case, U A 3 (3-dimensional affine space) and the
action of G„, on U is positive definite [2], i.e., t(t)X, t ( t ) X 2 =  t h X 2 , -c(t)X 3 =
tcX 3 (t eG,„; a, b , c  being positive integers) fo r  a n  affine coordinate system {X 1 ,
X 2, X 3) of A3 . Let P o  b e  the origin (0, 0, 0) of A3 = U and let H= X  - U .  Since
Pic(X)a,.Z  a n d  //1-2A3, H  is irreducible and  is  the ample generator o f  Pic(X).
Now let us consider the G.-invariant locally closed (+  )-strata of X  contained in H.
Assume th a t X I is  the ( +)-stratum which is open in H .  Let Z = ( X ) G . ,  W the
(-)-stratum such that W G-=Z and y': W ->.Z the G.-fibration. Let P  be a point
in Z and let C be the closure of y' - '(P) in X .  Then C is a  rational curve such that
(C • H ) = 1 .  For a  closed subscheme V in  X , let us denote by T Q (V ) the tangent
space o f  V  a t  a  non-singular point Q  in  V . N ow  le t Tp(X )=Tp (X )°0T p (X)+
T (X ) -  be  the  decomposition of T ( X )  into the  eigenspaces w ith respect t o  the
action of G„, on T ( X )  (See [2]). Then, Tp(Z)= T(X )°, Tp(H)= Tp (X )° eTp (X) -  ,
Tp (W )= Tp(X )+PTp (X )° a n d  Tp(C)=Tp(X ) - . Since dimk  Tp(H)= 2, we see that
dimk  Tp(C)= I and C is a  rational curve such that (C  H )= 1 because C and H  meet
transversally at P .  Let f :  C->C be the desingularization o f  C  and let c 1 =ŒH
(at being a positive integer). Since  -_' P ', f * (T x )  decomposes into three ample
line bundles and so a > 3 .  Thus, we see that X , , P 3 by virtue of Kobayashi-Ochiai's
theorem.

(II) G = a unipotent algebraic group.
In this case, we prove that X  is isomorphic to P 3 . This is a contradiction because
G =PG L (3). Therefore, case (II) does not o c c u r . First, we state an easy lemma
on unipotent algebraic groups.

Lemma 1 6 .  L et G  be a  connected unipotent algebraic group def ined over
an  algebraically  closed f ield of  characteristic 0 and le t K  be a  connected closed
subgroup of G .  Then, we get the following

(i) If  codim G K  =1, then K  is norm al in G and K m [G, G].
(ii) I f  codim,K =2, then  N (K )(= the norm aliz er of  K  in G ) is norm al in

G  and K [N (K ), N (K )].
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P ro o f . Since G is nilpotent as an abstract group, N(K) K  for every subgroup
K  of G .  Using this fact, one can prove the lemma easily.

Let H  be an ample generator of P ic(X )=Z . W e  s e e  H i(X , 0 ,(H ))=0 for
every i(I < i < 3 )  b y  Serre duality and Kodaira vanishing theorem . Thus h°(X,

I(H ))=x (X , (H ))= I + 1
1,(ci+c 2)H+ —4  c,H 2 + 3-6 -H  by the Riemann-Roch theo-

rem, and hence h ° (X , x (H))> 2. Therefore, w e m ay assume tha t H  is effective,
irreducible and G-invariant. For each point y in H, we denote by Gy the stabilizer
group o f  y .  First, we will get a contradiction assuming that G does not contain
commutative 5-dimensional closed subgroup: Let in = max {dim 0(y )} , 0(y ) being

y e l l
the G-orbit of y. Then, m =0, 1 or 2.

( i ) m = 0 .  Since every point in H  is G-invariant, X  P 3 by virtue of Theo-
rem 8.

(ii) m= I. Every Gy  (y e H) is normal in G and Gy contains [G, G] by virtue
of Lemma 16. Since [G , G ]#e, and [G, G] fixes every point in H, X

(iii) ni= 2. Let y( e H) be a point such that dim 0(y )= 2. B y virtue of Lemma
16, N(Gy )  is normal and Gy [N(Gy), N(G y )]. Since [N(Gy ), N(G y)]0e(dim  N(G y )

5) and [N(Gy ), N (G)] fixes every point in H ,  X  P3 .
Thus, G contains a 5-dimensional commutative closed subgroup K .  Now let

n =max {dim 0(x)}, 0(x ) being the K-orbit of x  and K , the stabilizer group of x.
xeX

Then, n = 1 , 2  or 3.
( i ) n = 3 .  Let x be a point of X  such that dim 0(x )= 3. T h e n  K x (dim K ,> 2)

acts on X  trivially because K  is commutative. This is a contradiction.
(ii) n = 2 .  Let x be a point of X  such that dim 0(x )= 2. T h e n  K x (dim K x > 3)

acts on the closure 0(x ) of 0(x ) in X  trivially. H e n c e  X  P 3 by virtue of Theorem
8.

(iii) n = L  Let X ;  (1 < i <5 )  be the linearly independent global vector fields
on X  corresponding to the subgroup K  of G and let Y= zero locus of X , .  We
claim  that dim  Y =2. Put U = X — Y. B y our assum ption, X 2 =  f X i  on U  where
f  is a regular function on U .  If dim Y < 1 , then f  is a regular function on X  and f
is a non-zero constant. Since X 1 and X 2  are linearly independent, this is a con-
tradiction. Therefore Ga acts on Y trivially and X  P3.q .  e. d.

Finally, we give a theorem which might work for Hartshorne conjecture in higher
dimensional case. Indeed, we can generalize the proof of the case (1) in Theorem
15 by using the Bialynicki-Birula's result cited above, and we get the following:

Theorem 1 7 .  L e t  X  be an n-dim ensional non-singular projective algebraic
variety defined over an  algebraically  closed f ield of characteristic O. A ssume the
conjecture (H— rrz)(1<m n — 2) is true and  that X  has a non-triv ial Gm -action.
Then, X  is isomorphic to P".

DEPARTMENT OF MATHEMATICS

KYOTO  UNIVERSITY



On H artshorne's conjecture 533

AND

HARVARD UNIVERSITY

DEPARTMENT O F APPLIED MATHEMATICS

KONAN UNIVERSITY

References

[  1 ] C. Barton, Tensor products of ample vector bundles in characteristic p ,  Amer. Jour. of
Math., Vol. 93, 429-438, 1971.

[ 2] A .  Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math., Vol.
98, 480-497, 1973.

[ 3 ] T. Frankel, Manifolds with positive curvature, Pacific Jour., Vol. 11, 165-174, 1961.
[ 4 1 D. Gieseker, P-ample bundles and  their Chern classes, N ag o y a  M a th . Jo u r., V o l. 43,

91-116, 1971.
[ 5 ] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., No. 156,

Springer-Verlag, 1970.
[ 6 ] B. Iversen, A fixed point formula for action of tori on algebraic varieties, Inventiones Math.,

Vol. 16, 229-236, 1972.
[ 7] S .  Kleiman, Toward a  numerical theory of ampleness, Ann. of Math., Vol. 84, 293-344,

1966.
[ 8 ] S. Kobayashi and T. O ch ia i, Characterizations of complex projective spaces and hyper-

quadrics, Jour. of Math. Kyoto Univ., Vol. 13, 31-47, 1973.
[ 9 ] T. M abuch i, Ca-actions and algebraic threefolds with ample tangent bundle, Thesis (to

appear).
[10] S . M o r i, O n  a  generalization o f  complete intersections, Jour. of M ath. K yoto Univ.,

Vol. 15, 619-646, 1975.
[11] H. Sumihiro, Equivariant completion, Jour. of Math. Kyoto Univ., Vol. 14, 1-28, 1974.


