On Hartshorne's conjecture

By

Shigefumi MORI* and Hideyasu SUMIHIRO

(Received Aug. 23, 1977)

§0. Introduction

After studying ample vector bundles on algebraic varieties, R. Hartshorne has posed the following problem in [5] and now it is known as the conjecture of Harshorne's.

(H-n) If X is an *n*-dimensional non-singular projective algebraic variety with ample tangent vector bundle defined over an algebraically closed field k, then X is (algebraically) isomorphic to \mathbf{P}^n over k.

In the case k = C (the complex number field), it is known that this conjecture is deeply connected with the following famous conjecture of Frankel's in complex differential geometry.

(F-n) A compact Kaehler manifold X of dimension n with positive sectional curvature is biholomorphic to the complex projective space $\mathbf{P}^n(\mathbf{C})$.

From now on, we assume that the characteristic of k is 0. (H-1) and (F-1) are obvious. Using classification of algebraic surfaces, (H-2) and (F-2) are solved affirmatively by R. Hartshorne [5] and by Frankel and Andreotti [3] respectively. Recently, T. Mabuchi has succeeded in proving (H-3) under the assumption that the second Betti number of X is equal to 1 [9]. In this paper, we will prove that (H-3) holds true without the assumption on the second Betti number. The keys to our proof of (H-3) are the following.

(1) A criterion for Pic(X) = Z: Let X be a non-singular projective algebraic variety with ample anti-canonical divisor $c_1 = c_1(T_X)$. Then the Picard number $\rho(X)$ of X is equal to 1 if and only if every effective divisor on X is ample (Theorem 3). Using this criterion, we prove that if the tangent vector bundle T_X of X is ample, then the Picard number $\rho(X)$ of X is equal to 1 (Theorem 4).

(2) A characterization of projective spaces: If a non-singular projective algebraic variety X has a non-zero global vector field vanishing on an ample irreducible effective divisor D on X, then X is isomorphic to a projective space \mathbf{P}^n and D cor-

^{*} The first author is partially supported by Sakkokai Foundation.

responds to a hyperplane in \mathbf{P}^n (Theorem 8).

(3) Bialynicki-Birula's results on G_m -actions [2] and T. Mabuchi's argument: We use T. Mabuchi's argument in simplified form on vector fields.

Finally we note that the conjecture (H-2) is proved by our method without using the classification of algebraic surfaces and it seems that our method might work in higher dimensional cases.

Notations

- T_X : the tangent vector bundle of a non-singular algebraic variety X, i.e., a locally free \mathcal{O}_X -sheaf with rank = dim X.
- $c_1 = c_1(T_X)$: the anti-canonical divisor of X, i.e., the first Chern class of T_X .

 K_X : the canonical divisor of X, i.e., $K_X = -c_1$.

- $H^{i}(X, F)$: *i*-th cohomology group for a coherent \mathcal{O}_{X} -sheaf F.
- $h^i(X, F), h^i(X, D) = h^i(D)$: $h^i(X, F) = \dim H^i(X, F), h^i(X, D) = h^i(X, \mathcal{O}_X(D))$ for a divisor D on X.
- $\chi(F)$: the Euler-Poincare characteristic of a coherent \mathcal{O}_X -sheaf F, i.e., $\chi(F) = \sum (-1)^i h^i(X, F)$.
- Pic(X): the Picard group of X.
- $(D \cdot C)$: intersection number of a divisor D and a curve C in a non-singular projective algebraic variety.
- Aut (X), Aut $(X)^0$: the automorphism group of an algebraic variety X and the connected component of Aut (X) containing the unit element.
- X^G : G-fixed points scheme with reduced structure of an algebraic variety X on which a linear algebraic group G acts.
- $V_+(\mathfrak{A}), D_+(F)$: the closed subscheme defined by a homogeneous ideal $\mathfrak{A}(\subset R)$ in $\operatorname{Proj}(R)$ (*R* being a graded ring) and the open subscheme defined by a homogeneous element *F* in $\operatorname{Proj}(R)$.

§1. A criterion for Pic(X) = Z

Let X be a non-singular projective algebraic variety defined over an algebraically closed field of characteristic 0. In this section, we will give a criterion for Pic(X) to be isomorphic to Z when the anti-canonical divisor $c_1 = c_1(T_X)$ of X is ample and using it, we will prove that the ampleness of the tangent vector bundle T_X of X implies Pic(X) = Z.

Before stating our criterion, we shall begin with the following lemmas.

Lemma 1. Let D be an ample divisor on $X (n = \dim X)$. Then $h^{0}(mD - c_{1}) \neq 0$ for some integer m with $1 \le m \le n+1$.

Proof. For every integer *m*, we put $P(m) = \chi(mD - c_1) = \chi(mD + K_X)$. Since *D* is ample, $P(m) = \frac{D^n}{n!}m^n + \cdots$ is a numerical polynominal of degree *n* in *m* by the Riemann-Roch theorem and hence P(m) = 0 has only *n* roots. We have $h^i(mD + m^i) = 0$

524

 $K_{\mathbf{X}} = h^{n-i}(-mD) = 0$ for $i(1 \le i \le n)$ and $m(\ge 1)$ by Serre duality and Kodaira vanishing theorem. Hence $P(m) = h^0(mD - c_1)$ ($m \ge 1$) and $h^0(mD - c_1) \ne 0$ for some m ($1 \le m \le n+1$). q.e.d.

For a divisor D on X, we write D > 0 if D is ample and $D \ge 0$ if D is numerically effective, i.e., $(D \cdot C) \ge 0$ for every effective curve C in X.

Lemma 2. Assume that the anti-canonical divisor $c_1 = c_1(T_x)$ is ample. Then we get the following:

- (1) linear equivalence = numerical equivalence for divisors on X.
- (2) For a divisor $D \ge 0$ on X, there is a positive integer m such that $h^0(mD) \ge 1$.

Proof. (2) Let *D* be a numerically effective divisor on *X*. Let P(x) be the polynomial such that $P(m) = \chi(mD)$ for every integer *m*. Since c_1 is ample, $P(0) = \chi(\mathcal{O}_X) = 1$ and $P(m) = \frac{D^n}{n!}m^n + \dots + 1$. $h^i(mD) = h^{n-i}(-mD + K_X) = h^{n-i}(-(mD + c_1)) = 0$ for all i > 0 because $mD + c_1$ is ample for every $m(\ge 0)$. Hence $P(m) = h^0(mD) \ge 0$ for $m(\ge 0)$ and $h^0(mD) \ge 1$ for some integer $m(\ge 1)$. (1) Let *D* be a divisor which is numerically equivalent to 0. Then we see easily that $h^0(\mathcal{O}_X(D)) = 1$ and $h^0(\mathcal{O}_X(-D)) = 1$ because $c_1 = c_1(T_X)$ is ample. Hence *D* is linearly equivalent to 0. q. e. d.

Let $A^{1}(X) = N(X) \bigotimes \mathbf{R}$ where N(X) is the Neron-Severi group of X and let ρ be the Picard number of X, i.e., $\rho = \dim_{\mathbf{R}} A^{1}(X)$ ([7]). Now we shall give a theorem which implies $\rho = 1$ under some condition.

Theorem 3. Let X be a non-singular projective algebraic variety defined over an algebraically closed field of characteristic 0 and let the anti-canonical divisor $c_1 = c_1(T_X)$ be ample. Then the following are equivalent.

- (1) $\rho = 1$
- (2) Every effective divisor on X is ample.

Proof. We have only to prove $(2) \rightarrow (1)$. Assuming that there is an ample divisor D on X so that $D \notin \mathbf{R}c_1$ in $A^1(X)$, we will get a contradiction. By virtue of Lemma 1 and our assumption, we have $(n+1)D-c_1 \ge 0$ and $(n+1)D-c_1 > 0$ be cause $D \notin \mathbf{R}c_1$. Let $(n+1)D = c_1 + D_1$ in $A^1(X)$, D_1 being an ample divisor on X. Then $D_1 \notin \mathbf{R}c_1$. Applying the same process to D_1 , we get $(n+1)D_1 = c_1 + D_2$, D_2 being an ample divisor on X. Repeating this process, we obtain

$$(n+1)D = c_1 + D_1$$

 $(n+1)D_1 = c_1 + D_2$
 $\vdots \qquad \vdots$
 $(n+1)D_{m-1} = c_1 + D_m$
 \vdots

Hence, $D = \frac{1 - (1/(n+1))^{m+1}}{n} c_1 + (1/(n+1))^{m+1} D_m$ where D_m is an ample divisor

on X. Taking $m \to \infty$, $D \ge \frac{c_1}{n}$, i.e., $nD - c_1 \ge 0$. By virtue of Lemma 2 and our assumption, $nD - c_1 > 0$ because $D \notin \mathbf{R}c_1$. Hence, $nD - c_1 > 0$ for any ample divisor D which is not contained in $\mathbf{R}c_1$. Applying the above argument to this situation again, we get $(n-1)D - c_1 > 0$. Repeating this argument, we finally get that $D - c_1 > 0$ if D is an ample divisor and $D \notin \mathbf{R}c_1$. Now we have $D = c_1 + D_1$, $D_1 = c_1 + D_2$,... $(D_m \text{ is an ample divisor for every } m$.). Then $D = mc_1 + D_m$. Since c_1 is ample, $D_m = D - mc_1$ is not ample for a sufficiently large m, which is a contradiction.

q. e. d.

Now we will prove the following theorem.

Theorem 4. Let X be a non-singular projective algebraic variety with ample tangent vector bundle T_X defined over an algebraically closed field of characteristic 0. Then Pic(X) = Z.

Before giving the proof, we shall show three lemmas and fix some notation. The following lemma is well-known and hence we omit the proof.

Lemma 5. Let D be an irreducible divisor on X. Then D is ample if and only if $\mathcal{O}_X(D) \otimes \mathcal{O}_D$ is ample and $(D \cdot C) > 0$ for every curve C in X.

Let $A_1(X) = (Z_1(X)/\text{Num. equiv.}) \otimes \mathbb{R}$ where $Z_1(X)$ is the group generated by cycles of codimension (n-1), i.e., curves in X. Then $A_1(X)$ is the dual space of $A^1(X)$ by the intersection pairing: $A^1(X) \otimes A_1(X) \in (D, C) \to (D \cdot C) \in \mathbb{R}$ and dim $A_1(X) = \rho$, ρ being the Picard number of X. We define a norm $|| \, ||$ in $A_1(X)$ by $||C|| = \sqrt{\sum x_i^2}$ for $C = \sum_{i=1}^{p} x_i C_i$, where $\{C_1, \dots, C_p\}$ is a fixed basis of $A_1(X)$.

S. Kleiman gave a useful criterion for a divisor D on X to be ample, i.e., D is ample if and only if there exists a positive number ε such that $(D \cdot C) \ge \varepsilon ||C||$ for every effective curve C in X([7]). C. Barton extended the criterion to vector bundles on X ([1]).

Lemma 6 (Barton). Let E be a vector bundle on X. The following are equivalent to each other.

(1) E is ample.

(2) There exists a positive number ε such that $d(f^*(E)) \ge \varepsilon ||f_*(C)||$ for every finite morphism $f: C \to X, C$ being a non-singular projective curve, where $d(f^*(E))$ denotes the minimum of degrees of quotient line bundles of $f^*(E)$ on C.

The following lemma is obvious and we omit the proof.

Lemma 7. Let A be a commutative noetherian ring, I a prime ideal in A and let D be a derivation on A. Then, $D(I^{(m)}) \subseteq I^{(m-1)}$ where $I^{(m)}$ are the m-th symbolic powers of I (m=1, 2,...) and the induced homomorphism $I^{(m)}/I^{(m+1)} \rightarrow I^{(m-1)}/I^{(m)}$ is A/I-linear.

Proof of Theorem 4. Since $c_1 = c_1(T_X)$ is ample, we have only to prove that every irreducible divisor D on X is ample by virtue of Theorem 3. Using Lemma

5, we will check the following two facts (i) and (ii).

(i) $\mathcal{O}_{X}(D) \otimes \mathcal{O}_{D}$ is ample: We prove that there exists a positive number ε such that $(D \cdot C) \ge \varepsilon m(C)$ for every irreducible (reduced) curve C in D, $m(C) = \max \text{ mult } P(C)$ P∈C ([5], Seshadri's criterion for ampleness of divisors). Let I_c , I_p be the sheaves of defining ideals of C, D in X respectively and let m be a natural number such that $I_{C}^{(m)} \supset I_{D}, I_{C}^{(m+1)} \supseteq I_{D}$, where $I_{C}^{(l)}$ are the *l*-th symbolic powers of I_{C} (l=1, 2, ...). Then, $m \leq \text{mult}_{P}(D)$ for a general point P in C. The natural homomorphism $I_{D} \otimes$ $\mathcal{O}_C = I_D / I_C I_D \rightarrow I_C^{(m)} / I_C^{(m+1)}$ induces a non-zero map at the generic point of C and the induced homomorphism α : $\mathscr{H}_{om_{\mathcal{O}_{C}}}(I_{C}^{(m)}/I_{C}^{(m+1)}, \mathcal{O}_{C}) \rightarrow \mathscr{H}_{om_{\mathcal{O}_{C}}}(I_{D}/I_{C}I_{D}, \mathcal{O}_{C}) = \mathcal{O}_{X}(D) \otimes \mathcal{O}_{C}$ is also non-zero at the generic point of C. By virtue of Lemma 7, we have an \mathcal{O}_{C} homomorphism $\beta: S^m(T_X) \otimes \mathcal{O}_C \ni D_1 \otimes \cdots \otimes D_m \to [g \to D_1(\cdots (D_m(g))\cdots)] \in \mathscr{H}_{om_{\mathcal{O}_C}}(I_C^{(m)})$ $I_{C}^{(m+1)}, \mathcal{O}_{C}$ and $\alpha \cdot \beta \colon S^{m}(T_{X}) \otimes \mathcal{O}_{C} \to \mathcal{O}_{X}(D) \otimes \mathcal{O}_{C}$ is non-zero at the generic point of C. Let $f: C' \to C$ be a desingularization of C. Since $f^*(S^m(T_x)) \to f^*(\mathcal{O}_x(D))$ is a nonzero homomorphism and $S^m(T_x)$ is ample, there is a positive number ε' such that $(D \cdot C) \ge \varepsilon' \|C\|$ by virtue of Lemma 6. ε' may depend on the integer m. However, considering the Samuel function on D, we see that these integers m are bounded. Since $m(C) \le \lambda \|C\|$ ($\lambda > 0$) for every curve C in X, we get a positive number ε such that $(D \cdot C) \ge \varepsilon m(C)$ for every irreducible curve C in D.

(ii) $(D \cdot C) > 0$ for every curve C in X: Since $\mathcal{O}_X(D) \otimes \mathcal{O}_D$ is ample, $\mathcal{O}_X(lD)$ is generated by global sections for a sufficiently large integer l. Let C be an irreducible curve in X. Let $lD \sim \sum_i r_i D_i$ (~ denotes linear equivalence), D_i being irreducible divisor so that $D_i \cap C \neq \phi$ for some i. If $D_i \supset C$, then $(D_i \cdot C) > 0$ by virtue of (1). Hence, we get $(D \cdot C) > 0$. q.e.d.

§2. A characterization of Pⁿ

In this section, we will give a characterization for a non-singular algebraic variety X to be isomorphic to a projective space by using global vector fields on X.

Theorem 8. Let X be an n-dimensional, non-singular projective algebraic variety defined over an algebraically closed field k of characteristic 0. If there is a non-zero global vector field on X vanishing on an ample irreducible^{*}) effective divisor D in X, i.e., $H^0(X, T_X \otimes \mathcal{O}_X(-D)) \neq 0$, then X is isomorphic to \mathbf{P}^n and D is a hyperplane in \mathbf{P}^n .

Proof. Let $G = \operatorname{Aut}(X)^0$ and let $G' = \{g \in G | \text{ every point of } D \text{ is fixed by } g\}$. Then, G' is a linear algebraic subgroup of G and the tangent space of G' at the unit element $= H^0(X, T_X \otimes \mathcal{O}_X(-D))$. Therefore, we consider the following two cases, (I) and (II).

(I) G_m acts non-trivially on X and $D \subset X^{G_m}$: Since Pic $(G_m) = 0$, there is a G_m linearization on $\mathcal{O}_X(D)$ and we fix this linearization on $\mathcal{O}_X(D)$. Let $R = \bigoplus_{v \ge 0} H^0(X, \mathcal{O}_X(vD))$, $R_v = H^0(X, \mathcal{O}_X(vD))$. Then R is a finitely generated graded ring over k and

^{*)} The irreducibility can be omitted. We have only to assume that $H^0(D, \mathcal{O}_D) \cong k$.

each R_v , the homogeneous part of degree v in $R(v \in Z, v \ge 0)$, is a rational G_m -module. Now let $\{F_0, F_1, \dots, F_r\}$ be a minimal set of G_m -semi-invariant homogeneous generators of R over k, $F_0(\in R_1)$ being the element corresponding to D. For a semi-invariant element $F(\neq 0)$, we denote the weight of F by $\chi(F)$, i.e., $\tau(t)F = t^{\chi(F)}F$ $(t \in G_m)$. We prove that $R = k[F_0, \dots, F_r]$ is a polynomial ring over k, r = n, deg $F_i = 1$ $(0 \le i \le n)$ and $\chi(F_1)/\text{deg } F_1 = \dots = \chi(F_n)/\text{deg } F_n$, $\chi(F_0)/\text{deg } F_0 \ne \chi(F_1)/\text{deg } F_1$.

Lemma 9. $\chi(F_1)/\deg F_1 = \cdots = \chi(F_r)/\deg F_r$, $\chi(F_0)/\deg F_0 \neq \chi(F_1)/\deg F_1$.

Proof. $\{\overline{F}_1,...,\overline{F}_r\}$ is a minimal set of semi-invariant homogeneous generators of the quotient ring $R/(F_0)$ where \overline{F}_i is the image of F_i in $R/(F_0)$ $(1 \le i \le r)$. Let (Y, L) be a polarized algebraic scheme over k with a G_m -action such that $H^0(Y, \mathcal{O}_Y) = k$ and L has a G_m -linearization. Then the action of G_m on Y is trivial if and only if there are characters χ_v of G_m such that the action of G_m on $H^0(Y, L^{\otimes v})$ is a multiplication by χ_v for every $H^0(Y, L^{\otimes v}) \ne 0$ ($v \in Z$) such that all the χ_v/v are equal to each other. Therefore, $\chi(F_1)/\deg F_1 = \cdots = \chi(F_r)/\deg F_r$ because the action of G_m on $D \cong \operatorname{Proj}(R/(F_0))$ is trivial and $\chi(F_0)/\deg(F_0) \ne \chi(F_1)/\deg F_1$ because the action of G_m on X is non-trivial.

Hence, F_0 is transcendental over $\{F_1, \dots, F_r\}$.

Lemma 10. r = n and $\{F_0, F_1, \dots, F_r\}$ is algebraically independent over k.

Proof. Since F_0 is transcendental over $\{F_1,...,F_r\}$, $V_+(F_1,...,F_r) = \{P\}$ where P is a closed point in $X \cong \operatorname{Proj} R$ and $P \in D_+(F_0) = \operatorname{Spec} k[F'_1,...,F'_r]$ $(F'_i = F_i/F_0^{\deg F_i}, 1 \le i \le r)$. Now let $k[F'_1,...,F'_r] = k[Y_1,...,Y_r]/I$, where $\{Y_1,...,Y_r\}$ is algebraically independent over k and let M be the maximal ideal in $k[Y_1,...,Y_r]$ generated by $(Y_1,...,Y_r)$. Then the regular local ring $(\mathcal{O}_{X,P}, m_P)$ is equal to $(k[Y]_M/Ik[Y]_M, Mk[Y]_M/Ik[Y]_M)$. We claim that r = n and I = 0. Indeed if $I \notin M^2$, then we may assume that there is a non-trivial, G_m -semi-invariant relation such that

$$F'_1 + \sum_{i \ge 2} a_i F'_i + f(F'_1, ..., F'_r) = 0$$
 (deg $f(Y_1, ..., Y_r) \ge 2$)

By virtue of Lemma 9, we can easily prove that $f(Y_1,...,Y_r)$ does not contain the monomial which is divisible by Y_1 and the relation

$$F_1 + \sum_{i>2} a_i F_i + f(F_2, \dots, F_r) = 0$$

holds. This contradicts to the fact that $\{F_0, F_1, ..., F_r\}$ is a minimal set of semiinvariant homogeneous generators of R. Hence $I \subset M^2$. Then $\dim_k(m_P/m_P^2) = \dim_k(Mk[Y]_M/M^2k[Y]_M) = n$ implies that r = n and I = 0. Therefore, $\{F_0, ..., F_r\}$ is algebraically independent over k. q.e.d.

Lemma 11. deg $F_i = 1 \ (0 \le i \le n)$.

Proof. For every $i(1 \le i \le r)$, put D_i to be the divisor defined by F_i in X. Then D_i is linearly equivalent to deg F_iD . Let C_i be the curve defined by $(F_1, ..., \widehat{F_i}, ..., F_n)$ $(1 \le i \le n)$. Then $(D_i \cdot C_i) = 1$ and deg $F_i = 1$. q.e.d.

528

By the above results, we have completed the proof of the assertion in case (1). We consider the other case.

(II) G_a acts non-trivially on X and $D \subset X^{G_a}$: Since Pic $(G_a) = 0$, there is a G_a linearization on $\mathcal{O}_X(D)$ and we fix this linearization on $\mathcal{O}_X(D)$ and as in the case (1), we consider the finitely generated graded ring $R = \bigoplus_{v \ge 0} H^0(X, \mathcal{O}_X(vD)), R_v = H^0(X, \mathcal{O}_X(vD))$. Let $\{F_0, F_1, \ldots, F_r\}$ be a minimal set of homogeneous generators of R, $F_0(\in R_1)$ being the element corresponding to D. Since G_a acts on $D \cong \operatorname{Proj}(R/(F_0))$ trivially, the action of G_a on the quotient ring $R/(F_0)$ is trivial, i.e., $\tau(t)F - F \in (F_0)$ ($t \in G_a$) for every homogeneous element F in R. Now we define $\Delta(F) = (\tau(1)F - F)/F_0(\in R)$ and $\chi(F) = \deg_t[\tau(t)F]$ for every homogeneous element F. Since F_0 is G_a -invariant, $\tau(t)(\Delta(F)) = (\tau(t+1)F - \tau(t)F))/F_0$ and $\chi(\Delta(F)) = \chi(F) - 1$ if $\chi(F) \neq 0$. By the induction on the degree of F, we see that deg $F \ge \chi(F)$ in general.

Lemma 12. $\max \{\chi(F_i) / \deg F_i\} = 1.$

Proof. Assuming that $\max \{\chi(F_i)/\deg F_i\} = b/a \le 1$, (a, b) = 1, a > 1, we will get a contradiction. For a general point P in X, $\tau(\infty)(P) \in V_+(F_i|\chi(F_i)/\deg F_i < b/a)$. Since a and b are coprime, deg F_i is divisible by a if $\chi(F_i)/\deg F_i = b/a$. Hence $\tau(\infty)(P) \in V_+(R_{Na+1})$ for every N > 0. Since D is ample, $\sqrt{R_N R}$ is an irrelevant prime for every sufficiently large integer N and this is a contradiction. q.e.d.

Operating Δ if necessary, we may assume that there is an element $F(\neq 0)$ with deg F=1 and $\chi(F)=1$. Hence, after changing generators appropriately, we may furthermore assume that $\tau(t)F_1 = F_1 + tF_0$ ($t \in G_a$) and deg $F_1 = 1$.

Lemma 13. For every homogeneous element F, there exists a unique set of G_a -invariant homogeneous elements $\{G_0, G_1, \dots, G_m\}$ such that

$$F = \sum_{\nu=0}^{m} \frac{G_{\nu}}{\nu!} F_1 \{F_1 - F_0\} \cdots \{F_1 - (\nu - 1)F_0\} \qquad (m = \chi(F)).$$

Proof. We prove the assertion by the induction on $\chi(F)$. If $\chi(F)=0$, i.e., F is G_a -invariant, it is obvious. Applying the induction hypothesis on $\Delta(F)$, we have a unique set $\{G_1, ..., G_m\}$ $(G_i: G_a$ -invariant and homogeneous) such that $\Delta(F) = \sum_{\nu=0}^{m-1} \frac{G_{\nu+1}}{\nu!} F_1 \cdots \{F_1 - (\nu-1)F_0\} = \Delta \left[\sum_{\nu=1}^m \frac{G_\nu}{\nu!} F_1 \cdots \{F_1 - (\nu-1)F_0\}\right]$. Hence $G_0 = F - \sum_{\nu=1}^m \frac{G_\nu}{\nu!} F_1 \cdots \{F_1 - (\nu-1)F_0\}$. q. e. d.

For every homogeneous element F, we denote by $\alpha(F)$ the element G_0 given in Lemma 13. Then Lemma 13 implies that $F - \alpha(F) \in (R_+^2)_{\nu} + k[F_0, F_1]_{\nu}$ ($\nu = \deg F$), where $R_+ =$ the ideal $(F_0, F_1, ..., F_r)$ in R. Applying the above relation, we can take a good minimal set of homogeneous generators of R.

Lemma 14. There is a minimal set of homogeneous generators $\{F_0, F_1, F_2, ..., F_r\}$ of R such that $\{F_0, F_2, ..., F_r\}$ are G_a -invariant and $\tau(t)F_1 = F_1 + tF_0$ ($t \in G_a$).

Proof. Let $\tilde{F}_0 = F_0$, $\tilde{F}_1 = F_1$ and $\tilde{F}_i = \alpha(F_i)$, deg $F_i \le \deg F_{i+1}$ $(i \ge 2)$. Then F_i

 $\in k\tilde{F}_i + (R_+^2)_v + k[F_0, F_1]_v$ ($v = \deg F_i$). Therefore, we can prove that $k[\tilde{F}_0, \tilde{F}_1, ..., \tilde{F}_i] = k[F_0, F_1, ..., F_i]$ for every $i (0 \le i \le r)$ by the induction on i and $\{\tilde{F}_0, \tilde{F}_1, ..., \tilde{F}_r\}$ is the desired minimal set of homogeneous generators of R. q.e.d.

By virtue of Lemma 14, F_1 is transcendental over $\{F_0, F_2, ..., F_r\}$ and $V_+(F_0, F_2, ..., F_r) = \{P\}$ (P is a closed point in X). By the same argument used in the case (I), we can prove that r=n, $\{F_0, ..., F_r\}$ is algebraically independent over k and deg $F_i=1$ ($0 \le i \le n$). Therefore, X is isomorphic to \mathbf{P}^n and D corresponds to a hyperplane in \mathbf{P}^n . q.e.d.

§3. Application

T. Mabuchi has succeeded in proving that the conjecture (H-3) holds true under the assumption that the second Betti number = 1 [9]. Our Theorem 4 implies that the second Betti number = 1, if the tangent vector bundle T_X of X is ample. Combining his result with ours, we can now prove that the conjecture (H-3) is true. In this section, applying our previous results, we shall give another proof which is simpler than Mabuchi's [9]. It seems that ours might work in higher dimensional cases. The keys to our proof are the results of Bialynicki-Birula's on G_m -actions [2] and the arguments of Mabuchi's.

Theorem 15. If X is a 3-dimensional, non-singular projective algebraic variety with ample tangent vector bundle T_X defined over an algebraically closed field of characteristic 0, then X is isomorphic to \mathbf{P}^3 .

Proof. Let $P = P(T_X)$ be the projective fiber bundle of T_X over X and let L be the tautological line bundle of T_X . Then L is ample because T_X is ample and the canonical line bundle of P is isomorphic to $L^{\otimes -3}$. $H^i(X, T_X) = H^i(P, L) = H^{5-i}(P, L^{\otimes -4}) = 0$ for $i(1 \le i \le 3)$ by Serre's duality and Kodaira's vanishing theorem. Hence dim $H^0(X, T_X) = \chi(X, T_X) = \frac{1}{2}(c_1^3 - 2c_1c_2 + c_3) + 5$, $c_i(1 \le i \le 3)$ being the *i*-th Chern class of T_X , by the Riemann-Roch theorem. $c_1^3 - 2c_1c_2 + c_3$ is a positive integer ([3]). Hence, dim $H^0(X, T_X) \ge 6$. Now let $G = \operatorname{Aut} {}^0(X)$. Since the irregularity of $X(=h^1(X, \mathcal{O}_X))$ is 0, G is a linear algebraic group and dim $G = \dim H^0(X, T_X) \ge 6$. We consider the following two cases.

(I) $G \supset G_m$

We use the useful results of Bialynicki-Birula's on G_m -actions [2]. As for the definitions of (+)-decomposition (resp. (-)-decomposition) of X and G_m -fibrations $\gamma_i^+: X_i^+ \to X_i^{G_m}$ (resp. $\gamma_i^-: X_i^- \to X_i^{G_m}$), we refer to his paper. Let X^{G_m} be the fixed point scheme of X and let $X^{G_m} = \bigcup_{i=1}^{r} X_i^{G_m}$ be the decomposition of connected components. Then every component $X_i^{G_m}$ is smooth [6]. Following the Bialynicki-Birula's results ([2], Theorem 4.3 and Corollary 1), let $X = \bigcup_{i=1}^{r} X_i^+$ (resp. $X = \bigcup_{i=1}^{r} X_i^-$), $(X_i^+)^{G_m} = X_i^{G_m}$ (resp. $(X_i^-)^{G_m} = X_i^{G_m}$) be the unique (+)-decomposition of X (resp. (-)-decomposition of X), $\gamma_i^+: X_i^+ \to X_i^{G_m}$ (resp. $\gamma_i^-: X_i^- \to X_i^{G_m}$) a G_m -fibration and

let $U = X_1^+$ be the dense G_m -invariant locally closed subscheme of X. For simplicity, we put $Y = X_1^{G_m} = U^{G_m}$ and denote the G_m -fibration by $\gamma: U \to Y$. Since γ is a smooth morphism, we have a surjective homomorphism: $T_U = T_X | U \to \gamma^*(T_Y)$ (U being an open subcheme of X). Restricting these vector bundles to Y, we see that there is a surjective homomorphism: $T_X | Y \to T_Y$ and hence T_Y is ample. Since the action of G_m is non-trivial, dim Y = 0, 1 or 2.

(i) dim Y = 2. By virtue of our Theorem 8, $X \simeq \mathbf{P}^3$ and $Y \simeq$ a hyperplane in \mathbf{P}^3 .

(ii) dim Y = 1. Y is a non-singular curve with the ample tangent bundle. Hence, $Y \simeq \mathbf{P}^1$. Let H be the closure of $\gamma^{-1}(P)$ for a point P in Y. Then, the intersection number $(H \cdot Y) = 1$ and so H is the ample generator of Pic $(X) = \mathbf{Z}$ (cf. Theorem 4). Put $c_1 = \alpha H$ (α being a positive integer). We see that $\alpha \ge 4$ by considering the exact sequence: $0 \rightarrow T_Y \rightarrow T_X | Y \rightarrow N_{Y/X} \rightarrow 0$ and the fact that $Y \simeq \mathbf{P}^1$. By virtue of Kobayashi-Ochiai's theorem ([8], Corollaries to Theorem 1.1 and Theorem 2.1), $X \simeq \mathbf{P}^3$.

(iii) dim Y = 0. In this case, $U \simeq A^3$ (3-dimensional affine space) and the action of G_m on U is positive definite [2], i.e., $\tau(t)X_1 = t^a X_1$, $\tau(t)X_2 = t^b X_2$, $\tau(t)X_3 =$ $t^{c}X_{3}$ ($t \in G_{m}$; a, b, c being positive integers) for an affine coordinate system { X_{1} , X_2, X_3 of A³. Let P_0 be the origin (0, 0, 0) of A³ = U and let H = X - U. Since $\operatorname{Pic}(X) \simeq \mathbb{Z}$ and $U \simeq \mathbb{A}^3$, H is irreducible and is the ample generator of $\operatorname{Pic}(X)$. Now let us consider the G_m -invariant locally closed (+)-strata of X contained in H. Assume that X_2^+ is the (+)-stratum which is open in H. Let $Z = (X_2^+)^{G_m}$, W the (-)-stratum such that $W^{G_m} = Z$ and $\gamma': W \to Z$ the G_m -fibration. Let P be a point in Z and let C be the closure of $\gamma'^{-1}(P)$ in X. Then C is a rational curve such that $(C \cdot H) = 1$. For a closed subscheme V in X, let us denote by $T_o(V)$ the tangent space of V at a non-singular point Q in V. Now let $T_P(X) = T_P(X)^0 \oplus T_P(X)^+ \oplus$ $T_{P}(X)^{-}$ be the decomposition of $T_{P}(X)$ into the eigenspaces with respect to the action of G_m on $T_P(X)$ (See [2]). Then, $T_P(Z) = T_P(X)^0$, $T_P(H) = T_P(X)^0 \oplus T_P(X)^-$, $T_P(W) = T_P(X)^+ \oplus T_P(X)^0$ and $T_P(C) = T_P(X)^-$. Since dim_k $T_P(H) = 2$, we see that $\dim_k T_P(C) = 1$ and C is a rational curve such that $(C \cdot H) = 1$ because C and H meet transversally at P. Let $f: \tilde{C} \rightarrow C$ be the desingularization of C and let $c_1 = \alpha H$ (α being a positive integer). Since $\tilde{C} \simeq \mathbf{P}^1$, $f^*(T_x)$ decomposes into three ample line bundles and so $\alpha \ge 3$. Thus, we see that $X \simeq \mathbf{P}^3$ by virtue of Kobayashi-Ochiai's theorem.

(II) G = a unipotent algebraic group. In this case, we prove that X is isomorphic to P³. This is a contradiction because G = PGL(3). Therefore, case (II) does not occur. First, we state an easy lemma on unipotent algebraic groups.

Lemma 16. Let G be a connected unipotent algebraic group defined over an algebraically closed field of characteristic 0 and let K be a connected closed subgroup of G. Then, we get the following

(i) If $\operatorname{codim}_G K = 1$, then K is normal in G and $K \supset [G, G]$.

(ii) If $\operatorname{codim}_G K = 2$, then N(K) (= the normalizer of K in G) is normal in G and $K \supset [N(K), N(K)]$.

Proof. Since G is nilpotent as an abstract group, $N(K) \supseteq K$ for every subgroup K of G. Using this fact, one can prove the lemma easily.

Let *H* be an ample generator of Pic(X)=Z. We see $H^i(X, \mathcal{O}_X(H))=0$ for every $i(1 \le i \le 3)$ by Serre duality and Kodaira vanishing theorem. Thus $h^0(X,$ $\mathcal{O}_X(H)) = \chi(X, \mathcal{O}_X(H)) = 1 + \frac{1}{12}(c_1^2 + c_2)H + \frac{1}{4}c_1H^2 + \frac{1}{6}H^3$ by the Riemann-Roch theorem, and hence $h^0(X, \mathcal{O}_X(H)) \ge 2$. Therefore, we may assume that *H* is effective, irreducible and *G*-invariant. For each point *y* in *H*, we denote by G_y the stabilizer group of *y*. First, we will get a contradiction assuming that *G* does not contain commutative 5-dimensional closed subgroup: Let $m = \max_{y \in H} \{\dim O(y)\}, O(y)$ being the *G*-orbit of *y*. Then, m = 0, 1 or 2.

(i) m=0. Since every point in H is G-invariant, $X \simeq \mathbf{P}^3$ by virtue of Theorem 8.

(ii) m=1. Every $G_y (y \in H)$ is normal in G and G_y contains [G, G] by virtue of Lemma 16. Since $[G, G] \neq e$, and [G, G] fixes every point in $H, X \simeq \mathbf{P}^3$.

(iii) m=2. Let $y \in H$ be a point such that dim O(y)=2. By virtue of Lemma 16, $N(G_y)$ is normal and $G_y \supseteq [N(G_y), N(G_y)]$. Since $[N(G_y), N(G_y)] \neq e(\dim N(G_y) \ge 5)$ and $[N(G_y), N(G_y)]$ fixes every point in $H, X \simeq \mathbf{P}^3$.

Thus, G contains a 5-dimensional commutative closed subgroup K. Now let $n = \max_{x \in X} \{\dim O(x)\}, O(x)$ being the K-orbit of x and K_x the stabilizer group of x. Then, n = 1, 2 or 3.

(i) n=3. Let x be a point of X such that dim O(x)=3. Then $K_x(\dim K_x \ge 2)$ acts on X trivially because K is commutative. This is a contradiction.

(ii) n=2. Let x be a point of X such that dim O(x)=2. Then $K_x(\dim K_x \ge 3)$ acts on the closure $\overline{O(x)}$ of O(x) in X trivially. Hence $X \simeq \mathbf{P}^3$ by virtue of Theorem 8.

(iii) n=1. Let X_i $(1 \le i \le 5)$ be the linearly independent global vector fields on X corresponding to the subgroup K of G and let Y = zero locus of X_1 . We claim that dim Y = 2. Put U = X - Y. By our assumption, $X_2 = fX_1$ on U where f is a regular function on U. If dim $Y \le 1$, then f is a regular function on X and f is a non-zero constant. Since X_1 and X_2 are linearly independent, this is a contradiction. Therefore G_a acts on Y trivially and $X \simeq \mathbf{P}^3$. q.e.d.

Finally, we give a theorem which might work for Hartshorne conjecture in higher dimensional case. Indeed, we can generalize the proof of the case (I) in Theorem 15 by using the Bialynicki-Birula's result cited above, and we get the following:

Theorem 17. Let X be an n-dimensional non-singular projective algebraic variety defined over an algebraically closed field of characteristic 0. Assume the conjecture $(H-m)(1 \le m \le n-2)$ is true and that X has a non-trivial G_m -action. Then, X is isomorphic to \mathbf{P}^n .

Department of Mathematics Kyoto University AND

HARVARD UNIVERSITY

DEPARTMENT OF APPLIED MATHEMATICS Konan University

References

- C. Barton, Tensor products of ample vector bundles in characteristic p, Amer. Jour. of Math., Vol. 93, 429–438, 1971.
- [2] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math., Vol. 98, 480-497, 1973.
- [3] T. Frankel, Manifolds with positive curvature, Pacific Jour., Vol. 11, 165-174, 1961.
- [4] D. Gieseker, *P*-ample bundles and their Chern classes, Nagoya Math. Jour., Vol. 43, 91-116, 1971.
- [5] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., No. 156, Springer-Verlag, 1970.
- [6] B. Iversen, A fixed point formula for action of tori on algebraic varieties, Inventiones Math., Vol. 16, 229–236, 1972.
- [7] S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math., Vol. 84, 293-344, 1966.
- [8] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, Jour. of Math. Kyoto Univ., Vol. 13, 31-47, 1973.
- [9] T. Mabuchi, C^{*}-actions and algebraic threefolds with ample tangent bundle, Thesis (to appear).
- [10] S. Mori, On a generalization of complete intersections, Jour. of Math. Kyoto Univ., Vol. 15, 619–646, 1975.
- [11] H. Sumihiro, Equivariant completion, Jour. of Math. Kyoto Univ., Vol. 14, 1-28, 1974.