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§ 1 .  Introduction

In this note we shall study an equivariant version of the transfer homomorphism
for fibre bundles defined by Becker and Gottlieb [4].

Let G be a compact Lie group. Let E-> X ) be a fibre bundle with G-
action in the sense of [6] ; and let h t be an RO(G)-graded generalized G-cohomology
theory [9], where RO(G) denotes the real representation ring of G .  Then the transfer
homomorphism

p,: h ( E )  — ' q ( X )

will be defined. The existence of the transfer seems to be an advantage of RO(G)-
graded theories compairing to  Z-graded theories. Regarding h t(X )  as  a  graded
module over the stable G-cohomotopy theory nt(X ), we shall prove (Theorem 4.6)
that

p,p*(x)=w()x e ht(X )

for x e ht(X), where w() = p,(1)e Trg(X) and 1 e irg(E) denotes the unit.
For each closed subgroup H of G, usually we have also a generalized H-cohomo-

logy theory hti  such that ht(GIH)= ht(point), for * e Z .  In this case the transfer
homomorphism for the bundle p: G/H -q )o in t gives an  - induction" homomor-
phism

p, : ht(point) ht(point).

In particular let K G ( X ) =K ( X )  b e  the equivariant K - group  [13], then we obtain
a homomorphism

p,: R(H) — R (G )

where R(G) denotes the complex representation ring of G .  It will be proved (Theo-
rem 5.2) that this homomorphism coincides with the induction homomorphism
defined by Segal [12].
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Finally we shall give a proof of the Adams conjecture for complex vector bundles.
It is a  modification of that of Becker and G ottlieb  [4 ]. The idea is just to use the
fact that every element of R(G) is a  linear combination of representations induced
from one dimensional representations [12], and to reduce the problem to line bundles
using the naturality of the transfer homomorphism.

§ 2 .  Fibre bundles with group action

Let G and F be compact Lie g ro u p s . Suppose that there is given an action of
G on F as smooth automorphisms, i.e., a homomorphism 7: G--0Aut r  such that the
adjoint o f 7 , 61: Gx r . r -  is  s m o o th . Let r x,G denote the semidirect product,
that is the direct product F x G  as a set and the multiplication is given by (y, g).
(y', g')=(y • 1(g)(y), gg').  It is obvious that T x z G is a  L ie  g roup . According to
tom Dieck [6], we now introduce the notion of fibre bundle with group action.

Definition 2 . 1 .  A principal F-bundle £-+X ) (r  ac ts o n  E from  the
right) is called a principal (F, a, G)-bundle if

i) E and X are left G-spaces and p: E-ox is a G-map,
ii) actions of G and F are related as g(x-y)=g(x)-a(g)(y) for any x E E, g e G

and y e l .

Note that we changed the notation of G and I ' in [6].

Let F be a  Tx OE G -space. Then regarding F as a F  (cF  x G)-space, one can
associate fo r  a  f ib re  bundle

F E  1  X

with fibre F, which we call a (r, 7, G )-bundle. It is obvious that the diagonal action
of Ex OE G on E x F  induces a G-action on E = Ê  x r F and that p: E.--0X is a G-map.

Now let F — .E I—L* X be a  (F, G)-bundle, associated with a principal (F, a,
G )-bundle !. Suppose that F is a closed smooth F x  G-manifold and X is compact.
We shall then associate a stable G-map as follows.

It is know n [5] that there is a  F x z G-equivariant embedding i: F—>TY o f F
into a  Euclidian r  x z G-space W . Let j  d e n o te  the  vector bundle with fibre W
associated with !. This turns out to be a  G-vector bundle in the sense of [13], and
since the base space X  is compact, there are a G-vector bundle p and a G-vector
bundle isomorphism

f: v

where V is a  Euclidian G-space.
Let v(F) denote the normal bundle of the embedding F c W . Then we obtain

F x OE G-maps

k: v(F) W

and
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j: v (F) ,  v(F) ,CST(F)_z' F x W

where A O= 0 )0  and T(F) is the tangent bundle of F .  Clearly k  is an  embedding
onto an open subspace of W, and j  is a proper map of locally compact spaces. Con-
sider G-maps

i d x rk :E x rv ( F ) - - ,Ê x rW

and

id x  r j :  E x r v(F)---> E x  r  (F x W ).

These maps are clearly fibrewise regarding as fibre bundles over X.
For fibre bundles p i ; E 1-+X, i= l, 2, we define the "W hitney sum " E, EBIE2

by the pull back diagram

EDE2 --■ E 1 X  £ 2

xP2

X - ri - +X X X

where d: X -+ X x X denotes the diagonal m ap. If f i : (1= 1, 2) are fibrewise
maps covering the identity map of X, then one can naturally construct a  fibrewise
map

f i P f 2 : E 1 E2

We apply this construction to  fibrewise maps above and the identity of Then
we obtain G-maps

(id x  k )e) id: (E x  r v (F))8n± (E x r  W) 0

and

(id x r  j)(I) id: (E x r v(F))en-L (E X F(F x W))

It is obvious from construction that (id X r k)(Did is an embedding onto open subspace
and (id x r  j)(Bid is a proper m a p .  By the definition, (E x W)Ort-L L.' X  x V  and we
have

Lemma 2 .2 . (E x r  (F x  W ))eni is hom om orphic to ExV L 'p*(nEDn 1 ).

Pro o f . A n element o f  (E x r  (F x W ))(Dni can be w ritten a s  [é , (x , w )]Pv '
where é e E, x F, we W  and v' Define

u: (E x r  (F x W))(4)ni p*O(Dq±)

by u([ë, (x , w )]Q v ')=([0, x ], [0, w ]ev '). Clearly u is a continuous G-map and the
inverse of u is similarly defined, q. e. d.

For a  locally compact space Y, let Yc denote the one point compactification.
Let U be an open subspace of Y, then by shrinking Y— U to a one point, we obtain
a m ap Y c-->Uc. If f : Y -+Z  is a  proper map, then we obtain f  c: Y c-+Z c. Then
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from G-maps (id X r k )0 id  and (id x r j)()id , we obtain G-maps

(X  x V)" ((E x  v(F))0q 1 )" (Ex V)c

and as the composite we have a G-map

t: (X  x V)" ---> (E x V)".

We call t a trace of the (r, a, G)-bundle (p: E–> X).
We note that when the structure group F of a (F, a, G)-bundle c is reducible

to a subgroup r- which is closed under G-action, then is regarded as a (F', a, G)-
b u n d le . In such a case, a trace t: (X  x V)c–>(E x V)c of the (I', a, G)-bundle
can be considered as a trace of the (F', a, G)-bundle i . e . ,  a trace does not depend
on a reduction of structure group. So in the following, a (F, a, G)-bundle with a
closed smooth fibre and a compact base is called simply an admissible G-bundle.

Consider now a special case. Let M be a closed G-manifold. Then the unique
map p: M–>point is an admissible G-bundle (with F = e ) .  Let i: M–>i,V be a G-
equivariant em bedding. In this case, ti =point x W and we may take V = W . Then
a trace of p: M–>point is given by the composition

v( m)" (v(m) e t ( m)) , (m x To,

where c is the Pontrjagin-Thom construction.

§3. G-cohomology theories

Let us first recall the definition o f  RO(G)-graded equivariant generalized
cohomology theories ([14], for details also see [9]). Here RO(G) denotes the real
representation ring of a compact Lie group G.

A reduced generalized G-cohomology theory ht consists of
i) a  family fit, a e RO(G), o f contravariant functors from  the category of

compact based G-spaces to the category of abelian groups and
ii) a  family aa 0 1  (a E RO(G) and V  an irreducible representation o f G ) of

natural transformations

I (X) —  liG6' ( V c  A  X)

which is subject to the usual axiom s. From  a reduced theory, one can define an
unreduced theory by

ht(X )= lit(X  +)

where + means the disjoint base point.
Let h t  and k t be generalized G-cohomology theories. A family go = {(pa }

(pa  ;  h (X ) q+P(X )

of natural transformations is called stable if 9 2  commute with the suspension iso-
morphisms.



The transfer homomorphism 439

Some examples of G-cohomology theories are

Ex. 1. (S table cohom otopy). Let a=  V- We RO(G) where V  and W  are real
representations of G .  Define the stable G-cohomotopy group by

f it(X )=Iim  [(U WY A X, (UC)V )er

where [ , ]G denotes the set of G-homotopy classes of G-maps, and the direct limit
is taken over all real representations of G .  It is shown (see e.g. [9]) that 7rt is a
generalized G-cohomology theory. Moreover we see that nt` i s  multiplicative.
That is, by the smash product of stable G-maps, we have an associative and (anti-)
commutative pairing

- - -b r XA Y)

Hence as non equivariant case, the unreduced group nt(X ) is a RO(G)-graded ring
with unit.

L e t h t  b e  a  generalized G-cohomology theory. L et a =  V - WG RO(G) and
fl = V' - W ' e R O(G). Let x E lic6(Y) and u e ni4(X), and let

f : (U 'PW )c A X + ) (U 'e r) c

be a representative of u. Put

u 0 x = , (Cfa+P'WEE11") - 1 ( f  A id )

Then we obtain a welldefined bilinear pairing

: hcb( Y/4) 0 n(X) ht+P(X x Y) .

If X =  Y, then by use of the diagonal map X.-0C x X , we obtain a homomorphism

ht(X )O ng(X ) hch+P(X),

and we can check easily the following

Proposition 3 . 1 .  Any generalized G-cohomology theory h t(X ) has a  natu-
ral nt(X )-module structure.

Let n: X - T t .  be th e  u n iq u e  m a p . Then v ia the ring homomorphism n*:
nt(pt.)--*nt(X), we may consider ht(X ) as a nt(pt.)-module.

Ex. 2. (K-cohomology). Let a=  V - We RO(G) as b e fo re . Put

'd(X )= g((V S  W)" A X)

where KG denotes the reduced equivariant K-group of Atiyah-Segal (see [13]). By
the Bott periodicity /3: R G (X )1Z G (X A (VOC)c), one can define the suspension
isomorphism

C7 : R(X) kb+U(Lic A  X ).

by
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13: g G((v w). A X) Rd( Ve WY A X A (U 0 0 9

=t1ZG(( 1/ (1) WO2UY A  X ).

A s non equivarian t K -theory , one  c a n  e a s i ly  s e e  th a t  K t  is  a  generalized
G-cohomology theory.

§ 4 .  The transfer homomorphism

Let lit be a generalized G-cohomology theory. Let E—> X ) be an admis-
sible G-bundle with fibre F.

Definition 4.1. The transfer homomorphism for

p,: ht(E) ht(X)

is defined by

p,(x)=(cr*.v)_'t*c*,v(x)

where t: (X x V)c = X + A  Vc—>(E x V)c = E, A Tic is a trace of the bundle

This definition is well-defined, because of

Lemma 4.2. T he suspension im age of  t i n  {X + , E + }' = 11m  [X + A
 V c

, E ,
V

1/c]G is uniquely  determ ined by  =(p: E—> X).

Pro o f . The definition of t depends on a choice of an embedding i: F—> W and
a choice of It is known [18] that if W is large enough (contains each irreducible
representation enough many times), then any embedding F—> W are G-isotopic each
o th e r .  On the other hand, for a given embedding F-+ W, the stable class of is
unique. Then one can easily verify that the equivariant stable class of t is inde-
pendent on choices above, q .  e .  d.

If G=e, one can see easily that our definition of the transfer coincides with that
of Becker and Gottlieb [4].

Proposition 4.3. L e t  =(p: E—>X) b e  an adm issible G-bundle an d  le t  ht
and ict be generalized G-cohomology theories. T hen w e have the following.

i) The transfer p,: h(E)—>h(X) is a  irt(pt.) module homomorphism
ii) I f  ça: ht---, kt is a stable natural transformation then the following diagram

is commutative

ht(E) kt(E )

i P t

ht(X) k t(X ).

P ro o f . Let x e ht(E) and u e le(pt.), and let f :  Wc—>LIc be a  representative
o f  u .  Let t: X + A  Ve—>E+  AVc be a trace of Note that
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t A idw : X+ A  V ` A  W e  - - - 0  E±  A  V e A  W e

is also a trace of Then

p,(ux)= (o -* , vEow) - '(t  A idw) * (idE.Av‘ A  f ) * a * " u ( x )

= 0 .4,,1 e w  i r i d
N.. , 4 X+AVc A f )

*
( i  A idu) * ,v e u (x )

=up,(x).

This proves i), and ii) is clear from the definition.

441

q. e. d.

Now we consider the naturality of the transfer. Let fi, X) be a  princi-
pal (T, a, G)-bundle and let f :  Y-4.X be a  G -m a p . Then the  induced principal
F-bundle f * !  clearly has a principal (F, a, G)-bundle structure induced from E.
Let E--> X ) be th e  (F, a, G)-bundle with fibre F  associated with -4', and let
f f *E--0 Y) be associated with f * .  Then we obtain a pull-back diagram of
(r, a, G)-bundles

f* E E

i' !I n
Y — T-0  X

Proposition 4 .4 .  Let be an adm issible G-bundle. Giv en a  pull-back  dia-
gram  as above, we have the following commutative diagram

I'V E ) -12'—■ ht( f* E

h t (X ) ht(Y)

P ro o f . L et i: b e  a  T x „G-embedding in a Euclidian f x G-space W
and let 1/=E x r ig be the G-vector bundle over X .  Note that

q' =P E  x r * ( )

where f* (n ) is  the induced G-vector bundle over Y. Hence for the construction
of a trace of P E ,  one may choose

(1/') ±  = (PE x 1
7
) 1 -- P (P/ 1 ) .

Then by an easy diagram chasing, we have the commutative diagram

f*E , A vc E+ A Vc
el 1

Y+ A  V c  > A  V`fAtd

This shows the proposition. q. e. d.

Now let =,-(p: E---).X) be an admissible G-bundle and let t: X + A  Vc--E + A V"
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be a trace. The stable class of the composition map

X+ A  V ` E+A  ve ve

w ill be denoted by w (c) e d(X ), where i t  denotes the  canonical projection. If
=(p: M—>point), then w() e ng(pt.) is denoted by w (M ). The class w( ) is natu-

ral, i.e., fo r a  G-map f :  Y—>X and for an admissible G-bundle E—+X), we
have

f *w( )  = w(f

by Proposition 4.4.

Lemma 4 .5 .  w()=p,p*(1), w here le it(X ) denotes the unit.

This is clear by definition.

Theorem 4 .6 .  Let =(p: E—+X ) b e  an adm issible G -b u n d le . L e t  h t  be
a generalized G-cohomology theory and let X E h ( X ) .  Then we have

PIP*(x )=w ()x .

P ro o f . Let d: X --0( x  X  be the diagonal m ap and let =px id: E—>X x E.
Note that

i d x p :X x E - - - X x X

is an admissible G-bundle and we have the following pull-back diagram

E X x  E
l i d x p

X — r*  X X  X

From the definition, we see that a trace of id x p: X  x  E.-0C x X  is given by

t' = idx  t  : (X  x X ), A Vc (X  x E ) ,  Vc

where t: X + A  V '--E ,A  TR is a  t r a c e  o f  = ( p : E - 0 0 .  Then for x e lit`(X ) and
y ent(E), we have

(id x p),(y0x)= p,(y)x.

Now by Proposition 4.4 and by the naturality of trt action on h t , we have a
commutative diagram

(E) = lit(E) P i  ht(X )

d*Î IA. Id*

ht(E X  E) ht(X  X E) (id.p), h t(X x  X )

Î I
h t(E )O n t(E ) h ( X ) ® n ( E ) h ( X ) ® n ( X )
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Then by a simple diagram chasing starting from x01 c ht(X)Ont(E), the theorem is
proved. q. e. d.

As an application of the theorem, we consider an admissible G-bundle with a
base space with trivial G-action. Let E--00 be such a b u n d le . Let xo E  X
and F= p - 1 (x o ). Then the inclusion i: x 0 --.X  is a  G-map and F is a G-manifold.
Moreover we see that

i*W () =111(F) E  4 (x o ) .

For a nt(pt.)-module M and for x E nt(pt.), let M[x - 9 denotes the localization
of M by the multiplicative set {x}=12,... • Then we have

Theorem 4 . 7 .  L e t  =(p: E— )X) b e  a n  adm issible G -bundle  w ith  f ibre  F.
S uppose that X  is  a  connected f inite CW-complex w ith  triv ial G -action. Then
the cornposition of nt(pt.)[w(F) - 1 ]-module homomorphisms

p p * : h t(X )[w (F ) - ' ] h t(X )[w (F )-1 ]

is an isomorphism.

P ro o f .  Let x , be a vertex of X .  Let 7E: X—>xc, be the unique m ap and let
X ( ° ) —)X be the inclusion of 0-skeleton. Since X  is connected and trivial as

G-space, we see that

i*(W() — 7C * w ( F ) ) =  0.

H ence w e can w rite w()= n*w(F)+ z, z E ker i*. Therefore i n  rct(X)[w(F) - 9,
we can write

w( ) = n*w(F)(1 + z'),

where z' E ker [i* : 704(X)[w(F) - 1-+Itt(pt.)[w(F) - ' ] ] .  Since  X  is a  fin ite  CW
complex, the element 1 + z' is invertible as usual. H ence the multiplication with
w( ) is an isomorphism in  ht(X)[w(F) - 9 , and the theorem follows from Theorem
4.6. q. e. d.

R em ark. If G is a finite group, Segal [14] has shown that nUpt.) is isomorphic
to the Burnside ring A (G ).  For a compact Lie group G, the structure of rt(pt.) is
determined by Rubinsztein [11].

§ 5 .  The transfer in KG -theory

Let K (X )= K ° (X )  be the equivariant K-group. Recall that the suspension
isomorphism in Kt-theory cr: sk- (E , A V') is given by the Bott periodicity,
or in other word the Thom isomorphism (see e.g. [3])

0 :  K G (E) KG(E x Vc )= K G (E x (2V)).

where V, denotes the complexification of V.
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L e t  .=(p: be an admissible G-bundle. Then in the construction of a
trace t: X +  A  Vc—>E, A V e , one may suppose tha t V  is a  complex G-vector space.
Then it is easy to see that the transfer f o r  is given by the composition

K G (E) KG(E x V) KG(X x V) KG(X).

Now let M  be a  closed G-manifold and let TM be the tangent bundle of M.
Let

t-ind: K G (TM) ---> K G (pt.) R(G)

be the topological index [3], where R(G) denotes the complex representation ring
of G .  Let

i t :  T M M

be the bundle projection and let )*(TM ) denote the exterior algebra of the vector
bundle TM . Then ir*(.1*(TM)) is a  complex of real vector bundles over TM exact
outside the 0-section. Hence its complexification defines an  element o f K G (TM),
so put

u(M) = ir*(.1*(TM)) C c K G (TM) .

Then by the multiplication with u(M), we obtain a homomorphism

il': Kam) ,  Karm).

Now we have

Theorem 5 .1 .  L e t M  b e  a  closed G-manifold an d  le t =-(p : point) be
the adm issible G-bundle. Then

i-ind : K G (M) KG(pt.).

P ro o f . Let i: M-4 V  be a  G-embedding of M  into a  real G-vector space. For
a real vector bundle  i t s  complexification is denoted by Let it ,:  or,t14— M  be
the projection and let

k: c

be the inclusion onto the real part of TMG . Denote by vM the normal bundle of
M  V .  T h en  TM,ED vM M x V . C learly  T r e k =  TM—M a n d  w e  have a
pull-back diagram of G-vector bundles

7/* (y it ic ) M  X  V c — 4 V M c

As shown in  [3], N =tr*(v M ,) may be considered as the normal bundle of TM in
TV L-• Tic . W e em bed M  in TM by the 0-section. Consider the embedding
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M ctM c-cV =V ,.

The total space of the normal bundle of M in V , is clearly N.
Now define the transfer p,: K 6 (M )-4( 6 (pt.) using the embedding i'. Then

p, is given by the composite

K G (M) K G (M x V ,)--1  K G (N) KG(V,) KG(pt.)

where I: N = v(M, VOC)TML-zM x V ,  a n d  j: N ->V , a re  natural in-
clusions, and j *  is  the homomorphism induced from the map T.q.-VZ/(V e  - Im

Let 'le K G (T M ,) be the canonical Thom class of the bundle TM,. Then clearly
we see that

k*.1.=u(M)e K G (TM).

Then by the naturality of the Thom homomorphism in the pull back diagram above,
we have

p,(x)=0-1,1*1*(19(x)=0-1.1,100(x)= t-ind t//(x)

where 0 denotes the Thom isomorphism for appropreate bundles. q. e. d.

As a corollary, we shall show that the induction homomorphism of representa-
tions of compact Lie groups defined by Segal [12] can be also defined by the transfer.

Let H be a  closed subgroup of a compact Lie group G .  The homogeneous
space G IH  h as a  usual left G -action. Recall that K G (G1H)2tR (H). Then the
transfer for (p: G/H- point) gives a homomorphism

p,: R (H)---> R (G).

Now we recall [12] the definition of the induced representation

R (H)---4 R (G).

Let M be a complex representation of H .  Let denote the G-vector bundle

Gx  H M — G/I- 1.

By this correspondence, we see that R(H) K G (G/1-1). Let 7'*--+GIH be the co-
tangent bundle of G IH . For a complex G-vector bundle D ()  denotes the G-space
of smooth sections. Then by use of a linear connection

F m : D ( x f O rt ) ,

Segal defined an elliptic operator

17  + P I :  U  D ( 4 1 (:))iT t) — > ][1  D (  ( :) ,» T P
i :e v e n i:od d

where » denotes the exterior power and Ft is the adjoint of 17 Ai . Then the analytic
index
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a-ind(F m +171 )eR (G )

and by linearity, this defines a  homomorphism

i* : R(G).

Now consider the symbol o-(17m + V t)e K G (T * ) .  Since

D (4 f ICN i T t ) - - -  D (410 1,1+1 TC)

is given by the covariant exterior derivative, for V E T* we see that

a(4M)V: 1r* ( 0 ,117 ) , ,

is given by the product with y. Thus

11(FM ± Pt) = A4C)(E 1)in*Aird.1)= m 0u(G1H)

where we have identified T * with T(G/H) by use of a G-invariant metric. Now by
the index theorem [3]

a -ind(17
m + V t)= t-in d (o (r m +17 4,4))

and by Theorem 5.1, we obtain

Theorem 5 .2 .  p ,=i * : R(H)-4R(G).

Rem ark. If GIH is not merely a G-manifold but has another structure, there
may exist a  finer induction homomorphism. F or example, if  GI H  is a  complex
manifold (e.g. U(n)IT"), then by using the Thom class eK G (T(G111)) instead of
u(GIH), we obtain another homomorphism R(H)-q2(G).

Now we recall that KG(pt.)=K(pt.) is a trZ(pt.)-module. We define the degree
homomorphism

d: tr (pt.) KZ(pt.)=R(G)

by d(u)=u .1 where 1 e KG(pt.) denotes the unit.
Let M  be a compact G-manifold, then the equivariant Euler characteristic is

defined by

Z6(-111) =E( -1 0 1 1(M: C)E R(G) .

We have defined w(M) E ,r(pt.) in § 4 .  Then we have

Theorem 5 .3 .  L et M  be a closed G -m anif old. Then

cl(w(M))=Xo(M)•

P roo f. Let 52* be the complex valued de Rham complex o f  M . Then zG(M)
is given by the Euler characteristic of C2*, x(S2*), and by the index theorem we see

A ir)  = t - ind (cr(C2*)) .
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On the other hand, the symbol cr(C2*) is the complex of the exterior algebra of T*M c .
Hence

o-(Q*)=u(M)e K G (TM)

and by Theorem 5.1 and by the definition of w, we see

z(g2*)= t-ind = p,(1)= w(M) 1 =d(w(M)).

q. e. d.

Remark. If  G is a finite group, then one can identify t ( p t . )  with the Burnside
r in g  o f  G  (Segal [14]). L e t / :  A(G )-42(G ) be defined by /(S)= G-vector space
generated by S for a finite G  s e t  S .  Then one can prove that / =d : n(p t.)-*R (G ).

Finally we relate the equivariant transfer with the non equivariant one . L e t
E be a compact free G-space and let H  be a closed subgroup of G .  Let

p,: K(EIG)

be the transfer in K-theory for the fibre bundle

GIH EIG.

For a G-vector space M, correspond the vector bundle E x G  M -4E 1G . Such a homo-
morphism is denoted by

a : R(G) —  K (E IG ).

We denote here the transfer R(H)-+R(G) fo r  = (G /H - point) by T. Ten we have

Proposition 5.4. The following diagram is commutative

R (H ) K (E IH )

1•P '
R(G) K(EIG)

P r o o f  We can identify R (H )= K 0 (G 1H), K (E IH )=K G (G1H x E ) and K(EIG)
= K G ( E ) .  Then the homomorphisms

K(EIH)

R(G) K(EIG)

may be defined by the projections GIH x E -G /H  and E-*point, respectively. Con-
sider the pull-back diagram

GIH xE GIH

E pt

where all maps are appropriate projections. Then by Proposition 4.4, we have a
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commutative diagram

KG(G I H) —s-4 K G (G I H x E)

KG ( pt.) KG(E).

Note that if is a complex G-vector bundle over E, then there exists such that
L2E x CI' where C " is a  trivial G -space. For using the isomorphism K G (E)

K(EIG), we can choose a  complementary bundle of i n  K (E IG ). Noting this
observation, we consider the  transfer fo r n: GIH x  E— E. L et GIH c V  be  a  G-
embedding into a  complex G-vector space V. Let 11-=-(Ex V—, E ) and choose t1±

such that riS t i l= E x C N . Then a trace of it is induced from

E x CN fiC47-1- (E  x  v (G  I H))C)17 - cp*(riC)17 1 )- E x GIH x C".

Taking the G quotient spaces above, we obtain

EIG x  C "  (E x 0 r(G111))Qq 1 IG c(E  x G G/H) x  C "  =  H x C",

and the induced map of one point compactification

(EIG x CN)c (EIH x CN)c

may be considered as a trace of the fibre bundle G/H-3.E/H—E/G.
Note that the isomorphism K G (E)-L2 K(E G) holds when E is a  locally compact

free G-space and the diagram

K G ( E) KG(E x C")

I
K(EIG) K(EIGxCN)

is commutative where (1,  denotes the Thom isomorphism. Then we have a commuta-
tive diagram

KG(G I H x E) K (EIH)

I P I

K6 (E ) K(EIG)

This completes the proof. q. e. d.

§ 6 .  The Adams conjecture

In this section we prove the Adams conjecture for complex vector bundles. Our
method is reducing the vector bundle problem to representation theory by using the
transfe r. So if we know a  similar result on RO(G) as mentioned in introduction,
then our method can apply immediately to real vector bundles.

We formulate the Adams conjecture as follows.
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Let F„ denote the monoid of proper homotopy equivalences of R " .  Let BF,
be the classifying space of F„, and let BF =lim BF ,1. For a finite CW-complex X,
put

Sph(X)= [X +, BF x Z] .

According to Stasheff [16], the homotopy set [X i , BF] is isomorphic to the group
of stable fibre homotopy equivalence classes of spherical fibre spaces. Let

J: K (X )--). Sph(X )

be the J-homomorphism defined by

N ) = ( [ ] , dim

for a complex vector bundle where [] denotes the class of the associated sphere
bundle.

Let p be a prime num ber. For an abelian group A, A(DZ[ 1 ]  is denoted by

P l .

Then

Theorem 6.1. (Quillen [10], Sallivan [17], Friedlander [7], Becker-Gottlieb
[4 ] ) .  Let X be a f inite CW-complex and let tliP be the Adams operation. Then

J (P  —1) =0: K (X )L Sph(X) .

Adams [1] has proved this for line bundles. So we shall prove the theorem
by saying that we can reduce the problem to line bundles. In the proof, the following
facts are crucial.

i) Segal [15] has shown that the monoid LIBF„ is a F-space and hence its
group completion BF x Z is an infinite loop space. Furthermore the natural map

BU„ lIBF„

is a morphism of F-spaces. Thus we obtain an infinite loop map

j : B U x Z - - - B F x Z

which induces the J-homomorphism j*=J : K (X )— S ph (X ). From this we see that
Sph(X) is a 0-th group of a generalized cohomology theory and J is a stable natural
transformation. Then one can think of the transfer in Sph(X), and we see that the
J-homomorphism commutes with the transfers by Proposition 4.3.

The second fact is that the Adams operation t/iP is a stable operation•on
K (X ) [ -

1
1. This is well-known. Therefore te also commutes with transfers in

K (X )[-Lp ]

iii) Finally if G is a compact Lie group, Segal [12] has shown that any com-
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plex representation o f G is a  linear combination o f monomial representations, i.e.,
induced from one dimensional representations of appropriate subgroups.

Now we prove the th eo rem . Let H  be a  closed subgroup of G and let E be a
compact free G-space. Then by the fact i) and by the localized version of Proposi-
tion 5.4, we have a commutative diagram

R (H )P -p K ( E / H ) [ 1 ] Sph(E/H)L-11

ri1 P ,
R ( G ) PP1 K (E IG )[1 Sph(E/G )P-1

where p, is the transfer for the bundle G1H-0E1H-EIG.
From the fact ii), we have tliPp, =p,IPP, and clearly calg=i1IPI. Hence we see

that

(a t)ip = ip (ca ).

Now let be a n  n-dim. complex vector bundle over X .  Let be the
associated principal U(n)-bundle. L e t en e R (U (n)) be th e  identity representation,
then clearly =ce(e,,). We apply the fact iii) to  en e R (U (n )) .  Then

en
=

; i 1 1 . ( 13.11)

fo r some one dimensional representations 
H  o f  subgroups H  o f  U(n). Here we

can identify H . with the transfer î by Theorem 5.2. Then we have

Atig - 1 )()= J(IP P -  1 )(e.)

Occr()H)
- II

=-- iczT(PP — 1) City )

- PIJŒ(OP  - 1 ) ( 4 )
II

= E A ./('Ig—  I ) (co-H) = 0.
H

This completes the proof.
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