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Introduction

In the present péper, we shall study a structure of IE-I and IE-II vector
bundle on complete homogeneous variety X, .. (See §1 about the definition of
X, ¢ and IE-I (or, IE-II) vector bundle on X, ;). We have the following

Main Theorem I. Let E be an IE-I vector bundle on the complex homogeneous
variety X, q. Then E is isomorphic to @ P,(d;cj, -+, ci, 0, -+, 0). (see §4 about

the definition of an irreducible homogeneous vector bundle P,(d;co, ++* cq, 0, -+, 0)
on Xa, q).

Main Theorem II. Let E be an IE-II vector bund“le“ on the complex Gras-
smann variety X, n-A). Then E is isomorphic to G? P,(n—e;0,--,0, c,”,_'e, “e, Choy).

Barth and Van de Ven showed that infinitely extendable vector bundle of
rank 2 on the complex projective space is a direct sum of line bundles ([1]).
And then, the author generalized this result to the case of higher rank and, in
addition, any characteristic ([5] [6]). On the other hand, defining an infinitely
extendable vector bundle on the infinite variety, Tjurin showed that this vector
bundle is a direct sum of line bundles in characteristic 0 ([8]). The geometrical
and topological meaning of the result is stated in detail in [5] and [8]. But we
are not able to expect that every infinitely extendable vector bundle on an ex-
tendable variety decomposes to a direct sum of line bundles. In fact, on homo-
geneous varieties G/P, we have many infinitely extendable vector bundles which
are indecomposable, where G" is a semi-simple and simply connected algebraic
group and P is a parabolic subgroup of G. Therefore our next interest is to
determine the structure of infinitely extendable vector bundles on homogeneous
varieties G/P where P is, in particular, a maximal parabolic subgroup. As stated
in Main Theorem I and II above, we see that these vector bundles are homo-
geneous. Essential tools to prove these theorems are two results due to Tjurin
and the author, besides we have to study the structure of parabolic subgroups of
classical groups and Lie algebras corresponding to their algebraic groups and
have to investigate their representation in detail (see §3). As for IE-II vector
bundle, we have not been able to determine the structure in the case of types



172 Ei-ichi Sato

B, C and D because, in these cases, the structure of IE-II vector bundles on
X, -1 has not been known yet.

Throughout this paper, k is an algebraically closed field of characteristic 0
(All results in §1 and §2 hold in characteristic p>0 too.) By a scheme we
understand a separated algebraic k-scheme. Opa(l) is the line bundle correspond-
ing to the divisor class of hyperplanes in the n-dimensional projective space P™.
When S is a quadric hypersurface in P**!, Og(1) denotes the line bundle cor-
responding to the divisor class of hyperplane sections. If E is a vector bundle
on a variety, E denotes the dual vector bundle of E. Gr(n, d) denotes the Gras-
smann variety parameterizing d-dimensional linear subspace of the n-dimensional
projective space P™.

§ 1. Some properties of a homogeneous variety G/P and the definition of
IE-I and IE-II vector bundles

Let us begin by defining complete homogeneous varieties obtained by classical
group modulo its maximal parabolic subgroup and embeddings of one to another.
At first let us denote the subgroup P, , of general linear group GL(n+1, C) by
{(misi, jsur € GL(u+1, C)|m;;=0 for w+1=i<u+1and 1=<j=w} where 1=w=u.
These are known to be the maximal parabolic subgroups of GL(u+1, C).

A) The case of type A. Put G,(A)=SL(n+1, C) and P,, ((A)=G (AP, q.
Then P, 4(A) is a maximal parabolic subgroup of G,(A). Hence G,(A)/P,, .(A)
(=X, 4-.(A)) is a complete homogeneous variety and, indeed, is a Grassmann
variety. If we define a map j,(4):G.(A)— G, (A) by transforming M=
(Miisi jsne1 1D Ga(A) to M'=(mij)ici jsn+2 Where my=mi; for 1=i, j<n+1,
Miss nez=1 and My ;=mj n42=0 for 1=i, j<n+1, j,(A) provides us with a closed
immersion 1, o(4) ; Xn. a(A) G Xn41.a(A), since jo(A)'(Prs1,o(A)=Pn, o(4). Let us
call this map 1, 4(4) a morphism of type I with respect to the type A. On the
other hand, if we define a map j,(A4); G.(A) G G,+,(A) by transforming M=
(Miisi, jsner i Ga(A) to M =(mijici. jsnee in Grii(A), where mj=1, m{;=m}=0
for 2<1, j=n+2 and mj=m;_, ;-, for 2=i, j=<n+2, j.(A) provides us with the
closed immersion 15, 4(A4) ; X4, a(A) G X421 a+1(A). In this case let us call this map
i% 4(A) a morphism of type II with respect to the type A.

B) The case of type B. Let V be a vector space of rank 2n-+1 and let us
choose a basis ey, ** €4, €n41, ***, €an4; Of V. Let us represent a point v of V by
v=(x;, *** Xn, 2, Y1, ***, ¥o) With respect to this basis. If we put Q@)=2z+x,y,
+ -+ +x,y,, then G,(B)=S0@2n+1, C) is defined as the subgroup of SL(2n+1, C)
that leaves Q(v) invariant, that is, G,(B)={MeSL(2n+1, C)|Q(Mv)=Q(v) ve V}.
Now it is well known that P,, ¢ NG ,(B)=P,,. «(B) is 2 maximal parabolic subgroup
of G.(B) for each 1=d=n. Put X, ;. (B)=G.(B)/P, «(B). Let us define a
morphism j,(B):G,(B) G G,+.(B) as follows:
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alolelola
Al G Ag] ol1]0/o0
@M= G| D |c |—m={c.|o|Dp|0]|c
Al C | A, 00|01
alolclola,

where A, is a (n, n) matrix for 1=1<4, C; is (n, 1) matrix for =1,3, C; is a
(1, n) matrix for j=2, 4, and D is a (1, 1) matrix.

The above map j,(B) yields a morphism 7, 4(B): X;, «(B) G Xn+1, o(B) which is
called a morphism of type I with respect to the type B. Next let us consider a
morphism j/,(B) :G(B) G G,.+.(B) satisfying the condition that for M=(m,;)5i, jse+1
€Gu(B), ju(M)=(miis: jsen+s Where mi=1 for i=1, 2n+3, my=mi,, 54, for
1=i, j=2n+1 and m;;=0 for others. This map yields a morphism i}, o(B) : (X5, o(B)
G X 41, a+1(B) which is called a morphism of type Il with respect to the type B.

C) The case of type C. The symplectic group Sp2n, C) (G,(C)) is realised
as a subgroup of GL(2n, C) as follows:

Let L=(t;;)15: js2n be a skew-symmetric matrix such that ¢;,,;=1 for
1<i=n, t;4,:=—1 for n+1=i<2n, and t¢;;=0 for others. Then G,(C)={Me
GL2n, C)|ML*M=L}.

It is well known that P,,_, 4 "\ Ga(C)=P.. +(C) is a parabolic subgroup of
G,(C) for 1=d=n. Let us put X, +_,(C)=G,(C)/P,, 4C) and let us consider a
morphism j,(C): G(C) G Gr+:(C) where for M=(m;j)i5i. js2aEGa(C), j(CXM)=
(Mi7)1<1 jzen+2 SUch that

Al 0|0 A,
A| A, o|l11010
Jn(C): M=|——€G,(C)—> M'=— €G,+(0)
.| A, olol1]0
A1 010 | A

where for 1=<:1=<4, A; is a (n, n) matrix.

By virtue of this map, we obtain the immersion i, 4(C): X, ¢(C) G Xu4s1, 4(C)
which is called a morphism of type I for the type C.

Moreover we can define 7/, 4(C): X, o(C) G Xn41 ¢4:(C) in the same way as in
the type B which is called a morphism of type II with respect to type B.

D) The case of type D. Let us take G,(D)=S0O@2n, C). G.(D) is realised
as a subgroup of GL(2n, C) as follows:

Let V be a vector space of dimension 2n. With respect to a basis ey, -+, e,
of V, write a point veV as v=(x,, -**, xn, ¥n, -, ¥1). Let Q(v) be the quadratic

form on V defined by Q(l'):.; x;¥:.. If we take O(@2n, C) as the subgroup of
GL(2n, C) which leaves the quadratic form Q(v) invariant, i.e., O@2n, C)={Ae
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GL(2n, C)|Q(Av)=Q() for all veV}. SO@n, C) (=G (D)) is defined as O(2xn, C)
N SL(22n, C). As for two morphisms of type I and type II, we can define i,, o(D):
Gn(D)/Py, a41(D)= X, s( DNG G 141(D)/Prss, a+:(DN= Xy 11, (D)) and 1, o(D) 1 X, o(D)
G Xn+1,a+:1(D) respectively in the same way as in the case of the type C. As to
P, ._\(D), instead of putting P,n_y »_1 N Ga(D), we consider the maximal parabolic
subgroup P, ,_.(D) of G,(D) obtained by omitting a simple root a,_, (See Remark
1.1 below).

Remark 1.1. Let us study the structure of parabolic subgroup P,, +(*). Now
let T,(or, B;) be the diagonal (or, upper triangular, resp.) matrices of GL(¢, C).
Then it is well known that G,(A) N\ T, (=T.(A)) (or, G.(A) N Brii(=B,(A))
is a maximal torus (or, Borel subgroup, resp.), G.(B) N Tensi(=TA(B)) (or,
Gn(B) N\Bsn+:(=B,(B))) is a maximal torus (or, Borel subgroup, resp.) and for
the type *(=C or D), Gu.(*) N\ Ton(=TH(*) (or, Gu(*) N Ban(=B4(*)), resp.) is
a maximal torus (or, Borel subgroup, resp.) of G,;(*). Now for the type *(=A4, B,C
or D) fix a system of roots 4 relative to T,(*) and, in addition, let 4, be the
set of positive roots relative to B,(*) and S={a;, -+, a,} be the system of simple
roots. Then for the type *(=A, B, C or D), the corresponding Dynkin diagrams
are as follows:

o—y 00— o o o —_— 0

241 ay [0 S0 a,
o—o0— e o o 6 ————— 0]
ay a, An-y 245
o o— e o o —o——o
ay as ‘ Apoy [~ 4%
QX2
o—o—— o« . . Oy
a, (22
Qnp

Now let us recall that for the type *(=A, B, C or D) the set of parabolic
subgroups of G,(*) containing B,(*) is in one to one correspondence to the set
of subsets of S (see 1.2 and 1.3 in [7]). Therefore it can be easily checked
that P, ¢(*) defined above is a maximal parabolic subgroup obtained by omitting
Ag.

The following seems to be known (c.f. 1.9, §2 of [7] and our Remark 1.1).

Proposition 1.2. Picard group of X, «(*) is isomorphic to Z. In addition,
we can choose the ample line bundle as its genevator. (Hereafter we shall write
this generator as L, ¢(*)).

Now for the type *(=A, B, C or D) put P, 4, 4-:(*)=P, +(¥) N\ Py, qa-(*) and
put X, 4. a-:()=Go(*)/Pyr, a+1. a(*). Let us study the following diagram:
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Xn. d. d—l(*)
Pn. a(¥) Gn. a-1(*)

(1-3%)

Xn, a(*) Xn, a-1(*)

where both pn,a(*): Xn g, a-1(*) = Xn.a(*) and gz, a-1(*) t X, ¢, a-1(*) = X, o-1(*) are
the canonical projections.
For the type *—A we immediately have

Proposition 1.4A. P, 4(A)is a P*bundle and g, 4-,(A) is a P* %-bundle for
1=d<n—1.

Using this result, we obtain the following whose proof is easy and is omitted.

Proposition 1. 5A. Under the notation 1.3A, Gn. a-1(A* (L, a<1(AN ] ppgcad-1¢2
=0pa(1) for all points x in X, a(A) and pn o(A*La, a(A)] g g-1c0-160=Opn-a(1)
for all points y in X, 4-1(A).

In the next place, using Proposition 1.4A and Proposition 1.5A, we shall
derive results corresponding to proposition 1.4A and proposition 1.5A for other
types B, C and D. :

For the type *=C, we have the following diagram for 1=d<n-—1:

Xon-1.a.0-1(4)

J

(1.30)

Dan-1, d(A) an-l:d—l(A)

Xonor, o(A) Xn. a.4:4(C) Xyn-1, a-(A)
\J ee©) N J
Xr. a(C) Xn. a-1(C)

Considering the dimension of fibers of two projections p, 4+(C) and ¢y, 4-:(0),
we obtain the following proposition by virtue of Proposition 1.4A.

Proposition 1.4C. p, (C) is a P%bundle and q, q4-.(C) is a P*" 9-YC)-
bundle.

Moreover by Proposition 1.5A and Proposition 1.4C we have

Proposition 1.5C. Under the diagram 1.3C, g, a-:(C)*(Ls, 4-1(C)| pp.accr-1¢o>
EOpd(l) fOT’ all pOintS xin Xn_ d(C) and ﬁn, d(C)*(Ln, d(C))|qn'd_l(o)—-l(y)EOPZ(n-d)—l(].)
for all points y in X, ¢-,(C).

To study the fiber of p, 4(*) and g, ¢_,(*) for the type *(=B, D), we need
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Remark 1.6. We can easily show that there is a natural embedding X,.,(B)
G Xun.o(A) (=P2). Moreover it can be checked that X, (B) is a non-singular
quadric hypersurface in P2?". (see B of §3 in [7]). Similarly X, ,(D)is a quadric
hypersurface in X,,_,,,(A4) (=P?"™),

Firstly, let us consider the case of type B. There is the following diagram
for 0=d=<n—1:

in, d. d—l(A)

(1.3B)
a2 jN
X a.a-1(B)
in. d(A) in.d—l(A)
j P a(B) n.a-1(B)

Xo,a(B) Xa.a-(B)

Then we have

Proposition 1.4B. p, «(B) is a Pé-bundle and every fiber of qn q¢-.(B) is
isomosphic to a non-singular quadric hypersurface in the projective space P*"~ %,

Proof. The former is obvious. Each fiber of g, 4 ,(B) is isomorphic to
P, 4.«(B)/P, 4 ¢-1(B). On the other hand, we can easily check that there is an
embedding 7: G,_4(B) G G,(B) such that for M=(m;)i<i jsacn-ar+1 in Gn_a(B),
{(MYy=(m};)151, jsens+1, where for 1=i, j<2(n—d)+1, miva jea=my, mi=1 for
1<i=d or 2n—d+1=i=<2n+1 and m};=0 for others. Hence, since P, «(B)/
P, 4 qaAB)=G,_4(B)/P,_q4 B), each fiber of g, 4_,(B) is a quadric hypersurface S
of P2™~® py virtue of Remark 1.6. qg.e.d.

Moreover, combining Proposition 1.5A and Proposition 1.4B, we obtain

Proposition 1. 5B. Under the diagram 1.3B, qn.a-«(B)*(Ln,a-i(B)| pp.am-102
=0pa(l) for all points x in Xy o(B). Da o(BY¥(La, alB) gy q-1em-1¢y 1S iS0mor phic
to Os(1) (see the last part of introduction about Os(l)) for all pointsy in X, 4-1(B)
in the case 1<d<n—2 and it is isomorphic to Opi(l) in the case d= n—1.

Secondly, we obtain the results for type D in the same way as above.

Proposition 1. 4D. p, «(D) is a P%-bundle and every fiber of qn a-,(D) is
isomorphic to a non-singular quadric hypersurface ie P*™ 9! for 0=d<n—3.
Both the fibers of pn-(D) and q,-(D) are P*™', the fibers of pn-(D) are Gr(n—1,1)
and fibers of qn-(D) are P*,

Proposition 1.5D. Under the diagram 1.3D, for a point x in X, «(D), set
Ln.d—1(x):¢1n.d-1(D)*(Ln.d—1(D))|p,,.d(_u)-lu)- Then if 1=d<n—3, Ly q1(x)=0pa(1).
Movreover L, »-o(x)=0pn-1(1) and L, n-s(x)=0grn-1, (1) where Ogrin-1, (1) is the
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ample generator of Pic Gr(n—1, 1). On the other hand, for a point y in X, 4_(D),
set L, d(y)zgn. a(DY*L,, d(D)an.d_](D)'l(y)- Then, Lyu o o(3)=0pi(1), Lgna(y)=
Opn-i(1) and L, «(3)=0s(1) for 1=d<n—3.

Under these preliminaries, we can define infinitely extendable vector bundles
on X, «(*) for *=A, B, C or D.

Definition 1.6. For *(=A, B. C or D), let E be a vector bundle on X, 4(*).
Then E is said to be infinitely extendable of type I (or, type II), if for all integers
m(=n), there is a vector bundle E,, on X, «(*) and there is a morphism of type
[ (=in () : Xn a(*) G Xn+1.a(*) (or, a morphism of type Il (=17, o(*): X, o(*) C
X1 an(¥), resp.) such that i, J(OMEnu)=EnR (o1, 1, ()V(Ens)=E,, resp.)
(Hereafter we abbreviate an infinitely extendable vector bundle of type I (or, II)
to an IE-I vector bundle (or, an IE-II vector bundle, resp.).

§2. Fundamental properties of IE-I or IE-II vector bundles on X, ,

In this section since we consider some properties of IE-I (or, IE-II) vector
bundles on X, 4(*) which are common in type A, B, C and D (=*), we sometimes
abbreviate X, 4(*) (or, X, 4.4-,(*)) for *(=A, B, C and D) to X,.;s (or, X, a.a-1,
resp.). Similarly L, 4(*)® is abbreviated to Oy, ,(c). Therefore we shall use the
following diagram instead of (1-3*):

Xn.d. d-1

(2-1)
Dn.a Wl
Xn.d Xn.d-l

In order to study properties of IE-I (or, IE-II) vector bundles, let us recall
two theorems.

Theorem 2.2. Let E be an infinitely extendable vector bundle on the pro-
jective space P™ over an algebraically closed field of any characteristic. Then E
is a direct sum of line bundle. (See [5] and [6]). ‘

Theorem 2.3. Let XmCs P, be a non-singular infinite projective variety and
let E be a vector bundle on X. of rank n. Then E is a direct sum of line bundles.

(See [8])
The following is well-known.

Proposition 2.4. Let S be a non-singualr quadric hypersurface in P", then
HYP", Z)=HYS, Z) for 0=i<n—2. Moreover Pic S=Z, generated by Og(l), if
n=4.

Using Proposition 2.4, we have

Proposition 2.5. Let X and Y be algebraic k-schemes and f: X — Y -a proper
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flat morphism, where either for all points y in Y, f~¥(y)=P™, or, for all poinis y
in Y, fy) is a non-singular quadric hypersurface in P"*', let E be a vector
bundle of rank r on X with n=2(r+1). Assume that all points y in Y, E|s-1¢

. . . T
is a direct sum of line bundles, say, @ Os-1¢y (@:), (@, =+, -+, 2a,).
i=1

In addition, assume that there is a line bundle L on X such that L|;-i¢=
Os-1¢5(1) for all points y in Y.
Then the sequence (a,, -+, a,) is independent of y.

Proof. Since the Euler-Poincare characteristic of E Q) L™| ;-1(,, is independent
of y, this proposition is obvious by proposition 2.4, q.e.d.

Using Theorem 2.2 and Proposition 2.5, we have the following

Proposition 2.5, AC I. Let * be either type A or type C and let E be an
IE-I vector bundle of rank r on X, ¢(*). Then we have the following: For all

. . a '
oints Y€ Xn 4-1(*), Pn o*Elgl_y is isomorphic to D Opnw(a;)®t such that
Qn,d-1°¥ e

a,>->a, and r;>0. (W(A)=n—d and n(C)=2(n—d)—1). In addition a,, -, a.
and 1, -, rq are independent of y.

Proof. Let us consider the following diagram:

Xm.+1. d.d-1

pm-ﬂ. d

Xm.d Xm.d-l

Then we see that for a point § in Xy, ¢-;, the morphism k|g-1, ¢ e ()G
g1, a-1(j(#)) is a morphism of type I

Since for all points ¥ in X 4.1, p¥. ¢Elg;1,_» is an IE-I vector bundle, we
can show the former of this proposition by Theorem 2.2. On the other hand,
the latter is obvious by Proposition 2.5. q.e.d.

In the same way, we obtain the following

Proposition 2.6, ABCD II. Let * be one of A, B, C and D. Let E be an
IE-II vector bundle of rank r on X, o-*). Then we have the following: For
all points x€ Xn, noetr(*)s @k n-eElp7,_ 4 0 1S iSomorphic to éaﬂ-m(ai)m such

that a,>>a, and v;>0 except type D and e=3. In addition a, -, ax and
71, -, Yo are independent of x.
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Proof. It is obvious by virtue of Theorem 2.2 and Proposition 1.4%*,
q.e.d.
Moreover, by Theorem 2.3, we have

Proposition 2.5. BD I. Let * be either B or D and let E be an IE-I vector
bundle of rank r on X, 4(*). Then for all points y€ X, 4 1(*),pn. aCV*El gy q-10-100

is isomor phic to é Os(a;)®"¢ such that a,>-+>a, and r;>0, where in the case of
i=1

*=B (or, D), S (=qn ¢-1(*)"%()) is a non-singular quadric hypersurface in P~ ®
(or, P*®= D1 yesp). In addition a,, -+, a, and r,, -, a, are independent of y.

Corollary 2.7. Let * be one of A, B, C and D and let E be an IE-I (or,
IE-II) vector bundle on X, 4(*) (Xn n-e(*), vesp.). Then a,, -+, aq and vy, =+, 74
obtained for E, are independent of m(m=n). (About E,, see the definition 1.6)

The following proposition plays an important role in the proof of the main
result (Theorem 2.11) in this section.

Proposition 2.8. Let X and Y be an algebraic k-schemes and let q: X—Y
be a proper flat morphism where either for all points y in Y, ¢ '(y) is a d-dimen-
sional projective space, or for all points y in Y, ¢~*(¥) is a non-singular quadric
hypersurface in P%*'. Assume that for all points y in Y, Flg-1¢y is isomorphic

to é; Og-1p(a;)?"t and assume that (a,, -+, @) and (ry, -+, 7o) are independent of
N

y, where a,=0>a,>-+>a,, r;>0. Then we have the following:
1) q«F is a vector bundle of rank r, on Y and q*q«F is a subbundle of F.
2) If i=1, F=qg*q«F.

If 122, (FIg*qF)|o-1cyy is isomorphic 1o & Op-1p(a ).
Proof. This proposition is easily shown by the base change theorem

(Theorem (7.7.6) in [3]). For more detail see Corollary 3.3 and Remark 3.4 in
5] . g.e.d.

Corollary 2.9. Under the diagrem 2.1, let E be a vector bundle on X, 4.4-1
and let us put p=p, e and q=qn.q-,. Assume that for all points y in X, 4.4

D*E | g-1¢yy 1S isomorphic to iél Og-1p(a )Pt with a,>a,>+>a, and v;>0. Then

there are vector bundles on X, 4-,: E,, -+, E4 which are fitted in following exact
sequences:

0 — ¢*E, ® p*o(a,) — p*E—> F,—> 0
0—> ¢*E,® p*0(a,) —> F, —> F; —> 0
0—>¢*Eqs @ p*0(aa-1) —> Fauy —> ¢*E Q p*O(aa) —> 0,
where F,, -+, Fq_, are vector bundles on X, 4,4-, and where O(a) means Oy, (a).

Proof. Using Proposition 1.5* and Proposition 2, 8 repeatedly, this proposition
is proved easily. q.e.d.
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For the case of d=1, we shall prove that if E is an IE-I vector bundle on
Xn, a4, 80 is E; for 1=i<a obtained in Corollary 2.9. For this purpose we prove

Proposition 2.10. Let F (or, F’) be a vector bundle on X, 4, 4-1 (07, Xms1, ¢ a1
resp.) and let j: Xm, g,a-1 G Xmar a.a-1 be a canoical morphism induced by in(*):
Gn(*) G Guai(¥). Moreover let us consider the following diagram:

Xm+!. d, d-1

Xm+!.d
X"hd Xm.d-l

Assume that
1) j*F’ is isomorphic to F.

2) F’'g-1¢p 1S isomorphic to @lOa-uy)(ai)mi with a,>, -+, >a, and r;>0 for

all points ¥ Xms1. a-1-

Then we have

D gu(F® p*Oxp o —a) is isomorphic to BXGuF' @ F*O ., (—ar).

II) F; is isomorphic to j*F| where F, and F| are fitted in the following exact
secqence :

0 —> ¢*qx(F @ p*Ox,, o(—a1) ® p*Ox,, (@) —> F —> F;, —> 0
0 —> §*qx(F' @ p*Ox 11, o(—a)) ® p*Ox . (a)) —> F —> F{ —> 0.

Proof. One can easily check this proposition by virtue of Proposition 2.8
and the base change theorem (Theorem (7.7.6) and Remark (7.7.9) in [3]).

g.e.d.

The following theorem is an immediate consequence of Corollary 2.9 and
Proposition 2.10 which is very important for the proof of Main Theorem.

Theorem 2.11 I. Let E be an IE-I vector bundle on X, 4. Then under the
notations of Corollary 2.9, E,, E,, -+ E, are also IE-I vector bundles on X, 4-y.

In the same way we can get the result of IE-II vector bundle corresponding
to Theorem 2.11 I. Let us consider the diagram as follows:

Xn.n—e+1. n-e

DP=Dn n-en1 g=qn,n-e

Xn.n—eﬂ Xn.n—e
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Theorem 2.11 II. Let E be an IE-II vector bundle on X, ... Then except
type D and e=3, we obtain the following sequences of vector bundles on X, n_cs1.n-e:

0 —> p*E, ® ¢*0(a,) —> ¢*E —> F, —> 0
0 — p*E, Q@ ¢*0(a) —> F, —> F, —> 0
0—> p*Euei @ ¢*0(aa-r) —>Foy —> P*E Q ¢*0(ae) —> 0

where a,, -+, a, are integers with a,>, -+, >a, where E,, ---, E, are vector bundles
on Xn noes1, and F, -+, Fa_, are vector bnndles on X, n-er1,n-e and O(a) means
Oxpn-esi(@. In addition E,, -+, E, are IE-II vector bundles on X, n-e+1-

Proof. 1t is obvious by virtue of Proposition 2.6 ABCD II and Corollary 2.7.
q.e.d.

§3. Representations of parabolic subalgebra b, ,

Let G be a semi-simple and simply connected linear algebraic group and let
P, B and H be a parabolic subgroup, a Borel subgroup and a maximal torus of G,
respectively, where POBDOH. Moreover let g, », b and § be the semi-simple Lie
algebra, the parabolic subalgebra, the Borel subalgebra and the Cartan subalgebra
corresponding to G, P, B and H. Hereafter we maintain this notation.

In this section, homogeneous vector bundles on G/P are considered. We
know that giving a representation ¢ of P is equivalent to doing a representa-
tion ¢ ef p. Hence we shall study homogeneous vector bundles in terms of Lie
algebra.

In the first place, let us recall fundamental results about semi-simple Lie
algebra which are found in details in [4].

Let g=§+ 3 g, be the decomposition of g into h-invariant spaces through the
ajoint representation, where §) acts on g, through the character «. In particular
let 4 be the set of characters a of ) with g,%0. Now if r is a subspace of g
invariant under the ajoint representation of f), we denote 4(r) by the subset of 4
consisting of all the roots a with g,Ct. Moreover, let us define t° to be the set
{z€g|(z, y)=0 for all ye1} where (*, *) is the Cartan-Killing form on g. On the
other hand, we know that the restriction (*, *) of g to § is non-singular. Hence
one can define a map g — x, of =Hom,(h, Z) onto § by the relation (x, x,)=
{x, py for all x&f. This implies that the mapping defines a non-singular bilinear
form on § given by (g, A)=<x,, D.

Then we have the following proposition with respect to the parabolic sub-
algebra.

Proposition 3. 1. (Proposition 5.3. in [4]) If n=y°, p=g,+n is an orthogonal
direct sum where g, is reductive in Y and n is both the maximal nilpotent ideal in
p and the set of all nilpotent elements in the radical of p.

Now let Z(CY’) be the set of all integral linear forms on § and let us put
D,={peZ|(y, $)=0 for all g€ d(m,)}, where m,=m g, such that m=5°. Then
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we have two propositions :

Proposition 3.2.1. Let G, be a reductive group. Then every irreducible re-
presentation of G, is equivalent to v§ for one and only one £ D, where v§ is the
unique irreducible representation of G, having & as the highest weight.

Proposition 3.2.2. Let ¢ be an irreducible representation of P and let P=
G,N be the Levi decomposition for P where G, (or, N) is the reductive part (o,
the unipotent radical part, resp.) of P. Then ¢ is trivial on N and is equivalent
to v§ for some EED, on G,. And conversely, given E€ D,, the representation v§
of G, on V§ extends to an irreducible representation

v§: P—> End V§

of P on V¢ by making it trivial on N.

For these two propositions, see 5.5 and 6.1 in [4].

Now let us employ some of notations in [4]. Put 4,=4(m) and let [1(S4.)
be the set of simple roots corresponding to 4,. Then, for any ¢=4, we have
¢=aze,‘ Hna(¢)a. Let U be the set of parabolic subalgebra p(2b) of g. Then p— I7(p)

defines a bijective map of the set of parabolic subalgebras containing b to the set
of subsets of /I such that

Ap) N d_={p€d_|n$)=0 for all acI(p)} .

Moreover we have the following

Proposition 3. 3. (see Proposition 5.4 in [4]). Under the above notation, let
p be a parabolic subalgebra contaning b. Then AP)=4d(g,)\J d(n) is a disjoint union
(see proposition 3.1). Moreover,

A@)={pcdi|nlp)=0 for all acIl(p)}
Adn)={p€d:n$)>0 for all acII®p)}.

Now we will return our attention to the semi-simple algebraic groups G,(*),
parabolic subgroups P,, 4(*), Borel subgroups B,(*) and maximal tori H,(*) defined
in §1 (abbreiviated to G,, P, 4, B, and H,, respectively). Then let g,, 9, 4, b,
and %, be Lie algebras corresponding to G,, P, 4, B, and H, respectively. These
notation will be maintained hereafter.

At first according to Dynkin diagram in § 1, let us consider II={a,, -, @}
as the set of simple roots corresponding to 4.

Then we have the following

Remark 3.4. I1(y, s)=ay.
Moreover let us recall a well-known result ;

Proposition 3.5. Let ¢, ) and g=%+ Z[‘; 0o be as in the first part of this
acgh’

section. Assume that a and o’ are roots and, moreover, a+a’ is also a root.
Then we have [§a) §ar 1=t ar-
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Now let E,, be the root vector corresponding to a root a;. Then we can
check easily that

Ead:[Ead'l-ad.Hy E'“d+1:l for d§n'—1 5
EadZEEad_l+ad, E‘ad-lj fOI' dzl

where Eqyvagy; @0d Eq,_,+a, are elements in the nilpotent radical of Pa q.
Therefore, combining Proposition 3.3, Remark 3.4 and Proposition 3.5, we obtain

Proposition 3.6. Let ¢ be a representation of V4. Assume that either
H(Eay_)=0 or ¢(Eny,,)=0. Then ¢(E.,)=0. In addition to this, we have ¢p(n)=0
where n is the nilpotent radical of 9., q.

Remark 3.7. It is well known that if a Lie algebra g is reductive, then g
decomposes into a sum of the center of g and semi-simple algebra Dg(=[g, g]J).
Let us determine the structure of Dg, of the reductive subalgebra g, in 9, «(*)
for *=A, B, C and D. Since we already have known Dynkin diagram for the
type 4, B, C and D, and the relations among their roots respectively, we im-
mediately obtain the following

Type Dg,
A W)+ (n—d—+1)
B id)+02(n—d)+1)
C fi(d)+1p(n—a)
D (d)+o2(n—d)) for n—d=2
1i(n) for n—d=0 or 1

Remark 3.8. Let g be one of simple Lie algebras {{(n+1), 02n+1), {9(n) and
o(2n) and let ¢ be a representation: g — gl(V) such that dim V<n. Then it is

easy to check that ¢ is trivial. (Later g,(A), g.(B), 6.(C) and g¢,(D) denotes
I(n+1), 02n+1), {p(n) and o(2n) respectively.)

Now let us recall that p,, «(*)=g,+n where g, is reductive and n is the
nilpotent radical of p,, 4(*) and that D(g,)={l(d)+gn-a(*).
Therefore using Proposition 3.6, Remark 3.7 and Remark 3.8, we have

Proposition 3.9.1. Under above notations, let ¢: o, o(¥) — gl (V) be a re-
presentation such that dim V<n—d. Then ¢ is trivial on g,_.(*) and n.

Moreover we have following

Proposition 3.9.2. Under the same notation in Proposition 3.9.1, assume that
dim V<d. Then ¢ is trivial on {I(d) and n.
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§4. Proof of Main Theorem

In this section, by using the results obtained in §3, let us determine the
structure of homogeneous vector bundles on X, ; satisfying some conditions.
At first we shall study D, defined in §3 in detail. (Hereafter in this section we
maintain the notation in §3.)

Recall that p=Z if and only if 2(x, ¢)/(¢, ) is an integer for any ¢=4.
(see 5.5 in [4]). Moreover we can characterize Z in easier way as follows: Z is
isomorphic to Z®" by the map o:

o — Cy, a)/(ay, ay), -, 2y, a)/(a, ay), -, 2(p, az)/(@n, am)

for any a;€11.
Furthermore we have the following

Proposition 4. 1. D, is isomorphic to the subset of Z®"(=N§ 'XZX N}~ by
the above map o where N, is the set of non-nagative integers.

Proof. 1t is obvious by the definition of D, in §3. q.e.d.

In the sequel, for any element p&Z, ¢(y) is written in the form o(p)=
(¢yy ***, Cyiy ***, Cn-y) according to Proposition 4. 1.

Before studying irreducible homogeneous vector bundles on X, 4 let us state
the following remark.

Remark 4.2. SOQ@n+1, C)(=G.(B)) and SO(2n, CY(=G,(D)) are not simply
connected. Therefore for *=B, D, let G,(*) be a simply connected covering of
G.(*) and P, 4(*) be a parabolic subgroup of G,(*) corresponding to a parabolic
subgroup P, (*) of G,(*). Then X, 4(*) is isomorphic to Ga(®)/ P, 40:(*). Moreover
let T.(*) be the maximal torus corresponding to T,(*) in G.(*). Then it is im-
portant to recall that the system of roots for G.(*) (relative to T,(*)) is the same
as the one for G,(*) (relative to T,(*). (see 1.9 in [7])

(4.3) By virtue of Proposition 3.2.2, Proposition 4.1 and Remark 4.2 we can
write an irreducible homogeneous vector bundle corresponding to o(u)=(co, ***, Cn-1)
as P,(d:co, *+, Cq, -+, Cn-y) With non-negative integers ¢; for i% dand an integer
Cq.

We shall study the sufficient condition for homogeneous vector bundles on
X, . to be isomorphic to a direct sum of irreducible homogenous vector bundles

which are isomorphic to P,(d; ¢y, ***, €4, 0, --+, O).

Proposition 4.4. Let E be an irreducible homogeneous vector bundle of rank
ron X, 4 Assumen—d>r. Then E isisomorphic to one of Py(d;co, -+, ¢q,0, -, 0)
where for 0<i<d—1, ¢; is a non-negative integer.

Proof. Let E be an irreducible vector bundle obtained by an irreducible
representation ¢: Py, 4+, — GL(V), which induces a representation of Lie algebra
@ Py as1 — gl(V). Therefore the assumption yields this proposition by virtue of
Remark 3.8, Theorem 3.9.1 and Proposition 4. 1. q.e.d.
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Before continuing our argument, we shall show a result which is necessary
for some proposition stated later. Let G, be a connected linear algebraic group
and G,=G,N be a Levi decomposition where G, (or, N) is a reductive part (or, a
unipotent radical, resp.) of G,. Now let ¢ be a representation of G, and ¢ be
the corresponding representation of g, which is a Lie algebra of G,. Moreover
let n be the nilpotent radical of g, corresponding to N. Then we have

Proposition 4.5. Under the above notations, assume that ¢ is trivial on n.
Then ¢ is completely reducible.

Proof. By virtue of the well-known relation between Lie group and the cor-
responding Lie algebra, Ker ¢ is equal to the subalgebra of g, corresponding to
Ker ¢. Hence we see easily that Ker DN, which implies that ¢ is completely
reducible by virtue of Weyl’'s Theorem. q.e.d.

Corollary 4.6. Let E be a homogeneous vector bundle of rank v on X, .
14
Assume that n—d>r. Then E is isomorphic to _GBIPn(d, ¢l o choy, ¢y, 0, -+ 0) where
o
¢i is a non-negative integer for 1<i<t and 0=<j;=<d—1.

Proof. Let E be a vector bundle obtained by a representation ¢: P, 44+, —
GL(V). By proposition 3.9.1, the corresponding representation of Lie algebra
Pn.a+1; (=@) is trivial on n which is the nilpotent radical of p, 4.,. Hence by
Proposition 4.5, we see ¢ is completely reducible. g.e.d.

The next proposition is necessary for the main theorem.
Proposition 4.7. If E,=P,(d;c}, -+ ci, 0, -+, 0) for i=1, 2, then E,QE, 1is
t
isomorphic to @an(d ;bd, -+, 03, 0, -, 0).
i

Proof. For i=1, 2, let @, be the irreducible representation of P, 44+, Which
yields the vector bundle E;. Since ¢, is trivial on N where N is the unipotent
radical of P, 4.1, We see that representation ¢, @ ¢, is also trivial on N and
therefore it is a representation of a reductive group. Hence ¢; @ ¢, is completely
reducible. It is easy to check that any direct summand of E,® E, is of type
P.(d ; by, -+, bg, 0, -+, 0). q.e.d.

Remark 4.8. P.(d;co -+ ¢4, 0, -+, 0) is an IE-I vector bundle.

Proof. Since we already know that p, 4+,(*)=0GWd+1)+g,-a_,(*)+1)+n where
n is a nilpotent radical of v, 4+,(*) and v is a center of the reductive part of
Pn a+1(*), we see that the representation ¢ corresponding to the vector bundle
P.(d;cq, -+ cq4, 0, ---0) is trivial on q,_4_,(*)+n. Hence we have only to take
Pn(d;c,, =+ 4,0, -+, 0) as E,, for m=n. g.e.d.

From now on let ¢ be an irreducible representation of g,(A), V be a re-
presentation space of ¢ and let us put ¢|,  n=¢. Moreover let V, be an (n+1)-
dimensinal vector space and e,, -:* ¢,4, be a basis of V,. Then it is known that
V is a gu(A)-module generated by the vector of highest weight of ¢: v=e,"1®
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(exNe)2® -+ ® (e, A -+ Ae,)*» with a sequence of non-negative integers; c,, -+, ¢p.
Moreover we can consider p,, ,(A)-invariant submodule of V(=W) generated by
v, which yields a irreducible representation of P, ,(A) (=& : P, (A) = gl(W)). In
the same way for an irreducible representation ¢ of g,(*), we can consider an

irreducible subrepresentation ¢y of @[, of P, (*) for all *. Therefore we have
the following

Proposition 4.9. Let ¢ be an irreducible representation of ¢,(*) correspond-
ing to an element (co, *+* Cn-1) in Di(n+1). Then the above irreducible subresenta-
tion of ¢l,, e corresponds to (c,, -+ Cu-y) in Dy(n). Here Dy(d) denotes D, in
Proposition 4.1 with respect to 9,.4(*). (D, n+:(F)=a.(*)).

Remark 4.10. Let ¢ be an irreducible representation of p, .(*) (=1l(d)+
8,-a(*)+1r+n) where n is the nilpotent radical of b, 4(*) and t is a center of the
reductive part of P, 4(*). Assume that ¢ is trivial on n and g,_q(*). Since it is

easy to check that 9, g+1, «(*) (=04, 44:(*) N P, o(*¥)) contains {I(d)+r, we see that
& pp.a+1.q> 1S an irreducible representation of Py, g41, a(*).

Let us study an irreducible homogeneous vector bundle P,(d ; aq, -+ a4,0--- 0)
from a different point of view. In the first place the following proposition is
very important for Main theorem.

Proposition 4.11. Under the diagrom 2.1, p¥. 4P.(d; co, -+, C4-1, 0, -+, 0) has
a quotient vector bundle q¥ 4 P.(d—1;¢o, =+ €421, 0, -+, 0) 01 Xy, q.a-1-

Proof. Let ¢ be the representation of P, 4+, Which yields the vector bundle
E=P.(d;cq -+, €4-1, 0, ---, 0). In order to prove this proposition, it suffices to
show that there is a representation ¢ of P, s which yields the vector bundle
P.(d—1; ¢y, -+ €4-1, 0, -+, 0) and which satisfies the following :

@1 p,.q41.4 1S an irreducible subrepresentation of ¢|p,.,,,.,. Therefore instead
of Lie group we shall consider the above statement in terms of Lie algebra.
For the corresponding representations of Lie algebra, we shall use the same nota-
tion ¢, ¢. We know that P, ¢,(*) (=1(d+1)+¢,-o(*)+1+n). Moreover by the
assumption, we see that ¢ is trivial on g,_4(*)+r+n. Hence by virtue of Proposi-
tion 4.9 and Remark 4. 10, this proposition is obvious. g.e.d.

Next assume that c,, -+ ¢4 are integers where c¢; is non-negative for 0=:=d—1.
Let us consider a coherent sheaf P,(cy, -+ cq) on X, , defined inductively as
follows: Under the diagram 2-1, for d=0, put Pn(co)=0x, (c0). If Palco, = ¢;)
is defined, put Pu(co, ***, €j+1)=Pr. j#@¥. j-1Pn(Co, *+, €)@ Oxp. 41 (Cjsr)-

Our next task is to show that P,(c,, -+, ¢q) defined in the above is isomorphic
to P,(d;cy, -+, Cgy +++, 0) in (4.3).

Now let us consider the exact sequence obtained in Proposition 4.9:

(4‘ 12) 0—F— p?:-dpn(d 3 €0ty Ca-1y 0) Tty 0)
—> qﬁ,d—lpn(d_]- 7 €0 =t Ca-1y Or tty 0) —> 0.

Particularly let us study the structure of the above sequence (4.12) on the fiber
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of pn.qa. For this purpose, it suffices to investigate Py 4+1Xp, 4.,V and its
subbundle P, 441X p,.441.oW Where W is a representation space of the subrepresent-
tion ¢lp, 4010 Of ©lpyg41.q- On the other hand, we can easily show that
Py a+1/Pa a+1, 0= Ga(A)/Py. 4(A). Moreover as was seen in the proof in Proposi-
tion 4.9, ¢ can be regarded as representation of P, 44, extending a representa-
tion 7 of Gg(A) (=SL(d+1, C)). Therefore the above two facts mean that
Py ai1Xp,, 4414V s isomorphic to SL(d+1, C)Xp, sV and, in the same way,
Py aXp, 4.0-,W is isomorphic to SL(d+1, C)Xp, ,cyW. Then ¢ yields an irredu-
cible subrepresentation of 7 (=7’: P4 4(A) — GL(W) induced by ¢|p, 44,..) [t is
obvious that 7/ is an irreducible representation by Remark 4.12.

Next let us restrict the exact sequence (4.12) on the fiber p, . Y(x) (=2P%)
for xe X,,, 4 as follows:

(4.13)  0—> Flp-tay —> 012 —> g% o oiPa(d—15 ¢op =+ €, 0, oo, 0)l 571y
— 0, where r=rank P,(d;c,, *** C4-1, 0, -, 0).

Further let us consider the sequence of cohomologies obtained from (4.13):

(4.14) 0 —> HY(P?, F | pa) —> HY(P*?, 0pa®) —> H(P?, E) —>
where E=g¥ q¢-1Pu(d—1;¢co, -+, Ca-1, 0, =+ 0)| o7 1 car
Then we have
Lemma 4.13. ¢ is an isomorphism.

Proof. We can regard the exact sequence (4.14) as an exact sequence of
SL(d+1, C)-modules. Since E is an irreducible homogeneous vector bundle,
HY(P¢, E) is an irreducible SL(d+1, C)-module. Hence we see that ¢ is surjective
or tis a zero map. If ¢ is a zero map, s is an isomorphism, which implies that
Flpo=0p71,@% . This is a contradiction. Hence ¢ is surjective. On the other
hand, it is obvious that ¢ is injective. g.e.d.

Therefore we have the following.
Theorem. 4.14. P.(d;co, -+, €4, 0, ==+ 0) is isomorphic to P,(cy, -, Cq).

Proof. We prove this theorem by induction on d. It is easy to see that
P.(0; c)=Pn(co). For d=1, if we take the direct image p,, 4, of the exact sequence
(4.12), our assertion is obvious by Proposition 4.13. g.e.d.

Let us show that HY(X,, 4, P.(d ;co, *-*¢q, 0, -+ 0))=0 for d<n—2. In the first
place, assume that ¢,=0. Then by virtue of Bott’s Theorem H¥X,, 4, P.(d, ¢, -+
cqg, 0, -+, 0))=0 for 0=d=n—1. In the second place, assume that ¢,<0. Let us
consider the following vector bundle on X, 4.4-:;

A’[:qﬁ,d—lpn(d_ly Cos ***5 Cd-1 O} ) O)® Pz‘, dOXn,d(cd)O

We want to show HY(X,, 4,4-1, M)=0 for d=<n—2. For this purpose, the follow-
ing proposition is necessary.



188 Ei-ichi Sato

Proposition 4.15. Let S be a hypersurface in P" for n=3 and Og(l) is the

line bundle corresponding to the hyperplane section of S. Then HY(S, 0s(a))=0
for any negative integer a and i=0, 1.

Proof. Well-known.

Now let us consider the spectral sequence Ei/=H'X, ¢_1, Riqn ¢-1.(M)) >
Ei=H*i(X, 4 4., M). Combining Proposition 1-4*, Proposition 1-5* and Proposi-
tion 4.15, we have E}°=FE%'=0, which implies that HYX, 4 4-,, M)=0 for
d=n—2. On the other hand, since M|,-1, is an irreducible homogeneous vector
bundle P,(d—1; ¢, -+, c4-;) on P¢ for a point x in X, 4, we see that H(X, g,
R'p, «.M)=0 by the result. Hence we have HYX,, 4, P.(d;co, -, cq, 0-++, 0))=0
by Theorem 4.14 and Leray’s Spectral sequence.

Summing up the above results, we have

Proposition 4.16. For d=n—2, H (X, 4, Pu(d ; co, ***, Ca, 0, -+-, 0)=0 and if
Cn—xzoy Hl(Xn,n.—ly Pn(n_l 3 Coy *y Cn—l))__‘o-

Proposition 4.17. Let E be a vector bundle on X, 4 for n—1>d=1 satisfy-
ing the following exact sequence;

0—> @Pn(d ;ay, - ay, 0,-4,0) — F — Q?Pn(d bl e, b4, 0,-+4,0)—> 0.
Then E is isomorphic to (@ P.(d;ai, -, a}0,--,0) @(gB P.(d; b}, - bi,0,---, 0)).

Proof. 1t is obvious by Proposition 4.7 and Proposition 4. 16. qg.e.d.

The next proposition plays -an important role in the proof of Main Theorem.

Proposition 4.18. Let E be a vector bundle on X, q such that EQ(P P,

(d;ao, =+, aq, 0, - ON=(@ P.(d; by, *+*, ba, 0, -+ 0)). Then E 1is isomorphic to
@Pn(d 3 Cos *** Cq, Oy Tty O)'

Proof. Since we see (P P,(d;ai, -+ ak, 0, - 0)Q (D P,(d ; ai, -+, ai, 0,--+,0v))
has a trivial line bundle as a direct summand by virtue of a trace map,
EQ@®P.(d;ai, -, al, 0, -, 0) XD P.(d;aj, - ak 0, ---0v)) has E as a direct
summand. Therefore Proposition 4.7 and Krull-Schmitt Theorem of vector bundles

provide us with this proposition. q.e.d.

Finally we shall prove our Main Theorems.

Proof of Main Theorem I.

We shall prove theorem by induction on d. In the case of d=0, our asser-
tion is easily shown by virtue of Theorem 2.2 and Theorem 2.3.

Assume that d=1. By induction assumption and Theorem 2.11. [, we see
that E; is isomorphic to @Pn(d—l;b(;‘ji, .o, by i, 0, --, 0). Therefore putting
—b= m]m {0, bi4t|7, j;} and tensoring exact sequence of vector bundle by

L

g% a-10x,.4.,(b), we get the following sequences:
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0—> g% e EI® P¥ a0 x,,0(a0) —> PEE @ ¥ a-10x .4-4(b)
— F,®q% a-10x,.4-4(b) —> 0
0— g% a1 Eaci Q PX aOxpo(@a-1) = Fart @ qF a-10x.4-,(b)
—> @41 Ea @ phaOx,.(aa) —> 0
where F/= %Pn(d—l sbidi, e, bidi+b, 0, -++, 0). Take the direct image R'p,, 4.

of these sequences. Then since we can easily check that R'p, 4.g% +-.Ei=0 by
proposition 4.16, we have the following exact sequence;

0—> By —> EQPy(d;0, -, 0, 0,0, +-0) —> pn a(Fe®@ g% 010, 44(5)) —> 0
0— Eqes— pnaFae @ q¥ 4-10x,,4.,(b)

—> PraFa-1 @ qF a-10x,,4-,) — 0
0—> Eoov—> P a(Fac1 @ g% 42101, (b)) —> E,—0

where E,= @ P,(d; b}, -, bidi+b, a;, 0, -+ 0). By virtue of Proposition 4.17
and Proposition 4. 18, we complete our proof. q.e.d.

Proof of Main theorem II. We can show this theorem in the same way as
above using theorem 2.2. g.e.d.
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