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§1. Introduction

The Goursat problem in the class of analytic functions has been treated by
several authors, for instance Garding [1], Hérmander [4], Miyake [5] and Hase-
gawa [2]. However, the same problem in the class of C*-functions has not yet
been treated from the general point of view. In this paper, we consider general
equations in the case when the initial hyperplane is simple characteristic. In [3],
we treated the second order equations and obtained a necessary snd a sufficient
condition for the &-wellposedness of the Goursat problem.

Let

P(at’ axv ay):Pm(at! azv ay)_I—Pm»l(atr a.rr ay)
+Rp 0., 0z, 0,)
be a partial differential operator of order m with constant coefficients, where P,
and P, _, are homogeneous parts of order m and m—1 of P respectively. d,, 9, 9,

stand for % % % respectively. Mor precisely, we consider this operator in

(t, x, y)ER. X R'X R
We impose on the principal part the following assumption ;

(A. 1) t=0 is simple characteristic for P. Namely, the coefficient of 9}
vanishes, and moreover if we denote the terms containing 6;*°!

of Py by (@dat 308,30 then ad+Say,#0.

Our problem is the following: Let the equation be

(L.1) P, 0x, 0)ult, x, N=S(t, y, DEEL,., (t20)
and the data, say Goursat data, be

om0, x, Y)=u,x, y)EE;.,, 0=Zi<m—2

(1.2
: { u(t, 0, y)=e(t, €&, ,, t=0)
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We say that the Goursat problem is &-wellposed if for any data {u:}esism-2 @
and f, there exists a unique solution u(t,x, y)E&:. 1., for (¢, x, v)E {(f, x, »)| 120,
xR, yeRY}. Of course we should impose among {u;} and ¢ the following com-
patibility condition ;

(C) aiﬂp(oy y):ui(o’ y) ’ Oéig”l'—z .

Let us remark the following fact: If the Goursat problem is &-wellposed,
then by Banach’s closed graph theorem, the linear mapping

(%o, Uy, Um—s, e, fl—u
is continuous from ﬁzex,yxet,yxet,,,y into &, 4. 4.
Hereafter we assume, besides (A. 1),
(A.2) a,#0,
(A.3)  Pu(r, & n) and P, _,(z, & p) are real polynomials.

Although we assumed the coefficients are constants, the result obtained
below could be extended to operators with variable coefficients. Our main aim
is to elucidate the fundamental charactor of the C*-Goursat problem.

§2. Statement of the results
Let
Pm(T’ &) v):bl(gy v)rm-l+b2(5y v)fm_z-i— o —'_bm(gx 77) .

Let =z,(¢, ) (1=i=m—1) be the roots of P,(zr, &, )=0, when b,(§, n)#0 &, 7
real). We have the following analogue to the hyperbolic equation.

Theorem 1. [In order that the Goursat problem is E-wellposed, it is necessary
that all the roots 7;(&, n) are real for all §, y real.

Moreover we have the following result.

Theorem 2. In order that the Goursat problem is E-wellposed, it is necessary
that the principal symbol Pn(z, &, n) is divisible by b,(§, n). Namely

Pule, & 0)=by(&, 7)Qn-rlc, & 1),

(o)
where Q,_, is a polynomial of homogeneous degree m—1.

Concerning the homogeneous part P,_; of P, when we impose the following
assumption ;

(A.4) 6m_1(8t, 0z,0,) is strictly hyperbolic in the ¢-direction. Namely
the roots z=z,(§, n) of 5,,1_,(7:, &, 7)=0 are all real and distinct,

we have the following fact, which could be compared with the Levi condition.
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Theorem 3. Under the assumption (A.4) on P, if the Goursat problem is
E-wellposed, then P, _, has the following form;

@2.1) Puoi(t, & D=cOn_i(t, & D)+bE, PQn-o(r, & 7)

where ¢ is constant, b,(§, ) is that appeared in Th. 2 and Qn_, is a polynomial
of homogeneous degree m—2.

Remark. If we don’t assume (A.4), namely we don’t assume that the roots
7:&, ) are distinct, then the situation would be fairly complicated.
Now we can say the converse of the above theorems.

Theorem 4. Under the assumption (A.4) and (2.1) of theorem 3, the
Goursat problem is E-wellposed.

Before proving these theorems, we make the following reduction of the equa-
tion. In view of the assumption (A.1) and (A.2), we make the change of in-
dependent variables,

1 a;
'/.:—, y =y —— ISS[
VS YiTT X (I=j=0)

Them, azzaiaz,—aiozajay}, ay,:a,,,j. Thus the operator @ 0,+3a;0,; is

0
transformed to d,. Next, let the coefficient of o7*~! be ¢, we put

u=e °“'{

then the coefficient of 6 'ii disappears. Let us remark that, for this change of
independent varisbles, the hyperplanes (=0 and x=0 where the Goursat data are
given are transformed to =0 and x’=0 respectively. So, denoting #/, x’, 3’ and
% anew by f,x,y and u, the equation (1.1) with f=0 takes the form

2.2 O 0, u= Y a;a0i0.05u .

i+j+alsm
iSm—=2

§3. Proof of Theorem 1

We follow the argument of Mizohata in [6] which was used to treat the
Cauchy problem. However, we should remark that the direct use of Fourier
transformation does not work.

For simplicity, we change the notations: we write x,, -, x;, x;+; instead of
X, 91, -, Y. So the operator P is denoted by

P(0;, 0)=Pun(0:, 0z)+Rn-1(0:, 0) -

we are going to prove the theorem by contradiction. More precisely, we assume
the Goursat problem is &-wellposed and that there exists a point £°, whose first
component §¢+0, such that

Pulz, £)=0
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has a root r=r,(&% satisfying
Im 7,(6%)+#0.
We can assume, if neceaasry, by replacing &° by —&°,
@1 Imz,(69<0 (|&°=1, £1+0)

Localization and inequalities
Take a function B(x)eC> with compact support. We assume 0=A(x)<1 and
B(x)=1 in a neighborhood of the origin. Apply B(x) to P[u]=0. Then

(3.2) PLAul=LCP, Blu.

Next, let a(&) be C* function with support contained in a small neighborhood of
£. We assume 0=<a(6)<1, and a(é)=1 in a neighborhood of £°. Although we
make precise the size of the supp [«] later, we assume from the beginning that
on the support of «, the &, coordinates never vanishes. '

Let an(é)za(%) and define pseudo-diff. operator a,(D) by

a(Du(x)=F '[a,©aE)], for uss’
Apply an(D) to (3.2), then

(3.3) Pla,ful=a,[P, flu.
Since P=P,+Rn_1,
(3.4) P laful=a,[P, flu—Rn_[a,Bu].

By assumption, P, has the form
Pu(@1,0:)=0:,00 "+ 20,000

where ¢,(€) is a polynomial of homogeneous degree j. Since on the support of
ay(&), the symbol i&, of 9, does not vanish, we can apply, in the dual space,
(€)' to a(&)v(€). So we define (i£,)7'(D) by

(1) (D)a,v)=F [ an(E)v(€)] -
Of course, we have
(11)710, (an0)=0,,(E) azv)=an .
Namely (i€,)"(D) is the inverse of d,,. Now, we apply (i£,)7'(D) to (3.4). Then

(3.5) [az""+ ]i:z(ifl)"(D)qj(az)&"‘f](anﬂw
=(&) (D) {a,[P, flu—Rn-:[a,Bul}.

Now the coefficients (i€,)"'(D)q,@,) is a pseudo-differential operator in x of
degree j—1. This implies in particular that t=0 is no longer characteristic to
the operator of the left-hand side.
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Let us remark that the characteristic equation of the left-hand side of (3.5)
is
m . . .
T jZQz(iEl)"q;(lE)f’”"=(151)“Pm(r, i£)=0.
Let 79,79, --+,7)_, be the roots of this equation when £=£°. By assumption there
exists positive numbers d and ¢ such that
Rer;—e=30, for 1=Zi=N,

Rez;—e<—3d, for N, +1<j=m—1.

(3.6)

Now, we consider the right-hand side of (3.3). Let it be
(3.7) [0+ B 620 (D)a 001+ (18) (DY R @1, 02) (a0

=(@i&) (D) LP, Blu.
The right-hand side is

()°(D) 5@ 9:)aade 1)

) (0) 3, - P, bz ).

i
Now, in view of the fact that the term containing d;"~' as a factor is o7*"'d,,, this
can be written as

(i) 7(D)3y N0z, f- 1)+ 3 CA0,, D) @n0z8-u),

where C, is of order m—1—|v|, differential in ¢ and pseudo-differential in x, and
the term contrining 07! does not appear. For simplicity, we denote the left-hand
side of (3.7) by

(or-*+a@., D)Xanpu),

where a(d;, D) is of order m—1 and has the same property as C,. So the rela-
tion (3.7) becomes

(3.8) [or'+a(@,, D))(a,fu)
=(16,)7107 N0, 8- 1)+ |§z,1 C.(0,, D) a,0:B-u).
This can be written, denoting a(d,, D) by —C\(@,, D), as

(3.9) 32"'l(anﬁu)=(i51)"81""(anazlﬁ-u)+[:22; C.(0,, D)a0:B-u)

where C, is of order m—1—|v|. If we use this relation for 8" *(a,0,,8-u), (3.9)
can be written again

07~ Nan Pu)=(i€,) %07 (et n03, B+ 1)
+(i51)—l|y§0 Cu(at) D)(anarla;ﬂ ‘u)+lv§; Cv(at» D)(a,,a‘,“ﬁ-u) .
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If we repeat this process, we have
O~ Han fu)=(i6,)7*0;" (0%, 8- 1)
+ 3807 B C.0 DYandh,d281),

where £ is an arbitrary positive integer. We can interpret this formula as follows :
for an arbitrary positive integer k, 97 (a,Bu) can be expressed as

(3.10) 0pHan fu)=(i€1)"*07 " (tn0z, B+ )
+ |u§o du. k(at} D)(ana;‘ﬁ ° u)

where d,,, is differential in ¢, pseudo-differential in x of order m—1—|v|, and is
of the form

5 b,(Dya
j=o
where order by (D)S=m—1—|v|—j.
Now, we consider the equivalent system to (3.5). Let
08+ (18 (D)g (0.3 Nera Br)=1
where
=& (D){anlP, Blu—Rn_i(a,fu)}.
Let
U=((A+1)"*Bu), (A+1)™"*0,(Bu), -+, 0 *(Bu)=E(4, 0,)(Bu),
then (3.5) becomes
3.11) 0, U)=HAa,U+Ba,U+F
where F=¥0,---,0, f), B is a bounded operator in L% and

0 1 0
0 1

HO= B W(§)=181774;4.G8)/ (1) ,
1
N T

H(&) is homogeneous degree 0 in &.
By the definition of H, we have

det (zI—H(E)=(i,) *Pn(z, 1)  for £,%0.
In the same way as [6] p. 117, we can find a non-singular matrix N, such that
t 0
N H(E)Ny' = £, =D,

0 .
a; .
& Tm-s
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where |a%;| <%6/m, 0 being defined in (3.6). Then (3.11) become
3.12) 0. n(NoU)=[Do+ No {H(€)— H(E)} N5*1 Aatn(N,U)
+ NoyBNs* (o, NoU)+ N, F .
Next, if we restrict the neighborhood Vs of &° small, for all £ V:, by denoting
No{H(E)—HEN No'=2)=(ai7 (51, jsm-1 5
we have
|a9@) < (1Si, j<m—1).
4m
We take a(&) such that supp [a@]C Vz. Put,
exp (—e A N,a , U=V® =P, -, 082 ),
then (3.12) become
00 M =(Dy+D.— ) Av™+ N,BN3;'v™+exp(—e At)N,F .

And define
N -
S(= 2 llvelIP— X llv)?,
=1 Jj=Ni+1
where | -| stands for the L%norm in the x-space. We omit the suffix (n), then

S()=3Re —d‘-ilit"-, v)-3 Re(%, ).

The calculation gives (assuming %< distance (0, supp a(E))<%)

3.13) S'(tyzanfv™|P—Clv™||- | F| 25’71Ilv""llz—%llﬁ‘ll2

where §’(<d) and C’ are positove constants independent of n and F=exp (—eA?)
X N,F.
In view of the form F, we have

SOZ ORI ™1 S exp (—eADFI?,

where C is a positive constant.

Proof of Theorem 1

We assume (2.2) to be &-wellposed. At first we define a series of solutions
un(t, x) of the Goursat problem. Namely we define their Goursat data. Let $(£)
be a function whose support is located in a small neighborhood of £°. On the
support of ¢(&), a(§)=1. And assume jng(E)[sz:l. We define

(3.14) Pnir&)=g(E—néY).
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Namely
(3.15) G (X)=exXp (in€)h(x) .

We define u,(f, x) by the solution of Pu,=0 which satisfy the following Goursat
data.

No' ((A+ D)™ 2ua(0, 2), (A+1)"7%0,u,(0, x), -+, 07 *u,(0, x))

=4p(x), 0, -, 0
. 16) (¢n(x) )

wn(t, 0, X)=gu(t, )= % (0, 0, )1/

Obviously Goursat data (3. 16) satisfy compatibility condition (C). (3.16) can be
written as follows.

Oiun(0, x)=F (Cip,&)/(1EI+1)™ %Y 0=i=m—2,
(2, 0, x)=ga(t, x').

3.11)

In the same way as [6] p. 119, we have

(3.18) laeaNo E(A, 3)Bu(0, x)||=c-|—o(%) ,

¢ is a positive constant.

Now, we put u=u,(t, x) in (3.5). By hypothesis of &-whllposedness, there
exist a positive integer h and a neighborhood (in x-space) 2 of x=0 and small
T’ such that

(3.19) mét‘g(la{u,,(x, HE0om®)  for 0<t<T’, 0<i<m—1.

By taking the support of B(x) small, we can assume that the support of B(x) is
contained in 2, therefore we have

(3.20) [ B(x)0un(t, X)I=0n"), for 0=t<T’, 0=<i=m—1.

Now, let us consider the right-hand side of (3.5). The term (i&,)"(D)a,0,,p0; 'u
is one which does not appear in [6] when considering the Cauchy problem. Here
we use (3.10) for 0, "(a,0,,Bu,). In view of (3.20), if we choose k=h then

G407~ (an02, B ua)l =C .

After using the relation (3. 10), the right-hand side of (3.5) has only the terms
which appear in [6] and a term whose L*norm is bounded with respect to 7.
Hereafter we can consider in the nearly same way as [6] p. 121~124. Of

course on the way the terms o «,0:5-u,) appear. We treat these terms in the
above way.

After all we have

3.21) SA(H= C-exp(% nt)—o(%) )
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For the definition of S,(f), see [6] p. 124. On the other hand, by hypothesis of
&-wellposedness, S,(f) must has polynomial order with respect to n. Thus the
proof of theorem 1 is complete.

§4. The proof of Theorem 2

Consider the equation (2.2). At first we prove Theorem when y€ R'. In this
case (2.2) can be written as follows.

(4. 1) 32""31u= 2 aijka{aiay"u .

g
Then Theorem 2 claims that; if &-wellposed then all terms in the principal part
of (4.1) have the factor d,, more precisely a,,_;, ;=0 2<i<m.

Now, we give a rough sketch of the proof of Theorem 2. In first step we
Prove dan_,o..=0. More precisely, assuming a,_,,.%0 we construct a sequence
of solutions of (4.1) which shows the continuity from Goursat data to solutions
does not hold. This shows, in view of Banach’s closed graph theorem, the
Goursat problem is not well-posed if a,_5,,,%0. In second step, we show further
Am_3.0,:=0 (3=Zi=<m) by using the conclusion of Theorem 1.

First step

We assum da,_,,,%0. (4.1), we pick up all terms containing 0;*"% as factor,
then

4.2) 07 0,u=(Am-3.5.005F Um-2.1.10:0y + Am-2.0, 205+ Cm-2. 1,005
+am-2010yFAm-20 0)81“'2+i5§_3 a;;,0i050%u .
Putting u=exp (iny)v(s, x), v(t, x) must satisfy the following equation;
4.3) 01 0,0="Lm-2.0.:(i0)*F -2 0.1(09)F Am-2.0,0107 20+ (A2 2, 00%
+am-s 1 l(ir))ax—i—am_g,1,03,,.)82"‘211—%—is%_saijk(ir;)”afaf;v .

If necessary, changing x by —x, we can assume dn_,..<0. Now the first term
of the right-hand side has the form:

(an*+iby+c)oyv, where a>0,
we make the positive parameter » tend to +oco. Then denoting

{=+ap’+ibyp+c,
with Re {>0, we have
b
2Va

This implies in particular (let us remark b is also real),

{=van+i +0(%) when 5 —> oo,

€1=t+0()=t+0(1zr)

Let us consider the solution v of (4.3) which satisfies the following condition:
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0v(0, x)=0 0<i<m—3
4.4 07 (0, x)=1
v(t, 0)=1™"?%/(m—2)!

In view of the first condition, we put »(t, x)

jm-2+p x4

9 M R T g1

The second condition implies
Voo=1. 05,=0, for all ¢=1.
The third condition implies
veo=1, v5,=0, for all p=1.
Comparing the coefficient of "x?,
(4. 6) Urin s+1=C%0r, s (@m-2. 2 0Vr, s+2F Qs 1 1(00)Vr, 0 1F Qo 1 0Ur s41)
+ is%_aatjk(h])kUr+i—(m-2). s+

To make clear the recurence relation, we consider the terms corresponding to
i=m—3 in the summation.

jz; Am-3, 7 k(iﬂ)kvr-l. s+j

Since j+£=3, j=3. So

Mcn

P €% 7) L) [P
(kss-j ap 3.;'k( 7]) Wr 1 s+j

)
o

b
So, if we denote am_a,,(r;):k > m-s.; «(in)*, we can rewrite
s3-Jj

3
j§0 Ay -3, j(77)vr—1. s+j>»

where we have
lam-s DI SA 9>,

So (4.6) can be written in the form,

3
4.7) Vre1, s+1=C"0r, s+al(7})vr. s+1T Aoty s+z+j§ Qm -3, j(ﬁ)vr-x, r+j

4 1
+ j:z:oam-4.j(77)vr—2.s+j+ +j§o am—z’.j(ﬁ)vr-i+2,r+j+

where a,(9)=am-2.1,1(i7)FAm-2.1.00 GW=0m=2.2.0 and ap_; () is a polynomial in 7
of order<i—j. This shows that v, , is determined uniquely. At first, we see
easily that

vpp=C*"  for p=0

4.8)
Vpe=0 for ¢>p.
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We are going to estimate v,, (¢<p), where % is large. For this purpose let us
remark that there exists a positive constant A such that for » large

la (DI =AIL], lal=A4,
|G- {7)| <A|L|*7. (Remark that p<const.|{]).

In view of this, we consider the following associate majorant :

. 3 N
(4.9) Vigr s = | C1°0 s+ AL vf-,s+1+Avf-.s+z+j§ AlCI 01 54

3 ALt o+ 3 AL s e

Then we have

Lemma 4.1. It holds
!
Vi STICIMCICy™ for s
where C is an appropriate positive constant (independent of 7).

Proof. At first by (4.8) the lemma is true for s=7. So we shall prove this
for s<». We prove this by induction on 7. Suppose the estimate is true for v/,
1<r. Then

V)1, s+1|<l<,|2—[C|“(CICI)* A g ISP Clg

(+1)v

+A (s—|—2)' [ (CIg]y

oy (r=11
(s4-)!
(r—2)!
(s+)!

i (r—it+2)!
+Af§o|C| ! (s+)!

Ajzj; 145 [lBCigly e

T e I R (G/1D e

I CIE Iy oo e

(D!
T (s+1)!

okl . 1 A 1 A
[t r+1 C T GIDGT2) ¢

1 (s+D! ., L (r=2)! (s+1)!
+A,20 Grr Gt S AR GO Gt

i (r—i+2)! (s+1)!
AZ T )

IC1=r2(Cigns

C 24 ...

Crimivey ] X

The quantity between [ ] is majorized by

r 1 A 1
- - Jj-1 P
s BRI S B oL cz +A2 ¢ +AZ +1C”
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C Jj-i+2
+ - g _|_ + -
Now we choose C(>1) in such a way that
A= 1
—_ o
C ngwc < m "
Namely, C>mA+1.
L r 1 S .
Then, in view of | =1 P the above quantity is less than 1. This
completes the proof of Lemma.
Now we consider
M=2,— xq
0} = pZ_q Y Vpq -
For t, x=0, we have
m=-2 > tPxt
o=, 5 V2| Svan Gy | | ST

5

, 1Pxe . ,
> pngl)z P xP _Ep””“—ﬁ (Since |vpql <vp for ¢<p)
e _ .
B2 Gl B e o e
This second term is
(4l [§1*

P e T L2 t"(CICI)” =Z Q)

In conclusion

x"t"jZZJI(CICl)’tj-

@.11) Ottt x5 I 2 3 -Lo e xit(1— S (CIEN)
qz0 (q!) FER
4 S
(qso G xqt"—qzz% QY x“t).

Now let us recall the definition of the Bessel function of imaginary argument
_ 1 Z\%
&= 2 Gy (%)
and its asymptotic formula for z— oo in the sector ——%+5< arg z<%—5
et 1 1
168~ 5==(1+ 5 +0(57)) -
Now, the right-hand side of (4.11) is expressed as

4.12) 12181 VFD(1= 3, (CIEIYE) = U218 VAN =1LV}
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We take t=t;:{C|C|}“X%. Then 1_;§1(C|C|)jﬁ:%’ We fix x,>0. Then,
since 2|{|v/X, 4/ {f =06+/1C] (0: positive constant) thus the first term increases
]' N 1/2 -1/2
NVWGXP(OICI MH{+0(1E1 )} .
Next,
C\/xo_l‘c:(lCI+0(1/|CI))\/J?o—f<=g|CI”2+0(1/ICIm)

Thus

exp (28v/xot)=exp (3] |"*) exp (O(1£| %)

=exp (0[C1H{1+0(I L] ~**)}

This shows

10(2 | C | \/xo[()‘IO(ZC»\/)Tt;):exp (5|C| 112) {O(Icl _3/2)}
Thus we have
@13 |0tz %05 ) | Z exp @11, (0<8 <)

for » therefore |{| large.
Now, recall u=exp (iny)v(t, x). By (4.4) we have the following ;

0ju(0, x, y)=0 0=i=m-3
4. 14) 0y (0, x, y)=e™v
u(t, 0, y)=e"¥t™ 2/(m—2)!
By the assumption of &-wellposedness the grouth order of o7 'u(t, x, v) is at most

polynomial of 7 therefore [{|. On the otherhand, by (4.13), o7 'v(t;, x,.y) has
exponential order of |{|. These can not be compatible.

Second step
Denote

Pz, & 7)=EQm iz, & D+ Pulz, )

Owing to the first step, the degree of Pz, n) with respect to r is at most m—3.
We shall prove “if Igm(z-, 7)#0, then the characteristic polynomial P,(z,&, )=0

has a non-real root”.
Considering the homogeneity of Pn,(z,§, ), we put

(4.15) t/p=c', &/np=2A.
Then

(4.16) Pz, & P=7"{AQ n(’, 2, D+ Po(z’, 1)} =0.
Suppose

(4.17) Pole!, )=p /™4 o tay, apyx0° j=3.
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If necessary, changing x by —x, we can assume a,_;>0. Again putting
(4. 18) /1=
and denoting
Q@' 2, D=0 1HC A ™ 2 - +Cny(R),

(4.16) can be written as follows.

(4.19) AA+CALACLDL+ -+ +Cry(AE™ )
+Cj—](am—j+am—j—1c+ o +GoCm'j)=0 .

Then

w0 i LHCDEE e +Co (D

AmojtQmoj L o Fal™

This show that (4. 19) has the roots {(2) such that

(4.21) LA~ —2/an_; when 21—0.

If j—1=2 since a,-; is real and positive one of branches satisfies
(4.22) [Im {()| =6 V12 .

Thus we complete the second step.
Finally we consider ye R%. Recall (2.2)

(2.2) 01 0 u= X 0;;,0i0505u .
gL
Theorem 2 means that &-wellposed then
24 |am—i,o.a|:0’ 2<i<m.

lel=1

If 3 |@m-i0«| =0, by suitable change of independent variables, we can consider

lal=1
the coefficient of 077%0;, 0. In first step we consider such u=u(t, x, y,) which is
independent of {y;; 2<i=<I[}. So we can make the same process as [=1. In
second step, we consider such »=(y,,0:-0). So we can make the same process
as [=1. Thus we complete the proof of Theorem 2.

§5. Proof of Theorem 3

We prove Th. 3 by the same principle as §3. However, in this case the
reasoning becomes fairly delicate. We regard P,,+P,_, as the principal part of
P. Consider the equation (2.2), then

5.1) Pz, & P=c"6— T aiur''n”
EPm(T) E: n)+Pm—l(T’ E; v)+Rm—2(T’ E; v)'

where P,, P,., are the polynomials of homogeneous degree m and m—1 respec-
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tively. R,_, is a polynomial of degree m—2. Let us remark that the coefficient
of z™!in P, _, vanishes and by Theorem 2 we can assume szfQom_l. Let

(.2) Prs=EQn oz, & D)+ Pr_i(z, 1)

where Q,,-, and f’m_l are the polynomials of homogeneous degree m—2 and
m—1 respectively, then

5.3) P=EQm 14 Qn-o)+Pr iz, D)+ R,
EEQm-x""ﬁm—l(T» 77)+Rm—2~

where the coefficient z™ ! in P,_, vanishes and by the assumption (A.4), the
roots =7, 1) (1=i=m—1) of Qom_l(z-, &, 7)=0 are all real and distinct.

We shall prove that if Pz, 17)#0 then the Goursat problem is not &-well-
posed. Suppose Is,n_l(r, 7)%0, then there exists »° such that Pz ‘7%#0. Let
us consider the characteristic roots of P(z, i&, i9)+Pn-i(z, i€, in)=0 in a neigh-
borhood of £=+/4, p=A475° (A>0, large). We have the following lemma.

Lemma 5.1. [If ij_,(z-;é, 7)=0 has real distinct roots A;(§, ) (1=is=m—1)
for all real (5, 7)=(0,0), and if Pn_(z, 7)#0, then there exists an »°(|7°|=1)
such that }%m_,(z', 7°)%£0 and the roots {r:}igsism-1 0f

(5.4) 16Qu-i(z. i&, in)+ Pr-i(z, in)=0.
have the following estimate for & n€V,.
Rer;>0+/1, 1=i=N, N,=1, >0
(5.5) |[Rez;| Zconst. N\+1=Zi<N,,
Re ;< =0+, Ny+1=i=m—1 for A(>0) large,

where V,;={&, 1);1é—ec/A 1 <evA,|n—29°|<ed}, ee=+1 or—1, the choice being
defined later.

Proof of Lemma
Putting r=iz’ then considering the homogeneity of Q,,_1, Qm_» and If’m_l, (5.4)
becomes

(5.6) E{Om (e, & P —iQm-olc/, & P} —iPu (', 7)=0.
Now, let
G.7) Qe & )= TL @ =26 7).

{48, D)} isism-1 are all real and distinct for all (&, )=(0, 0). Put 2,00, n)=2,%).
By the assumption there exists 7°(|%°|=1) such that ﬁm_l(r’, 7%%0. Next, since
the degree in 7/ of ﬁm_,(r, 7% is at most m—2, there exists at least one i
(1=i<m—1) such that ISm_l(li(r;°), 7°)%0. Moreover we can assume, if necessary
by changing slightly 7° we have
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(5.8) Prsu(n), =0 or P y(Au(n), 7)=0
for peV,={y;lp—7"I<¢|n|=1} where ¢ is small.

Let us write

p=Inly", I9'|=1.
Therefore

L& D=4E/ 191, )17
(.9) Qm-o2', & DN=Qu o' /171, /171, ") 9|™2
B, =Pu &/ I7], 7)7I™ .

Put

(5. 10) '=2¢ n+LE iyl .

By (5.9) and (5.10), (5.6) becomes

¢.11) CILQE/ Il ) =24/ I, ) +0)

=il Qu-o A&/ 11|, n)+E E/Inl, ")
=iP €/ 9], )+, /& .
Put &/|n|=s, where we consider s —0 when |y|—oco. Then (5. 11) becomes
CIL s, ) =25, 74D =15 Quoslls, 9)HE s, 7)
=iP 145, 7))L, 7)/E.
Namely

P Als, 9)HE ) +isQuos(Ails, 1)+ s, 7)) 1

&= QG )45, 1)+0) £

Rewrite this by
C=1C;s /€.
Moreover putting
1/6=u.
Then

(6.12) C=ACss nu,

where f({;s, »’) is a holomorophic function in a neighborhood of (0;0, »° with
respect to ¢, s and . By means of Lagrange’s Theorem, { is a holomorphic
function of u (considering s, »’ are holomorphic parameter) and

(5.13) C= ﬁl ei(s, p?
nel 1 fz;s, p'Y .
ci(s, )= 7o SF%—-—ZI dz (=1).

where J, is positive and suitable small. By calculation we have
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&, 7)=iPu R, 7 JL )= 2,0 -
Because of (5.8), we have

1,0, ") =6'(>0) or ¢,(0, )=0, p'EV,.
Moreover considering the Taylor expansion of { with respect to s, we have

(= %}cij(r;’)s"uf, where ¢, (9)=c,0, 7’).
Namely
(5.14) P i), ) TL ) =2 Dhut 35 cis(p')s'n

Particularly we put s=pu, therefore &/|yp|=p/§ so &=p|n|. Then (5.14) be-
comes the following :

(6.15) L= {iPuosQin), ) LA =2 Mt 3 e(p)ptu™ .
Finally we have

G.16) i P=il
=i, )= (Panii), ) TG =200
+i H;'zz Ctj(Y]/)Pi_l(‘é—)i“_z .

Moreover considering that ¢;;(y’) is of homogeneous degree 1 we put c¢;;(")|7]
=c;§(n) so we have
(5.16") (&, =14, 7)
o . 1
—{Pn_(4:(n), 7)/ jl*Il (li(n)—lj(n))}g
+i 3 )&/ Ip)iA/E)Y .
i+jz2

We can assume ﬁm_l(x,(p/), 7)x0, p’€V,. Now, let us define the sign of ¢ by
the following ;

~(Presin), )/ IT Q) =20 ) X e >0.

Then by (5.16) we obtain (5.5). The proof of the lemma thus complete.

Localization in the (x, y) space

Let 8(x, y) be C7, function with compact support. Apply B to Pu=0. Then
BPu=0. By the formula

[3Pu=|2 (—l)m P(”’(ﬁ(”’u)

viz0 y!

we have

(5.17) PLRul=— 2 (=n™ POLASu].

121 v!
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Now we take a function a(§, ) with compact support. Apply this to (5.17),
because of constant coefficients we have

( 1) vl

(5.18) Plaful=— 22 — L p[agery].

For convenience we say that the order of differential operator 9,, 9, is 1 and
the order of 9, is 1/2. For example the order of 0;002 is i+ |a|+j/2. The order
of left-hand side of (5.18) is m—1+1/2. The order of %P is m—1. And the
another terms in the right-hand side of (5.18) is at most m—1—1/2. So the most
delicate part in the right-hand side is %P[aﬁ,u], The same reasoning used in
§ 3 can not be applied to estimate this term. This difficulty was overcome in the

following way™®. Recall (5.3),

P:$Qm-l(fl é: 7])+ﬁ)‘m—l(1: 7])+Rm_2(2', E’ 77)0
Then

aP . an-l aRm—z
(5.19) S LA e

The order of Q,,_, is m—1 and the order of & B%g_, + alg’g'z is at most m—1—1/2.

Replacing in (5.18) 8 — B, we have
(5.20) Plagul=— % (~1)"PLa(f)u].

Let us assume that on the support of a(§, ) & does not vanish. Now we define
the pseudo-differential operator 05! by

(5.21) 0:'f= ff"(—l.lgf(s, 7).,

where f(x, y) is assumed that its Fouriertransform f(£, 7) has its support away
from the hyperplane £=0. The operator d;' is the same as (i)' in §3. We
regard the order of d;! as —1/2. Using the operator 05, (5.20) can be written

as follows:
(5.22) Qmr(aBu)=—08:(Pp_+ Ry )]
( 1) JP(v)[a(ﬁz)(v)u] .

1v121 )J'

By (5.18) and (5.19) we have

Qs , Ry
Plaful=[Qu 1+ 0. 252 + 25t |(ap,)

—_ 2/ ( 1) P(v)(a‘B(J)u)

izl y!

*)  This idea is due to Prof. Mizohata.
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where >/ does not contain the term asP by (5.22)

Plapul=— 3 (= 1) " 9 POTa(B) ]

—a;ltﬁm-lwm-z](aﬁxu)nt[az e )
_1 vl
- 3 S Peta.
Finally
(5.23) PlaBul= | %l C.(0,0,0,0:)aBfu),

where the order of the left-hand side is m—1/2 and the right-hand side is at most
m—1—1/2. Let us notice that the right-hand side contains the term 95071

Localization in the (£, ) space and reduction to the system

At first (if necessary replacing x by —x) we can assume ¢, (in Lemma 5.1)
=+1. Take a function a,(&, »)=C~ of small support which takes the value 1 in
a neighborhood of (¢, 7)=(0, 0). Define

_ (§—=+n np—nyp’
(5.24) a&, n)=a, Tn T Tn
Assuming the support of «,(§, ») remains in [£], || <e’ (¢/>0, small), then the
support of «,(§, ) remain

(1—eNvn=E=(l+e')v/n
(5. 25) {

n—e'A/ns|p|Ente’vn
Recall (5.23) and replace a by a,, then

(5. 26) Planful= 33 C0:0:9,0:)[etnful=cns -
By (5.3) we can rewrite (5.26) in the following form :
G.27) [Qn-1405"P i) @n ful=07"L feny— Rm-o(@n )] -
Let
(A+1)m?
E()= (/1+1)’j"3.
1

Putting #="%u, d,u, ---, 0 *u) and U=FE(A)(B#) we obtain an equivalent system
to (6.27):

(5.28) 0la,U)=Ha,U+F,
where F=40, -+, 0, 07'[ finy— Rm-2(a@,fu)]). Denote
Q={(, 7);€>R and y’€V, where p=7"|7|, and 1—e"<&%/|y|<l+e”}
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where R is a large constant and ¢” is a small constant. Let us diagonalize H
in Q. Taking account of the fact that Q,_,(r, &, 5)=0 has real distinct roots
(if we choose R sufficiently large) we can find (m—1)X(m—1) matrix N(§, %) hav-
ing the following properties.

71(51 77) 0
) NE pHNE, 7) =&, 7)
0 Tmal&, )

ii) Each component of N(§, ») and N7'(§, ») is C>fuction of order 0 with
respect to (&, 7), for (§, n)ef.

Il
o

vi+lvgl

i) 108052n:;6, p)l <const. (I€]+1pl)" "=z  for (& )L where n; (& 7) is
the symbol of (ij) element of N.

For example we take

1 | 1
7, Ty sreeee Tm-1

N=| 2 F2 s
=| 71 Ty Tm-1
z':;n—z 21_371-‘2 %m:;_‘

where 7,=7,/(1+A). This N satisfies the above properties i), ii) and iii).
Now denote £,=suppa,. By the Lemma 5.1 we can assume;

Real part 7,6, p)=(6+e)vn  1ZiSN, (N, =1)

(5.29) Real part 7§, 9)S(—d+e)v/7, N+1=i=m—1
0>0, >0 small, (£ p)e2,.

Put

(5.30) exp (—e/nH)Na, U=V, .

V. satisfies the following equation :

(5.31) 0, +evn)V,—DV,=G,,

where G,=exp (—e/nt)NF. Consider

N
S= 2 Ivelr— 2 Ivele,
i=1 J=N1+1
where V{” is the i-th component of V‘® and ||-|| is L%*norm in (x, y) space.
Then we have

<

(5.32) S'(28v/RVal*~—7=

1Gal®.



C=-Goursat problem 145

Proof of Theorem

We prove this by contradiction. We assume the Goursat problem (5.33) to
be &-wellposed.

Pu=f
(5.33) 0u0, x, y)=ulx, y), 0=i=m—2
u(t, 0, y)=¢(t, y)

Where P(T: 57 ﬂ)zéQm—l(Tr 51 77)+P8m—l(fv 7])+Rm—2(71 Ev 77)' At ﬁrSt we deﬁne a
series of solutions u,(t, x, y) of (5.33) with f=0. Namely we define their Goursat
data. Let ¢(&, n) be a Cfunction whose support is in a small neighborhood of

(¢, 7=(0,0). On the support of §(¢, 1), a,(&, 7)=1, and we assume [[|4(&, n)I*dsdn=1.
We define

(5.34) da€, N)=¢(E—+/n, p—ny®). Namely
(5.35) @alx, y)=exp (iv/nx+iny’y)o(x, ¥).

Now we define u,(f, x, y) as the solution of Pu=0 which satisfy the following
Goursat data.

tw(0, x, ¥), 0,u(0, x, ¥), -+, 7 2u(0, x, ¥))
[ :E—I(A)"V_l l(¢n(x! y)! Or T O)

(5. 36)
l un(t, 0, »)=pu(t, y)EtLg:aiun(O, 0, y)ti/il.

We want to show that®

(5.37) Neew ECA)B1n 0, x, y)=c+o(-\/1T),
where ¢ is a positive constant independent of n.
(5.38) Na,EB#,(0, x, ¥)=Ba,NEi .0, x, ¥)
+(a . NEB—Ba,NE)ii,0, x, v)
The first term of the right-hand side is, by definition, ‘(fa.¢n, 0, -+, 0). Since

a (&, n)=1 on the support of ¢,.(&, ») then a,d,=¢,, hence
Blx, ¥)¢n=B(x, y) exp (Ivux+iny’y)p(x, 3) .
Since ¢(x, y) is analytic we have
6.3 186 NauNEL, % NI={{[180c ptx, pitdxdy}r=c>o0.

Now look at the last term of the right-hand side of (5.38). For simplicity we
change the notations: we write x,, x,, -, x;4; instead of x, y,, -+ ¥, So we
write x instead of (x, y) and write & instead of (£, 7).

* In §3, N is a constant matrix but in this section N is pseudo-diff. op. So the reason-
ing becomes fairly delicrte.
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We know that (cf [6] p. 120)

(_l)lvl
vl

[aaNE, p(x)]= = B (x)(x* a,NE)-E'N*+R, , .

The symbol of (x*-a,NE)-E*N™! is 0(a,NEEE)XE(§)N"*(&). Denoting the
(i, j) element of this matrix by ¢;; and its symbol by g¢;;(€), we have

(5.40) lgi ()| <CA+ €™ for €.

Using this we obtain (5.37) by nearly same way as [6] p. 120.

Now we put u=u,(t, x, y) in (5.32). By hypothesis of &-wellposedness, there
exists a positive integer h and a neighborhood (in (x, y) space) G of (x, y)=(0, 0)
and a small 7 such that

(5.41) max |0ju,(t, x, y)| =0(n*)  for 0=t<T’, 0=i<m—1.
(z,y)EG

By taking the support of S(x, y) small, we can assume that the support of A(x, y)
is contained in G. Therefore we have

(5.42) | 8(x, MOiun(t, x, WI<On*)  for 0=t<T’, 0=i<m—1.
Now we consider the right-hand side of (5.31), G,. Recall
G,=Nexp(—e+/nt)F
F=%0, -+, 0, 0:'(ftny— Rm-slan fuun)))
for=_ 5 C0.0,00:(@nfun).

21yl

The most delicate term in G, is 0;%0" a,B:us). For this we use (3.10) in §3.
Namely

02°07 ™ s B2un)=05"05""07 (203" 2" Un)
+ 3V (@ D)H@adifa ).
Considering the support of a, we hage
1072052707~ (w03 B~ un)
=ClIE*2an(§, n)F O3 Bo7un)l
SCQA/ /) *203+ B+ 07 uall
<const. (1/m)**'n*"=<C/n.

Considering the order of C.(0,0,0,05") and d.,;,(0;, D) we see that G, is expressed
as linear combination of

exp (—ev/nt)Na , E(A)NB* - iiy)

whose coefficients being bounded operators in L* and a bounded function with
respect to n. Hereafter we can consider in the same way as [6].
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§6. The proof of Theorem 4
Because of (2.1) and (2.2) from the beginning we consider the following P.
P(z, & D)=6Qm (5, & NHEQm-slz, & D+Ruoslz, & 1)
=£Qm-1+Run-»
where Qu-r=Qm-1+Qms.
Moreover we can assume the Goursat data is zero. In fact, consider the follow-
ing v;
v(t, x, y)=7:E;:uk(x, e/ R o(t, y)—zg:uk(o, YtE/RY.

By the compatibility condition (C), the u(t, x, y) satisfies the Goursat data (1.2),
and of course veC=. In the prob. (1.1)—(1.2), put u=v+1, then

Pii=—Pv+f

0;7(0, x, y)=0 0<i<m-—2

(¢, 0, y)=0
For simplicity we change the notations: we write x,, x,, -=- x;4; and &,, &,, -+, &,41
instead of x, y,, -+, ¥, and &, »,, -+, 7y, respectively. After all we consider the
following Goursat problem.
(6. 1 Qm-laxlu:Rm—zu‘l'f fecz,

0iu(0, x)=0 0si=m—2
(6.2)

ul11=0:0

x=(xy, x)=(x1, X, =+, X1) xe R,

Where Q,.., is a differential operator of order m—1, moreover strongly hyperbolic
with respect to . And R,_, is a differential operator of order m—2.
We shall prove Th. 4 by iteration, namely let v, be the solution of

Qn-1ve=f, 00, x)=0 0=i=m—-2,
and u, be the solution of
0z Ue="Vo, 1Uplz,20=0.
In general, for j=1, v; be the solution of
6.3) Qv =Ru_su;y, 00, x)=0, 0Zi=m—-2,
and u; be the solution of
6.4 05, U;=0;, Uj]z,20=0.

We want to prove that the series u,+u,+ --- converge.
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Now we introduce a dependence domain of the Goursat problem. Let

'zmax: max Z1(5)

1sism-—1
1&1=1

where 1;(§) is a root of ém_l(r, £)=0. Let 7>0 and let 9(7, %) be the backward
cone; {(¢, x);[x——;?lg,lmx(f—t)} having (f, ¥) as its apex satisfying t=0. Denote
by D(;, r) the set of all points formed by @(:‘, x) when x runs through |x|=r.

Hereafter take a D(;, r) and fix it. And denote D(s) the intersection D(;, 7)
and the hyperplane t=s. Now, we have the following two lemmas;

Lemma 6. 1.
dou=v(t, 1) olt, EHl,
6.5)
ul.tlrl)zo
The solution of the problem (6.5) has the following estimate;
(6. 6) ||u(t)”D(t)§C1|IU(t)||D(L)

where IIu(t)IIj’,u)zA[Dmlu(l, x)|%dx and C, is a constant depending on D(t) but in-
dependent of wv.

Lemma 6. 2.

m-1v=g(t, t, x Hllixc
6.7 {Q v=g(t x) g, NE

0,v(0, x)=0, 0<is<m—2.

The solution of the proglem (6.7) satisfies the following inequality;
t
(6.8) WOl o SC Ne@lepnds,  £=0,1,2, -,

where ”g(s)”k‘D(s):l > 107g()pess

aisk

m-2
and  |lvOk, pee,= 12_:0 10;0(t, 2)lm-oisr. Dec -

Remark 6.1
In Lemma 6.1 we can replace [-|pc, by l[-lile. pcy. Namely

Lemma 6.1’
The solution of the problem (6.5) has the following estimate: Assuming
v(t, x)e HE,. we have

(6.6") Nl e. pee ECHOW 6. pees -
The idea of using D(!) is due to Prof. Mizohata, cf. [8].

The proof of Lemma 6.1
This lemma is a particular case of Poincare’s inequality. Let
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Di()=DO)N{(L, x, y); 1,20}

D_()y=D(ONA(t, x, y); 1, =0} .
By (6.5)

u(t, x)_—_g:lv([, s, x')ds.

Suppose x,>0, by Schwarz’s inequality

z) 2 z] r1

| u(t, x)IZ_S_(S | 1-v(t, s x’)lds) gS lzdss~ |v(t, s, x")|%ds

0 0 0

When (¢, x)e D.(t), we have
Lt x')
jutt, OIS 0, s 001

where L(t, x)= sup x,. Let L= sup L(t, x), then

(t, YEDL (L) (t, 2)ED4 (L)

S lu(t, x)|2dx§SLx,dx,S lo(t, ©)%dx.
D4ty 0 Dy(t)
Therefore
NluCt, DDy r SA/2) LA v(t, )y -
In the same way we have
luCt, Olp_cer =A/2)L7| v(t, Xp_cos -
After all we have
luCt, Doy S V172L1v(E, Dby - q.e.d.

Lemma 6.2 is essentially same as theorem 6.12 in [7] p. 367. Considering
the dependence domain of hyperbolic Q,.,, we can obtain (6. 8).

The proof of Th. 4
Consider 0=t<T, denoting M= 0§U£>T||f(s)||k.n<s), by the lemma 6.2 we have

t
il oy SCaf 1A . perds=CaM

And by the lemma 6.1’ we obtain

HNauoONl e, pees SCillvelO &, pets -
Next, let us estimate the solution v, of
Qum-w1=Ru sy, 0iv)(0, x)=0 0=<i<m—2.
R.,._. is a diff. op. of order m—2, then

| R —2toll &. pess = Callluto(S)I e, pesy -

By the lemma 6.2 and the above estimates we have
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t
ol oo SCoJ I Rom-stol 5. 5o
t N t
<C.C[ Mol e 5= COLCS oS, peods

§C1C§C3MSZs ds=C,CiC,Mt2/21 .

And the solution u; of 0,,u,=v,, 1;],-,=0 has the following estimate;
Waeallle, e S(CiC*C:ME? /21
For general j, we have the following:
Lemma 6. 3.
(6.9) Wesllle. by S(CCYCIME/(G+DE - for 0=t=T.

When we replace u,—>8;u1, we have an inequality nearly same as (6.9).
T akmg account of that D(t ) is arbitrary, by the Sobolev’s lemma, the series
Euk converge uniformly in arbitrary compact set in R'*'X[0, T]. In the same
way 268 u("i, Ya) converge uniformly in arbitrary compact set in R***X[0, T].
Let u— Zuk, u is a solution of the problem (6.1)—(6.2) and ueCy,

At the end, we shall prove that the solution of the problem (6 1)—(6.2) is
unique. Let the prob. (6.10)

Qum-105,u=Rpn_su
(6.10) om0, x)=0 0=i=m—2
U z,-0=0
has a non trivial solution u. There exists D(T, r) such that

sup |lulllo. peey=M>0
0stsT
By the lemma 6.1 we have
Illulllo.nuéC\HaxlulHo.Dm .
By the lemma 6.2 we have
t t
13-l b SC 1Rl pids=C |l peods.
So

(6.11) Wl oo SC'§ Nl peodsSC/ME

Finally we have
(6.12) Helllo, per EM(C't)¥ /Y for Yk, 0=t=T.

Then |lullle, p;y=0. Thus we complete the proof of Theorem 4.
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Remark 6.2. For the variable coefficients the above reasoning is valid too.

Remark 6.3. The lemma 6.3 shows that the series Eu, conuerge in
IIl-Wlx, pey sense. Then we have the following;
Proposition. Consider the Goursat problem (6.1)—(6. 2) For the data

fe E?(Hl’f)c) k:‘Oy lr 2; A
the problem (6.1)—(6.2) has a unique solution u such that
u(t)EHlm Bk atu(t)EHllo"c_3+k: : am 2u(t)E[{loc

At the end the author wishes to thank Prof. S. Mizohata for his valuable
suggestions and encouragement.
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