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1. Introduction.

It is well known that under certain conditions neutron transport phenomena,
represented by linear transport processes (i.e., with piecewise linear paths),
can be approximated by diffusion-type phenomena (see, e.g. [2]). These condi-
tions require that the mean free path goes to zero, which means essentially that
the collisions between the particles undergoing transport occur more rapidly.
The result is that we have diffusions as limits of linear transport processes.
Conversely, the limiting diffusions may be viewed as being approximated by the
transport processes, and this leads naturally to the question of whether general
diffusions can be approximated by linear transport processes. In this paper we
give an affirmative answer to this question, for one-dimensional diffusions.

In [7] it was shown that one-dimensional Brownian motion can be approxi-
mated in a strong sense by a sequence of linear transport processes {x,} of a
particularly simple type, namely x, represents the motion of a particle on the
real line changing velocities between n and —n at the ends of successive random
time intervals that are independent and exponentially distributed with parameter
n% Here we extend the result of [7] to general diffusions; this extension is not
immediate, because any strong approximation must depend on the local behavior
of the diffusion, which in the case of Brownian motion is always the same.

It is of interest to mention other results related to approximations of diffu-
sions. Kac [8] noted that the transport process x, described above is associated
with the telegraph equation n %u,,+2u,=u,,. As n — oo, the equations converge
to the diffusion equation for Brownian motion, u,=u,;/2, and hence one might
expect that the x, converge in some way to Brownian motion. Convergence in
distribution could probably be obtained by Kac’s methods, although this was not
explicitly noted (in [7] it is shown that the convergence is pathwise, uniformly
on compact intervals, with probability one). Other weak approximations of
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certain diffusions are obtained as special cases of results of Pinsky [11], Wata-
nabe [17, 18], and Gorostiza [6]. Weak convergence of general classes of
transport processes in several dimensions to certain classes of diffusions has
been obtained by Papanicolaou [10] (in contrast with [10], we are interested in
approximating general diffusions by simple transport processes). There are
other strong approximations in one dimension, e.g. Knight [9] (random walks
to Brownian motion), Quiring [12] (jump processes to diffusion), and Stone [14]
(continuous dependence of diffusions on the speed and killing measures).

Besides the purely mathematical question of approximating general diffusions
by transport processes, our motivation for this work was to develop a method
of simulating by computer, transport processes that are of interest in applied
sciences (e. g. neutron transport, seismic motion). Clearly, for applications, rate
of convergence results are needed, and we hope to obtain such results in future
work.

The proof of our approximation, once one has some insight into how to
construct the transport process, can be done using standard techniques.

2. Results.

We will consider regular diffusions on (—oo, o), starting from 0 at time 0,
and on natural scale. The term “transport process’’ shall mean a process with
piecewise linear paths, in which the time intervals corresponding to the linear
pieces are exponentially distributed, all with the same parameter, but the slopes
may be random. The purpose of this paper is to prove the following result.

Theorem. Given a diffusion Y, there exist transport processes Z,, n=1,2, --,
on the same space as Y, such that Z,— Y uniformly on compact time intervals
as n— oo, with probability one.

Suppose the diffusion Y has absolutely continuous speed measure with
density #. Then we can give an explicit construction of Z,: The consecutive
slopes are

v=k, n[2/m(0) ]
. i-1 1/2 .
pi=ken|2m( S k&) >,
j=1
where k,, k,, -+, are independent and take the values 1 and —1 with probability

1/2 each, &} is exponentially distributed with parameter n[2m(0)]V%; &7, j>1,
is exponentially distributed with (random) parameter

e 1/2
11[27}1(121121&’5] )

and independent of k;; the time durations of the linear pieces are independent
and exponentially distributed with parameter 2n?% and independent of the slopes.
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The construction of Z, above may have several consecutive up-going (or
down-going) linear pieces. A simpler transport approximation Z, can be obtained
from Z, by interpolating linearly each run of up-going (or down-going) pieces.
Then, in Z, the positive and negative slopes follow one another in succession,
and their durations are independent and exponentially distributed with parameter
n® Let N be the first time there is a change of sign in the slopes g%, i=1,2, --,
of Z,, and let L, be the absolute slope corresponding to the interpolation of the
first N pieces of Z,: i.e., L, is the first absolute slope of Z,. The expected
value and second moment of L, are related to arithmetic means of the g% as
follows :

LA

1 y n 2 — T ae————
EL,,—EWEZ1 |Bil, and EL;=E N(N+1) &=

Similarly for the next slopes.

In the case of Brownian motion, 7#=2, Z, has slopes +n, and it coincides
with the approximation of [7].

From the construction of Z, it is clear that each linear piece depends only
on the past of Z, and new independent random variables; moreover, Z, is pro-
duced without any recourse to the diffusion paths; this is because the transport
paths are not obtained in a deterministic way from diffusion paths; the diffusion
is used only in a probabilistic way, via the Skorohod embedding, to represent
certain random quantities. This aspect of the transport process is convenient
for computer generation of approximate diffusion paths, and approximate evalua-
tion of stochastic integrals by the method of Wong and Zakai [19].

3. Proofs.

The theorem is proved in two parts: Lemma 1 shows that general diffusions
can be approximated by diffusions of a special type, and Lemma 2 shows that
certain diffusions, including those of the special type in Lemma 1, can be
approximated by transport processes.

We will use the following few facts about diffusions (see e.g. [17, [4]).
On a probability space (2, &, P), where £ is the set of continuous real functions
on [0, ), let Y be a regular diffusion on (—oo, c0), starting from 0 at time 0,
on natural scale, with speed measure m. There is a standard Brownian motion
X on 2 such that Y (¢, w)=X(T(t, w), w), t=0, we 2, where the random time

. . . 1 (=
transformation 7T (¢, w) is the inverse of M(, u%)zES A(x, t, w)ym(dx), and 4
is Brownian local time. A(x,{, w) is continuous in (x,{), and M(-, w) and
T (-, w) are continuous and strictly increasing to co, with probability one. If m
has density 72 (with respect to Lebesgue measure), 7z is strictly positive, and
1 (e, . oo

M(t):—2—50m(X(s))ds. A Borel measure on (—oo, o) is a diffusion speed
measure if and only if it is strictly positive (positive on nonempty open sets),
and locally finite (finite on compact sets).
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Lemma 1. Given a diffusion Y, there exist diffusions Y,, n=1, 2, ---, on the
same space as Y, with speed measures that have densities infinitely differentiable
with compact supports, such that Y, — Y uniformly on finite intervals as n— oo,
with probability one.

Proof. Stone’s general Theorem 1 [14] can be used in part here, but we
give an easy argument for completeness. Let m,, n=1, 2, --+, be strictly positive
and locally finite Borel measures on (—oo, o), and denote m the speed measure
of Y. Suppose m,— m weakly, in the sense that

S: f(x)m n(dx)*S:f(x) m(dx) as n— oo,

for all real functions f on (—oo, c0), continuous with compact support. Then
for each wef,

Mot w) =5 (" 2 b wymaldn) =5 |7 20 b w) md=M, w),

because A(-, ¢, w) is continuous and vanishes outside a finite interval. Con-
sequently,
Tn(t’ w):'lwil(f, w)__)l‘[_l(t) w)ZT(t) w)y

and therefore

Y., w)=X(T,{, w), w)— X(T({, w), w)=Y(, w).

Y, is a diffusion on the same space as Y, with speed measure m,, and Y, —Y
uniformly on finite intervals a.s., because X has continuous paths, hence uni-
formly continuous on finite intervals, and because T,— T pointwise and the
fact that T, and T are strictly increasing a.s. implies that T, — T uniformly
on [0, o) a.s.

Therefore we have to construct measures m, such that m, — m weakly,
and m, has density s, infinitely differentiable with compact support. Let
m|c-n 1 denote the restriction of m to the interval [—n, n] and let

ity (x) = S:% (x=3)mlen (dy), —oo<x<oo,

where {¢,} is a delta-function sequence, infinitely differentiable with compact
supports that do not increase with n. Then 2, is infinitely differentiable (see
[16], p.289), and since the function ¢, and the measure m|.., 5 have compact
supports, so does 72,. The measure

my(dx)=n1,(x)dx

is strictly positive and locally finite. We now show that m, — m weakly. Let
f be a real continuous function on (—oo, o0), with compact support, then
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S:f(x) ma(dx)= S:f(x),hn(x) dx
= S:f(x)( Sl¢n (x—y)mle_n, na(dy)) dx

-_-S:’( Siﬁf(x)go,, (x—v) dx) Mlt-n n(dy).

Since f and all ¢, have supports contained in a bounded set, then for n suffici-
ently large

oo
—o0

" (I rwena=nax)mlcnm@n=]"_({"_r@ewc—y dx) man.

Since {¢,} is a delta-function sequence,

|" r@entx=5dx— 1),

and again because f and all ¢, have supports in a bounded set, the functions
ST f(x)pa(x—+)dx are uniformly bounded by a (finite) function with compact

support ; so, finally, since m is finite on compact sets, by the dominated con-
vergence theorem

Si;( S:of(X) on(x—y) dx) m(dy)—> S:.f(y) m(dy),
which finishes the proof.

Lemma 2. Given a diffusion Y with speed measure that has a twice con-
tinuously differentiable density, there exist transport processes Z,, n=1,2, -+, on
the same space as Y, such that Z,— Y uniformly on compact intervals as n— oo,
with probability one.

Proof. We prove the lemma for the time interval [0, 1].

Let 72 denote the speed measure density of Y. We will suppose first that
7 is bounded away from zero and #i/, #” are bounded.

Fix a positive integer n. Let S;=0, and S%, i=1, 2, --+, be random variables
non-decreasing in i, and g%, i=0, 1, ---, non-zero random variables. These random
variables will be appropriately chosen shortly. Let

7i=I18 Y (SH-Y(Si)], i=1,2, -,
and

rg=0, Ii=3r7j i=12,
p2

We define the n-th transport process Z, by
Z,(I'H=Y (S, i=0,1, -,



96 L.G. Gorostiza and R.]J. Griego

with linear interpolation between the consecutive random times I'%, 1=0, 1, ---.
It is clear that in the interval [/';_,, I'’] the process Z, has slope |B%| or —|B%].
Using the random change of time 7 from the Brownian motion X, and denoting
Wi=T(S}), we have

Z,(I'H=Xwy), i=0,1, -,

and
ri=1pIT X (WH—-X(Wi)Il, i=1,2, .
Also,
Si= sy i=1,2, -,
j=1
where
1 w75 . ]
=5 | L XD ds =12,
W;’_I

Now we choose the S%, equivalently the W, as follows. By the Skorohod
representation ([13], p.163), we take the W7} so that X(W?)—X(W}_,) has the
same distribution as k;£&7, where k; takes the values 1 and —1, each with
probability 1/2, &% is exponentially distributed with random parameter
n[2m(X(W}_,))]"? and independent of k;; the k; are independent, and indepen-
dent of X, but &7 depends on X via its parameter (which is determined by the
Skorohod barrier that X hits first in the (i—1)-th representation). Observe
that for each 1,

ELk: &7 X (Wi_)1=0,
Var [k, &7 | X(WiL) I=ELED I X(Wi_) J=(n®ri (X (W)™,

and hence
E[W—Wi_ | X(W{)]=n*m (X (W)™

Notice that X(W?)—X(W7j-), i=1, 2, ---, are not independent in general.
Now we choose the 7. Let

Bi=kin[2/m(X(Wi_))]"2 i=1,2, --.

Then 77, which is distributed as £7| 87|, is exponentially distributed with para-
meter 2n? conditioned on X(W?.,), and it is easy to verify that 7y}, i=1,2, ---,
are independent.

Observe that in the interval [I'},, I'{] the process Z, has slope p7.

With this setting, we can state the basic idea of the proof. For each n,
consider the random variables

A,= max |I'?—1i/2n?,
1sizen?

and

B,= 12?5137(‘2 |S?—1/2n?|.
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If we show that A,— 0 and B, —0 as n— oo, with probability one, then, due
to the way in which Z, is defined, and to the uniform continuity of diffusion
paths on compact intervals, it will follow that

lim max |Z,(t)—Y (¢)|=0 a.s.,

n-oo 0sts1

thus proving the theorem.
Proof that A,—0 a.s.

Let F7 denote the g-algebra generated by X(W}), j<i. Then I'} is F}-
measurable, and since I'7=I"}_,+r7, and 7} is exponential with parameter 2n?
conditional on ¥?*,, we have

E [F;' l g;,T-l]:F;.l—1+1/2n2-

Therefore {I"j—i/2n% F!}; is a martingale, and by the martingale inequality
(see [3]), for ¢>0 we have

PLA,>e]<e*E([5,2—1)°

n2
= 5'2{ jgl E(ri—1/2n%?

2n2-1 2n2
+2"5" % EGr-1/209G3-1/200 },
1=1 j=i+1

but
E@i—1/2n*P=EE[(ri—1/2n*?| X(Wi-1)]

=1/(2n?%?*=1/4n",

and since 77 and 77} are independent for i<j,

E(ri—1/2n*)(r;—1/2n%)=0,
hence
P[A,>e]=1/e%2n8,

and the Borel-Cantelli Lemma implies that A, —0 a.s.
Proof that B,—0 a.s.

First we will write S7 in a different way. Let
f(x):S:(S:n'z(z)dz)dy, —oo0<L x< 00,
Then f”(x)=m(x), and Ito’s formula ([5]( p.29) gives
1 X
7m()((s))ds:df(x(s))—(S sh(x)dx)dX(s),
0

where dX(s) is the Ito differential ; hence
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S'}=%Swj’_lm<X(s>>ds
ZS:W:) ( m(x)dx)dy—ng (S:(S)M(x)dx)d)((s)
Vv Wji-1

m(x) dx) dy— SW? (jxm 1w (x) dx) dX(s)

n n
wi_ N xavip

Il
—
i B
N s
<3
—

n n
o Txavip

xawi_

)
(we subtracted and added S () dx [X(WD—X(W)T). Let

0

cg-:Sm?) (" wdx)dy, j=1,2, -,

n n
Xawip N Yxawi_p

d’;_—_gwy (Sxm m(x)dx)dX(s), j=1, 2,

Wi Yxwi_p
and
P i i .
Ci=2cj, Di=xdj i=1,2,--.
j=1 j=1
So

St=C1?—D3}, i=1,2, .
We will show that

max |C}—i/2n}| — 0 a.s.
1sisen?

and

max |D!|—0 a.s.,
1sis2n?

which implies the desired result.
Using Taylor’s theorem,

ej=5 (X (W) LX W)=~ X(W3) T
+—%W(X(W;'_1))[X(W}’)—X (Wi
+2—14m”(q,) [X(WH—X (W),

where ¢; is an appropriate point in an appropriate interval. Let

=5 (X W) LX) = XW3) T

+%m'<x<w;u,>>[X(W;)—X(W;-’_oja j=1,2, -,
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1 . .
h7=—24 (g (X(WH—-XWi)],  j=L1,2, -,
and

G;’:élg}, Hi= zh i=1,2, .

j|=
So
=Gi{+H!, i=1,2, -,

and we will show that

max_|G?—1/2n%| —> 0 a.s.
1sis2n?

and

max_ |H?|—>0 a.s.
1sis2n?

To work with G7, again denoting &} the o-algebra generated by X(W73),
k=j, we compute first

E )| T} 1= 2 (X (W}-)) ELCXW D~ X(WE_) P | F5-,]
LWL ELX W)= X W)Y | 54]

= %17'1()((W§'—1))/nz?h(X(W?—l))+0=1/2n2 ;

hence also Eg?=1/2n? and

E(gy}—1/2n*?=E(g}—Eg}/n*+1/4n*
=E(g}’—1/4n.

Now,

E(g)y=-p E(X (W) ELX W)= X (W) ¥ X(Wi) 1)
g B (X1 ECCXW =X (W) P X V1) T)
4 B0 (X W) A (X W1-)) ELX W)= X W)Y X (W3- 1)
= T B (X VL)) 41 n (2 (X W 1)) )
g B (X(WE))'61/n 2 (X (W) T} +0,

and since 7 is bounded away from zero and 72’ is bounded, then E(g,—l/an)2
<Kn™, for all j, where K is a constant.
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The above computations show that {G}—i/2n? F!}, is a martingale, and

therefore by the martingale inequality, using E[g}—1/2n?|F}_,]=0, for £>0
we have

Pl max, |Gl —i/2n%>e]<e™? Z} E(g7—1/2n*?<2K/e? n?,

1sise2

and by the Borel-Cantelli Lemma we obtain the desired result for G/.
For H}, using Chebyshev’s inequality we have, for ¢>0,

ne
PL max, |Hi|>e1 P 3 Ihz:’l>e]

<e z E{li" (@) | (X(WH—X (Wi,
but #2” is bounded, and

EX(WH-XWi ) =4!n""EQCm(X(W;-)))%
and 7z is bounded away from zero, so

P[ max |H}|>e]=Kn™,

1sisen?

where K is a constant. Again the Borel-Cantelli Lemma yields the desired
result for H?.

It remains to show that max, |[D?| -0 a.s. Let 9} denote the o-algebra
generated by X (1), t=W7. ’l‘hen2 {D?, 97}, is a martingale, because E[d}|97-]
=0 (see [5], p.30). Hence, by the martingale inequality, using E[d7!97-,1=0,
for ¢>0 we have

P[ max, D} >e]<e® Z} E(d})e.

1si<2n
Now (see [5], p.28),
W X 2
E(dg)ﬂ:ES (S i(x)dx) ds
Wiy YXWi_p
SKE{(W);—Wi )J(X(Wi*—X(W;) ),

where K is a constant, because #: is bounded, and X(W})~ and X(Wj)* are
respectively the lower and upper Skorohod barriers corresponding to the j-th
representation. By the Schwarz inequality,

E{W5 =W (X(W5)* =X (W5 ¥)
<CEQW =W T LE (X (W) =X (W) )T,

but, since we are on the interval [0, 1],
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EX(WHr—X(WH) PSE(sup X(#)— inf X())'<oo,
0sts1 0sts1

and (see [13], p.163), there is a constant M such that
EW;—Wj. P=EE[(Wj—Wi )| X(Wj.)]
SMECEN' I X(Wi)1=M41n " EQ@in(X(W}1)))*

=Nn"4,

where N is a constant, the last inequality because 72 is bounded away from
zero. In conclusion,

PL max, |D}|>e]=Ln?,

1sis2n

where L is a constant, and once more the Borel-Cantelli Lemma gives the
desired result.

We have proved the lemma under the assumption that #: is bounded away
from zero and #7/, m” are bounded. Now we drop this assumption, so Y is now
a diffusion with speed measure density 7:. Observe that sz is strictly positive
on (—oo, o). Define a new diffusion Y, on the same space as ¥, with speed
measure density given by

(x), xe[—n? n?,
iy (x) =4 m(—n?, x<-—n?
w(n?), x>n?,

except if necessary a little to the left of —n?% and a little to the right of n?
so as to make 7z, twice continuously differentiable and bounded away from zero
on (—oo, co). By the first part of the lemma, Y, can be approximated uni-
formly a.s. by transport processes Z, ., k=1, 2, ... On the other hand, the
construction of the approximating transport processes in the first part of the
lemma can also be carried out for Y, even if 72 is not bounded away from zero;
let Z,, k=1, 2, ---, be these transport processes. Because of their construction
from the same Brownian motion X, the processes Z, , and Z x Wwill differ on
the time interval [0, 1] only if X leaves the interval [—n? xn%] on [0, 1].
Then, using Chebyshev’s inequality,

PLsup |Zn s O)—Z,()|>01=P[ sup | X(O)|>n2]<n*K,
0stsi1 0sts1

where K-——Eosstllsp: | X(t)|<oco. Therefore, by the Borel-Cantelli Lemma, Z, =2,
on [0, 1] for all sufficiently large n, with probability one, for all k. Now, clearly
m,— m weakly, and therefore Y, — Y uniformly on [0, 1] a.s. (see the first
part of the proof of Lemma 1). Fix we®Q in a set of probability one where
all approximations hold, and take £>0. Let n be sufficiently large so that
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sup Y, (t, w)—Y(t, w)|<e. Then let k£ be sufficiently large so that Sup |Z, o(t, w)
—Y o(t, w)|<e. Taking n larger if necessary, we then also have sup | Z (¢, w)
—Y.(t, w)|<e for sufficiently large k. It follows that sup | Z . (t, w)— Y(t w)|<2e
for all sufficiently large k&, so Z.— Y uniformly on [O 1] as n — oo, with

probability one.
The proof is finished.

Remark 1. It is well-known that

Oy da)ds— (7 mx) dx)ds, 120
e L,

is a martingale (see [15]). This actually plays a role in the proof of Lemma 2,
but not in a direct way, because we must look at s} in the form s}=c}—d?%.

Remark 2. The probability space was actually enlarged to accommodate
the new random variables brought in for the proof.

Lemmas 1 and 2 prove the theorem, because the approximating diffusions
of Lemma 1 satisfy the conditions of Lemma 2.

The explicit construction of the transport approximation Z, given right
after the theorem is taken directly from the proof of Lemma 2.

We now give some indications on the proof of the statements made about
the transport approximation Z~,,, using the notation in Lemma 2. The time of
the first change of sign in the slope of Z,, or equivalently, the time of the first
change of slope in Z,, can be written as ¢/=1I"%, where N is an independent
random variable that takes the value k2 with probability 2%, for k=1, 2, ---.
Using the fact that 77 is exponentially distributed with parameter 2n? conditional
on 74, X(WY), k=i—1, it is easy to show (e.g. using characteristic functions),
that ¢} is exponential with parameter n® If ¢} is the time of the i-th slope
change in Z,, then, similarly, ¢?—¢/_, is exponential with parameter n?. The
first absolute slope of Z, is

~ N N
Ly=1Z,() /7= Ex 7".~'l,13’,~7|/1§l Ti.

Somewhat long but straightforward calculations yield the given values of EL,
and EL: (first, condition on N, then condition on the X(W7), and use Calculus).

CENTRO DE INVESTIGACION DEL I.P.N., MEXICO
THE UNIVERSITY OF NEw MEXIcoO, U.s. A.

References

{1] Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.

[271 Case, K. M. and Zweifel, P.F. (1967). Linear Transport Theory. Addison-Wesley,
Reading, Mass.

[3] Doob, J.L. (1953). Stochastic Processes. Wiley, New York.



[4]
(5]

(6]
£71]

3

£9]
(10]
(11]

(12]
(13]
(14]
[15]
(16]
[17]
(18]
(19]

Strong approximation of diffusion processes 103

Freedman, D. (1971). Brownian Motion and Diffusion. Holden-Day, San Francisco.
Gikhman, I.I. and Skorokhod, A.V. (1968). Stochastic Differential Equations.
Springer-Verlag, New York.

Gorostiza, L.G. (1973). An invariance principle for a class of d-dimensional
polygonal random functions. Trans. Amer. Math. Soc. Vol. 177, 413-445.

Griego, R.]J., Heath, D. and Ruiz-Moncayo, A. (1971). Almost sure convergence
of uniform transport processes to Brownian motion. Ann. Math. Stat., Vol. 42,
No. 3, 1129-1131.

Kac, M. (1956). Some Stochastic Problems in Physics and Mathematics. Magnolia
Petroleum Co. Lectures in pure and applied science. No. 2. Reprinted in part as:
(1974). A stochastic model related to the telegrapher’s equation. Rocky Mtn. J.
Math., Vol. 4, No. 3, 497-509.

Knight, F.B. (1962). On the random walk and Brownian motion. Trans. Amer.
Math. Soc., Vol. 103, 218-228.

Papanicolaou, G. (1975). Asymptotic analysis of transport processes. Bull. Amer.
Math. Soc., Vol. 81, No. 2, 330-392.

Pinsky, M. (1968). Differential equations with a small parameter and the central
limit theorem for functions defined on a finite Markov chain. Z. Wahrschein.
und Verw. Geb., Vol. 9, 101-111.

Quiring, D. (1972). Random evolutions on diffusion processes. Z. Wahrschein.
und Verw. Geb., Vol. 23, 230-244.

Skorokhod, A.V. (1965). Studies in the Theory of Random Processes. Addison-
Wesley, Reading, Mass.

Stone, C.J. (1963). Limit theorems for random walks, birth and death processes,
and diffusion processes. Illinois J. Math., Vol. 7, 638-660.

Stroock, D. W. and Varadhan, S.R.S. (1969). Diffusion processes with continuous
coefficients: T, II. Comm. Pure Appl. Math. II, 22, 345-400; 479-530.

Treves, F. (1967). Topological Vector Spaces, Distributions, and Kernels. Acade-
mic Press, New York.

Watanabe, T. (1968). Approximation of uniform transport process on a finite
interval to Brownian motion. Nagoya Math. J., Vol. 32, 297-314.

Watanabe, T. (1969). Convergence of transport process to diffusion. Proc. Japan
Acad., Vol. 45, 470-472.

Wong, E. and Zakai, M. (1969). Riemann-Stieltjes approximations of stochastic
integrals. Zeit. Wahrs., Vol. 12, 87-97.



