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1. Introduction.

It is well known that under certain conditions neutron transport phenomena,
represented by linear tra n sp o r t processes (i. e., w ith  piecew ise linear paths),
can be approximated by diffusion-type phenomena (see, e. g . [2 ]) . These condi-
tions require that th e  mean free  path goes to zero, which means essentially that
the collisions between t h e  particles undergoing tra n sp o rt occur m o re  rapidly.
T h e  resu lt is  th a t w e  have  d iffusions as lim its o f  linear transport processes.
Conversely, th e  limiting diffusions may be viewed a s  being approximated by the
transport processes, and this leads naturally to the  question  of whether general
diffusions can be approximated by linear tran sp o rt processes. In  this paper we
give an affirmative answer to this question, for one-dimensional diffusions.

In  [7 ]  it was shown that one-dimensional Brownian m otion can be approxi-
mated in  a  strong sense by a  sequence o f  linear transport processes {x } o f  a
particularly sim ple type, namely x „  represents th e  m o tio n  o f  a  particle on the
real line changing velocities between n  and — n at the ends of successive random
time intervals that a re  independent and exponentially distributed with parameter
n '.  Here we extend th e  result o f  [7 ]  to general diffusions ;  this extension is not
immediate, because any strong approximation must depend on the local behavior
of the diffusion, which in  the  case  o f Brownian motion is always the same.

It is o f interest to mention other results related to approximations of diffu-
sions. K ac [8] noted that the transport process x 7,  described above is associated
with th e  telegraph equation n - 2  u t t -F2u t = u s x .  A s  n  co, the equations converge
to the diffusion equation for Brownian m otion, It 1 =-14„12, a n d  hence one might
expect that th e  x „ converge in some way to Brownian m otion. Convergence in
distribution could probably be obtained by K ac's methods, although this was not
explicitly noted ( in  [7 ] it is shown that the convergence i s  pathwise, uniformly
o n  c o m p a c t intervals, w ith probability one). O ther weak approximations of
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certain diffusions are obtained as  special cases of resu lts o f  Pinsky [1 1 ], Wata-
n a b e  [17 , 18], a n d  G orostiza [6] . W e a k  co n v erg en ce  o f g en e ra l classes of
transport processes i n  several dimensions t o  ce rta in  c lasses o f d iffusions has
been obtained by Papanicolaou [10] (in  contrast w ith  [1 0 ] , w e are  interested in
approxim ating general diffusions b y  sim ple  transport processes). T h e r e  are
other strong approxim ations in one dim ension, e . g . K night [ 9 ]  (random walks
to Brownian motion), Quiring [12] ( jump processes to diffusion), and Stone [14]
(continuous dependence o f diffusions on  the  speed and killing measures).

Besides th e  purely mathematical question of approximating general diffusions
b y  transport processes, our m otivation for th is w ork  w as to  develop  a  method
o f simulating by com puter, transport p ro cesse s  th a t a r e  o f  in te re s t i n  applied
sciences (e. g. neutron transport, seism ic m otion). C learly, for applications, rate
of convergence results a re  needed, and w e hope to  obtain  such results in fu ture
work.

T h e  proof of o u r  approxim ation, once one h a s  so m e  in s ig h t in to  h o w  to
construct the transport process, can be done using standard techniques.

2. Results.

W e will consider regular diffusions on (— on, co), starting from  0  a t  t im e  0,
and on n a tu ra l sca le . T h e  te rm  "transport p rocess" sha ll m ean  a  process with
piecewise linear paths, in  w hich th e  tim e in terva ls corresponding  to  t h e  linear
pieces a re  exponentially distributed, all w ith th e  sam e param eter, b u t th e  slopes
m ay be ra n d o m . T h e  purpose o f th is paper is to  prove th e  following result.

T h e o re m . Given a diffusion Y, there ex ist transport processes Z „, n=1, 2,
on the same space as Y , such that Y  uniform ly  on compact time intervals
as n—> on, w ith probability  one.

S u p p o se  th e  d if fu s io n  Y  has abso lu te ly  con tinuous speed  m easure  w ith
density fiz. T hen w e can  g ive  an  explicit construction of Z „ :  T h e  consecutive
slopes are

(37--kin[2111T(0)]112

p'; =-- k i n[21rh(:E:k i 'j)] 1 / 2  ,

w here le, k2 , ••-, a re  independent and take  the  va lues 1 an d  —1 with probability
1/2 each, e7 is exponentially distributed w ith param eter n [2g/ (0)]" ; e3 , 1> 1,
is exponentially distributed with (random) parameter

1-1  )]1/2
71 [2751( E ,

and independent o f k , ;  th e  time durations o f  th e  linear p ieces a r e  independent
and exponentially distributed with parameter 2n 2 , a n d  independent o f th e  slopes.
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T h e  c o n s tru c tio n  o f  Z „  above m ay have several consecutive up-going (or
down-going) linear pieces. A simpler transport approximation 2 , can be obtained
from Z ,  by interpolating linearly each run o f  up-going (o r down-going) pieces.
T h e n , in  2 n th e  p o s it iv e  a n d  negative slopes follow one another in succession,
and their durations a re  independent and exponentially distributed with parameter
n2 . L et N be th e  first tim e there is a change of sign in  the slopes f97 ,

 i=1, 2,
of Z n , and  le t Ln b e  th e  absolute slope corresponding to the interpolation of the
first N  pieces o f  Z„; j. e ., L „  is  th e  first absolute slope o f  2 n .  T h e  expected
value and second m om ent of L n  a r e  related to arithmetic means o f  th e  pl! as
follows

1  N 2
E L„=E E 1[3'11, a n d  E L ,= - E  E 113'11 EN t=i N (N +1 )

Similarly fo r  th e  next slopes.
In  the  case  o f Brownian motion, m = 2 ,  2 , has slopes -I-n, and it coincides

with the approxim ation of [7 ].
From the  construction of Z „  it is clear that each linear piece depends only

on  the  past of Z ,  and  new independent random variables ; moreover, Z n  is pro-
duced without any recourse to the diffusion paths ; this is because the transport
paths a re  not obtained in  a  deterministic way from diffusion paths ; the diffusion
is used only i n  a  probabilistic w a y , v ia  th e  Skorohod embedding, to represent
certain  random quantities. T h is  a sp e c t o f  th e  tra n sp o r t  process is convenient
for com puter generation o f approximate diffusion paths, and approximate evalua-
tion o f stochastic integrals by th e  method o f Wong and Zakai [19].

3. P ro o fs .

T he  theorem is proved in  two parts : Lemma 1 shows that general diffusions
can be approximated by diffusions of a  special type , and  Lemma 2 show s that
certa in  d iffusions, including those o f  t h e  special t y p e  i n  Lem m a 1, can be
approximated by transport processes.

W e  w ill u s e  t h e  following few facts about diffusions (se e  e . g . [1 ], [4 ]) .
O n a  probability space (D, 9 ,  P ), where Q is th e  se t o f  continuous real functions
o n  [0, co), le t  Y  be a  regular diffusion on (—co, co), starting from 0 at time 0,
on  natural scale, with speed measure in. There is a  standard  Brownian motion
X  on  S2 such  that Y (t, to)-=X(T(t, w), w), w E Q ,  where th e  random time

transformation T (t, w ) is  the  inverse  of A l(t ,  w )= -1 "2 (x  t  w )m (d x ),  and2  - -  
is Brownian lo c a l t im e . 2 (x, t, w ) is continuous i n  (x ,  t ) ,  a n d  M (., w ) and
T (., w ) a re  continuous and  strictly increasing to co, with probability o n e .  I f  in
has density rh  (with respect to Lebesgue measure), r'n is strictly  positive, and

-t
M (t)=  —

2 0
rh (X (s ))d s . A  B o r e l  m easure on (—oc, c o )  i s  a  d if fu s io n  speed

measure if  a n d  only i f  it  is  s t r ic t ly  positive (positive on nonempty open sets),
and locally finite (finite on compact sets).
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Lemma 1 .  Given a diffusion Y , there ex ist diffusions 37 ,,, n-=- 1, 2, on the
sam e space as Y , with speed m easures that have densities infinitely differentiable
w ith compact supports, such that 37

7,—. Y  uniform ly  on f inite intervals as n co,
with probability one.

Pro o f . Stone's general Theorem  1  [1 4 ] c a n  b e  u s e d  in part here, but we
give an easy argument for completeness. Let n=1, 2, •••, be stric tly  positive
and locally finite Borel measures on ( -00, 00), and denote n i the speed measure
of Y .  Suppose m „  712 weakly, in the sense that

f (x) m n (d f (x) m(d x) a s  n o o ,

for all rea l functions f  on ( -00 , 00 ), continuous w ith compact support. Then
for each w ,S2 ,

1M ,„(t, w)=--2 - .r e . 2(x, t, (x , t, w )m (dx )= M (t, w ),

b e c a u se  2 ( ,, t ,  w )  is  c o n tin u o u s  and vanishes outside  a  f in ite  interval. Con-
sequently,

Tn(t, w)=M V (t, (t, w )= T  (t, w ),

and therefore

Y,, (t, w )=  (T  ,,(t, w ), w ) (T  (t, w), w)=Y (t, w).

37 „ is  a diffusion on the sam e space as Y, with speed m easure m ,,,  an d  Y„ Y
uniformly on finite intervals a. s., because X  has continuous paths, hence uni-
form ly continuous on fin ite  in te rva ls, and because T  pointwise and the
f a c t  th a t  T „ and T  are strictly increasing a. s. im p lie s  th a t T i, T  uniformly
on [0, 00) a. s.

Therefore w e have to  construc t m easures in ,„  su c h  th a t  in n i n  w eak ly ,
and ni,, h a s  d e n s i ty  din  in fin ite ly  d iffe ren tiab le  w ith  compact support. Let
m denote the restriction of I n  to  the interval [— n, n] and let

(x) = ( x -  y) n, „) NY) X< CO,

w h e re  {w n } i s  a  delta-function sequence, infinitely differentiable with compact
supports th a t  do not increase w ith  n .  T h e n  iit,„ is infinitely differentiable (see
[16], p.289), and since the function so,, and the m easu re  m have compact
supports, so does in n . The measure

m„(dx)=rh„,(x)dx

is stric tly  positive and locally  fin ite . W e now  show that n i  w e a k ly . Let
f  be a  real continuous function on ( -00, 00), w ith  compact support, then
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f (x) 171 ,i (d x)= f (x)A n (x) d x

= E f (x ) (7 . wn (x—y)ini t _n ,„,(dy))dx

= .r__(ÇT. . .f(x)çon(x — y)

Since f  and all yo„ have supports contained in  a bounded set, then for n suffici-
ently large

(x ) „ (x — y )d x )n ilc_n ,n )(d Y )=  .r_. ( 7 . f(x)çon(x — y)dx)m(dY)•

Since {w„} is a  delta-function sequence,

.r o f (x) (x — y) d x f (y ) ,

and again because f  and a l l  gan  have supports in a bounded set, the functions

f(x)w n (x—•)dx are uniformly bounded by a  (finite) function with compact

support ;  so, finally, since i n  is fin ite on compact sets, b y  the dominated con-
vergence theorem

(x) çon (x — y) d x) m (d y)--> ,r e f (y) m(d y) ,

which finishes the proof.

Lemma 2 .  Given a dif fusion Y  w ith speed m easure that has a  twice con-
tinuously differentiable density, there exist transport processes Zn , n=1, 2, •••, on
the same space as Y, such that Z n —. Y uniformly on compact intervals as n—. co,
with probability  one.

Pro o f . We prove the lemma for the time interval [0, 1 ] .
Let rh denote the speed measure density o f  Y . W e w ill suppose first that

M is bounded away from zero and th', A " are bounded.
Fix a positive integer n. Let Sg =0, and ,S7, i=1, 2, •••, be random variables

non-decreasing in i, and 131, i=0, 1, • ••, non-zero random variables. These random
variables will be appropriately chosen shortly. Let

--1181-11Y(S7)-Y(Si?-1) I, i =1, 2, •-,
and

I - E i =1, 2, •••.

We define the n-th transport process Z„ by

Z„ (P i) ,  Y (S7), i= 0, 1 , •••,
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with linear interpolation between the consecutive random times P i ,  i =0 , 1 , - ••
It is clear that in the interval [[ ' iL1 , P 7 ] the process Z „ has slope 1437( or — 113'i I.
Using the random change of time T  from the Brownian motion X , and denoting
1/17 7= T (S 7 ) , we have

Z„(r/)-=X (117"/), i=0, 1,

17-Ip7H , !x(w7)-x(w.7-01, i =1, 2, •••

E  s7, i=1, 2,.;=].

where
1
2

ç't1
rh(X (s))ds, j=1, 2, •••

Now we choose the S , equ iva len tly  the HP:, a s  fo llo w s. B y  the Skorohod
representation ([1 3 ], P. 163), we take the 117' so  th at X(147 7)—X(W;1 1)  has the
sam e distribution as h e ':,  w here k ,  tak es  th e  v a lu es  1  and  —1, each  w ith
probability 1/2, 7  is  ex p o n en tia lly  d is tr ib u ted  w ith  ran d o m  p a ram e te r
n [27h ( X ( W ; L i ) ) 1 1 / 2 ,  an d  independent of k ,; the h , are independent, and indepen-
dent of X , but e ';  depends on X  via its parameter (which is determined by the
Skorohod b arrie r th a t X  h its  f irs t in  th e  (i - 1 ) - th  representation). Observe
that for each i,

E[kie';IX (T/V --,)]=0,

Var X(T47 - 1)]=E [($1) 2 X(W7--01 -=(77 2 712 (X( W711))) - 1,

and hence
E[W'7 — 147. ;'_I X (W ii)]=(n 2 rh(X (W ii.))) - 1 .

Notice that X(W7)— X(Yri 1), i=1, 2, ••• , are not independent in  general.
Now we choose the 7 .  Let

137 -=k i  nE2litz(X(HP/_,))1 112 , i=1, 2,

Then r ,  which is distributed as $'.; Pfl is exponentially distributed with para-
meter 2n 2 conditioned on X(T/ITLI ) ,  and it is  easy  to  verify  th at r ,  i =1, 2, ••• ,
are independent.

Observe that in  the interval [PL .„ the process Z „ has slope 137.
W ith  th is setting , w e can  state the basic  idea o f th e  proof. For each n,

consider the random variables

.11 =  m ax  1T7—i/272 2 1,
1 -27/ 2

and

and

Also,

B „= m ax  IS7—i/271 2 1.
15 i 5 2 0
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If w e show th a t  !I n - .  0 and 0 a s  n 0 0 ,  with probability one, then, due
to  the  w ay in  w hich Z i ,  is defined , and  t o  th e  uniform  continuity of diffusion
paths on compact intervals, it w ill follow  that

lim m ax IZ„(t)—Y(t)1 , 0 a. s.,
05 1

thus proving the  theorem.

Proof that A n -. 0  a. s.

L et 97 denote the  a-algebra generated by X(147 1), j_<i. Then is 97 -

measurable, and since  T7---- T;!_ 2 +r7, and r7  is exponentia l w ith  param eter 2n2

conditional on 97_1 , w e have

E[r;'197-11=1";'-2+1/20.

Therefore {T '' —i/2n2, 211 i  i s  a m artingale , and b y  the martingale inequality
(see [31), for s>0 w e have

P[A n >c ]-5 c 2 E ( P2;,2-1 ) 2

=s-2{E E(11-1/2n2)2
i=1

27,2-1
+ 2  E  E  E(17-1/2n2)(11-1/20)} ,

but
E (1I —1 /2n2 )2 -- -- EE [ (11 —1/20) 2 I X( W7-1)]

=1/(2n 2)2 =1/47/4 ,

and since 17 and r7  are independent for i <j,

E (r7 -1 /2n 2) (r1 -1 /2 n 2 )=- 0,
hence

P[24„>s]..1/6 2 2n 2 ,

and the Borel-Cantelli Lem m a im plies that A n 0  a .  s .

Proof that B„—> 0  a. s.

F irst w e  w ill w rite  S 7 in  a  different w ay. L et

f(x)--- x
0 ( Y

o rh(z)dz)cly, — co<x<co.

T hen f "(x )=rh(x ), and Ito 's  formula ([5]( p.29) gives

-1-riz (X (s))ds-=df(X (s))— (3 o

X ( s ) 1 , 1

(
x

)dx )dX (s),

w here dX (s) is  the  Ito differential ; hence
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1
Th(X(s))ds

w J-i

x(vl) HI x(0)
=.ç

wx (v , ) y
O Y en(x)dx)dy-J ( rit(x)dx)dX(s)

° n-i 0

. r 3 0

x (v _1)
(we subtracted and added riz(x)dx[X(W.7)—X(Wy_1)D. Let0

X(W)

x(wy_1)\ x(vy_i) gt(x)dx)dy
X(s)

x ( vy_1)
rh(x)dx)dX(s)

X (W3)
=

X X Y-1)
gi(x)dx)dy, 1 =1, 2,

E E i=1, 2, •-•
y=1 j=1

So
i=1, 2,

W e will show that

m a x  1C7—i/2n2 I - ->  0  a. s.
l is2n 2

and
m a x  D I  — O0  a. s.,
1 2n2

which implies the desired result.
Using Taylor's theorem,

c3=-
2

M(X(WY-1))[X(WY) — X(WY-1)] 2

1
+ —

6  
ge(X(W.7-1))[X(WY) — X(W.7-1)73

1± -
24

gz"(g)[X(W;)—X(W s;iO34,

where q; i s  an appropriate point in an appropriate interval. Let

1g'i = -
2

A(x(wy_ i ))[x(wy)—x(wy_oi 2

1
+ —

6  
)1 2 1 (X(VV:;-1))[X(WY) — X(W.7-1)1 3, j -=1, 2, •••,
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1
" i 7 =

 24 liz"(9;)[(X(WD — X(WY-1)1 4, 1=1, 2,

and

G =  E g ,  H = E  , i = 1 ,  2, •••
i=1 J-1

So

and we will show that

and

C7=G+1- -Pf", 2,

max G—i/2n 2 1 --> 0 a. s.
15i520

max IHN —> 0 a. s.i i52n2

To work with G ,  again denoting gy the a-algebra generated by X(W7,),
j, we compute first

1E 9"1--ii= —
2  

rh(X(WY-0)EC(X(WD — X(WY-1)) 2 I 91-11

1
+ -

6
Thi (X(WI-1))E[a(W17) — X(147 1-1)) 3 I -1

-=  r h  (X(WY,) )/n 2 rh(X (W.7-1)  )+ 0=1/22'1 2 ;

hence also Eg=1/2n 2 , and

E (g3 —1 /2n2 )2 = E (g3)2 —EgVn 2 +1/4n4

E (g3)2 -1/4n 4 .

Now,

E (g3) 2 = E frh(X (W1_ 1) ) 2 EUX(WY)— X(WY-1)) 4 IX (W I - ) i l

1
+ -

3 6
Elfie(X(WI_I)) 2 EUX(WD — X(W7--1))G IX(W1--011

1
+ —

6
E{Th(X(W2-0)ge(X(W2-1))E[(X(WY) — X(W1-1)) 5 I X(WY-011

1 E  (X(Wy_ 1 )) 1 4 !/n4 [27h (X( Wy_ i ) ) ] 2 }

1 E frif(x(wy_ i )) 2 6  n6 [24z(X(Wy_ 1) ) ] 3 } +0,36

and since Th is bounded away from zero and rie is bounded, then E (g3 —1/2n2 )2

for all j, where K  is a constant.
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T h e  above com putations show  t h a t  {G' 1 2 0 ,  9 " , '}  i s  a  m artingale , and
th e re fo re  b y  the  m artinga le  inequality , using  E [4 -1 / 2 0 1 T Y ,]= 0 , f o r  s>0
w e have

2n2
P [  m a x  G  —i12712 1> EI5E - 2  E  E(g7-112n 2 )2 _ 21(162 n2 ,

15 2 2n 2i = 1

and  by  th e  Borel-Cantelli Lemma we obtain th e  desired result for G .
F or I I;' , using Chebyshev's inequality we have, for E >0,

2n2

P C  m ax  11-111>e]-5—P[E1 /1"11>s]
i=1

2n2 1 E { I 24/"(q; ) I (x(wy)—x(vvy_ i ))̂ },

b u t fit" is bounded, and

E (x(wy)— x (wy_ i))4 =4! n- 1  E(2rh(X(Wy1 1) ) ) - 2 ,

and Th is bounded aw ay from  zero, so

P [  m a x  11/71>s]5_,Kn - 2 ,
122 2 2 112

w h e re  K  i s  a  c o n s ta n t .  A g a in  t h e  Borel-Cantelli L em m a y ie lds t h e  desired
result fo r 1-1.

It rem ains to  show  th a t  m a x  1.D71-0 0 a. s. L e t  .g);' deno te  th e  a-algebra
g,s2n2

generated by X(t), Then ID ", 0 ,1 ,  is  a m artingale, because E[d7107-1]
= 0 (see [5 ] ,  p .3 0 ) .  Hence, by the m artingale inequality, using E[d7[07,]=0,
fo r  e > 0  w e have

2 n 2

P [  m a x  I.K > s ] -5.s - 2  E  E ( d ) 2 .
15i22n 2i = 1

Now (see [5], p .28),

E(d7) 2 = rh(x)dx)2 ds
X(W -1)

—147 y _0 (x (w y r— x (tr i)) 2 1,

w here K  is  a  constant, because f i t  is  bounded , a n d  x(wy) -  a n d  X (W ;)+  are
respectively th e  lo w e r a n d  upper Skorohod barriers corresponding  to  th e  j-th
representa tion . B y the Schw arz inequality,

Elcwy—Tri_0(x(vvy) —x(wy) - )21
< [E (H ry _ v v y  02

]
112[E ( x ( wy r x (H 77 )-)4 ]112 ,

but, since w e a re  o n  th e  interval [0, 1],
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E (X (Wy)' — X (W :WY ( o nTi x(0- 0 1q, x(oy<0.,

and (see [13], p. 163), th e re  is  a  constant 11/1 such that

E (Wy —14/1_02 =-EEC(Vri — 1,17 :1--02 I X (W --1)]

E [(e'j) 1 I X (14 /1_01=1114! n - 4  E (2th (X (W Y-3))) - 2

Nn -  ,

w h ere  N  i s  a  c o n s ta n t, th e  last inequality  because M  is bounded aw ay from
z e r o . In conclusion,

P [  max
is is2n 2

w h ere  L  i s  a  c o n s ta n t , a n d  o n c e  m o re  th e  Borel-Cantelli L em m a g ives the
desired result.

W e have proved th e  lem m a under th e  assum ption  tha t yh is bounded away
from  zero and th', A "  a re  bounded. N ow  w e drop this assum ption, so Y  is now
a diffusion w ith speed m easure density Th. O bserve th a t  Th is  s t r ic t ly  positive
o n  (— co, co). D efine a  new  diffusion Y „  o n  th e  sam e space a s  Y , with speed
measure density given by

{

th(x ), xEE—n2, n9,

thn  (x )  =  th( —n), x < — n 2 ,

252 (n 2), x>112,

except if  necessary a  little  to  th e  le f t o f  —n 2 ,  a n d  a  l i t t le  to  th e  r ig h t o f  n',
so  a s  to  m ake A n  twice continuously differentiable and  bounded away from  zero
on  (—co, 0 0 ). B y  t h e  f i r s t  p a r t  o f  t h e  lem m a, Y „  can be approximated uni-
form ly a. s . b y  tra n sp o r t processes Z n , k=1, 2, ••• O n  th e  o ther hand, the
construction of the approximating transport processes i n  t h e  f i r s t  p a r t  o f  th e
lem m a can also be carried out for Y , even if 7h is not bounded away from zero ;
let 2 „, k=1, 2, • • , be these  transport processes. Because o f  th e ir  construction
from  th e  same Brownian m o tio n  X , the  processes Z„, a n d  2„ w ill differ on
th e  tim e  in te rv a l [0 , 1 ] o n ly  i f  X  leaves t h e  in te rv a l [—n 2 , /22 ]  o n  [0, 1].
Then, using Chebyshev's inequality,

P  suP Zn k (t) —  k 015. P [ s u p  X (t) l>712 ]_.<12- 2  If ,01-1 ' osti

w here  K =E  s u p  X(t)l< co . T here fo re , by  th e  Borel-Cantelli Lem m a, z„,„=2,,
05t5I

o n  [0, 1] fo r all sufficiently la rge  n, with probability one, for a ll k. Now, clearly
mn, m  w eakly, a n d  th e re fo re  17 ,. Y  uniform ly o n  [0, 1] a. s . (see the  first
p a rt o f  th e  proof o f  Lemma 1 ) .  F ix  w  (2  i n  a  s e t  o f  probability one where
a l l  approxim ations hold , and t a k e  > 0 .  L e t  n  be  suffic ien tly  la rg e  so  th a t
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sup I Y „(t, w)—Y(t, w)1<e. Then le t k be sufficiently large so that sup 1Z„, k (t, w)
Il l 0 5 1 _

-  If„(t, w )1<e. T ak ing  n  larger if  necessary, we then also h av e  sup I Z k (t, w)

—Y„(t, w)I<s fo r  sufficiently large k. It follows that sup 12 k  (t, w)— Y (t, w)1<2eoLtg,
f o r  all sufficiently la rg e  k , s o  2 „ - Y  uniformly o n  [0 , 1 ] as n 09, with
probability one.

T h e  proof is finished.

Remark 1. It is well-known that

fx(t)
m (x )d x )

Cs
ds— . Th(x)dx)ds, t>_00 o 0

is  a m artingale (see [1 5 ] ) .  T his actually plays a  role in  th e  proof o f Lemma 2,
b u t not in  a  d irec t w ay , because we m ust look a t  s) in  t h e  form s3 -=c3—c/3.

Remark 2 .  T h e  probability space was actually enlarged to accommodate
th e  new random variables brought in  fo r  th e  proof.

Lemmas 1 and 2  prove t h e  theorem, because th e  approximating diffusions
o f  Lemma 1 satisfy the conditions of Lemma 2.

T h e  explicit construc tion  o f the  transport approx im ation  Z „  given right
after th e  theorem is taken directly from th e  proof o f  Lemma 2.

We now give some ind ica tio n s o n  the  proof o f  th e  statements made about
the transport approxim ation 2„, using th e  n o ta tion  in  Lemma 2. T h e  time of
th e  first change of sign in  th e  slope o f Z„, o r  equivalently, th e  time o f  th e  first
change of slope in  2,„ can be written a s  7,1= r -k , w here N  is  an  independent
random variable th a t tak e s  th e  v a lu e  k  with probability 2- k, f o r  k=-1, 2, •-•
Using th e  fact that is exponentially distributed w ith param eter 2n2 conditional
on n, X (W ) , it is easy to  show  (e. g. using characteristic functions),
that z-'  is exponential with parameter 0 .  If i s  t h e  tim e o f  t h e  i-th slope
c h a n g e  in  2„, then, sim ilarly, T- 7-77 1 is exponential w ith parameter n2 . The
first absolute slope o f  2 7, is

Ln=127,(r))111'1= E

Somewhat long but straightforward calculations yield th e  given  v a lu e s  o f  EL.
and E L  (first, condition on N , then condition on the X (W )),  and use Calculus).
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