On the Cauchy problem for some non-kowalewskian equations with distinct characteristic roots

Ву

Jiro TAKEUCHI

(Communicated by Prof. S. Mizohata, Oct. 11, 1978)

1. Introduction.

Consider a linear partial differential operator

$$(1.1) \quad P(x; D_x, D_t) = D_t^m + a_1(x; D_x)D_t^{m-1} + \cdots + a_m(x; D_x), (x, t) \in \mathbb{R}^t \times [0, T] \equiv \Omega$$

where $a_i(x; D_x)$ $(1 \le i \le m)$ is a linear partial differential operator in \mathbb{R}^l .

It is said that $P(x; D_x, D_t)$ defined by (1.1) is non-kowalewskian if

(1.2)
$$\max_{1 \le j \le m} \text{ order } a_j(x; D_x)/j \equiv b > 1.$$

Denote the homogeneous part of order jb of $a_i(x; D_x)$ by $a_i^0(x; D_x)$.

(1.3)
$$P^{0}(x;\xi,\tau) = \tau^{m} + a_{1}^{0}(x;\xi)\tau^{m-1} + \dots + a_{m}^{0}(x;\xi)$$

is said to be the principal symbol of $P(x; D_x, D_t)$. $D_t = -i \frac{\partial}{\partial t}$, $D_x = -i \frac{\partial}{\partial x}$.

Consider the forward and backward Cauchy problem

(1.4)
$$\begin{cases} P(x; D_x, D_t)u(x, t) = f(x, t) & \text{on } \Omega \\ D_t^j u(x, t_0) = g_j(x), & j = 0, 1, \dots, m-1 \text{ for any } t_0 \in [0, T]. \end{cases}$$

As is well known, it is necessary for the forward and backward Cauchy problem (1.4) to be H^{∞} -wellposed that the characteristic equation in τ $P^{0}(x;\xi,\tau)=0$ has the only real roots for any $(x,\xi)\in R^{l}\times R^{l}$. (cf. Petrowskii [4] and Mizohata [3]). As a corollary it follows from H^{∞} -wellposedness that $b=\max\{\text{order }a_{j}/j; 1\leq j\leq m\}$ is an integer if we assume that b>1.

Denote the characteristic roots by $\lambda_i(x, \xi)$, i.e.

(1.5)
$$P^{0}(x; \xi, \tau) = \prod_{j=1}^{m} (\tau - \lambda_{j}(x, \xi)).$$

From now on we only consider the case where b=2.

We shall give sufficient conditions for the forward and backward Cauchy problem to have a unique solution in $L^2(\mathbb{R}^l)$.

We assume the following conditions.

Condition (A). The characteristic roots $\lambda_j(x, \xi)$ are non-zero, real and distinct for $(x, \xi) \in \mathbb{R}^l \times \mathbb{R}^l \setminus 0$, more precisely,

(1.6)
$$\inf_{\substack{1 \le j \le m \\ (x, \xi) = j_1 \le j_1 - 1}} |\lambda_j(x, \xi)| > 0,$$

(1.7)
$$\inf_{\substack{j \neq k \\ (x,\xi) \in \mathbb{R}^l \times S^{l-1}}} |\lambda_j(x,\xi) - \lambda_k(x,\xi)| > 0.$$

Condition (B). For each j,

(1.8)
$$H_{\lambda_j}\varphi_j(x,\,\xi) = h_j(x,\,\xi)$$

has a C^{∞} bounded real solution $\varphi_i(x, \xi)$ homogeneous of degree 0 in ξ . Here

(1.9)
$$H_f g = \{f, g\} = \sum_{j=1}^{l} \left(\frac{\partial f}{\partial \xi_j} \frac{\partial g}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial g}{\partial \xi_j} \right)$$

denotes the Poisson bracket and H_f the Hamilton field,

(1.12)
$$M_{1}(x, \xi) = \begin{pmatrix} 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & & & & \vdots \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ -a_{m}^{1}(x, \xi/|\xi|)|\xi| & \cdots & -a_{1}^{1}(x, \xi/|\xi|)|\xi| \end{pmatrix},$$

 $a_j^1(x, \xi)$ is the homogeneous part of degree 2j-1 of $a_j(x, \xi)$,

(1.13)
$$M'_{1}(x, \xi) = M_{1}(x, \xi) - \frac{1}{2i} \sum_{j=1}^{l} \frac{\partial^{2}}{\partial x_{j} \partial \xi_{j}} M_{2}(x, \xi),$$

 $l_j(x,\,\xi)$ (resp. $r_j(x,\,\xi)$) is a left (resp. right) null vector of $\lambda_j(x,\,\xi)I-M_2(x,\,\xi)$ which is homogeneous of degree 0 in ξ such that $l_j(x,\,\xi)r_k(x,\,\xi)=\delta_{j\,k}$ (Kronecker's delta) and $f_{(\beta)}^{(\alpha)}(x,\,\xi)=(iD_\xi)^\alpha D_x^\beta f(x,\,\xi)$.

For the global existence theorem in C^{∞} class for (1.8), we refer the reader to Duistermaat-Hörmander [1, Theorems 6.4.2 and 6.4.3.].

Our result is the following

Theorem 1.1. Assume that the conditions (A) and (B) hold. For $f(t)=f(x, t) \in C^1([0, T]; H^0(\mathbf{R}^l))$ and $(g_0(x), \dots, g_{m-1}(x)) \in H^{2m}(\mathbf{R}^l) \times H^{2(m-1)}(\mathbf{R}^l) \times \dots \times H^2(\mathbf{R}^l)$, the forward and backward Cauchy problem (1.4) has a unique solution

(1.14)
$$u(t)=u(x, t) \in C^0([0, T]; H^{2m}) \cap C^1([0, T]; H^{2(m-1)}) \cap \cdots \cap C^{m-1}([0, T]; H^2)$$

and energy inequality

$$(1.15) |||u(t)|||^2 \le C(T) \Big\{ |||u(t_0)||^2 + \Big| \int_{t_0}^t ||f(s)||^2 ds \Big| \Big\}, t, t_0 \in [0, T]$$

holds where

(1.16)
$$|||u(t)|||^2 = \sum_{j=1}^m ||D_t^{j-1}u(t)||_{2(m-j)}^2$$

and $\|\cdot\|_k$ is $H^k(\mathbf{R}^l)$ -norm.

As a special case, consider an operator with constant leading coefficients as 2-evolution, that is, an operator whose principal part $P^0(x; D_x, D_t)$ defined by (1.3) has constant coefficients. In this case Condition (B) reduces to a more explicit condition as follows.

Condition (B')

$$(1.17) \varphi_{j}(x, \xi) = \int_{0}^{\left\langle \frac{\nabla \xi \lambda_{j}}{|\nabla \xi \lambda_{j}|}, x \right\rangle} l_{j}(\xi) \operatorname{Im} M_{1}\left(x - t \frac{\nabla_{\xi} \lambda_{j}}{|\nabla_{\xi} \lambda_{j}|}, \frac{\xi}{|\nabla_{\xi} \lambda_{j}|}\right) r_{j}(\xi) dt$$

is a bounded function on $\mathbb{R}^l \times \mathbb{R}^l \setminus 0$, $j=1, \dots, m$.

As a corollary of Theorem 1.1 we have the following

Theorem 1.2. Let $P(x; D_x, D_t)$ be an operator with constant leading coefficients as 2-evolution. Assume that the conditions (A) and (B') hold. Then the same assertion as Theorem 1.1 holds.

2. Reduction to a system and its diagonalization.

Let $P(x; D_x, D_t)$ be a differential operator;

(2.1)
$$P(x; D_x, D_t) = D_t^m + a_1(x; D_x)D_t^{m-1} + \dots + a_m(x; D_x) \quad \text{on} \quad \Omega$$

where

(2.2)
$$a_j(x; D_x) = \sum_{|\alpha| \le 2^j} a_{\alpha j}(x) D_x^{\alpha}, \quad a_{\alpha j}(x) \in \mathcal{B}^{\infty}(\mathbb{R}^l).$$
 (i. e. $b=2$ in (1.2))

Put.

(2.3)
$$a_j^s(x;\xi) = \sum_{|\alpha| = 2j-s} a_{\alpha j}(x) \xi^{\alpha}, \quad s=0, 1, \dots, 2j.$$

We consider the Cauchy problem

(2.4)
$$\begin{cases} P(x; D_x, D_t)u(x, t) = f(x, t) & \text{on } \Omega \\ D_t^i u(x, t_0) = g_j(x), & j = 0, 1, \dots, m-1, & t_0 \in [0, T]. \end{cases}$$

We put

(2.5)
$$u_{j}(x, t) = (\Lambda^{2} + 1)^{m-j} D_{t}^{j-1} u(x, t), \quad j=1, \dots, m,$$

(2.6)
$$U(x, t) = {}^{t}(u_{1}(x, t), \dots, u_{m}(x, t)).$$

Then we have a system of the following form

(2.7)
$$\begin{cases} D_t U(x, t) = M(x; D_x) U(x, t) + F(x, t) \\ U(x, t_0) = G(x). \end{cases}$$

Here $M(x; D_x) = M_2 + M_1 + M_0$ is a pseudodifferential operator of order 2, M_j is a pseudodifferential operator of homogeneous order j (j=1, 2) and M_0 is a pseudodifferential operator of order 0. The symbol $\sigma(M_i)=M_i(x,\xi)$ of $M_i(x;D_x)$ has the following form

(2.8)
$$M_{2}(x;\xi) = \begin{pmatrix} 0 & |\xi|^{2} & 0 \\ & \ddots & & \\ & & |\xi|^{2} \\ & & & |\xi|^{2} \\ -a_{m}^{0}(x,\xi/|\xi|)|\xi|^{2} & -a_{1}^{0}(x;\xi/|\xi|)|\xi|^{2} \end{pmatrix},$$

$$(2.9) M_{1}(x;\xi) = \begin{bmatrix} 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ -a_{m}^{1}(x;\xi/|\xi|)|\xi| & \cdots & -a_{1}^{1}(x;\xi/|\xi|)|\xi| \end{bmatrix}.$$

$$(2.10) F(x, t) = {}^{t}(0, \dots, 0, f),$$

$$(2.11) G(x) = {}^{t}((\Lambda^{2}+1)^{m-1}g_{0}(x), (\Lambda^{2}+1)^{m-2}g_{1}(x), \cdots, g_{m-1}(x)).$$

The Condition (A) implies that the system (2.7) is diagonalizable as follows.

Proposition 2.1. Under the Condition (A) there exist a diagonal pseudodifferential operator $\mathfrak{D}(x;D_x)$ of order 2 and a pseudodifferential operator $N(x;D_x)$ of order 0 such that

$$(2.12) N(x; D_x)(D_t - M(x; D_x)) \equiv (D_t - \mathcal{D}(x; D_x))N(x; D_x), \quad (\text{mod. } S^{\flat})$$

(2.13)
$$|\det N(x;\xi)| \ge \delta > 0$$
 for $(x;\xi) \in \mathbb{R}^l \times \mathbb{R}^l$.

Proof. At first consider the equation

$$(2.14) N(x; D_x)M(x; D_x) \equiv \mathcal{D}(x; D_x)N(x; D_x) \quad (\text{mod. } S^1).$$

We put

$$N(x; \xi) = N_0(x; \xi) + N_{-1}(x; \xi)$$
,
 $\mathcal{D}(x; \xi) = \mathcal{D}_2(x; \xi) + \mathcal{D}_1(x; \xi)$,

 $N_i(x;\xi)$, $\mathcal{D}_i(x,\xi)$ are homogeneous of degree j in ξ .

Then (2.14) implies that

(2.15)
$$N_0(x;\xi)M_2(x;\xi) = \mathcal{D}_2(x;\xi)N_0(x;\xi).$$

Since

(2.16)
$$\det(\tau I - M_2(x;\xi)) = P^0(x;\xi,\tau) = \prod_{i=1}^m (\tau - \lambda_i(x,\xi)),$$

we have

(2.17)
$$\mathcal{D}_{2}(x;\xi) = \begin{bmatrix} \lambda_{1}(x,\xi) & & & 0 \\ & \ddots & & \\ & & \ddots & & \\ 0 & & & \lambda_{m}(x,\xi) \end{bmatrix}$$

and

(2.18)
$$N_0(x;\xi) = \begin{pmatrix} l_1(x,\xi) \\ \vdots \\ l_m(x,\xi) \end{pmatrix}.$$

Here $l_j(x, \xi)$ is a left nullvector of $\lambda_j(x, \xi)I - M_2(x; \xi)$ which is homogeneous of degree 0 in ξ such that

(2.19)
$$|\det N_0(x;\xi)| \ge \delta > 0 \quad \text{for } (x,\xi) \in \mathbb{R}^t \times \mathbb{R}^t.$$

Next, consider the equation (2.12) (mod. S^0), that is,

(2.20)
$$N_0(x; D)M_2(x; D) + (N_0(x; D)M_1(x; D) + N_{-1}(x; D)M_2(x; D))$$

$$\equiv \mathcal{D}_2(x; D)N_0(x; D) + (\mathcal{D}_2(x; D)N_{-1}(x; D) + \mathcal{D}_1(x; D)N_0(x, D))$$
(mod. S^0).

It follows from (2.20) that

(2.21)
$$\sum_{|\alpha|=1} N_0^{(\alpha)}(x;\xi) M_{2(\alpha)}(x;\xi) + (N_0(x;\xi) M_1(x;\xi) + N_{-1}(x;\xi) M_2(x;\xi))$$

$$= \sum_{|\alpha|=1} \mathcal{D}_2^{(\alpha)}(x,\xi) N_{0(\alpha)}(x;\xi) + (\mathcal{D}_2(x;\xi) N_{-1}(x;\xi) + \mathcal{D}_1(x;\xi) N_0(x;\xi)).$$

We put $N_{-1}(x;\xi)N_0^{-1}(x;\xi)=\tilde{N}_{-1}(x,\xi)=(\tilde{n}_{ij}(x,\xi))$, then we have

$$(2.22) \qquad \tilde{N}_{-1}(x\,;\,\xi)\mathcal{D}_{2}(x\,;\,\xi) - \mathcal{D}_{2}(x\,;\,\xi)\tilde{N}_{-1}(x\,;\,\xi)$$

$$= \mathcal{D}_{1}(x,\,\xi) - \left\{ N_{0}(x\,;\,\xi)M_{1}(x\,;\,\xi)N_{0}^{-1}(x\,;\,\xi) - N_{0}^{(\alpha)}(x\,;\,\xi)M_{2(\alpha)}(x\,;\,\xi)N_{0}^{-1}(x\,;\,\xi) \right\}$$

$$- \sum_{|\alpha|=1} (\mathcal{D}_{2}^{(\alpha)}(x\,;\,\xi)N_{0(\alpha)}(x\,;\,\xi) - N_{0}^{(\alpha)}(x\,;\,\xi)M_{2(\alpha)}(x\,;\,\xi)N_{0}^{-1}(x\,;\,\xi) \right\}$$

We put $R_1(x, \xi) = (r_{ij}(x, \xi))$ where

(2.23)
$$R_{1}(x, \xi) = N_{0}(x; \xi) M_{1}(x; \xi) N_{0}^{-1}(x; \xi) - \sum_{|\alpha|=1} (\mathcal{D}_{2}^{(\alpha)}(x; \xi) N_{0(\alpha)}(x; \xi) - N_{0}^{(\alpha)}(x; \xi) M_{2(\alpha)}(x; \xi) N_{0}^{-1}(x; \xi).$$

Then we choose $\mathcal{D}_{1}(x;\xi)$ such that

(2.24)
$$\mathcal{D}_1(x;\xi) = \text{diagonal of } R_1(x,\xi).$$

Define

(2.25)
$$\tilde{n}_{ij}(x;\xi) = \begin{cases} (\lambda_i(x,\xi) - \lambda_j(x,\xi))^{-1} r_{ij}(x;\xi) & (i \neq j) \\ 0 & (i = j). \end{cases}$$

Then $\mathcal{D}_1(x;\xi)$ and $N_{-1}(x;\xi)=\tilde{N}_{-1}(x;\xi)N_0(x;\xi)$ satisfy (2.21). This completes the proof.

3. Condition (C); $\mathcal{D}^*(x, D) \equiv \mathcal{D}(x, D)$ (mod. S^0).

In this section under the condition (A) we analyse the condition (B). We start from the following

Proposition 3.1. Let P(x, D) be a scalar pseudodifferential operator on \mathbb{R}^l with symbol $\sigma(P) = p(x, \xi) = p_2(x, \xi) + p_1(x, \xi) + \cdots$ (p_j is homogeneous of degree j in ξ). Denote by $P^*(x, D)$ formally adjoint operator to P(x, D). Then we have

(3.1)
$$P^*(x, D) \equiv P(x, D) \pmod{S^0}$$

if and only if

(3.2)
$$p_2(x, \xi)$$
 and $p_1'(x, \xi)$ are real-valued functions

where $p_i(x, \xi)$ is the subprincipal symbol of P(x, D), i.e.

(3.3)
$$p_1'(x, \xi) = p_1(x, \xi) - \frac{1}{2i} \sum_{j=1}^{l} \frac{\partial^2}{\partial x_j \partial \xi_j} p_2(x, \xi).$$

Proof. By well known formula for pseudodifferential operators we have

(3.4)
$$\sigma(P^*) = \sum_{|\alpha| \ge 0} \frac{(-1)^{|\alpha|}}{\alpha!} \overline{p_{(\alpha)}^{(\alpha)}(x, \xi)}$$
$$= \overline{p_2(x, \xi)} + \left(\overline{p_1(x, \xi)} + \sum_{|\alpha| = 1} \frac{(-1)^{|\alpha|}}{\alpha!} \overline{p_{2(\alpha)}^{(\alpha)}(x, \xi)}\right) + \cdots.$$

Thus $P^*(x, D) \equiv P(x, D) \pmod{S^0}$ holds if and only if

(3.5)
$$\begin{cases} \overline{p_2(x,\,\xi)} = p_2(x,\,\xi) \\ \overline{p_1(x,\,\xi)} + \sum_{|\alpha|=1} \frac{(-1)^{|\alpha|}}{\alpha!} \overline{p_{2(\alpha)}^{(\alpha)}(x,\,\xi)} = p_1(x,\,\xi) \,, \end{cases}$$

that is,

(3.6)
$$\begin{cases} \operatorname{Im} \ p_2(x, \, \xi) = 0, \\ \operatorname{Im} \ p_1'(x, \, \xi) = \operatorname{Im} \left(p_1(x, \, \xi) - \frac{1}{2} \sum_{|\alpha| = 1} p_{2(\alpha)}^{(\alpha)}(x, \, \xi) \right) = 0. \end{cases}$$
 (Q. E. D.)

Now we back to section 2 and analyse the condition (B). We calculate the subprincipal symbol of $\mathcal{D}(x, D)$.

Lemma 3.2. We have

(3.7)
$$\mathcal{D}'_{1}(x, \xi) = \mathcal{D}_{1}(x, \xi) - \frac{1}{2} \sum_{|\alpha|=1} \mathcal{D}^{(\alpha)}_{2(\alpha)}(x, \xi)$$

$$= diagonal \ of \ \Big\{ N_{0}(x, \xi) M'_{1}(x, \xi) N^{-1}_{0}(x, \xi)$$

$$- \frac{1}{2} \sum_{|\alpha|=1} \left[(\mathcal{D}_{2}(x, \xi) N_{0(\alpha)}(x, \xi) N^{-1(\alpha)}_{0}(x, \xi) \right]$$

$$\begin{split} &-N_{0(\alpha)}(x,\,\xi)M_{2}(x,\,\xi)N_{0}^{-1(\alpha)}(x,\,\xi))\\ &-(\mathcal{D}_{2}(x,\,\xi)N_{0}^{(\alpha)}(x,\,\xi)N_{0(\alpha)}^{-1}(x,\,\xi)-N_{0}^{(\alpha)}(x,\,\xi)M_{2}(x,\,\xi)N_{0(\alpha)}^{-1}(x,\,\xi))\\ &-2(\mathcal{D}_{2}^{(\alpha)}(x,\,\xi)N_{0(\alpha)}(x,\,\xi)-\mathcal{D}_{2(\alpha)}(x,\,\xi)N_{0}^{(\alpha)}(x,\,\xi))N_{0}^{-1}(x,\,\xi)]\Big\} \end{split}$$

where $M_i(x, \xi)$ is the subprincipal symbol of M(x, D) defined by (1.13).

Proof. Using the identities

$$N_0(x, \xi)M_2(x, \xi)N_0(x, \xi)^{-1} = \mathcal{D}_2(x, \xi)$$

and

$$\mathcal{D}_{1}(x, \xi) = \text{diagonal of } R_{1}(x, \xi)$$
,

where

$$R_{1}(x, \xi) = N_{0}(x, \xi)M_{1}(x, \xi)N_{0}^{-1}(x, \xi) + \sum_{|\alpha|=1} (N_{0}^{(\alpha)}(x, \xi)M_{2(\alpha)}(x, \xi) - \mathcal{D}_{2}^{(\alpha)}(x, \xi)N_{0(\alpha)}(x, \xi))N_{0}^{-1}(x, \xi),$$

we have the above result after elementary but tedious calculus. (Q. E. D.)

From the above lemma we have

Lemma 3.3. Under the condition (A),

(3.8)
$$\operatorname{Im} \mathcal{D}_{1}'(x, \xi) = 0$$

holds if and only if

(3.9)
$$l_{j}(x, \xi)(\operatorname{Im} M'_{1}(x, \xi))r_{j}(x, \xi) - \frac{1}{2i} \sum_{|\alpha|=1} [l_{j(\alpha)}(x, \xi)(\lambda_{j}(x, \xi)I - M_{2}(x, \xi))r'_{j}^{(\alpha)}(x, \xi) - l'_{j}^{(\alpha)}(x, \xi)(\lambda_{j}(x, \xi)I - M_{2}(x, \xi))r_{j(\alpha)}(x, \xi)] - \{\lambda_{i}(x, \xi), l_{j}(x, \xi)\}r_{i}(x, \xi) = 0, \quad i=1, \dots, m,$$

Remark 3.4. The condition (3.9) is invariant for the choice of the null vectors satisfying $l_j(x, \xi)r_k(x, \xi) = \delta_{jk}$ except the last term $\{\lambda_j(x, \xi), l_j(x, \xi)\}r_j(x, \xi)$.

We replace the null vectors $l_i(x, \xi)$, $r_i(x, \xi)$ by

$$\tilde{l}_j(x, \xi) = \exp(\varphi_j(x, \xi))l_j(x, \xi), \quad \tilde{r}_j(x, \xi) = \exp(-\varphi_j(x, \xi))r_j(x, \xi),$$

(3.10)
$$N_0(x, \xi) = \begin{cases} \exp(\varphi_1(x, \xi))l_1(x, \xi) \\ \dots \\ \exp(\varphi_m(x, \xi))l_m(x, \xi) \end{cases}, \quad l_j(x, \xi)r_k(x, \xi) = \delta_{jk},$$

then we have

(3.11)
$$\{\lambda_{j}(x, \xi), \tilde{l}_{j}(x, \xi)\}\tilde{r}_{j}(x, \xi)$$

$$= \{\lambda_{j}(x, \xi), \varphi_{j}(x, \xi)\} + \{\lambda_{j}(x, \xi), l_{j}(x, \xi)\}r_{j}(x, \xi)$$

$$= H_{\lambda_{j}}\varphi_{j}(x, \xi) + \{\lambda_{j}(x, \xi), l_{j}(x, \xi)\}r_{j}(x, \xi) .$$

Thus we have proved

Lemma 3.5. Under the condition (A)

(3.8)
$$\operatorname{Im} \mathcal{D}_{1}'(x, \xi) = 0$$

holds if and only if there exists a C^{∞} real-valued solution homogeneous of degree 0 in ξ for the equation

(3.12)
$$H_{\lambda_{j}}\varphi_{j}(x, \xi) = h_{j}(x, \xi), \quad j=1, \dots, m,$$

where $h_i(x, \xi)$ is defined by (1.10).

Boundedness of a solution of (3.12) needs for N(x, D) to satisfy the condition (2.13).

As a conclusion of this section we have proved the following

Proposition 3.6. The conditions (A) and (B) imply the condition (C); $\mathcal{D}^*(x, D) \equiv \mathcal{D}(x, D)$ (mod. S⁰) and the condition $|\det N(x, \xi)| \ge \delta > 0$ for $(x, \xi) \in \mathbb{R}^l \times \mathbb{R}^l$.

4. Energy inequality.

In this section we derive an energy inequality for solutions of the equation (1.4). (b=2). Let

$$(4.1) P(x; D, D_t) = D_t^m + a_1(x, D)D_t^{m-1} + \dots + a_m(x, D), D = D_x,$$

be an operator satisfying the conditions (A) and (B). Consider the equation

(4.2)
$$P(x; D, D_t)u(x, t) = f(x, t), \quad (x, t) \in \Omega.$$

As in section 2, we reduce (4.2) to a system

(4.3)
$$L(x; D, D_t)U(x, t) = D_t U(x, t) - M(x, D)U(x, t) = F(x, t)$$

where

$$(4.4) U(x, t) = {}^{t}((\Lambda^{2}+1)^{m-1}u(x, t), (\Lambda^{2}+1)^{m-2}D_{t}u(x, t), \cdots, D_{t}^{m-1}u(x, t)),$$

and

At first we derive an energy inequality for solutions of (4.3). Let U(x, t)=U(t) be a solution of (4.3) with

$$(4.6) F(x, t) = F(t) \in C^0([0, T]; \overset{\mathfrak{m}}{\prod} H^0(\mathbf{R}^t))$$

such that

$$(4.7) U(t) \in C^0([0, T]; \prod^m H^2(\mathbf{R}^l)) \cap C^1([0, T]; \prod^m H^0(\mathbf{R}^l))$$

In section 2 we have diagonalized (4.3) as follows:

$$(4.8) (D_t - \mathcal{D}(x, D))N(x, D)U(x, t) = B(x, D)U(x, t) + N(x, D)F(x, t).$$

Here \mathcal{D} is a diagonal pseudodifferential operator of order 2, B and N pseudodifferential operators of order 0 such that $|\det \sigma(N)(x, \xi)| \ge \delta > 0$.

If $U(t) \in C^0([0, T]; \overset{m}{\Pi} H^2) \cap C^1([0, T]; \overset{m}{\Pi} H^0)$, then $NU(t) \in C^0([0, T]; \overset{m}{\Pi} H^2) \cap C^1([0, T]; \overset{m}{\Pi} H^0)$. We set

(4.9)
$$V(x, t) = N(x, D)U(x, t).$$

It follows from (4.8) that

(4.10)
$$\frac{d}{dt} \|V(t)\|^2 = 2 \operatorname{Re} \left(\frac{d}{dt} V(t), V(t) \right)$$
$$= 2 \operatorname{Re} (i \mathcal{D} V(t), V(t)) + 2 \operatorname{Re} (i \mathcal{B} U(t) + i \mathcal{N} F(t), V(t)).$$

By virtue of the condition (C) we have

$$(4.11) |\operatorname{Re}(i\mathcal{D}V(t), V(t))| \leq \operatorname{const} ||V(t)||^{2}.$$

Thus we have

(4.12)
$$\frac{d}{dt} \|V(t)\|^2 \leq \operatorname{const}(\|V(t)\|^2 + \|U(t)\|^2) + \|NF(t)\|^2.$$

We set

(4.13)
$$[U(t)]^2 = ||NU(t)||^2 + \beta ||(\Lambda^2 + 1)^{-1}U(t)||^2, \quad (\beta > 0 \text{ sufficiently large}).$$

Then [U(t)] defines an equivalent L^2 -norm to ||U(t)||, uniformly in $t \in [0, T]$. Operate $(\Lambda^2+1)^{-1}$ to (4.3) we have

(4.14)
$$\frac{d}{dt} (\Lambda^2 + 1)^{-1} U(t) = i(\Lambda^2 + 1)^{-1} M U(t) + i(\Lambda^2 + 1)^{-1} F(t) .$$

It follows from (4.14) that

$$(4.15) \qquad \frac{d}{dt} \| (\Lambda^2 + 1)^{-1} U(t) \|^2 \leq \operatorname{const} \| U(t) \|^2 + \| (\Lambda^2 + 1)^{-1} F(t) \|^2.$$

From (4.12) and (4.15) it follows that

$$(4.16) \qquad \frac{d}{dt} \lfloor U(t) \rfloor^2 \leq \gamma \lfloor U(t) \rfloor^2 + \lfloor F(t) \rfloor^2 \qquad (\gamma > 0).$$

This implies that

$$[U(t)]^2 \leq C(T) \Big\{ [U(t_0)]^2 + \Big| \int_{t_0}^t [F(s)]^2 ds \Big| \Big\}.$$

Thus we have proved the following

Proposition 4.1. Assume that the conditions (A) and (B) hold for (4.3). For $F(t) \in C^0([0, T]; \overset{m}{\Pi} H^0)$ and solutions $U(t) \in C^0([0, T]; \overset{m}{\Pi} H^2) \cap C^1([0, T]; \overset{m}{\Pi} H^0)$ of (4.3) the energy inequality

$$(4.18) ||U(t)||^2 \leq C(T) \Big\{ ||U(t_0)||^2 + \Big| \int_{t_0}^t ||F(s)||^2 ds \Big| \Big\}$$

holds where C(T) is a positive constant independent of U(t) and F(t).

In view of (4.2), (4.3) and (4.4) we have the following

Proposition 4.2. Assume that the conditions (A) and (B) hold for (4.1). For $f(t) \in C^0([0, T]; H^0)$ and solutions $u(t) \in C^0([0, T]; H^{2m}) \cap C^1([0, T]; H^{2(m-1)}) \cap \cdots \cap C^{m-1}([0, T]; H^2)$ of (4.2) the energy inequality

$$||u(t)||^2 \leq C(T) \Big\{ ||u(t_0)||^2 + \Big| \int_{t_0}^t ||f(s)||^2 ds \Big| \Big\}$$

holds where

(4.20)
$$|||u(t)||^2 = \sum_{j=1}^m ||D_t^{j-1}u(t)||_{2(m-j)}^2.$$

5. Proof of Theorem 1.1.

As in section 4 we define an inner product (,)_{\mathcal{H}} and a norm $\|\cdot\|_{\mathcal{H}}$ equivalent to the usual $L^2(R^l)$ -inner product and $L^2(R^l)$ -norm as follows:

(5.1)
$$(U(t), V(t))_{\mathcal{H}} = (N(x, D)U(t), N(x, D)V(t))$$

$$+ c_0((\Lambda^2 + 1)^{-1}U(t), (\Lambda^2 + 1)^{-1}V(t))$$
for large positive c_0 (fixed),

$$(5.2) ||U(t)||_{\mathfrak{A}} = \sqrt{\overline{U(t)}, \overline{U(t)}|_{\mathfrak{A}}} \text{for } U(t), V(t) \in C^0([0, T]; \prod^m H^0).$$

By virtue of (2.13) there exist positive constants $c_1(T)$, $c_2(T)$ such that

(5.3)
$$c_1(T) \| U(t) \| \le \| U(t) \|_{\mathcal{H}} \le c_2(T) \| U(t) \|$$
 for $t \in [0, T]$.

We define the Hilbert space $\mathcal{H} = \prod_{i=1}^{m} H^{0}(\mathbf{R}^{i})$ with norm $\|\cdot\|_{\mathcal{H}}$. We have reduced (2.4) to a system (2.7). We take for the domain of definition D(M) of M(x, D) the Sobolev space $\prod_{i=1}^{m} H^{2}(\mathbf{R}^{i})$.

Lemma 5.1. Assume that the conditions (A) and (B) hold. Then there exist a constant β and a positive constant δ_0 such that

(5.4)
$$\|(\lambda I - iM(x, D))U\|_{\mathscr{H}}^2 \ge (|\lambda| - \beta)^2 \|U\|_{\mathscr{H}}^2 + \delta_0 \|U\|_2^2$$

holds for real $\lambda(|\lambda| > \beta)$ and $U(x) \in \prod^m H^2$ which shows that $(\lambda I - iM)$ is one-to-one from $\prod^m H^2$ to $\prod^m H^0$ and the image $(\lambda I - iM) \prod^m H^2$ is closed in $\prod^m H^0$.

Poof. For
$$U(x) \in \prod^{m} H^{2}(\mathbf{R}^{l})$$
 and real λ we have

(5.5)
$$\|(\lambda I - iM)U\|_{\mathcal{H}}^2 = \lambda^2 \|U\|_{\mathcal{H}}^2 - 2\lambda \operatorname{Re}(iMU, U)_{\mathcal{H}} + \|MU\|_{\mathcal{H}}^2,$$

(5.6)
$$2 \operatorname{Re}(iMU, U)_{\mathscr{A}} = i\{(MU, U)_{\mathscr{A}} - (U, MU)_{\mathscr{A}}\}$$

$$= i\{NMU, NU) - (NU, NMU)\}$$

$$+ ic_0\{((\Lambda^2 + 1)^{-1}MU, (\Lambda^2 + 1)^{-1}U)$$

$$-((\Lambda^2 + 1)^{-1}U, (\Lambda^2 + 1)^{-1}MU)\}$$

$$= i\{(\mathscr{D}NU, NU) - (NU, \mathscr{D}NU)\}$$

$$+ i\{(BU, NU) - (NU, BU)\}$$

$$+ ic_0\{((\Lambda^2 + 1)^{-1}MU, (\Lambda^2 + 1)^{-1}U)$$

$$-((\Lambda^2 + 1)^{-1}U, (\Lambda^2 + 1)^{-1}MU)\} .$$

By virtue of the condition (C) we have

(5.7)
$$|(\mathfrak{D}NU, NU) - (NU, \mathfrak{D}NU)|$$

$$= |((\mathfrak{D} - \mathfrak{D}^*)NU, NU)| \leq \gamma_1 ||NU||^2 (\gamma_1 > 0).$$

Thus (5.6) and (5.7) imply that

(5.8)
$$|2 \operatorname{Re}(iMU, U)_{\mathcal{A}}| \leq \gamma ||U||_{\mathcal{A}}^{2} \qquad (\gamma > 0).$$

Therefore for large λ we have

By the definition and the condition (A) we have

(5.10)
$$||MU||_{\mathcal{H}}^{2} = ||NMU||^{2} + c_{0}||(\Lambda^{2} + 1)^{-1}MU||^{2}$$

$$\ge ||\mathcal{D}NU||^{2} - c_{1}||U||^{2}$$

$$\ge \delta_{1}||NU||_{2}^{2} - c_{2}||U||^{2}$$

and

(5.11)
$$||NU||_{2}^{2} \ge c_{3}||(\Lambda^{2}+1)NU||^{2} \qquad (c_{3}>0)$$

$$\ge c_{3}||N'(\Lambda^{2}+1)U||^{2}-c_{4}||U||^{2}.$$

where N' is a pseudodifferential operator of order 0 such that

$$|\det \sigma(N')(x,\xi)| \ge \delta_2 > 0.$$

From (5.11) and (5.12) it follows that

(5.10) and (5.13) imply that

$$||MU||_{\mathscr{A}}^2 \ge \delta_0 ||U||_2^2 - c_5 ||U||^2.$$

(5.4) follows from (5.9) and (5.14).

(Q. E. D.)

Lemma 5.2. The formally adjoint operator $L^*(x; D, D_t) = D_t - M^*(x, D)$ satisfies the conditions (A) and (B) for some diagonalizer $\tilde{N}(x, D)$. More precisely we have

(5.15)
$$\widetilde{N}(x, D)L^*(x; D, D_t) \equiv (D_t - \mathcal{D}^*(x, D))\widetilde{N}(x, D) \pmod{S^0}$$

and

$$(5.16) |\det \sigma(\tilde{N})(x, \xi)| \ge \delta' > 0 for (x, \xi) \in \mathbb{R}^t \times \mathbb{R}^t.$$

From Lemmas 5.1 and 5.2 we have

Lemma 5.3. For $V(x) \in \prod^m H^2(\mathbb{R}^l)$ and real $\lambda(|\lambda| \ge \beta')$ we have

where

(5.18)
$$||V||_{\mathcal{X}}^2 = ||\tilde{N}(x, D)V||^2 + c||(\Lambda^2 + 1)^{-1}V||^2$$
 (c: large positive constant) which is an equivalent norm to $\prod_{i=1}^{m} H^0$ -norm $||\cdot||$.

Lemma 5.4. The image $(\lambda I - iM) \prod_{i=1}^{m} H^{2}$ is dense in $\prod_{i=1}^{m} H^{0}$ for large $|\lambda|$, $\lambda \in \mathbb{R}$.

Proof. Suppose that the image is not dense in $\prod_{i=1}^{m} H^{0}$. Then there exists a $V(x) \in \prod_{i=1}^{m} H^{0}$, $V \neq 0$ such that

(5.19)
$$((\lambda I - iM)U, V) = 0 \quad \text{for all } U \in \prod^m H^2,$$

a fortiori for all $U \in \prod^m \mathcal{D}$. This implies that

(5.20)
$$(\lambda I + iM^*)V = 0$$
.

It follows from (5.20) that $M^*V \in \prod^m H^o$. Denote by $\phi(\xi)$ a $C^\infty(\mathbf{R}^l)$ function such that

(5.21)
$$\phi(\xi) = \begin{cases} 1 & \text{for } |\xi| \leq 1 \\ 0 & \text{for } |\xi| \geq 2 \end{cases}$$
 and
$$0 \leq \phi(\xi) \leq 1 .$$

Define $\psi_n(\xi) = \psi\left(\frac{\xi}{n}\right)$, $\psi_n^{(\nu)}(\xi) = \left(\frac{\partial}{\partial \xi}\right)^{\nu} \psi_n(\xi)$ and

(5.22)
$$\psi_n(D)f(x) = (2\pi)^{-i} \int e^{ix\xi} \psi_n(\xi) \hat{f}(\xi) d\xi.$$

It follows from (5.21) that $\psi_n(D)V(x)$ and $\psi_n(D)M^*V$ belong to H^{∞} . Applying the inequality (5.17) we have

(5.23)
$$0 = \|\phi_n(D)(\lambda I + iM^*)V\|_{\mathcal{X}}^2$$
$$= \|(\lambda I + iM^*)\phi_n(D)V - i\Gamma M^*, \ \phi_n(D) \cap V\|_{\mathcal{X}}^2$$

$$\begin{split} & \geq \frac{1}{2} \, \| (\lambda I + i M^*) \phi_n(D) \, V \|_{\mathcal{K}}^2 - \| [M^*, \, \phi_n(D)] \, V \|_{\mathcal{K}}^2 \\ & \geq \frac{1}{2} (\|\lambda\| - \beta')^2 \|\phi_n(D) \, V \|_{\mathcal{K}}^2 + \frac{\delta'_0}{2} \, \|\phi_n(D) \, V \|_2^2 - c \, \| [M^*, \, \phi_n(D)] \, V \|^2 \, . \end{split}$$

Expanding the commutator we have

(5.24)
$$[M^*, \, \phi_n(D)] V(x) = \sum_{|\mathbf{s}|\nu| \leq 2} \frac{(-1)^{|\nu|}}{\nu!} D_x^{\nu} M^*(x, \, D) \phi_n^{(\nu)}(D) V(x) + R_2(V)$$
 and

The order of $D_x^{\nu}M^*$ is 2, thus we have

(5.26)
$$\| [M^*, \psi_n(D)] V(x) \|^2 \leq \operatorname{const} \sum_{1 \leq |\nu| \leq 2} \| \psi_n^{(\nu)}(D) V \|_2^2 + \operatorname{const} n^{-2} \| V \|^2 .$$

From (5.23) and (5.26) it follows that

(5.27)
$$0 \ge (|\lambda| - \beta')^2 \|\phi_n(D)V\|^2 + \delta' \|\phi_n(D)V\|_2^2 - \text{const} \sum_{\substack{n \in \mathbb{N} \\ n \neq n}} \|\phi_n^{(n)}(D)V\|_2^2 - \text{const} n^{-2} \|V\|^2.$$

More generally we have

(5.28)
$$0 \ge (|\lambda| - \beta')^2 \|\phi_n^{(\nu)}(D)V\|^2 + \delta' \|\phi_n^{(\nu)}(D)V\|_2^2 - \text{const } \sum_{|\nu|+1 \le |\nu'| \le 2} \|\phi_n^{(\nu')}(D)V\|_2^2 - \text{const } n^{-2} \|V\|^2.$$

For large positive R, it follows from (5.27) and (5.28) that

$$0 \ge (|\lambda| - \beta')^2 \|\phi_n(D)V\|^2 + \delta' \|\phi_n(D)V\|_2^2$$

$$- \operatorname{const} \sum_{|\nu| = 1} \|\phi_n^{(\nu)}(D)V\|_2^2$$

$$- \operatorname{const} \sum_{|\nu| = 2} \|\phi_n^{(\nu)}(D)V\|_2^2$$

$$- \operatorname{const} n^{-2} \|V\|^2.$$

$$\begin{split} (5.29)_2 & 0 \geq (|\lambda| - \beta')^2 \sum_{|\nu| = 1} R \|\phi_n^{(\nu)}(D)V\|^2 + \delta' \sum_{|\nu| = 1} R \|\phi_n^{(\nu)}(D)V\|_2^2 \\ & - \mathrm{const} \sum_{|\nu| = 2} R \|\phi_n^{(\nu)}(D)V\|_2^2 \\ & - \mathrm{const} \ n^{-2} R \|V\|^2 \,. \end{split}$$

$$0 \ge (|\lambda| - \beta')^2 \sum_{|\nu| = 2} R^2 \|\phi_n^{(\nu)}(D)V\|^2 + \delta' \sum_{|\nu| = 2} R^2 \|\phi_n^{(\nu)}(D)V\|_2^2$$

$$-\operatorname{const} n^{-2} R^2 \|V\|^2.$$

Summing up these inequalities we have

(5.30)
$$0 \ge (|\lambda| - \beta')^2 \sum_{0 \le |\nu| \le 2} R^{|\nu|} \|\phi_n^{(\nu)}(D) V\|^2$$
$$-\operatorname{const}(1 + R + R^2) n^{-2} \|V\|^2$$
$$+ \delta' \|\phi_n(D) V\|_2^2$$

$$+(\delta' R - \text{const}) \sum_{|\nu|=1}^{n} \|\phi_n^{(\nu)}(D) V\|_2^2 +(\delta' R^2 - \text{const } R - \text{const}) \sum_{|\nu|=2}^{n} \|\phi_n^{(\nu)}(D) V\|_2^2.$$

We choose a constant R such that

$$\begin{cases} \delta' R - \text{const} > 0, \\ \delta' R^2 - \text{const} R - \text{const} > 0. \end{cases}$$

Since $\|\phi_n(D)V\| \to \|V\|$ as $n \to \infty$, there exists a positive constant n_0 such that

$$\|\phi_n(D)V\|^2 \ge \frac{1}{2} \|V\|^2$$
 for $n \ge n_0$.

Thus for $n \ge n_0$, we have

(5.31)
$$0 \ge \frac{1}{2} (|\lambda| - \beta')^2 ||V||^2 - \operatorname{const} (1 + R + R^2) n^{-2} ||V||^2 + (|\lambda| - \beta')^2 \sum_{1 \le |\nu| \le 2} R^{|\nu|} ||\phi_n^{(\nu)}(D) V||^2.$$

If $||V|| \neq 0$ and $|\lambda|$ is large, then the second member of (5.31) is positive which is contradiction. (Q. E. D.)

From Lemmas 5.1 and 5.4 we have the following fundamental

Proposition 5.5. Under the conditions (A) and (B) there exists a constant β such that for any real λ with $|\lambda| > \beta$ the operator $(\lambda I - iM)$ defines a one-to-one mapping of $\prod^m H^2$ onto $\prod^m H^0$, i. e., the resolvent $(\lambda I - iM)^{-1}$ exists for any $|\lambda| > \beta$, $\lambda \in \mathbb{R}^1$ and the inequality

(5.32)
$$\|(\lambda I - iM)^{-n}\|_{\mathcal{L}(\Pi H^0, \Pi H^0)} \leq \frac{c}{(|\lambda| - \beta)^n} (n = 1, 2, \dots)$$

holds where c is a positive constant independent of λ and n.

Corollary of Proposition 5.5. If $U(x) \in \prod^m H^0(\mathbb{R}^l)$ such that $MU(x) \in \prod^m H^0$, then $U(x) \in \prod^m H^2(\mathbb{R}^l)$, i. e.,

(5.33)
$$D(M) = \prod_{i=1}^{m} H^{2} = \{U(x) \in \prod_{i=1}^{m} H^{0}; MU(x) \in \prod_{i=1}^{m} H^{0}\}.$$

Proposition 5.5 implies immediately the existence of a unique solution of the Cauchy problem (1.4) by applying the Hille-Yosida theorem. (Q. E. D.)

6. Examples.

In this section we give some examples of operators satisfying the conditions (A) and (B) (or (B')). At first consider the first order operators in t.

Example 6.1. (Takeuchi [5], [6])

(6.1)
$$P(x; D_x, D_t) = D_t + D_x^2 + a(x)D_x, \quad x \in \mathbb{R}^1, \quad t \in [0, T].$$

In this case we can choose $\varphi(x, \xi)$ in condition (B') such that

(6.2)
$$\varphi(x, \xi) = \varphi(x) = -\frac{1}{2} \int_{0}^{x} \text{Im } a(y) dy,$$

(6.3)
$$N(x, \xi) = N(x) = e^{\varphi(x)} \quad \text{(in (3.10))}.$$

If we assume the following condition (B'):

(6.4)
$$\int_0^x \text{Im } a(y)dy \quad \text{is a bounded function,}$$

then the Theorem 1.1 holds for this operator (m=1). The following equality holds:

(6.5)
$$\exp\left(-\frac{1}{2}\int_0^x \operatorname{Im} a(y)dy\right)(D_t + D_x^2 + a(x)D_x)$$

$$\equiv (D_t + D_x^2 + \operatorname{Re} a(x)D_x)\exp\left(-\frac{1}{2}\int_0^x \operatorname{Im} a(y)dy\right) \quad (\text{mod. } S^0)$$

Example 6.2.

(6.6)
$$P(x; D_x, D_t) = D_t + a(x)D_x^2 + b(x)D_x, \quad x \in \mathbb{R}^1, \quad t \in [0, T].$$

In this case we assume the following conditions:

Condition (A): a(x) is a real-valued function such that

$$M \ge |a(x)| \ge \delta > 0$$
, $x \in \mathbb{R}^1$

Condition (B): $\int_0^x \frac{\text{Im } b(y)}{a(y)} dy \text{ is a bounded function.}$

(Under the condition (A) this is equivalent to the condition: $\int_0^x \text{Im } b(y)dy$ is bounded). Then Theorem 1.1 holds for this operator (m=1). We choose $\varphi(x,\xi)$ and $N(x,\xi)$ as follows:

(6.7)
$$\varphi(x, \xi) = \varphi(x) = -\frac{1}{2} \left\{ \int_{0}^{x} \frac{\text{Im } b(y)}{a(y)} dy + \log|a(x)| \right\},$$

(6.8)
$$N(x, \xi) = N(x) = e^{\varphi(x)} = \frac{1}{\sqrt{|a(x)|}} \exp\left(-\frac{1}{2} \int_{0}^{x} \frac{\operatorname{Im} b(y)}{a(y)} dy\right).$$

The following equality holds:

(6.9)
$$N(x)(D_t + a(x)D_x^2 + b(x)D_x)$$

$$\equiv (D_t + D_x a(x)D_x + \operatorname{Re} b(x)D_x)N(x) \quad (\text{mod. } S^0).$$

Example 6.3.

(6.10)
$$P(x; D_x, D_t) = D_t + |D_x|^2 + \sum_{j=1}^{l} b_j(x)D_j, \quad x \in \mathbb{R}^l, \quad t \in [0, T], \quad D_j = -i\frac{\partial}{\partial x_j}.$$

We choose $\varphi(x, \xi)$ in the condition (B') as follows:

(6.11)
$$\varphi(x, \xi) = -\frac{1}{2} \int_0^{\langle \xi_i, x \rangle} \sum_{j=1}^l \operatorname{Im} b_j \left(x - t \frac{\xi}{|\xi|} \right) \frac{\xi_j}{|\xi|} dt,$$

(6.12)
$$N(x, \xi) = \exp(\varphi(x, \xi)).$$

Condition (B'): $\varphi(x, \xi)$ defined by (6.11) is bounded implies the conclusion of Theorem 1.1 (m=1). The following equality holds:

(6.13)
$$\exp(\varphi(x, D_x)) \Big(D_t + |D_x|^2 + \sum_{j=1}^l b_j(x) D_j \Big)$$

$$\equiv \Big(D_t + |D_x|^2 + \sum_{j=1}^l \operatorname{Re} b_j(x) D_j \Big) \exp(\varphi(x, D_x)) \quad (\text{mod. } S^0).$$

Example 6.4.

(6.14)
$$\begin{cases} P(x; D_x, D_t) = D_t + A(x, D_x), \\ A(x, D_x) = \sum_{i,j=1}^{l} a_{ij}(x)D_iD_j + \sum_{j=1}^{l} b_j(x)D_j, & x \in \mathbb{R}^l, t \in [0, T]. \end{cases}$$

We assume the condition (A):

(6.15)
$$\begin{cases} a_{ij}(x) \text{ are real-valued functions satisfying } a_{ij}(x) = a_{ji}(x) \\ \text{and } \left| \sum_{i,j=1}^{l} a_{ij}(x) \xi_i \xi_j \right| \ge \delta |\xi|^2, \quad (\delta > 0). \end{cases}$$

Our procedure is interpreted as follows: At first we transform A(x, D) by $N(x, D) = \exp(\varphi(x, D))$ where $\varphi(x, D)$ is still to be determined:

(6.16)
$$\exp(\varphi(x, D))A(x, D) \equiv \widetilde{A}(x, D)\exp(\varphi(x, D)), \quad (\text{mod. } S^0).$$

Here the symbol of $\widetilde{A}(x, D)$ has the following form:

(6.17)
$$\sigma(\tilde{A}) = a_2(x, \xi) + a_1(x, \xi) + i\{a_2(x, \xi), \varphi(x, \xi)\},$$

(6.18)
$$\begin{cases} a_2(x, \xi) = \sum_{i, j=1}^{l} a_{ij}(x) \xi_i \xi_j, \\ a_1(x, \xi) = \sum_{j=1}^{l} b_j(x) \xi_j. \end{cases}$$

Next we calculate the formal adjoint \widetilde{A}^* to \widetilde{A} . For real-valued $\varphi(x,\xi)$,

(6.19)
$$\sigma(\tilde{A}^*) = a_2(x, \xi) + \overline{a_1(x, \xi)} + \frac{2}{i} \sum_{i,j=1}^{l} \frac{\partial a_{ij}(x)}{\partial x_i} \xi_j - i \{a_2(x, \xi), \varphi(x, \xi)\}.$$

We decompose $\tilde{A}(x, D)$ as follows:

(6.20)
$$\widetilde{A}(x, D) = \frac{\widetilde{A} + \widetilde{A}^*}{2} + i \frac{\widetilde{A} - \widetilde{A}^*}{2i},$$

where

(6.21)
$$\sigma\left(\frac{\widetilde{A}+\widetilde{A}^*}{2}\right) = a_2(x, \xi) + \operatorname{Re} a_1(x, \xi) + \frac{1}{i} \sum_{i,j=1}^{l} \frac{\partial a_{ij}(x)}{\partial x_i} \xi_j,$$

(6.22)
$$\sigma\left(\frac{\widetilde{A}-\widetilde{A}^*}{2i}\right) = \{a_2(x,\,\xi),\,\varphi(x,\,\xi)\} + \operatorname{Im}\,a_1(x,\,\xi) + \sum_{i,\,j=1}^l \frac{\partial a_{ij}(x)}{\partial x_i}\,\xi_j.$$

Finally we choose $\varphi(x, \xi)$ homogeneous of degree 0 such that condition (B) holds;

(6.23)
$$\{a_2(x, \xi), \varphi(x, \xi)\} + \sum_{j=1}^{l} \operatorname{Im} b_j(x)\xi_j + \sum_{i,j=1}^{l} \frac{\partial a_{ij}(x)}{\partial x_i} \xi_j = 0.$$

Then the Theorem 1.1 (m=1) and the following equality hold:

(6.24)
$$\exp(\varphi(x, D)) \Big(D_t + \sum_{i,j=1}^l a_{ij}(x) D_i D_j + \sum_{j=1}^l b_j(x) D_j \Big)$$

$$\equiv \Big(D_t + \sum_{i,j=1}^l D_i a_{ij}(x) D_j + \sum_{j=1}^l \operatorname{Re} b_j(x) D_j \Big) \exp(\varphi(x, D)), \quad (\text{mod. } S^0).$$

Now we give an example of differential operators of order 2 in t (i. e. m=2).

Example 6.5.

(6.25)
$$P(x; D_x, D_t) = D_t^3 - |D_x|^4 + \sum_{j=1}^l b_j(x) D_j D_t + \sum_{|\alpha|=3} c_\alpha(x) D_x^{\alpha},$$

$$x \in \mathbb{R}^l, \quad t \in [0, T].$$

(6.26)
$$P^{0}(\xi, \tau) = \tau^{2} - |\xi|^{4} = (\tau - |\xi|^{2})(\tau + |\xi|^{2}).$$

It follows from (6.26) that the condition (A) is satisfied. In the notations of section 1, $a_1^0(x, \xi) = 0$, $a_2^0(x, \xi) = -|\xi|^4$, $a_1^1(x, \xi) = \sum_{j=1}^l b_j(x)\xi_j$, $a_2^1(x, \xi) = \sum_{|\alpha|=3} c_\alpha(x)\xi^\alpha$, $\lambda_1(\xi) = |\xi|^2$, $\lambda_2(\xi) = -|\xi|^2$. Consider the equation

$$P(x; D, D_t)u(x, t)=f(x, t)$$
.

Putting $U(x, t)=t((\Lambda^2+1)u(x, t), D_tu(x, t))$, we have

(6.27)
$$D_t U(x, t) = M(x, D) U(x, t) + F(x, t),$$

where

(6.28)
$$\begin{cases} M(x, D) \equiv M_2(D) + M_1(x, D) & (\text{mod. } S^0), \\ \sigma(M_2) = \begin{bmatrix} 0 & |\xi|^2 \\ |\xi|^2 & 0 \end{bmatrix}, \\ \sigma(M_1) = \begin{bmatrix} 0 & 0 \\ -\sum_{|\alpha|=3} c_{\alpha}(x) \left(\frac{\xi}{|\xi|}\right)^{\alpha} |\xi| & -\sum_{j=1}^{l} b_j(x) \frac{\xi_j}{|\xi|} |\xi| \end{bmatrix}. \end{cases}$$

We take a diagonalizer N(x, D) as follows.

$$(6.29) \begin{cases} N(x, D) = N_0(x, D) + N_{-1}(x, D), \\ \sigma(N_0) = \begin{pmatrix} e^{\varphi_1(x, \xi)} & e^{\varphi_1(x, \xi)} \\ -e^{\varphi_2(x, \xi)} & e^{\varphi_2(x, \xi)} \end{pmatrix} \\ \text{where real-valued functions } \varphi_j(x, \xi) \text{ are still to be determined,} \\ \sigma(N_{-1}) = \begin{pmatrix} -\frac{1}{4} \left(a_2^1 \left(x, \frac{\xi}{|\xi|} \right) - a_1^1 \left(x, \frac{\xi}{|\xi|} \right) \right) e^{\varphi_1(x, \xi)} \\ \frac{1}{4} \left(a_2^1 \left(x, \frac{\xi}{|\xi|} \right) + a_1^1 \left(x, \frac{\xi}{|\xi|} \right) \right) e^{\varphi_2(x, \xi)} \\ \frac{1}{4} \left(a_2^1 \left(x, \frac{\xi}{|\xi|} \right) + a_1^1 \left(x, \frac{\xi}{|\xi|} \right) \right) e^{\varphi_2(x, \xi)} \end{pmatrix} |\xi|^{-1}. \end{cases}$$

Then we have

(6.30)
$$N(x, D)M(x, D) \equiv \mathcal{D}(x, D)N(x, D) \pmod{S^0},$$

where

$$(6.31) \begin{cases} \mathscr{D}(x, D) = \mathscr{D}_{2}(D) + \mathscr{D}_{1}(x, D) = \begin{bmatrix} \tilde{\lambda}_{1}(x, D) & 0 \\ 0 & \tilde{\lambda}_{2}(x, D) \end{bmatrix}, \\ \sigma(\tilde{\lambda}_{1}) = |\xi|^{2} - \frac{1}{2} \Big(\sum_{|\alpha| = 3} c_{\alpha}(x) \Big(\frac{\xi}{|\xi|} \Big)^{\alpha} + \sum_{j=1}^{l} b_{j}(x) \frac{\xi_{j}}{|\xi|} \Big) |\xi| - \frac{2}{i} \sum_{j=1}^{l} \xi_{j} \frac{\partial \varphi_{1}}{\partial x_{j}}, \\ \sigma(\tilde{\lambda}_{2}) = -|\xi|^{2} + \frac{1}{2} \Big(\sum_{|\alpha| = 3} c_{\alpha}(x) \Big(\frac{\xi}{|\xi|} \Big)^{\alpha} - \sum_{j=1}^{l} b_{j}(x) \frac{\xi_{j}}{|\xi|} \Big) |\xi| + \frac{2}{i} \sum_{j=1}^{l} \xi_{j} \frac{\partial \varphi_{2}}{\partial x_{j}}. \end{cases}$$

We decompose $\sigma(\tilde{\lambda}_1)$ and $\sigma(\tilde{\lambda}_2)$ as follows:

$$(6.32) \quad \sigma(\tilde{\lambda}_{1}) = \left[|\xi|^{2} - \frac{1}{2} \left(\sum_{|\alpha|=3} \operatorname{Re} c_{\alpha}(x) \left(\frac{\xi}{|\xi|} \right)^{\alpha} + \sum_{j=1}^{l} \operatorname{Re} b_{j}(x) \frac{\xi_{j}}{|\xi|} \right) |\xi| \right]$$

$$+ 2i \left[\sum_{j=1}^{l} \frac{\xi_{j}}{|\xi|} \frac{\partial \varphi_{1}}{\partial x_{j}} - \frac{1}{4} \left(\sum_{|\alpha|=3} \operatorname{Im} c_{\alpha}(x) \left(\frac{\xi}{|\xi|} \right)^{\alpha} + \sum_{j=1}^{l} \operatorname{Im} b_{j}(x) \frac{\xi_{j}}{|\xi|} \right) \right] |\xi| ,$$

$$(6.33) \quad \sigma(\tilde{\lambda}_{2}) = \left[-|\xi|^{2} + \frac{1}{2} \left(\sum_{|\alpha|=3} \operatorname{Re} c_{\alpha}(x) \left(\frac{\xi}{|\xi|} \right)^{\alpha} - \sum_{j=1}^{l} \operatorname{Re} b_{j}(x) \frac{\xi_{j}}{|\xi|} \right) |\xi| \right]$$

$$-2i \left[\sum_{j=1}^{l} \frac{\xi_{j}}{|\xi|} \frac{\partial \varphi_{2}}{\partial x_{j}} - \frac{1}{4} \left(\sum_{|\alpha|=3} \operatorname{Im} c_{\alpha}(x) \left(\frac{\xi}{|\xi|} \right)^{\alpha} - \sum_{j=1}^{l} \operatorname{Im} b_{j}(x) \frac{\xi_{j}}{|\xi|} \right) \right] |\xi|.$$

We choose the functions $\varphi_i(x, \xi)$ such that

$$(6.34) \qquad \sum_{j=1}^{l} \frac{\xi_{j}}{|\xi|} \frac{\partial \varphi_{1}}{\partial x_{j}} - \frac{1}{4} \left(\sum_{|\alpha|=3} \operatorname{Im} c_{\alpha}(x) \left(\frac{\xi}{|\xi|} \right)^{\alpha} + \sum_{j=1}^{l} \operatorname{Im} b_{j}(x) \frac{\xi_{j}}{|\xi|} \right) = 0,$$

and

$$(6.35) \qquad \sum_{j=1}^{l} \frac{\xi_{j}}{|\xi|} \frac{\partial \varphi_{2}}{\partial x_{i}} - \frac{1}{4} \left(\sum_{|\alpha|=3} \operatorname{Im} c_{\alpha}(x) \left(\frac{\xi}{|\xi|} \right)^{\alpha} - \sum_{j=1}^{l} \operatorname{Im} b_{j}(x) \frac{\xi_{j}}{|\xi|} \right) = 0$$

hold, that is,

(6.36)
$$\varphi_{1}(x, \xi) = \frac{1}{4} \int_{0}^{\langle \xi_{j}, x \rangle} \left\{ \sum_{|\alpha|=3} \operatorname{Im} c_{\alpha} \left(x - t \frac{\xi}{|\xi|} \right) \left(\frac{\xi}{|\xi|} \right)^{\alpha} + \sum_{j=1}^{l} \operatorname{Im} b_{j} \left(x - t \frac{\xi}{|\xi|} \right) \frac{\xi_{j}}{|\xi|} \right\} dt,$$

and

(6.37)
$$\varphi_{2}(x, \xi) = \frac{1}{4} \int_{0}^{\langle \xi_{j}, x \rangle} \left\{ \sum_{|\alpha|=3} \operatorname{Im} c_{\alpha} \left(x - t \frac{\xi}{|\xi|} \right) \left(\frac{\xi}{|\xi|} \right)^{\alpha} - \sum_{j=1}^{l} \operatorname{Im} b_{j} \left(x - t \frac{\xi}{|\xi|} \right) \frac{\xi_{j}}{|\xi|} \right\} dt.$$

The condition (B) is as follows: Functions defined by (6.36) and (6.37) are bounded. Then Theorem 1.1 (m=2) holds.

IRON AND STEEL
TECHNICAL COLLEGE

References

- [1] J. J. Duistermaat and L. Hörmander, Fourier integral operators II, Acta Math., 128 (1972) 183-269.
- [2] J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications, 1, 2, Dunod, Paris, 1968.
- [3] S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 (1961/62) 109-127.
- [4] I.G. Petrowskii, Uber das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nichtanalytischen Funktionen, Bull. Univ. Etat Moscou, Sér. Int. 1, fasc. 7 (1938) 1-74.
- [5] J. Takeuchi, A necessary condition for the well-posedness of the Cauchy problem for a certain class of evolution equations, Proc. Japan Acad. 50 (1974) 133-137.
- [6] ——, On the well-posedness of the Cauchy problem, Bull. Iron & Steel Tech. Coll. 9 (1975) 11-33.

Remarks added in proof.

Remark 1. Condition (A) implies that

$$\sum_{k=1}^{l} \xi_k \frac{\partial \lambda_j}{\partial \xi_k} (x, \xi) = 2\lambda_j(x, \xi) \neq 0 \quad \text{on} \quad T^* \mathbf{R}^l \setminus 0$$

by Euler's identity, i.e., $\nabla_{\xi}\lambda_{j}(x,\xi)\neq0$ on $T^{*}R^{l}\setminus0$. Thus any integral curve of the Hamilton field $H_{\lambda_{j}}$ is regular and defined on R^{1} by virtue of the homogeneity of $\lambda_{i}(x,\xi)$ (homogeneous of degree 2 in ξ), $(1\leq j\leq m)$.

Remark 2. Condition (B) is stated more explicitly as follows. (cf. Duistermaat-Hörmander [1]).

- (B-1) No complete integral curve of the Hamilton field H_{λ_j} is contained in a compact subset of $T^*R^l \setminus 0$, $(1 \le j \le m)$,
- (B-2) for every compact subset K of $T^*R^l \setminus 0$ there exists a compact subset K' of $T^*R^l \setminus 0$ such that every compact interval on an integral curve (of the Hamilton field H_{λ_j}) with end points in K contained in K', $(1 \le j \le m)$.

From conditions (B-1) and (B-2) it follows that

(1.8)
$$H_{\lambda}, \varphi_{j}(x, \xi) = h_{j}(x, \xi)$$

has a real-valued $C^{\infty}(T^*R^l\setminus 0)$ solution $\varphi_j(x,\xi)$ for any real-valued $C^{\infty}(T^*R^l\setminus 0)$ function $h_j(x,\xi)$, $(1\leq j\leq m)$.

(B-3) For a function $h_j(x, \xi)$ defined by (1.10) which is $C^{\infty}(T^*R^l \setminus 0)$ real-valued, bounded on $R^l \times S^{l-1}$ and homogeneous of degree 1 in ξ , (1.8) has a real-valued, bounded $C^{\infty}(T^*R^l \setminus 0)$ solution $\varphi_j(x, \xi)$ homogeneous of degree 0 in ξ , $(1 \le j \le m)$.

In the case where the operator $P(x; D_x, D_t)$ defined by (1.1) and (1.2) with b=2 has the principal part $P^0(x; D_x, D_t)$ defined by (1.3) with constant coefficients, conditions (B-1) and (B-2) are automatically satisfied.