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1 . Introduction.

Consider a  linear p artia l differential operator

(1.1) P(x ;D x , D t )=DT ± ai(x ; D.)Dr - 1 + • • • -Fa.(x; (x , t)ER Ix [0, T ]=S 2

where cti(x;D x ) (1__i m) is  a  linear partia l differential operator in R '.
It is said that P(x ;D x , DO defined by (1.1) is  non-kowalewskian if

(1.2) max order ci1 (x ;D x ) lj--=-b>1
1 5 )5 M

Denote th e  homogeneous p a r t  o f  order jb  o f  a,(x ; D x )  by (21
0 (x ; D i ).

(1.3) P°(x ; e, r)=rm-F- a?(x ; e)s-m - ' ± •-• al(x ; e)

a a is said to be the  principal symbol o f P(x; Dx, D1). iat a x  •

Consider th e  forward an d  backward Cauchy problem

P(x ; D x , D t )u(x , t)=f (x , t) o n  Q
(1.4)

Dit u(x , t 0 )=2 .,(x ), j=0, 1 , •••, m -1 fo r  a n y  t o E T ].

A s is well known, it is necessary for the forward and backward Cauchy problem
(1.4) to be IP-wellposed that th e  characteristic equation in y  P°(x ; C. r )= 0  has
th e  only real roots for any (x , e)ER' x (cf. Petrowskii [4] and Mizohata [3]).
As a corollary it follows from 1-1- -wellposedness that b=max {order aj lj;lj__<m }
is  a n  integer if  we assum e that b>1.

Denote th e  characteristic roots by 2,(x, e), j. e.

(1.5) P°(x ; e, r)= (z- — 2,(x , C)).
J =1

From now o n  we only consider the  case  where b=2.
We shall give sufficient conditions for th e  forward a n d  backward Cauchy

problem to have  a  un ique  so lu tion  in  1,2 (R').
We assum e the following conditions.
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Condition (A ). T he characteristic roots 21 (x, C) are non-zero, real a n d  dis-
tinct for (x, e)eltlx1V\0, more precisely,

(1.6) inf 121(x, C)1 >0 ,
C X ,e)E R Ix S 1 - 1

(1.7) inf 12;(x, e) - 2k(x, e)I >0.
j* I t

( x , e )E R I x S 1 -1 -

Condition (B ). For each j,

(1.8) e)=h,(x, e)

has a  C-  bounded real solution y .,(x, e) homogeneous of degree 0 in C. H ere

(1.9) 111g= { f ,  g } . = ./1( adef j  aaxg ; : fr., al)
denotes the Poisson bracket and H f  the Hamilton field,

(1.10) h.(x, e)=11(x, e)(Im Mii (x, e))r,(x, e)— {2,(x, e), , e)} , e)

— 2
1

i
- [lica)(x, e)(2 ;(x, e)l — M2(x, e)) 11 )(x,

—1(35 )(x, e)(2,(x, e)I -1112 (x, e))r, c ,(x, ed,

0 el2 0

(1.11) A(x, e)=
Her

elleI)Ie1 2 - • .• vieDie12,
/

(1.12) Mi(x, e)=.
O ....................................................  6

e/leDiel • • • —ai(x, el

C) is  the  homogeneous part of degree 2j-1  o f  a,(x, e),

1a 2
(1.13) M1(x, )=Mi(x, E  e),2 i  j i  ax,ae,

C) (resp. r,(x, e)) is  a  left (resp . right) null vector o f  .2,(x, e)I—M2(x, e)
which is homogeneous of degree 0 in e such that 1,(x, e)r k (x, e)=3, k (Kronecker's
delta) and f`p(x, e)= (iD e)" f (x , e ).

For the global existence theorem in  C-  class for (1.8), we refer th e  reader
to Duistermaat-Hiirmander [1, Theorems 6.4.2 and 6.4.3.].

Our result is the  following
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Theorem 1 . 1 .  A ssume that the conditions (A) and (B) hold . For f ( t ) -= f (x ,  t )
EC I([0 , T ]; H °(W )) an d  (g o (x), ••• , g m _1(x ))E H 2 m(W)XH 2 ( 7 7 1 - 1 ) (ROx ••• xH 2 (RI),
the forw ard and backward Cauchy problem (1.4) has a unique solution

(1.14) u (t)=- u(x, C°([0, T ]; H 2 n)nC 1 ([0 , T ]; H 2 ( 7 4 - 1 ) ) n  •  •  •  n Cm - '([0, T ] ;  H 2 )

and energy inequality

(1.15) u( t)1112 _C(T){111u( t0)1112 +  Yto( s ) P d s , t, t 0 [ 0 ,  T ]

holds where

(1.16) 11*(0112= illD 1u(t)Hc.- 3,
3=1

and 11. 11 k  is H k (RO-norm.

As a special case, consider an operator with constant leading coefficients as
2-evolution, that is, an operator whose principal part P°(x; D s , D O  defined by
(1.3) h a s  constant coefficients. In th is  case Condition (B) reduces to a more
explicit condition as follows.

Condition (B')

(1.17) 49./(x, e)=T 1 I ' l j i l ' x ) /i(e) 1m Mi ( x  t 7
7

1
7:2

2 ' 1 y
e
z 2 i )7- i (Ç)d t0

is  a  bounded function on RixRi\O, j=1, •-• , m.

A s a corollary of Theorem 1.1 we have the following

Theorem 1 . 2 .  L et P (x ; D x , D 2)  be an  operator w ith constant leading coeff i-
cients a s  2-evolution. A ssum e th at  the conditions (A) and (B') h o ld . Then the
same assertion as Theorem 1.1 holds.

2 .  Reduction to a  system and its diagonalization.

Let P (x ; D x , D 2)  be a  differential operator ;

(2.1) P(x;D„ D2)=DT-Fa1(x;Dx)D7 1 - 1 + ••• - Fa.(x; Dx) on

where

(2.2) a (x ; D x ) = .,  a a .,(x)G _B(R I ) . (i. e. b=2 in  (1.2))

Put

(2.3) a;(x ; E  a ( x ) C" , s = 0 ,  1 ,  •  ,  2 f .
I IX I= 2 )-S

We consider the Cauchy problem

I P (x ; D x , D i )u (x , t )= f(x , t ) o n  Q
(2.4) 1 Dit u(x, to)=g;(x), j=0, 1, , m-1, to E [0, T ] .

We put
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(2.5) u,(x , t)=(.4 2 +1) 7" D it - 1 u(x , t), j=1, ••• , m ,

(2.6) U(x , t)=`(u i (x, t), ••• , u n ,(x , t)).

Then we have a system of the following form

D,U(x , t)=-M (x;D x )U(x , t)+F(x , t)
(2.7)

I. U (x , t o)=G(x ).

Here M(x ; Dx)=M2+A±M0 is a  pseudodifferential operator of order 2 ,  M .,  is
a  pseudodifferential operator o f homogeneous order j  ( j= 1 , 2 )  and M o is  a
pseudodifferential operator of order 0 .  The symbol a(M .,)=M ,(x , e) of M i (x ; Dx)
has the following form

(2.8) /1//2(x ; e)=

(2.9) ; e)=

'le i'
—al(x,e/leDle1 2 • :—a?(x;

o ................................

0 ............................................... 0

—al(x;e/leDlel • • • —al(x;e/leDlel ,

(2.10) F(x, t)=-t(0, ••• , 0, f ) ,

(2.11) G(x)_vA2+1)m-igo(x), (A2 + 1).-2g1 (x ),m  1( x))

The Condition (A) implies that the system (2.7) is diagonalizable as follows.

Proposition 2 .1 .  Under the Condition (A ) there exist a diagonal pseudodi-
f ferential operator ..q)(x; Dx )  o f  order 2 and a pseudodzfferential operator N(x ; D x )
o f  order 0  such that

(2.12) N(x; D x )(D t — Mx; Dx)) - -=-(D2 - 0(x ; D x ))N (x ; Ds ), (mod. S)

(2.13) I det N(x;e)1 3>0 f o r ( x ;e ) E R 'x l?' .

Proof. A t first consider the equation

(2.14) N(x ; Dx )M(x ; Dx)-= 2(x ; Dx)N(x ; D x ) (mod. S 1) .

We put
N(x ; e)=N o(x  ; e)d-N ,(x  ; e),

2(x; e)=02(x  ; e)±21(x  ; e),
N i (x ;e), e) are homogeneous of degree j  in C.

Then (2.14) implies that

(2.15) No(x e)M2(x ; e)=-02(x ; )No(x ;e).
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Since

(2.16) det (t- — Mz(x ; e))=---- P ° (x ; e, r).= her — 23 (x , e)),J=1
we have

0

(2.17)

and

(2.18)

22(x; e)_=.
0 • 2,i (x,

• 11(x, e)
N o (x ; e)=

 

Here 1,(x, e) is  a  le ft nullvector o f  2,(x, e)I—M2 (x ; e) which is homogeneous
of degree 0  in  e  such that

(2.19) IdetN0(x;V>=6>0 f o r  (x , e)ER I x R i

Next, consider the  equation (2.12) (mod. S°), that is,

(2.20) N o (x; D)M 2 (x; D)+(No(x ; D)Mi(x; D)+N-1(x; D)M2(x ; D))
02(x ; D)Aro(x ; D)+(22(x ; D)N-1(x ; D)+21(x ; D)No(x, D))

(mod. S°) .
It follows from (2.20) that

(2.21) E  N r(x ;E)M 2(a)(x ; e)d- (No(x ;e)Mi(x ;e)+N-1(x ;e)M2(x; e))
la1=1

=  E  g (? ) (x , e)No(a)(x ; )+(.02(x ; e)N-1(x; e)+21(x ;e)No(x ; e)).
la1=1

We put N_1(x;e)1\4 1(x ; e)=R-1(x, e)=(fiii(x, e)), then we have

(2.22) g-i(x  ; e)g2(x ; e)-22(x ;e)g_1(x ;e)

e)—{No(x; e)Mi(x ;e)NV(x ;

— E ( (x;e)Aro(a)(x; e)—Nr(x ;e)m2,a)(x;e))ATT,i(x;e ) }
la1=1

We pu t R i (x , e)=(r i ,(x , e)) where

(2.23) R,(x , e)=N o (x ; e)M,(x;e)NV(x ; e)

—  E (or(x ;e)N oc.)(x ;e)— N r(x ;e)M 2(a)(x ; e))ArT(x ; e) •
la1=1

Then we choose g i (x ; e) such that

(2.24) gi(x  ; e)=diagonal o f R i (x, e).

Define

(2.25) fiii(x ;
(2(x, e)-2;(x, e)) - l rii(x;

o
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Then .0,(x; e )  a n d  N_,(x ;e)=St-i(x ; e)No(x ;e) satisfy (2.21). T h is  completes
th e  proof.

3 .  Condition (C); .0*(x, D) 2 (x, D ) (mod. S°).

In  this section under the condition (A) we an a ly se  th e  co n d itio n  (B ). We
start from th e  following

Proposition 3 . 1 .  Let P(x , D) be a scalar pseudodif ferential operator on .1?'
w ith sym bol a(P)=P(x , e)=P2(x , e)+Pi(x , e)-E ••• ( p ,  is homogeneous of degree j
in e). Denote by P*(x, D) form ally  adjoint operator to P(x , D ).  Then we have

(3.1) P*(x , D)--P(x , D) (mod. S')

if and only  if

(3.2) p2(x, e) and pl(x , e) are real-valued functions

w here pl(x , e) is the subprincipal symbol of P(x , D), i. e.

1  N .1., a2
(3.3) P;(x, e) —  2 ia x  Jae, p2(x, e).

Pro o f . By well known form ula for pseudodifferential operators we have
1a1 

(3.4) 6r(I)*)=
( )

E  , P (x , e )
laIZO a:

( -1 )1 " ' 
=P2(x, e)+(Pi(x , C)+ E , O ( x ,  e))+

Ia1=1 a:

Thus P*(x , D)=-P(x , D) (mod. S ') holds if  a n d  only if

(3.5)

that is,

(3.6)

[ )=p2c,c,
(-1)1-1 

picx, E  P(2̀80(x, e),
la1=1 a!

(Q. E. D.)

Now we back to section 2 and analyse the condition  (B ) .  We calculate the
subprincipal symbol o f  .0(x, D).

Lemma 3 .2 .  W e have

1
(3.7 ) gi(x, e)=21(x, C) - - - g g ),)(x,

la1=1

=diagonal of {No(x, e)M(x, e)N -6.1 (x, e)

— '
—9  E  [(-02(x, e)No(„)(x, e)/V-0- "")(x, e)

la1=1
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—Noco(x, e)M2(x, e)Ari31 ( a ) (x, e))

—(02(x, e)Nr(x, e)NcTja)(x, e)—Nr(x, e)M2(x, e)NVa)(x, e))

—20 2
a ) (x, e)No(a)(X, e)-02(a)(x, e)Nr(x, e))Aroicx,

where M;(x, e) is  the subprincipal symbol o f M(x, D ) defined by (1.13).

Pro o f . Using the identities

No(x, e)M2(x, e)No(x, e) - 1 =02(x, e),
and

.02 (x, e)=diagonal of R i (x,

111

where

R i (x, e)=No(x, e)Mi(x, e)NV(x,

E  (W ) (X, e )M 2 (a ) (X ,  e)—or(x, e)No(a)(x, e))Nicx,

we,have the above result after elementary but tedious calculus. (Q.E.D.)

From the above lemma we have

Lemma 3 .3 .  Under the condition (A),

(3.8) Im gi(x, e)=0

holds if and only  if

(3.9) /,(x, e)(Im Mi(x, e))r,(x, e)(2)(x, e)I — M2(x, e)) 71 )(x,2z I a I = 1

—1î"(x, e)(2,(x, e)I—mz(x, e))ri(a)(x, e)]
— {22 (x, e), 15(x, e)}r,(x, e)=0, j=1, ••• , m.

Remark 3 .4 .  The condition (3.9) i s  invarian t fo r the choice o f th e  null
vectors satisfying /3 (x , e)r k (x, e)=5 1 , except the last term {2(x, (x, e)} r J (x e).

We replace the null vectors 1.x, r,(x, e) by

1,(x, em,(x, p,(x, e)=exp(— yo,(x, e))r,(x, e),

exp(ço i (x, e) •
(3.10) No(x, e)= li(x, e)rk(x, e)= 3 .ik

, exp(y9„,,(x, e))/„,(x, e),
then we have

(3.11) {2,(x, e), i,(x,

= {22 (x, e), go,(x, e)} {22 (x, e), 1,(x, e)} r,(x, e)

=1-12 ,g92 (x, e)+ {2,(x, e), 1,(x, e)}r,(x,

Thus we have proved
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Lem m a 3.5. Under the condition (A)

(3.8) Im 21(x, e)=0

holds if  and only  i f  there ex ists a Cc° real-valued solution homogeneous of degree
0  in  e  f o r th e  equation

(3.12) 112y ,(x , e)=h,(x , e),3 =1, ••• , in ,

where h i (x , e) is defined by (1.10).

Boundedness of a  so lu tion  o f (3.12) needs fo r  N (x , D) to satisfy t h e  condi-
tion (2.13).

A s a conclusion of this section we have proved th e  following

Proposition 3.6. The conditions (A) and (B) imply the condition (C); g*(x , D)
2 (x , D) (mod. S°) and the condition idet N(x, I > 0 f o r (x,

4 . Energy inequality.

In  this section we derive an  energy inequality for solutions of the equation
(1.4). (b=2). Let

(4.1) P(x ; D, D 2)-=D r± a 1(x , D)Dr - 1 ± ••• 4-a n i (x , D ),D = D ,

be a n  operator satisfying the conditions (A) an d  (B ) . Consider th e  equation

(4.2) P(x ; D, D t )u (x , t)=f (x , t ) , (x , t) S2.

A s in  sec tion  2, we reduce (4.2) to a  system

(4.3) L (x ; D, DOU(x , t)=D,U(x , t)— M (x , D)U(x , t)-=F(x , t)

where

(4.4) U (x , t)=V A 2 -1-1) 17i - lu(x , t), (A 2 -1-1)m - 2 D 2 u (x , t ) , • • •  D r'u (x , t ) ) ,

(mod. S°).

0 A2

• • A '

— 4 ( x ,  M ID I' •  •  . .- - a7(x, D')ID1 2 /

0 ........................................ 0

and

(4.5)

 

M (x , D )•

  

O.......................................................................... 6
— aL(x , M ID I  •  •  •  — ai(x , M ID I/

A t first we derive a n  energy inequality for solutions of (4.3). L et U(x, t)-=U(t)
be a  so lu tion  of (4.3) with
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(4.6) F (x , t )= F (t)E 0 ([0 , T ];f iH ° (R I ))

such that

(4.7) U(t) C°([0, T]; 1 1 2(W))nC 1([0 , T ]; fil-P (R '))

In section 2 we have diagonalized (4.3) as follows:

(4.8)( D t— g(x, D))N(x, D)U(x, t)=B(x, D)U(x, t)+N(x, D)F(x, t).

Here 2  is  a diagonal pseudodifferential operator of order 2, B and N  pseudo-
differential operators of order 0 such that Idet u(N )(x, e)I

I f  U(t) C°([0, T ];f1 H 9 n C 1([0, T];i1 11°), then NUMEC ° ( [0 ,  T ] ; f i l l 2)( -\

C1([0, T ];  ft H °). We set

(4.9) V(x, t)=N(x, D)U(x, t).

It follows from (4.8) that

d d  (4.10) 11V(t)Ii2=2Re(dt V (t), V(t))dt

=2 Re(igV (t), V (t))+2Re(iB U (t)± iN F (t), V (t)).

By virtue of the condition (C) we have

(4.11) I Re ( i0 V (t ), V(t))1 constlIV(t)11 2 •

Thus we have
d  (4.12) V(t)1125constal V(011 2 +11U(t)112 ) - HINF(t)11 2 •dt

We set

(4.13) CUM2= IIN U (t) 2 +19  11(A2 + 1) - 1 U(t)112> 0  sufficiently large) .

Then [UM] defines an equivalent L 2-norm t o  U(011, uniformly in t T ].
Operate (.42 -1-1)- ' to (4.3) we have

(4.14) —
d  

(A2+1)-1U(t)=i(112+1)-iMU(t)-1-i(A2+1)-1F(t).dt

It follows from (4.14) that

d(4.15) —11(A2+1)-1U(t)l const U(t)11 2 +11(A2 +1) - T( OP •dt
From (4.12) and (4.15) it follows that

— d cumiz___Cu(t)1 2 +CF(t)lz (ï>0 ).dt

[U (t)]2< C(T ) { [U (to)]2± 1 : o[F( s)12ds 1.

(4.16)

This implies that

(4.17)
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Thus we have proved the following

Proposition 4 . 1 .  A ssume that the conditions (A) and (B) hold f o r (4.3). For

F(t) C°([0, T];171 H°) and solutions U(t)EC°([0, T];1111 2)(1C1([0, T]; 17?-111°) of
(4.3) the energy inequality

(4.18) U(0112-5C(T){ U(1- 0)112 + IlF(s)112 ds

holds where C(T) is a positive constant independent o f  U(t) and F(t).

In view of (4.2), (4.3) and (4.4) we have the following

Proposition 4 .2 .  A ssume that the conditions (A) and (B) hold f o r (4.1). For
f  (t)E0([0, T ]; H°) and solutions u(t)EC°([0, T]; H 2 0 m)nC 1([0, T]; H 2 ( 0 m - ' ) ) n • • • n

T ]; H 2) o f  (4.2) the energy inequality

(4.19) Illu(t)1112-5C(T){111u(t0)1112+ 1:0 Ilf(s)112 ds

holds where

(4.20) Illu(t)1112 -= IlDic1u(t)113(.-D .

5 .  Proof o f Theorem 1.1.

As in section 4 we define an inner product ( , ) s c  and  a norm 11.6 equivalent
to the usual L 2 (RO-inner product and L 2 (Rt)-norm as follows:

(5.1) (U(t), V (tp i c =(N(x, D)U(t), N(x, D)V(t))

+c o ((A 2 -1-1) - 1 (1(t), (A 2 +1) - 'V(t))

for large positive c o(fixed),

(5.2) U(t) /(U(t), U(t)),A . f o r  U(t), V(t)EC°([0, T ]; fIH°)

By virtue of (2.13) there exist positive constants ci (T), c 2 (T ) such that

(5.3) ci(T)II U(011511 U(t)11m c2(T)11 U(011 f o r  t e[0, T ].

We define the Hilbert space SCA H ° (R t ) with norm 11.11st. We have re-
duced (2.4) to a  system (2.7). W e take for the domain of definition D(M) of

M(x, D) the Sobolev space fir/2mo.
Lemma 5 . 1 .  A ssume that the conditions (A) and (B) h o ld . Then there exist

a constant p  and a positive constant 50 such that

(5.4) IK21—iM(x, D))U111(121 —i3)2 111/111+Ooll UII3

holds f o r real ;t(121 > IS) and U(x)EA H 2 which shows that (AI —iM) is one-to-one

from
771 772

to 'A H° and the im age (21-- iM )f IH 2 is closed in  iiH°.
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Poof. For U(x)1111/1 2 (1V) and real A we have

(5.5) 11(2/—iM)U111=2211U1123c-22 Re (iMU, U)m -+

(5.6) 2 Re(iMU, U),5c=i{(MU, U )— (U, M UM

=i{NMU, NU)—(NU, NMU)}

-Ficol((A 2 -1-1) - 'MU, (A 2 +1) - '17)

—((A 2 +1) - 1 U, (A 2 +1) - 1 MU)}
=i{(ZNU, NU)—(NU, 2 NU)}

NU)—(NU, BU)}

+ic o l((A 2 4-1) - 1 MU, (A 2 +1) - 1 U)

—((A 2 +1) - 1 U, (A 2 +1) - 1 MU)} .

By virtue of the condition (C) we have

(5.7) 1(gNU, NU)—(NU, GNU)1

=1((.0—.0*)NU, NU) I (r>0).
Thus (5.6) and (5.7) imply that

(5.8) 12 Re (iMU, U)sc I (1>0).
Therefore for large A we have

(5.9) 11 (2I —im)u111- --(1 AI —1902 11u111+ II muIll
By the definition and the condition (A) we have

(5.10) IIMU111=11NMU112+ co 11 (A2 + WWI/ 2

-.?=. II gNUP - C111 U112

_-_aillNu113—c211 012

and

(5.11) 11NU111i c311(A2+1)NU112( c > 0)

....- c311N/ (A 2 -F1)U112 —c411U112 ,

where N ' is  a  pseudodifferential operator of order 0 such that

(5.12) W e t (N')(x, )I ô2>0.
From (5.11) and (5.12) it follows that

(5.13) IINuH>=5311(A2+1)u112—c611 ull 2

, ---aollun—c511u112( ä 0 >0) .
(5.10) and (5.13) imply that

(5.14) Ilmull3(_--5011u1k—c511u112 .
(5.4) follows from (5.9) and (5.14). (Q. E. D.)
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Lemma 5.2. T he f orm ally  ad jo in t operato r L*(x ; D, Dt )=D t —M*(x, D)
satisfies the conditions (A) and (B) f o r some diagonalizer kx , D). M ore precisely
we have

(5.15) k x , D)L *(x ; D, Dt )-=(Dt -2*(x , D))1(x , D) (mod. S°)

and

(5.16) det a(g)(x , e)I --M / >0 f o r  (x , e)ER 'x R i

From Lemmas 5.1 and 5.2 we have

Lemma 5.3. Fo r V(x) 4111 2(R 1)  and real 2(121 j3 ')  w e  have

(5.17) I1(2/—iM*) (121 —P )Z II v113,-ka0 v11! (a>cl)
where

(5.18) II V112.K=i1Mx, D)V112 d- c11(A2 +1) - 1 V112( c :  large positive constant)

which is an  equivalent norm  to ri H°-norm 11•11.

Lemma 5.4. T he image (21 —iM)11.11 2 i s  dense in f i l l°  f o r larg e  121, 2ER.

Pro o f . Suppose that the image is not dense in fiH °. Then there exists a

V(x)ErTH', V#0 such that

(5.19) ((21 —iM)U, V)=0 for a l l  UEfil-P,

a fortiori for a ll U G  f ig . This implies that

(5.20) (2I±iM*)V=-0.

It follows from (5.20) that M*VE fIH °. Denote by 0(e) a  C- (R 1)  function such
that

(5.21) sb(e)={ 1

0
and

for

f o r  lel>2

0 0(e)_1.

Define on(e)=o(-), one)—( )on(e) and

(5.22) gb.(D)f (x) -=(27)je i x e 0.(e)! (e)de .

It follows from (5.21) that On (D)V(x) and On (D)M*V belong to H " .  Applying
the inequality (5.17) we have

(5.23) 0=110(D)(2/±iM*)1/113c

=1(2/ - FiM* )0.(D)V — i[M * , On(D)]v113,
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1 .
---11(2/H-tM*V„(D)V113:-11[M*, On(D)117 1Px— 2

1 (3(')3') 2 110.(D)V113c+ -

2
- 110.(D)Vik - - clI[AP, sbn(D)]— 2

Expanding the commutator we have

(5.24) [M*, (D ) ]V (x )= ( - 1)

 1 3 M * ( x ,  D ) O ( D ) V ( x ) + R 2 ( V )O„ E
'S1,152 1.)

and

(5.25) 11R2(V)11—const VII •
The order of D M *  is  2, thus we have

(5.26) II CM*, On(D)1 V(x)II 2 const 11N ) (D)17 11- Fconst n 2 II VII2 .

From (5.23) and (5.26) it follows that

(5.27) (121 -- 13')2 110.(D) V112 4- 3110.(D)
—const E IIK(D)VIN — const n- 2 11 VII2 •1511, 1 2

More generally we have

(5.28) I 21 — Y) 2 1IN ) (D) VII 2 +5'11N ) (D)VIN
— const E Ilsbr(D)VH — const n- 2 11 VII2 •1v1+151,•12

For large positive R, it follows from (5.27) and (5.28) that

(5.29)10 > _ .(1 2 1 — Y )2 1 1 0 .(D )V 1 1 2 + 6 '1 1 0 .(D )V 1 1 3
— const E 110̀r(D)1/113.0,1=1
— const E I0(D)VII

— const n- 2 11 VII2 •

(5.29)20 . - . ( 1 2 1 - 4 3 ' ) 2  E  RII0(7r) (D)17 112 +3 ' E RIIO(D)V11:11.,1=1
—const E R110ç:) (D)VIli1,1=2
—const n 2RII V112 *

(5.29), 0 (121 - 43)2 E R 2 110(D)V112 +6' E R 2 110(D)VH1,1=2 1,1=2

— const n- 2 R2 11 V112 .

Summing up these inequalities we have

(5.30) 0 (121

—const (1+ Rd-R2)n'll Vii2

+5/11072(D)Vili
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+(b'R œ const) E 110(D)VH1.1=1
±(5' R 2 — const R— const) E 110;:')(D)VH.

11, 1= 2

We choose a constant R  such that

a'R —const > 0 ,

t b'R 2 — const R— const> 0 .

Since 110.(D)V11— '11 VII as n—>00, there exists a positive constant n o such that

1
lIsbn(D)V112 ,- — II VII 2

— 2 f o r  n_71,0

Thus for no, we have

1(5.31) I — r 2 11V112 —const(1+R-FR 2)n - 2 IIVII 2

— 2
- F(121 R' lIç' (D)V11 2

If II VIl O and  A l is  large, then the second member of (5.31) is positive which
is contradiction. (Q. E. D.)

From Lemmas 5.1 and 5.4 we have the following fundamental

Proposition 5 . 5 .  Under the conditions (A) and (B) there ex ists a constant is
such  that f o r  any  real 2 w ith 121>I3 the operator (2I— iM) defines a one-to-one

mapping o f 11' 112 o n to  71111°, i.e., the resolvent (AI e x i s t s  fo r  any  12I> p,
2ŒR' and the inequality

(5.32) I1(2/—iM)-n 21 p \ ,, (n=1, 2, • • •)
_Ern/Ann-0) —

holds w here c is a positive constant independent of A  and n.

no
Corollary of Proposition 5 .5 .  If  U (x )G ii 1-1°(W) such that M U (x )E f l' 11°,

then U(x) f111 2 (RI), i. e.,

(5.33) D(M )=11H 2 —  { U(x )E H° ; M U (x ) f iLP H°}.

Proposition 5.5 implies immediately the existence of a unique solution of the
Cauchy problem (1.4) by applying the  Hille-Yosida theorem. (Q. E. D.)

6. Examples.

In this section we give some examples o f  operators satisfying th e  condi-
tions (A) and (B) (or (B ')). A t first consider the  first order operators in  t.

Example 6 .1 .  (Takeuchi [5], [6])

(6.1) P(x ; D x , Dt)= Dt+ a(x)D x  , x E R ',  t E [O ,T ].
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In this case we can choose so(x, e) in condition (B') such that

(6.2) o(x, e)=ço(x)=--1
2-V0 Im a(y)dy, ,

(6.3) N(x, e).-=-N(x)-=- 0 ( x)( i n  ( 3 .1 0 ) ) .

If we assume the following condition (B'):

(6.4)
.çxo

Im a(y)dy is a  bounded function,

then th e  Theorem 1.1 holds fo r this operator (m=1). T he following equality
holds:

(6.5) exp (— .f x
0 Im a(Y)dY)(Dt+D1+a(x)Ds)

a--(D t d-D.2y -FRe a(x)D x )exp (— .ç x
o Im a(y)dy) (mod. S').

Example 6.2.

(6.6) P(x ; D x , D )= De+ a(x)D 2
x -Fb(x)D , x  R 1 , t  [0, T] .

In this case we assume the following conditions:
Condition ( A ) :  a(x) is  a  real-valued function such that

M a(x) 5>0, xER'.

Condition (B ): fx  Im b(y)id y  s  a  bounded function.
30 a(Y)

(Under the  cond ition  (A ) this is equivalent to the  condition : Im b(y)dy is

bounded). Then Theorem 1.1 holds for this operator (m=1). We choose çacx,
and N(x, e) as follows:

(6.7) 40(x, e)=-40(x)-=
1 ax  Im b(y)

a (y )  dy+logl a(x)1},2 130 

11  c r   Im b(y)(6.8) N(x, C)-=N(x)=e = — expa(x)1 (  2 io a (Y ) d y ).
The following equality holds:

(6.9) N(x)(Di+ a(x)D-Fb(x)D x )

—=- CD1 +D x a(x)D x +Re b(x)D x )N(x) (mod. 5').

Example 6.3.

(6.10) P(x; D x , DO= Dt-FID.vi 2 + i abi (x)D ;  , x G  ,  t  [0, T ] ,  D i =— i- a
x i .

We choose ço(x, e) in the condition (B') as follows:
1 .ç<l

e
f i .x>(6.11) yo(x, e)= — 0I m  bi (x— t dt ,

(6.12) N(x, e)=exp(v)(x, 0).



(6.20)

where

(6.21) cr( 
 21.' 

2  e)+Re a i (x , e)+ j:
Z

71+:4* 
 + i

.   A-A*:4(x, D)= 2 2i

a a (x) 
a x i
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Condition (B ') :  9(x, e) defined by (6.11) is bounded implies the conclusion of
Theorem 1.1 (m =1). The following equality holds :

(6.13) exp(9(x, Dx ))(D t +ID s 12+ b(x)D 1)

„ (D t+ I Ds1 2+ Re b (x)D 1) exP (40(x , Ds)) (mod. s°).

Example 6.4.

(6.14)
{ P(x ; D s , Dt)=Dt+A (x , Ds),

A(x, D x )=  E  ai,(x)A D-}-, E  b .,(x)D., , xE R i  ,  t  E  [0, T ]  .
i I

1 , 1 =1 J=1

We assume the condition (A):

a1 (x ) are  real-valued functions satisfying ai .,(x)=a .(x){
1

and E ai,(x)ete, ---51e1 z, (o> 0) .i, .;=1

Our procedure is interpreted a s  follows : A t  first we transform  A (x, D ) by
N(x, D)=exp(9(x, D)) where 9(x, D) is still to be determined :

(6.16) exp(9(x, D ))A (x , D ):71.(x, D)exp (9(x, D)) ,(m o d . S ° ) .

Here the  symbol of 54.(x, D) has the  following form :

(6.17) o-(A)=a2(x, e)-Fai(x, e)+i{a2(x, e), 9(x, e)}

a2(x, e)-= aii(x)eie;
(6.18)

ai(x, e)=

Next we calculate the  formal adjoint A * to  A . For real-valued g9(x, e),

(6.19) a(24*)-=a2(x, e)d- ai(x, e)+ ±
ai(x)  e i{a (xax, 2 "e) 9  x ' e)if

We decompose .71(x, D) as follows :

(6.15)

-

2i )=
aai.,(x)

(6.22) 2i A  )= fa ,(x, e), 9(x, e)} +Im a i (x, e)-1- z.t i
ax 

Finally we choose 9(x, e) homogeneous of degree 0 such that condition (B) holds ;

(6.23) la,(x, e), 9(x, e)} E 1m b(x)C1+ aaii(x)  ei_ o
./=/. ax,

Then the  Theorem 1.1 (m=1) and the following equality hold :
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(6.24) exp(go(x, D))(D/± aii(x)DiDi+ bi (x )D )i, J=1 j=1

±  Di a,; (x)D i + Re bi (x )D)ex p (9(x , D)), (mod.S°) .

Now we give an example of differential operators of order 2 in t (i. e. m=2).

Example 6.5.

(6.25) P(x; Dx, Dt)=D1-1Dx1 4+ Ei b,(x)D,Dt+ Ca(X)D,

x e R t ,  t [ 0 ,  T ] .

(6.26) P °(, 7 )= r 2
—  i Cl = ( r

—  I el 2)(r+1e1 2 ).
It follows from (6.26) th a t the condition (A) is satisfied. In the notations of

section 1 , ax, e)=0, aZ(x, e)= - 1 e 41 al(Xy e)=  1),(x)e„ aXx, t a s ca (x )ea ,

21(e)=1e1 2 , 22(e)= — 1612.  Consider the equation

P(x; D, Dt )u (x, t)=f(x, t).
Putting U(x, t) -='((A 2+1)u(x, t), D t u(x, t)), w e have
(6.27) D,U(x, t)=M(x, D)U(x, t)+F(x, t),
where

' M(x, D)=-M,(D)+M i (x, D) (mod. S°),

a ( m 2 ) = 1 0 le12 1
(6.28) Lle12 0  j

0 0
a (1 1 1 ) i —  E 3 ca(x)( ee

e
b i ( x )   l e lj.II

W e take a  diagonalizer N(x, D) as follows.

N(x, D)=N o (x, D)+N-i(x, D),

a (N o )= [ 
e soics, ev,i(x. e)

— 002(x. ew2(x.),1

where real-valued functions spi (x, e) are still to be determined,

N.-1)=

 

ICI
) x, 

leel D
e w ic x ,e )

 

, (
x ' i  el ±

e1 ( leeI ) ) „2(x,e)

1 ieei) a l ( x ,  1: 1 ) )74-(cila(x'
es,/.(x,)

       

24- ( 64 ( x ' ICI) + a l ( x ,  
e
ei  ) ) esD2cx.f)

(6.29)



122

Then we have

(6.30)

where

Jiro Takeuchi

N(x, D)M(x, D)_=-0(x, D)N(x, D) (mod. S°),

D) 0
-0(x, D)=22(D)+21(x, D)=[

O .-2(x, D)J ,

0*(iii)=  e (,.. aca(x)(41-y+iti bi(x) It-71 )le I e  adç
O i  

21 ( a  3C
 a(

 X )(AT)a
( X )  l

e
e
)
 I )  e ±  2i i t l

e  aaç9X: •cr(;f2)= —  e1 2± —

We decompose cr(.i l ) a n d  a ( )  a s  follows:

1(6.32) 06.1- 0= [1e12 — E  Re c„(x)( ) aR e  bi (x)al =-3

+24 j t i  aarti. 4
1 ( i a 3 Im ca (x )( )a± j t j  IM  MX) ) ]  I el y

(6.33) 0 -(A'2)= [ —  el 2+ Re ca (x )( jtj Re Mx) ) e

—2C±i 11,1 aar,:, 4
1 (ia ac a (x)(  1: 1  Y A IM bi (x ) Ige' , 1  Ale! .

We choose th e  functions çoi (x, such that

(6.34)   dagpxiii m  ca(x)(  + A IM bi (x) )=0 ,

and

(6.35) A  11, 1  aax :

1 -
4 ( ia 3 im c û (x)( A im Mx) )=0

hold, that is,

(6.36) goi(x, Tm c a ( x  t I) a

+,±1b i ( x  t  1: 1)

and

(6.37) ço,(x, C)= 15<
o l'x >T m  c „ (x  t

1:1)q r ) a

_A b.,(x t  I
C
CI )  1 1) 1 }cit

The condition (B) i s  a s  fo llow s: F unctions defined  by (6.36) a n d  (6.37) are
bounded. Then Theorem 1.1 (m-=2) holds.

IRON AND STEEL
TECHNICAL COLLEGE

(6.31)
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Remarks added in  proof.

Remark 1. Condition (A) implies that

ek ( x  e)=221 (x , e )* 0  o n  T*Ri\Ok=i usk

by Euler's identity, i. e., 7v 1) (x, e) 0 o n  T*Ri\O. T hus any in tegra l cu rve of
the  H am ilton  fie ld  HA 3 i s  r e g u la r  a n d  defined on  R 1 b y  v irtue  o f  th e  homo-
geneity o f 2,(x, e) (homogeneous o f degree 2 in  e), (1 .

Remark 2 .  Condition (B) is stated m ore explicitely a s  fo llow s. (cf. Duis-
termaat-Heirmander [11).

(B-1) N o  com plete integral curve of the  H am ilton  fie ld  1121 is contained
in  a  com pact subset o f  T*M\O, (1 .

(B-2) for every com pact subset K  o f T*Ri\O there exists a compact subset
K ' o f T*Ri\O such that every compact interval on an  integral curve
(of the H am ilton field  H O  w ith e n d  p o in ts  in  K  contained i n  K',

j m).

From contlitions (B-1) and  (B-2) it follows that

(1.8) e)

has a  real-valued C- (T*Iii\O) solution goi (x, e ) fo r any rea l-va lued  C- (T*Ri\O)
function Ii1(x ,e ),(1 _ j_m ).

(B -3) F o r  a  function h•(x, e) defined by (1.10) w h ich  is  C(T*R '\0) real-
valued, bounded o n  IV xSt - '  and  homogeneous o f degree 1 in  e, (1.8)
has a  real-valued, bounded C- (T*Ri\O) solution go; (x, e) homogeneous
o f degree 0 in  e, (1
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In the case where the operator P(x ; D x , D t )  defined by (1.1) and (1.2) with
b=2 has the principal part P°(x ; D x , D t )  defined by (1.3) with constant coeffi-
cients, conditions (B-1) and (B-2) are automatically satisfied.


