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1. Introduction.
Consider a linear partial differential operator
(1.1) P(x;D., D)=Dpr+ayx; D;)Dp*+ -+ +an(x; Dy), (x, )eR'X[0, T]=L
where a;(x; D,;) (1<i<m) is a linear partial differential operator in R
It is said that P(x; D,, D,) defined by (1.1) is non-kowalewskian if
1.2) max order ajx;D;)/j=b>1.

1sjsm

Denote the homogeneous part of order jb of aix; D;) by a%(x; D).

(1.3) Px; & o)=t™+al(x; E)z™ '+ - +an(x; §)
is said to be the principal symbol of P(x; D, D,). D‘:_iaa—t’ D,:—i%

Consider the forward and backward Cauchy problem

P(x; D,, D)u(x, t)=f(x, t) on R
(1.4) {

Diu(x, ty)=g;(x), j=0,1,--,m—1 for any ¢,&[0, T].

As is well known, it is necessary for the forward and backward Cauchy problem
(1.4) to be H>=-wellposed that the characteristic equation in = P%x ;& 7)=0 has
the only real roots for any (x, §) € R'X R, (cf. Petrowskii [4] and Mizohata [3]).
As a corollary it follows from H>-wellposedness that b=max {order a;/j; 1< j<m}
is an integer if we assume that b>1.

Denote the characteristic roots by 1;(x, &), i.e.

(15) Po(x; & 0)= fl (c—2(x, ).

From now on we only consider the case where b=2.

We shall give sufficient conditions for the forward and backward Cauchy
problem to have a unique solution in L*(R').

We assume the following conditions.
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Condition (A). The characteristic roots A,(x, &) are non-zero, real and dis-
tinct for (x, §) e R'X R\0, more precisely,

(1.6) inf  [2,(x, §)|>0,
1sjsm
z, $rerlxsl-1
(1.7) }i‘f [45(x, §)—2Ax(x, £)[>0.

(z,6HeRlx§l-1
Condition (B). For each j,
(1'8) Hljsoj(x) e)zhj(x’ E)

has a C bounded real solution ¢;(x, §) homogeneous of degree 0 in & Here

(19) Hig=1f, g}= aaé: aaf"g*%?
J J J

denotes the Poisson bracket and H, the Hamilton field,
(1.10) hi(x, &)=1;(x, E(Im Mi(x, O)r(x, £)—{A(x, &), I(x, O rix, €)
— 5 B [ete, 90 OT-Mx, O, &

— 159, OA(x, O —My(x, E)F year(x, @],

0, G 0
(L11) My(x, &)= .
BE
—al(x &/1EDIEIE - -—al(x, E/1EDIEI2
O v v v o e e e e e 0
(1.12) Mx, &= - -,
[ I 0
—al(x, &/1EDIE - - - —al(x, &/1ED)IE]
al(x, &) is the homogeneous part of degree 2j—1 of a,(x, &),
(113) MiCe, O=M(x, =5 3} 520 M, ©),

I{x, &) (resp. ri(x, &) is a left (resp. right) null vector of A (x, &)/—My(x, &)
which is homogeneous of degree 0 in & such that [;(x, &)7(x, §)=0;.,(Kronecker’s
delta) and f{§)(x, §)=(iDg)*Dif (x, &).

For the global existence theorem in C> class for (1.8), we refer the reader
to Duistermaat-Hérmander [1, Theorems 6.4.2 and 6.4.3.].
Our result is the following
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Theorem 1.1. Assume that the conditions (A) and (B) hold. For f(t)=f(x, t)
eCY[0, T]; H(RY) and (gux), -, &m-1(x))E H™RH X H*™ P(RY) X -« X H(RY),
the forward and backward Cauchy problem (1.4) has a unique solution
(114  w(®)=ulx, )eC([0, T1; H*™)NCYLO0, T1; H*™ )~ - NC™ ([0, T]; H?)

and energy inequality

s OrsCDfiuel+|§, 1f@eds|}, t tero, 7]
holds where

(L16) lu(OIF= 3 1D u(Dlfcn-»

and |-l is H¥R"-norm.

As a special case, consider an operator with constant leading coefficients as
2-evolution, that is, an operator whose principal part P°%x; D, D,) defined by
(1.3) has constant coefficients. In this case Condition (B) reduces to a more
explicit condition as follows.

Condition (B’)
VErj .r>

e o= ey _*

[Ved;| 7 [Ved; ]
is a bounded function on R!XR\0, j=1, ---, m.

148) Im M,(x—t )EGLE

As a corollary of Theorem 1.1 we have the following

Theorem 1.2. Let P(x; D., D,) be an operator with constant leading coeffi-
cients as 2-evolution. Assume that the conditions (A) and (B’) hold. Then the
same assertion as Theorem 1.1 holds.

2. Reduction to a system and its diagonalization.

Let P(x; D, D,) be a differential operator;
2.1) P(x; Day D)=Dp+ay(x; D)D7 '+ +an(x; D)  on 2
where
2.2) aj(x;Dz)=lm§sJZjaa,~(x)Dz, aax)E®*(RY). (i.e. b=2 in (1.2))
Put.
(2.3) aj(x; E)=m 2_3 Aai(x)E%, s=0, 1, ---, 2.

1=27
We consider the Cauchy problem
24 { P(x; D, D)u(x, t)=f(x,t) on R
' Diu(x, t)=g/x), j=0,1, -, m—1, t,&[0, T].

We put
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2.5) u(x, =A™ IDIu(x, t), =1, -, m,
(2.6) U(x, t)="ux, t), -, unlx, 1)).
Then we have a system of the following form
D, U(x, t)=M(x; D;)U(x, t)+F(x, t)
{ U(x, t)=G(x).

2.7)

Here M(x; D,)=M;+M,+M, is a pseudodifferential operator of order 2, M; is
a pseudodifferential operator of homogeneous order j (j=1,2) and M, is a
pseudodifferential operator of order 0. The symbol o(M;)=M,(x, &) of My(x; D.)
has the following form

0. 1€12, 0
2.8) My(x; &)= ;
. 1€
—ap(x, &/ 1EDIER - T—ad(x; &/1EDIE12)
Oc & v v v e e e e e 0
2.9) My(x; &)= .
Oc & v v v e e e e e 0
—an(x; E/1ENDIEL - - - —ai(x; &/1EDIEI
(2.10) F(x, =%0, ---, 0, 1),
(2.11) G)="((A2+1)""go(x), (A2 +1)"2gy(x), -+, &m-1(%)).

The Condition (A) implies that the system (2.7) is diagonalizable as follows.

Proposition 2.1. Under the Condition (A) there exist a diagonal pseudodi-
fferential operator D(x; D,) of order 2 and a pseudodifferential operator N(x; D,)
of order O such that

(2.12) N(x; Do)X(De—M(x 5 D)=(D,—9(x ; D))N(x ; Do), (mod. S°)
(2.13) |det N(x;86)|=d>0  for (x;8§)€R'XR'.
Proof. At first consider the equation
(2.14) N(x; D)M(x; D)=9(x ; D,)N(x; D) (mod. SY).
We put

N(x;)=Nyx; +N-«(x;8),

D(x; O=Dox;6)+Di(x; ),

Ny(x;8), 9(x, &) are homogeneous of degree j in &.
Then (2.14) implies that

(2.15) No(x ; ©)My(x ; )=Do(x; E)No(x; 8) .
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Since
(2.16) det (c1—My(x ; £)=P(x ; €, r>=]f'r;11: (c—2(x, &),
we have
A(x, &) . 0
(2.17) Dyx; 5)4 B ]
0 T An(x, &)

and

ll(xr &)
(2.18) Ny(x;é)=

In(x, &)

Here [,(x, &) is a left nullvector of A{x, &)/ —M,y(x ;&) which is homogeneous
of degree 0 in & such that

(2.19) ' ldet No(x;6)|=0>0 for (x, §)eR'XR'.
Next, consider the equation (2.12) (mod. S°), that is,
(220)  No(x; D)My(x ; D)+(No(x ; D)My(x ; D)+ N_,(x ; D)My(x ; D))
=9y(x ; D)No(x 5 D)+(Ds(x ; D)N-1(x ; D)+D:(x ; D)No(x, D))

(mod. S°).
It follows from (2.20) that

@21 3 N Mo (x5 O+ WNo(x s OMi(x; )+ Nou(x s OMi(x 5 )
= 2 D0x, ONoor(x; E)+(Dalx ; ON-1(x 3 )+ D:(x ; No(x 5 £)).

We put N_,(x; &N (x; &)=N_(x, &=(#:,(x, &), then we have
(222)  N_y(x;8)Dy(x;8)—Du(x; ON_\(x;6)

=Dy(x, E)—{No(x s OM(x ;NG (x5 €)

= 2, (@(x s ONocar(x 5 )= N§(x ; ) Moacar(x 5 N5 (x5 E)}
We put Ry(x, &)=(r:/(x, £)) where
(2.23)  Ry(x, )=No(x; )Mi(x ; E)Ng'(x 5 €)
= 2, (@5(x s ONocar (x5 )= N(x ; E)Macar(x 5 EDNG(x 5 ).
Then we choose 9,(x ;&) such that
(2.24) D,(x ; §)=diagonal of R (x, &).
Define

Ai(x, &—A{x, -y . L.
(2.25) e s £)= {( (x, ©—2(x, ) 'rifx;8)  (G#7)

@=7.
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Then 9,(x;&) and N.l(x;E)zﬁ_,(x;E)No(x;E) satisfy (2.21). This completes
the proof.

3. Condition (C); 9*(x, D)=9D(x, D) (mod. S°).

In this section under the condition (A) we analyse the condition (B). We
start from the following

Proposition 3.1. Let P(x, D) be a scalar pseudodifferential operator on R!
with symbol o(P)=p(x, )=7ps(x, &)+ p.(x, &)+ -+ (p; is homogeneous of degree j
in &). Denote by P*(x, D) formally adjoint operator to P(x, D). Then we have

3.1 P*(x, D)=P(x, D)  (mod.S°)
if and only if

3.2) polx, & and pi(x, &) are real-valued functions
where pi(x, &) is the subprincipal symbol of P(x, D), i.e.

0*
(3.3) pilx, O=pi(x, &— 21 pa l"a;"aé pox, ).

Proof. By well known formula for pseudodifferential operators we have

(3.4) o= 3 C s

lal20

— 5w+ (a0 B+ 3 D )+
Thus P*(x, D)=P(x, D) (mod. S° holds if and only if

pax, E)=pu(x, &)
35) Izl = ) PG, D=hix, &),

that is,

Im pu(x, =0,
©5) Im pi(x, H=Im(px, =5 T p(x, §)=0.  (@QE.D)

Now we back to section 2 and analyse the condition (B). We calculate the
subprincipal symbol of 9(x, D).

Lemma 3.2. We have

@7 9ix, H=0u(x, H—5 T IE(x. O
=diagonal of {No(x, OMix, ONi'(x, &)

— 5 3 HOx, HNwwolr, ONT(x, &)



Non-kowalewskian equation 111
— Nocax(x, OMo(x, N5 O(x, )
—(Dux, ON®(x, E)Niler(x, §)—N§(x, OM(x, E)Nod(x, €))
—2D(x, E)Nocar(x, §)—Dacar(x, NG (x, E)No'(x, 8)]}‘
where Mi(x, &) is the subprincipal symbol of M(x, D) defined by (1.13).
Proof. Using the identities
No(x, OM(x, )No(x, §)7'=Du(x, §),

and
Di(x, &)=diagonal of R (x, &),
where
Ry(x, §=Ny(x, HM\(x, )N (x, &
+m§l(N%‘”(x, EMycar(x, §)— D (x, E)Nocar(x, E))N5'(x, &),
weYhave the above result after elementary but tedious calculus. (Q.E.D)

From the above lemma we have

Lemma 3.3. Under the condition (A),
(3.8) Im 2{(x, §)=0
holds if and only if

(39) Lx, &Im MiCx, O)rx, 9= o= B Hscol®, Oz HI—Mylx, Orx, 9

_l(ja)(xy &)(lj(x’ E)I_MZ(x’ 5))7’](&)(75! 5)]
_{xj(x’ s)’ lj(xr 5)} rj(xv E)ZO’ ]=1, e, M

Remark 3.4. The condition (3.9) is invariant for the choice of the null
vectors satisfying [;(x, &)r,(x, §)=0;, except the last term {2;(x, &), [;(x, )} ri(x, &).

We replace the null vectors [(x, &), 7;(x, §) by
I[(x, &=exp(pi(x, ON\x, &), 7x, &)=exp(—pix, O)ryx, &),
exp (pi(x, Eli(x, &)
(3.10) Ny(x, E)=| wererrvererrremnieniinans . x, Oralx, =64,

exp(on(x, Oln(x, &)
then we have

@.11) {x, &), Ii(x, O i(x, &)
= {'Zj(x’ 6)7 €0j(x» &)} + {zj(x: E): lj(xr E)} rj(x) 6)
=H; 0i(x, )+ 1{2(x, &), I,(x, E}rix, §).

Thus we have proved
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Lemma 3.5. Under the condition (A)
3.8) Im 9{(x, £&)=0

holds if and only if there exists a C* real-valued solution homogeneous of degree
0 in & for the equation

(3'12) H1j¢j(xy E):hj(x» §) ’ ]:lr e, My,
where hy(x, &) is defined by (1.10).

Boundedness of a solution of (3.12) needs for N(x, D) to satisfy the condi-
tion (2.13).
As a conclusion of this section we have proved the following

Proposition 3.6. The conditions (A) and (B) imply the condition (C); 9*(x, D)
=9(x, D) (mod. S° and the condition |det N(x, £)|=6>0 for (x, &) R*XR..

4. Energy inequality.

In this section we derive an energy inequality for solutions of the equation
(1.4). (b=2). Let

4.1) P(x;D, D))=Dp+ax, D)DP '+ - +an(x, D), D=D,,

be an operator satisfying the conditions (A) and (B). Consider the equation

4.2) P(x; D, Dyu(x, t)=f(x, 1), (x, HeL.

As in section 2, we reduce (4.2) to a system

4.3) L(x; D, D)U(x, t)=D,U(x, t)—M(x, D)U(x, t)=F(x, t)
where

4.9 Ulx, H)=A2+1)™ u(x, t), (A24+1D™2D,u(x, t), ---, DP 'ulx, 1)),

and
0. A2 0
4.5) M(x, D)= e
—a%(x, D)|D|* - -—al(x, D) D|*
O « o o o e 0
+ . (mod. S%).
Oc « v o v v e e 0
—ah(x, D)|D| - -+ + —ailx, D)|D|

At first we derive an energy inequality for solutions of (4.3). Let U(x, t)=U(t)
be a solution of (4.3) with
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(4.6) F(x, H=F(H)eC([0, T1; TLH(RY)
such that
4.7) U)ec o, T1; ﬁHZ(R’))f\C‘([O, T1; ﬁH°(R’))

In section 2 we have diagonalized (4.3) as follows:
(4.8) (D.—2(x, D)N(x, D)U(x, t)=B(x, D)U(x, t)+N(x, D)F(x, 1).

Here 9 is a diagonal pseudodifferential operator of order 2, B and N pseudo-
differential operators of order 0 such that |det a(N)(x, §)|=d>0.

If Ut)eC[0, T1; TIH)ACK0, T1; TT1H?), then NU(t)eC([o, T1; TTHYA
CX([0, T1; TIH'). We set
4.9) V(x, t)=N(x, D)U(x, t).
It follows from (4.8) that

(4.10) %II V(t)lI2=2 Re % V(t), V(t))

=2Re(iQV(t), V(£))+2 Re(iBU(t)+iNF(t), V(1)).

By virtue of the condition (C) we have

(4.11) [Re (@ V(¢), V()| =const| V(¢)II*.

Thus we have

(4.12) %II V(P =const (| V(OI*+ I UMD +IINF ()%,
We set

(4.13) LU =IINU)+BI(A+1)2 U2, (>0 sufficiently large).

Then [U(t)] defines an equivalent L%norm to |U(#)|, uniformly in t<[0, T].
Operate (A%41)"* to (4.3) we have

(4.14) %(AH—1)"U(t)Zi(/P+1)"MU(t)+i(A2+1)'1F(t).
It follows from (4.14) that

@.15) LA ) U Sconstl UMD+ A+ D F (D).
From (4.12) and (4.15) it follows that

(®.16) L LUWOTPSTUOTHIFOT (>0,

This implies that

@.17) [U@P=Cn{utar+|[, LFoTds|}.
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Thus we have proved the following

Proposition 4.1. Assume that the conditions (A) and (B) hold for (4.3). For
F()eCX0, T1;TLH®) and solutions U(t)eCX([0, T1; [T HHNCKO, T1; TLH®) of
(4.3) the energy inequality
4.18) || U(t)||2§c<'r>{nU(to>||2+|§:o IF(s)lds|}

holds where C(T) is a positive constant independent of U(t) and F(¢).
In view of (4.2), (4.3) and (44) we have the following

Proposition 4.2. Assume that the conditions (A) and (B) hold for (4.1). For
F()eC([0, T1; H®) and solutions u(t)eC[0, T]; H*™)NCY[O0, T]; H*™ D)\---N
C™X[0, T1; H? of (4.2) the energy inequality

*.19) e =C e+, 1 lds|}
holds where
(4.20) l(OlF= S DL 2t ms -

5. Proof of Theorem 1.1.

As in section 4 we define an inner product (,)s and a norm |- | 4 equivalent
to the usual L*RY)-inner product and L*R')-norm as follows:

(6.1 (), V(t)a=(N(x, D)U(t), N(x, D)V(2))
+eo((A2+1)71U(t), (A2+1)71 V(1)
for large positive c,(fixed),

(6.2) UMD a=~(U), Ut)s  for UR), V()eC[O, T1; TTHY).
By virtue of (2.13) there exist positive constants ¢,(T), c,(T) such that
(6.3) a(MIUDI=SNUDNe=co(THIUMI - for t<[0, T].

We define the Hilbert space .5{=17'n[H°(Rl) with norm |-|l4&. We have re-
duced (24) to a system (2.7). We take for the domain of definition D(M) of
M(x, D) the Sobolev space ﬁHz(R‘).

Lemma 5.1. Assume that the conditions (A) and (B) hold. Then there exist
a constant B and a positive constant &, such that

(54) a7 —iM(x, D)UI gz (121 =B Ul Z+00ll Ull2

holds for real A(|12| > ) and U()c)Elln[H2 which shows that (AI—iM) is one-to-one
from TLH? to TLH® and the image (AI—iM)TTH? is closed in TIH".
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Poof. For U(x)eﬁHz(R‘) and real 4 we have
(5.5) 1A —iM)U|| =22 Ul%—22Re (MU, U)s+IMU%,
(5.6) 2Re(iMU, U)g=1{(MU, U)g—(U, MU)4}
=i{NMU, NU)—(NU, NMU)}
+ico {(A+1)'MU, (A*+1)7'U)
—((A24+D)U, (A24-1)' MU}
=i{(@NU, NU)—(NU, 9NU)}
+i{(BU, NU)—(NU, BU)}
+ico{((A+1)*MU, (A*+1)7'U)
—((A241)U, (A1) MUY} .
By virtue of the condition (C) we have
(5.7 [(@NU, NU)—(NU, 9NU)|
=[(@—92%NU, NU)|=nINUI*  (n>0).
Thus (5.6) and (5.7) imply that
(5.8) I2Re (MU, U« =71IUNE  (r>0).
Therefore for large 4 we have
(5.9) @RI —iM)Ul&=(12] =B Ul &+ IMUI % -
By the definition and the condition (A) we have
(5.10) IMU| %= INMU|*+c,|(4*+1)"*MU|*
Z||9NU|*—c,| U]

=0,INUl3—c.llU|?
and

(G.1D) INU3Z esl(A*+DNU|? - (¢5>0)
Zo| N (A2 +DUIP—clI U2,

where N’ is a pseudodifferential operator of order 0 such that

(5.12) |det ¢ (N')(x, )| =0,>0.
From (5.11) and (5.12) it follows that
(5.13) INU3=Z 8,1 A2+1)U|2—cs U

2ol Uli—csllUI* (3,>0).
(5.10) and (5.13) imply that
(5.14) MU %=z 00| Ul3—c;s | U2
(5.4) follows from (5.9) and (5.14). (Q.E.D)
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Lemma 5.2. The formally adjoint operator L*(x;D, D,)=D,—M*(x, D)
satisfies the conditions (A) and (B) for some diagonalizer N(x, D). More precisely
we have

(5.15) N(x, D)L*(x; D, D)=(D,.—9*(x, D))N(x, D)  (mod. S’
and
(5.16) |det a(N)(x, )|=6'>0  for (x, )SR'XR'.

From Lemmas 5.1 and 5.2 we have

Lemma 5.3. For V(x)EﬁHZ(R‘) and real A(|2|=p’) we have
(6.17) [QI—=iM*) V5= 2 =B IVIE+allVIE  (6:>0)
where
(5.18) 1 VIZ=IIN(x, D)V|2+cl(A2+1)"VI2  (c: large positive constant)
which is an equivalent norm to ﬁH"-norm 1.
Lemma 5.4. The image (ZI—iM)ﬁHz 1s dense in ﬁH" for large |2|, A€R.
Proof. Suppose that the image is not dense in TTH. Then there exists a
V(x)eTH?, V#0 such that
(5.19) (I—iM)U, V)=0  for all UcTIH?,
a fortiori for all Ue[I9. This implies that
(5.20) AI+iM*)V=0.

It follows from (5.20) that M*VeﬁH". Denote by ¢(&) a C*(R") function such
that

1 for |&=1
(5.21) ¢(€):{

0 for [&]=2
and

0<gO=1.
Define ¢u(©=¢(5). ¢(@=( 55) 2(8) and

(6.22) Pa(D) S (X)=(2n)"se“5¢n(5)f (©)dé§.

It follows from (5.21) that ¢,(D)V(x) and ¢(D)M*V belong to H*. Applying
the inequality (5.17) we have

(5.23) 0=Ign(DYAI+iM*) V%
=@ +iM*)pn(D)V—ilM*, $n(D)IVII%
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1

2 5 II+IMA)u(D)V %= ITM*, $u(DYIV %
1

= 2121 = BPIguDI VIt -3 16DV Ii— M, gu( DIV

Expanding the commutator we have

(5.24) [M*, ¢(D)]V(x)= 2 -(:yl!)]—w DiM*(x, DYP(D)V(x)+R(V)
and
(5.25) | R(V)l =const n=*|| V]| .

The order of D:M* is 2, thus we have

(5.26) ICM*, a(D)IV()|*=const 35 lg(D)VIi3+const n=*[ V]*.

vl

From (5.23) and (5.26) it follows that

(5.27) 0=(12] —=B")lgu(D)VIE+0' [ Pu(D) VI3
—constISIZEszllg{;‘,,”’(D)VII%—const n 2| V|2.

More generally we have

(5.28) 0=(121 =B gD VP40 (DY VI3
—constmﬂg)w Isz||¢§,“"(D) Vl3—const n=2| V|%.

For large positive R, it follows from (5.27) and (5.28) that
(5.29); 02(121 = BYIgnDYVIE+3 (DI VI3
—const 3 [lg (D) VI3
—const 3 [l¢(D) VI3
—const n 2| V2.
(5.29), 02(12| =) X RIGXDIVI+3" 3 RIFD)VI3
—const IHZ__)Z R|¢P(DYVI3
—const n 2R|| V2.
(5.29), 02(121 - X, RUISLDIVI+3 = RIg(DVIS
—const n2R?| V%
Summing up these inequalities we have
(5.30) 0=(12] =4 3 R™Ig(D)VI?

—const(1+R+R*)n?|V|?*
+0'lg(D)V
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~l—(5’R—const)mij1 4 (D) VI3
+(0’ R*—const R—const) |;}ﬂlk{;i}"(D) VI3.
We choose a constant R such that
0’R—const>0,
{ 0’ R?*—const R—const>0.

Since [¢.(D)V|—||V| as n—oo, there exists a positive constant n, such that
IDIVIFZ o IVIE  for nzm,.
Thus for n=n, we have
(531) 0= (11 = B¥I VI*—const 1+ R+ R)n~*| VI
+U2[ = 2 RIGADVIE.

If |V||#0 and |A] is large, then the second member of (5.31) is positive which
is contradiction. (Q.E.D.)

From Lemmas 5.1 and 5.4 we have the following fundamental
Proposition 5.5. Under the conditions (A) and (B) there exists a constant j
such that for any real 2 with |2|>f the operator (AI—iM) defines a one-to-one

mapping of ﬁH2 onto ﬁH“, i.e., the resolvent (AI—iM) " exists for any |2]|>f,
A€ R and the inequality

<. ¢
cdunftr = (121 —p)"

holds where ¢ is a positive constant independent of A and n.

(5.32) AL —iM)~"| (n=1,2, )

Corollary of Proposition 5.5. If U(x)EﬁH°(R‘) such that MU(x)eﬁH”,
then Ux)eT1HARY), i.e.,
(5.33) DOM)=T1 H*= {U(x)eTTH*; MU(x)T1H*} .

Proposition 5.5 implies immediately the existence of a unique solution of the
Cauchy problem (1.4) by applying the Hille-Yosida theorem. (Q.E.D)

6. Examples.

In this section we give some examples of operators satisfying the condi-
tions (A) and (B) (or (B’)). At first consider the first order operators in t.

Example 6.1. (Takeuchi [5], [6])
6.1) P(x;D,, D)=D,+D%+a(x)D., xeR', te<[0, T].
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In this case we can choose ¢(x, &) in condition (B’) such that
62) olx, O=p(x)=—7{. Im ey,

(6.3) N(x, &)=N(x)=e*®  (in (3.10)).

If we assume the following condition (B’):

(6.4) S: Im a(y)dy is a bounded function,

then the Theorem 1.1 holds for this operator (m=1). The following equality
holds:

65 exp(— | Ima()ay) D+ Ditat)D.)

=(D,+D%+Re a(x)D.)exp (—%S: Im a(y)dy) (mod. S8%.

Example 6.2.
(6.6) P(x; D, D,)=D,+a(x)Di+b(x)D,, x€R', t<[0, T].
In this case we assume the following conditions:
Condition (A): a(x) is a real-valued function such that
M=la(x)|=6>0, XER'.

Condition (B): S:Lm—ﬁ(ady is a bounded function.

a(y) z
(Under the condition (A) this is equivalent to the condition:g Im b(y)dy is
0

bounded). Then Theorem 1.1 holds for this operator (m=1). We choose ¢(x, &)
and N(x, &) as follows:

. 1= Im b(y)
(67) olx, =pn=—5 {[" 7 dy+ogla( ]
_ oy 1 _i rlmb(yl
6.8) NGz, §=N(x)=er®= ;s exp( 250 o dy).

The following equality holds:
(6.9) N(x)(De+ a(x) Dz +b(x) D)
=(D,+Dza(x)D;+Re b(x)D,)N(x)  (mod. S°).
Example 6.3.

L
(6.10) P(x; D, Dt)=Dt+|Dx|2+jZ1 bx)D;, xeR', te[0, T], Dj:_ib% .
- i

We choose ¢(x, §) in the condition (B’) as follows:

<el"”> .
.11 or, &=—7 0" S imo (x5 {2t

6.12) N(x, &)=exp(p(x, &)).
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Condition (B"): ¢(x, £) defined by (6.11) is bounded implies the conclusion of
Theorem 1.1 (m=1). The following equality holds:

613 explp(x, D) (Dt |Dal*+ 33 64)D))

=(De+1D| 2+jg'; Re b,(x)D;) exp(p(x, Ds))  (mod. S").

Example 6.4.

P(x; Dsy D)=D.+Ax, Dz),

G| 4, D= 3 auDD+ T 0D, xeR', 1[0, T,
We assume the condition (A):

a;j(x) are real-valued functions satisfying a;;(x)=a;i(x)

and .2 ai;(0)é:€;|201€1*,  (6>0).

i, 7=1

(6.15)

Our procedure is interpreted as follows: At first we transform A(x, D) by
N(x, D)=exp(¢(x, D)) where ¢(x, D) is still to be determined:

(6.16) exp (p(x, D))A(x, D)=A(x, D)exp(¢p(x, D)), (mod. S°).
Here the symbol of /Nl(x, D) has the following form:
(6.17) a(A)=ax(x, &)+ay(x, O)+i{asx, &), p(x, &)},

ax, = 3 ai(0E;

1,j=1

(6.18)

!

ay(x, §)=j§ b(x)§;.
Next we calculate the formal adjoint A* to A. For real-valued o(x, &),
~ —_ 2 & Oa .
619 o(A=aix, O+alr O+2 5 20 e itax, &), olx, 6.

We decompose 171(x, D) as follows:

~ AL A% A A%
(6.20) Ate, Dy= A5 a4,
1
where
_— ,
620 o( TP ) mae 94Re ax, 9+t B P g,
l i,j=1
A—A*N\ L aiyx)
622) o 5 )= ladx ), olx, O} HImay(x, H+ X ST
Finally we choose ¢(x, £) homogeneous of degree 0 such that condition (B) holds;
L L Qda;
(623 (ax, &) ¢lx, O+ 3 m b+ 3, 258 ¢

Then the Theorem 1.1 (m=1) and the following equality hold:
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628  explo(r, D)(Dit 2, a00D:Dy+ % b)D;)

i, j=1

<D5+i§‘k_.=‘l Diaij(x)pj+j§ Re b,(x)D,) exp(p(x, D)),  (mod.SY).

Now we give an example of differential operators of order 2 in ¢ (i.e. m=2).

Example 6.5.
625)  P(x; Ds, D)=Di—|Dsl*+ S b(x)DDi+ 3 cal)DS,

x€R', te[0, T].
(6.26) PYE, D)= —|§|'=(c— &)=+ £]%).
It follows from (6.26) that the condition (A) is satisfied. In the notations of
section 1, ai(x, £)=0, ai(x, §)=—1£1 ai(x, ‘f):,é bi(x)E; ailx, = X calx)E%
A(8)=1&1% 2,(6)=—1£]% Consider the equation
P(x; D, Dyu(x, t)y=f(x, t).

Putting U(x, t)="'((42+1u(x, t), D,u(x, t)), we have
(6.27) D, U(x, t)=M(x, D)U(x, t)+F(x, t),

where
M(x, D)=My(D)+M(x, D)  (mod.S’),

0 &
G(M2):[ J:
€120
( 0 0

- ()18 - Bow el

(6.28)

o(M)=

We take a diagonalizer N(x, D) as follows.
N(x) D):No(x: D)+N—l(xy D)’
eP1E O He1(2, 8 y

U(No)z[

_eq:z(z.E) eqaz(r.f)/

(6.29) where real-valued functions ¢;(x, &) are still to be determined,

= (ol 57) (e gp))emere




122 Jiro Takeuchi
Then we have
(6.30) N(x, D)M(x, D)=9(x, D)N(x, D) (mod. S%,

where
A(x, D) 0 }

Q(x! D):@Z(D)-i_g)l(xr D):[ - ’
0 A(x, D)

G301 @=181—5( 2, a5

Vg ge-2 e,

(=
&

1€l

H
oty=—1¢1+4( 3 cuw(

) = B b )'f'+7,§ffa

I€]

We decompose o(,) and o(4,) as follows:

632 o)=181"~5( 2, Rect(5r) "+ 3 Rebn- 2 ) €1

ol F o (2 mew(g )+ Fm o)) e
©39) ota=[~ g1+ 5, Recuo( i)~ E Renm- 5 )1¢1]
—2 [f 1 |§| gfj _Z(IOIIES Im Ca(x)( |§1 ) 2 Im b (x) |€| ]IEI )

We choose the functions ¢;(x, §) such that

630 B 3 me(5) +Fmam- 5=,

¢l @ 1d2s
and
63 3 O gg;j _%(.a% tm a7 |5|> 3 m o) Ii‘l)
hold, that is,
¢ . .
6B e ogf T pmel i)
+ 5 m b,(x—tTg—l)Tg-}d :)
and
(6.37) oulx, s>——§<'e' >{m§3 Im ca<x—t—l§—|>(-él—)a

—jgl; Im bj(x—t Igl ) é’| }dt.

The condition (B) is as follows: Functions defined by (6.36) and (6.37) are
bounded. Then Theorem 1.1 (m=2) holds.

IRON AND STEEL
TECHNICAL COLLEGE
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Remarks added in proof.

Remark 1. Condition (A) implies that

Zl)E 02;

&°4 8, (x, 8)=224(x, £)#0 on T*R"0

by Euler’s identity, i.e., Ved;(x, §)#0 on T*R\0. Thus any integral curve of
the Hamilton field H,zj is regular and defined on R! by virtue of the homo-
geneity of A;(x, &) (homogeneous of degree 2 in &), (1=j<m).

Remark 2. Condition (B) is stated more explicitely as follows. (cf. Duis-
termaat-Hérmander [1]).

(B-1) No complete integral curve of the Hamilton field H;; is contained
in a compact subset of T*R'\0, (1=j<m),

(B-2) for every compact subset K of T*R!\0 there exists a compact subset
K’ of T*R“\0 such that every compact interval on an integral curve
(of the Hamilton field H,;) with end points in K contained in K,
(1=j=m).

From contlitions (B-1) and (B-2) it follows that
(1.8) Hljgoj(xy &):hj(xy 5)

has a real-valued C=(T*R'\0) solution ¢;(x, §) for any real-valued C=(T*R'\0)
function h,(x, &), 1<j<m).

(B-3) For a function h,(x, &) defined by (1.10) which is C=(T*R"\0) real-
valued, bounded on R'XS'-! and homogeneous of degree 1 in &, (1.8)
has a real-valued, bounded C>(T*R'\0) solution ¢,(x, §) homogeneous
of degree 0 in &, (1=j<m).
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In the case where the operator P(x; D, D;,) defined by (1.1) and (1.2) with
b=2 has the principal part P%x; D, D,) defined by (1.3) with constant coeffi-
cients, conditions (B-1) and (B-2) are automatically satisfied.



