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§1. Introduction

First of all, we are concerned with a simple sufficient condition for essential
continuity of a real function f defined on Dy={(#,27", ---, iy2°"); n=0,1, 2, ---,
1z=0, 1, -+, 2", ISE<N}. Set

A= max |f(27)—f (2],

where i=(,, =+ iy), J=01 -, Jn) 1=i, J2=2", and lezlgkasﬁlxu for x=
(‘xl) oo b xN)‘
Then we have

Lemma 1. If f}An(f)< +oo, then there exists a continuous functionfdeﬁned
on 1y=[0, 117 such that f(x)=f(x) for all x€Dy.

From this lemma, we get very easily an integral test for sample continuity
of stochastic processes with the help of Fubini’s theorem and Hélder’s inequality.
(c.f. [4])

We shall say that a separable and measurable stochastic process {X(f, »);
tely, w2} is an L,-process if the sample path belongs to L,(Iy, dt) with
probability 1. Then a stochastic version of Lemma 1 is the following:

Corollary 1. If an L,-process {X(t, w);tely, 0€Q} with p=1 has a non-
decreasing continuous function o(h) such that

(E[1 X+ —X@®)|*D)"?<a(|h]),
and

S+Oa(5)5'<‘+N"”d5< +oo,

then the sample path is continuous with probability 1.

These arguments are due to Delporte [2] and this integral test is best pos-
sible in a sense at least when N=1 and p=2, ([5], [8]).
A sharper form than Corollary 1 is obtained by Garsia and others ([3], [9])
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by virtue of the following real variable lemma: Set

Q6 N=(], ., lF©-r®I7dsat)"”

for fe L,(Iy, dt), p=1.
Lemma 2. ([3], [9]). If

{050, Na-ar¥inds< too,

then f(t) is essentially continuous.

From this lemma, a sharper form than Corollay 1 is obtained again by
Fubini’s theorem and Holder’s inequality.

Corollary 2. If an L,-process {X(t, w);tely, 0= 2} with p=1 satisfies
1/p
S (S E[lX(s)—X(t)I"]dsdt) F-URNID 5L oo,
+0\JIs-tisd

then the sample path is continuous with probability 1.

In this paper, we shall give a real analytical proof for Lemma 2, which is
elementary and simpler than that of their combinatorial or Fourier analytical
methods. In §3, applying our real analytical method we shall obtain an integral
test for differentiabililty of f& L ([0, 1], dt) and of sample paths of L ,-processes,
which is sharper than that of [7]. In §4, we shall give some remarks

§2. Real analytical proof of Lemma 2.

Set
I, ,=(G—-02" 2], if =2, .-, 2",
=[0, 2-*], if =1,
N
Dn'i:kl—]:lln'ik for i——‘(i], ey, iN),

fn(t):Z”'VSD Faodu for teD,;,

and
An(f)= max /227 =/a(727)]

Since |i—j|=1 and (u, v)€D,,; XD, ; imply |lu—v|=<2""*!, we have

ANZ max 2| ) —f @) Pdudo)?

§22nN/pr(2—n+1’ f) .

First we shall show that f,(f) converges uniformly to a continuous function
fe(t). In fact t€ D, ;"\Dny1.; and (u, V)ED,, ;X D4y, j imply |u—v| =277, which
yields
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IFARGESEO]

IIA
s

2(2n+l)N/p(SD o 'If(u)——f(v)lpdltdv)”p
n,i*%n,J

2(2n+1)N/pr(2—ny f)

IIA
38

<zeovie|’ 0, o~ Im o< +oo,

+0

Therefore there exists a limit function fu(t) of {f.(t)}.
Next we shall show that f.(f) is continuous. Since tD, ;, s€D,; and
2" |s—t| <27 imply |i—j| <1, it follows that

|fo8)—F ()] S A(f)=221V12Q p(277, ).

Therefore we have

Fle)~FDI S T 1fws®)—fa(8)]
+ B iSO+ 11—,
<QUNIP 53 NP, [)F2ANIPQ, (20, £)
e[ 5, pamarinas

<oy Q 5, pro-avim g

Remark. The above modulus of continuity is slightly different from that
of Garsia.

Finally we shall show that f(f)=f(t) almost everywhere. It is sufficient
to check that f,(#) converges to f(¢) in L,(Iy, dt)-norm. In fact

[, 1rw=rawrae
:Zi)go ‘|f(t)——2nNSD f(wydu|?dt

<o m( Ol dudt

S20mNQ 27, S)?

Dy, ixD

<20+4((" "7 0,6, e imas)” — 0,

as n —> 4oo, Q.E.D.
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§3. An integral test for differentiability

Now we shall extend the idea of §2 to obtain a sufficient condition for
differentiability of fe L ([0, 1], dt). Set

Onf ()= (t+h),
AP F(D)=(0n—00)7 (1)

= 3=k} ) kD),
and
ov6, N=([\" 1aprizaranyre, (=),

Then we have
Lemma 3. If

S Q;’H—l)(a’ )o@ m 5L oo,
+0

then there exists f having the r-th continuous derivative which coincides with f
almost everywhere.

From this lemma, a sharper form than that of [7] is obtained by Fubini’s
theorem and Hoélder’s inequality.

Corollary 3. If an L,-process {X(t, w);0=t=<1, w2} with p=1 satisfies

O(1-(r+Dh
[0 Eriarox i 1dtdnyseg-osram do<oo,

0J0

then the sample path X(t, w) has the r-th continuous derivative with probability 1.
Proof of Lemma 3. Set
r=rrazm)

-n

2 "o My
=(;»+2)2<r+2>ng S APf(s)dsdh
0 12~
for 127 "<t<(+1)2°" and 0<i<2"—(r+1),

PW=rrA—=+02"), for 1—r2"=t<l,
and

AP(f)= _ max )|f§f’(i2'")—fﬁ.”((i—1)2'")|.

1si52n - (r+1

We remark that if f(¢) has the r-th continuous derivative f(¢), then /()
tends to f(t) as n—+co. Since we have

2-n
0

fﬁ,”(i2‘"):(r+2)2‘”2>"{Sz-ngzz_nA;;‘“’f(s)dsdh—ks S:Af:’f(s)dsdh},

it follows by Hoélder’s inequality that
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Aﬁ{"(f)={ max (7’+2)P2P(r+2)n(S:_nSi2_n

1sis2 - (r+1)

. |AT+O£ (5) ] dsdh)p}”p
(i-12-n

S(r42)20+PrQEINR" ).
By an obvious formula

AP +AYG 27 AR = i} 2/(0n /o +00) ALY,
=
it follows that for 2" <t <(2i+1)2-""},
L@ — (1)

2-n i2-N+h i2-MN+h/2
—(r4-2)20+0n S {S A,&"’f(s‘)ds—Z’“S A,‘,',‘?,f(s)ds}dh‘
0 i2-1 i2-7
2-n(ie-n+n/2s T )
=22 | [ (B 2600007 £ ()ds |
0 i2-"n Jj=0

§(7+2)221‘—3(1<1/p)+(7‘+2/p)nQ(;+l)(2-n-l, f) s
and for (2i4+1)2-*'<t<(+1)2°",
7O = Fh(D] S 1FPG2) = F02 )|+ @27 )~ (204 1)277)]
S (2t R R, £) 4 AR ()
é(r_|_2)227‘+3/1’2(1‘+2/p)an‘+l)(2~n—l’ f) .

Therefore we have
n§ () — ()]

<(r+2)227+%P 3 20U PROEHD(Q-n-1 1)
n=q

2-

§2(r+2)22r+3/ps qQ‘;*"(ﬁ, f)a-(l+r+2/p)d5< +OO,

+0

This implies that f{’(¢) converges uniformly on any compact subset of [0, 1]
to a limit function f&(¢), 0<¢<1.

Next we shall show that f&(¢) is uniformly continuous, so it is extendable
continuously till ¢=1. In fact, for 279 '<s—¢<2"? we have

|f($)—F2(1)]

< 31U —SPGIH PO S 000
=atr+2200( Qg fa-errm s+ AP()

2-q+1
§4(T+2)22T+3/p5+0 Q(I;'+1)(5, f)a—(l+r+2/P)d5

a(r+2p2e | g, po-arrira.

41
+0
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Finally, we have to show that f(¢) is the r-th derivative of an () which
coincides with f(¢) almost everywhere. Let p(s) be a non-negative ¢>-function

on (—1, 1) such that Sl_lp(s)a's=1, and set

fw(t):g Flt+e—s)o(s/e)dsle, 0=t=<1—2e 0<e<e,,

for arbitrarily small ¢,>0.
Then we have

([fmere = ag oo 2auan)

0

Q. 1)

IA

(Sﬁgl-zso_(mmgl IA""“)f(uﬂ-*S)l",O(S/e)s‘‘dsaludh)””

0Jo
1/

(I3, arororranan) =056, £).

Since the convergence of f, to zero in L,([0, 1—2¢,], dt) implies that Qj™*®
(8, f.) tends to zero, we have the convergence of Q5 *"(d, f°—f) to zero as ¢
goes to zero. On the other hand, we have

QT+1(, fO—1)=2Q81(, f),
and

dT (&)
LI o)

2=

§4(r+2)22r+3/pg+oqQ(/I(r+1)(5’ f(s) _f)a—(l+r+2/p)d5+ IféE)(T)(t)—fﬁ,r)(t)l i

The first term tends to zero uniformly on [0, 1—2¢,] as ¢ |0 by Lebesgue’s
convergence theorem. The second term is estimated by

Lf& ) =)

=(r42)20+ve

SZ-QSZ:ZMAfL”(f ©(s)—f(s))dsdh

2-4r1
0

§<r+z>z<'“"’”S S £ ($)=F(s) | dsdh —> 0,

as ¢ | 0 uniformly on [0, 1—2¢,].
de(f)
dt”
of f© tending to f in L, ([0, 1—2¢,], dt), £ conveges to an f uniformly on
[0, 1—2¢,] which coincides with f almost everywhere, where ¢, is arbitrarily
small and F&(¢) is continuous on [0, 1]. This implies that f$(¢) is the r-th
derivative of f(#) on [0, 1] which coincides with f almost everywhere.

Q.E.D.

Therefore converges uniformly on [0, 1—2¢,] to f¢>(¢). By taking account
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§4. Remarks.
Let ¢ be a non-negative continuous (not necessarily non-decreasing) func-
tion defined on [0, 1], and set
) 1/p
Qu@=(J,o7mar)”,  (pzD.
Then we have

Lemma 4. If

S+OQP(5)5'<1+2’P>d5< +oo,
then
S+oa(h)h-<l+w>dh< too.

Proof. Since we have
S (Ssa(h)dh)é‘“““”dﬁég Q(6)5-9+P d5< +oo
+0 0 +0

it follows that
1 ._2'(l+ll »)

2-7n
. (1+1/p)n
T2 So o(h)dh

<[ (Cotman)s-ariras —0,  as n—s +oo.

This implies that
]
lim 5-<1+W>S o(h)dh=0.
di0 0

Therefore, we have from integration by parts,

1
1+1/p
1

- -(1+1/p)
T S+oa(h)lz arumgp . Q.E.D.

Lemma 5. In addition, if o is sub-additive, i.e. o(s+t)<o(s)+o(t), and 1=
p<log6/log2=2.58 -, then

oo ([lotwan)s-arim o= ~omenn oyl

2 2MPg(2 M) < 40
implies
S+on(5)5‘“”“”d5< +o0.

Proof. First we have

a_ _ > (27"
S+OQP(0)0 (Hz/p)da_zn"'.gz-nq

Q,(3)d-1*u»gs
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<pRMP—1)/2 5 22M19Q (277
By sub-additivity of ¢ and convexity of x?,
aP(W) =27 gP(h—2""")+gP(2-""1))

holds for 2" '<h=2-" Therefore integrating this by 4, we have

[0 ormanz2e [T ormyant2e-r-rarny,

and v

2= 2-n-
0

SO na"(h)dhé(Z”“Jrl)S “oP(h)dh+27 "0 P(27 )
This yields

22n/pr(2—n)§(2p—l+1)1/p2v2/p+2(n+-1)/pr(z—n-1)+21—2/p+n/pa(2-n—])’
and
S (2 < +oo0  if p<log6/log2. Q.E.D.
If the above ¢ is a majorant of an L,-process {X(¢, w);0=t=1, weQ}, i.e.
(ECIX(t+h)—X()|?])?<a(| h|), then

D 2MPg(2 7)< + oo

is a sufficient condition for sample continuity of {X(¢, w)} (Theorem 1 of [7]).
On the other hand,

S+0Q,,(5)5'<‘+2’P>d5< +oo

is another sufficient condition for sample continuity of {X(¢, w)} from our
Corollary 2.

INSTITUTE OF MATHEMATICS
YosHIDA COLLEGE
KyoTo UNIVERSITY

Refences

[1] Ciesielski, Z.; Approximation by splines and its application to Lipschitz classes
and stochastic processes, Proc. of international conference on theory of approxima-
tion of functions (1977), 397-404.

[2] Delporte, J.; Fonctions aléatoires presque sirement continues sur un intervalle
fermé, Ann. Inst. H. Poincaré Sec. B, vol. 1 (1964), 111-215.

[3] Garsia, AL M. A remarkable inequality and the uniform convergence of Fourier
series, Indiana Univ. Math. J. 25 (1976), 85-102.

[4] Hahn, M.G.; Conditions for sample-continuity and the central limit theorem, Ann.
Prob. vol. 5 (1977), 351-360.



(5]
L6}

L7]
£8]
£od

Garsia’s integral test 9

Hahn, M. G. and Klass, M. J.; Sample-continuity of squareintegrable processes, Ann.
Prob. vol. 5 (1977), 361-370.

Ibragimov, I. A.; Properties of sample functions for stochastic processes and em-
bedding theorems, Theory of Prob. and its Appl. vol. 18 (1973), 442-453. (English
translation)
Kéno, N.; Real variable lemmas and their applications to sample properties of
stochastic processes, J. Math. Kyoto Univ.

-, Best possibility of an integral test for sample continuity of L,-processes,
Proc. Japan Acad.
Park, T.W.; Sobolev type inequalities and path continuity of L,-processes with
multi-dimensional time parameter. (doctoral dissertation)



