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Introduction

By the classification theorem of Morimoto-Tanaka Di, we know that there are
fourteen classes of the real primitive infinite Lie algebras. They contain all the
classical infinite L ie algebras (see § 1). In the previous paper [2 ], we determined
the structure of Lie subalgebras of finite codimension of the classical inf inite Lie
algebras.

One of the purposes of the present paper is to extend our result to the case of
Lie subalgebras o f finite codimension of the  real primitive infinite Lie algebras.
The precise statement can be seen in Theorem A.

By using Theorem A, we prove that fourteen classes of the real primitive infinite
Lie algebras are not isomorphic to one another (see Theorem B).

§ 1 .  The real primitive infinite Lie algebras

Let V be an  n-dimensional vector space over the field F, where F  is R  or C.
We denote by L g i(n, F) the Lie algebra of all formal vector fields over V. If F =C,
Lie subalgebras of Lg i(n, C) are regarded as those of L o (2n, R), and  these "real"
Lie algebras are denoted by the same notations.

The complete list of the real primitive infinite Lie algebras is following.
(1) L o (n, R).
(2) L s i(n, R ) :  the Lie algebra of real vector fields of divergence zero.
(3) 4 , 1(n, R ) :  the Lie algebra of real vector fields of constant divergence.
(4) L s p (2n, R ) :  the Lie algebra of real Hamiltonian vector fields, (n  2 ) .
(5) L ( 2 n ,  R ) :  the Lie algebra of real vector fields preserving a  Hamiltonian

form up to a constant multiple, (n  2 ) .
(6) Ls ,(2n + 1, R ) :  the real contact algebra.
(7) L o (n, C).
(8) L s ,(n, C ) :  the Lie algebra of complex vector fields of divergence zero.
( 9 )  L an ,  C ) :  the Lie algebra of complex vector fields with divergence on

some real line in C.
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(10) L „,(n , C ): the Lie algebra of vector fields of complex constant diver-
gence.

(11) Lsp (2n, C ) :  th e  L ie  algebra o f  com plex Ham iltonian vector fields,
(n  2 ).

(12) L„p (2 n , C ): th e  L ie  algebra of com plex vector fields preserving a
Hamiltonian form up to constant lying on a real line in C, (n  2 ).

(13) Lc s p (2n , C ): th e  L ie  algebra o f  complex vector fields preserving a
Hamiltonian form up to a complex constant, ( n  2).

(14) L„(2n +1, C ):  the complex contact algebra.
We will divide the  above fourteen Lie algebras into four cases according to

their properties.
Case 1. Lie algebras L o (n, R), Ls,(n, R), Lsp (2n, R) and L„(2n +1, R).
These Lie algebras are known as the real classical inf inite Lie algebras, and

the structure of Lie subalgebras of finite codimension of them was determined in [2].
Case 2. Lie algebras Lp i(n, C), Ls i (n, C), Ls p (2n, C) and L„(2n +1, C).
These "real" Lie algebras are real representations o f  the complex classical

infinite Lie algebras.
Case 3. Lie algebras L„,(n, R), L„,(2n, R), C) and L„p (2n, C).
Each Lie algebra L of this case contains a unique ideal of codimension 1, which

is denoted by L'.
Case 4. Lie algebras L„,(n, C) and L 5p(2n, C).
Each Lie algebra L of this case contains two ideals L' and L": L' is of codimen-

sion 1 and L" is of codimension 2.
For a Lie algebra L of Case 3 and Case 4, L' and L" are called "trivial" sub-

algebras (or ideals) of L.

§2. Summary of known results

A real primitive infinite Lie algebra (or briefly a  real PLA) L has a  canonical
filtration {Lp }p G z . For a contact algebra, integers p  satisfy —2, and  fo r other
PLA , — 1 . Recall that Lo  is, by definition, a maximal subalgebra of L . E xcep t
a contact algebra, the natural representation of Lo  on L/Lo  is irreducible.

Next we topologize a  real PLA  L assigning {Lp } a s  a  system o f fundamental
neighborhood of L . T h e n  L is a  topological Lie algebra and it is separated and
complete with respect to  the filtration topology. W e should rem ark that a Lie

subalgebra B of L is closed if and only if B = im (B + 4 ) .
P . z

The following lemma was essential in [2].

Lemma 2.1. Let L  be a real or complex classical infinite Lie alg e b ra. Let
B be a "closed" proper Lie subalgebra of finite codimension of L . T hen  B is con-
tained in L o .

R em ark. By an easy consideration, we know that Lemma 2.1 still holds for
Lie algebras of Case 2.
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Using the above lemma, we proved the following, as one of the main theorem
in [2].

Theorem 2 .2 .  Let L  be a real or complex classical infinite L ie alg e b ra. Let
B be a proper L ie subalgebra of L with dim LIB < oo. Then there exists a positive
integer k such that L k c B c L o . (This m eans that B is a closed L ie subalgebra of
L.)

§ 3 .  Lie subalgebras of finite codimension of real PLA

In this section, we prove the first main theorem.

Theorem A .  L et L  be a  real PLA w ith a canonical f iltration {4 } p E z . Let
B be a proper L ie subalgebra of finite codimension of L.

a) For a L ie algebra L  of Case 1 and Case 2, there ex ists a positive integer
k such that Lk Lo.

b) For a L ie algebra L  of Case 3 and Case 4 , if  B is not a triv ial L ie sub-
algebra of  L, then there exists a positive integer k such that L k  B  L o .

Proof of  Theorem A .  The proof of Case 1 was completed in [ 2 ] .  For remain-
ing Lie algebras, the proof depends on case by case analysis.

Proof of a). I n  this paragraph, we denote by M a Lie algebra of Case 1. Let
L be a Lie algebra of Case 2. Then there exists a natural complex structure I  in
L and L is written as L=M+ /M (a direct sum). Through this complex structure
I, we also consider L as a Lie algebra over C, and we denote it by I I  Define a one-
to-one mapping f: L— J: by f (X + IY )= X + V -1  Y for X , Y e M .  Then if a Lie
subalgebra K of L is /-invariant, f (K) is a Lie subalgebra of L . Now for a proper
Lie subalgebra B with dim LIB <co, Bn IB is also a Lie subalgebra of finite co-
dimension of L, and it is /-invariant. Hence f(B  n IB) becomes a Lie subalgebra of
finite codimension of L . Using Theorem 2.2, we have

Lkc f(B  n IB )c

for a suitable positive integer k .  This means

L k cB n
Thus B becomes a closed Lie subalgebra of finite codimension of L. Using Lemma
2.1, we have Bc Lo . Q. E. D.

Proof  of  b). Let L  be a Lie algebra of Case 3. If B 0 L', it holds that 0<
dim L IB  n L' < c o .  Note that L' is a classical infinite Lie algebra. Using Theorem
2.2, we have Lk'  C  Bn L' c Lo . Since Ilk = L k  for k >0, using Lemma 2.1, we get
Lk L o . For a Lie algebra of Case 4, it can be proved quite similarly. Q. E. D.



294 Nobutada Nakanishi

§4 . Application of the main theorem

In this section, we prove

Theorem B. Fourteen classes o f  th e  real prim itiv e  in f in ite  L ie  algebras
listed in §1 are not isomorphic to one another.

P ro o f . First note that the complexification of each Lie algebra of Case 1 is
sim ple . O n the  contrary, the complexification of each Lie algebra of Case 2 has
an ideal of "infinite" codimension, and hence it is not s im ple . Thus each Lie algebra
of Case 1 can not be isomorphic to each Lie algebra of C ase  2 . Now it is clear that
there are no isomorphisms among Case 1, Case 2, Case 3 and Case 4. The remain-
ing part of the proof is to show that there are no isomorphisms among Lie algebras
in each case.

Proof  of Case I. I n  this paragraph, we prove that there are no isomorphisms
among four Lie algebras of Case 1. Let L and L be arbitrary two Lie algebras of
infinite irreducible Lie algebras Lo (n, R), 4 1(n, R ) and L sp(2n, R). S u p p o s e  that
there exists a n  isomorphism yo: Then by Theorem A  it  h o ld s  th a t fik c
go(Lo ) c L o . Since q(L 0 )  i s  a maximal subalgebra of L ,  it satisfies 9 (4 )= L 0 .
Using the transitivity of L and L, we have y9(4)=- Lp  for O. In particular, L o /L,
is isomorphic to L o /L i . This is  a contradiction because gl(n, R), sl(n, R )  and
sp(2n, R ) a re  not isom orphic to one another. Recalling that only the contact
algebra is not irreducible, it can be concluded that there are no isomorphisms among
L o (n, R), La (n, R), Ln,(2n, R) and the real contact algebra. Q .  E .  D .

For other cases, it can be similarly proved that there are no isomorphisms among
Lie algebras. Q. E. D.
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