
J. Math. Kyoto Univ. (JMKYAZ)
21-1 (1981) 153-169

On ideal-adic completion of noetherian rings

By

Jun - ichi NtSHIMuRA

(Received Oct. 30, 1979)

Introduction

In commutative (noetherian) ring theory, complete local rings p lay  many
important roles. T h a n k s  t o  the efforts m ade by K rull, Z ariski, N agata  and
Grothendieck, a lot of marvelous properties o f complete local rings are known.
Moreover, they applied the knowledge to investigate the (local) properties of general
noetherian rings, using the maximal ideal-adic completion.

In  particular, discovering many beautiful properties o f complete local rings,
Nagata successfully used them in the investigation, for example, of the finiteness
problem of integral closures of noetherian dom ains. In  this w ork, he found an
acceptable class of noetherian rings which possess the (universal) finiteness property
for integral closures. H e  named these rings "pseudo-geometric" (for definition,
see [7, (3 IA)]). W e note here that he found the examples of bad local rings at the
same time (cf. [8, Appendix]).

In  reconstructing Nagata's work, Grothendieck noticed the importance of the
informations included in formal fibres, which connect a local ring with its completion.
Developing the concept of formal smoothness, he paid a  special attention to  the
study of noetherian rings whose formal fibres are geometrically regular. He also
found a new class of noetherian rings which have algebraic-geometrically reasonable
properties. He called them "excellent" (for definition, see [7, (34.A)]).

Since complete local rings are proved to be always excellent, Grothendieck
expected that the situation of formal fibres of noetherian rings may become better
when one completes the noetherian rings in an ideal-adic topo logy . He asked if,
for a noetherian ring A  having good formal fibres and for an (arbitrary) ideal I  of
A, the completion A* of A  in the /-adic topology has also good formal fibres. M o r e
precisely, letting P denote a certain (ring-theoretic) condition, Grothendieck defined
a P-ring to be a noetherian ring whose formal fibres satisfy the  cond ition . In  this
terminology, he stated the questions as follows (cf. [3, (7.4.8)]):

Question 1. Let A be a noetherian ring and I an ideal o f  A . I f  A is a P-ring, is
the /-adic completion A * of A  also a P-ring?

More generally
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Question 2. Let A  be a noetherian ring and I  an ideal of A .  Suppose
a) A is complete and separated in the /-adic topology, and
b) A II is a P-ring.

Does it follow that A  is also a P-ring?

M arot [6 ] studied the  above questions in case of the class o f pseudo-geometric
( =universally japanese) rings and obtained a nice answer:

Theorem. (Marot [ 6 ] )  Let A  be a noetherian ring and I  an ideal of  A . S up-
pose

a) A  is complete and separated in the I-adic topology, and
b) A ll is universally Japanese.

Then A  is also universally Japanese.

We note here that it can be generalized a little more:

Proposition. (cf. Tate [7, (31.C), Theorem 69], [9, Corollary 4 ] )  L et A  be a
noetherian dom ain and x  a non-zero elem ent of  A . Suppose

a) A  is complete and separated in the xA -adic topology, and
b) A/p is a Japanese ring for any  p e Ass (AIxA).

Then A  is also a Japanese ring.

Recently, Rotthaus [10] succeeded to prove the following:

Theorem. (Rotthaus [10]) L et A  be a sem i-local ring and I  an  ideal of A .
Suppose

a) A is complete and separated in the I-adic topology, and
b) A li is quasi-excellent.

Then A  is also quasi-excellent.

In this paper, we first study the above questions for semi-local rings in the case
where the condition P  is being geometrically regular (o r  geometrically normal,
geometrically reduced). We prove:

Theorem. (cf. Marot [6], Rotthaus [10]) Let A  be a sem i-local ring and I  an
ideal of  A . S uppose

a) A is complete and separated in the I-adic topology, and
b) A li is a G-ring (or a Z-ring, an N-ring).

Then A  is also a G-ring (or a Z -ring, an N -ring, resp.) (for definition, see (0.1)).

The proof of the above theorem, substantially due to Rotthaus [10], is given in
section 3.

Section 1 consists of preliminary lemmas. Lemma (1 . 1 ) is easy, but we recog-
nize that this lem m a is the crucial first step toward the  answ er. Lem m a (1.2),
originally obtained by Rotthaus (cf. [10, Lemma 2]), is a  direct consequence of
Lemma (1.1). Lemma (1.3), which gives an inequality on the depth (=la profondeur)
for the chain of prime ideals, is well-known.

Section 2 is devoted to understanding Andres Theorem [1]. We could say
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that this is one of the most brilliant theorems about complete local rings. Some
direct corollaries of André's Theorem are noted (e.g. Proposition (2.4), Proposition
(2.5)). We also emphasize that these results of this section play a key role in the
proof of the theorem.

The efforts to generalize the theorem in the case of general noetherian rings are
described in section 4 and some sufficient conditions are proposed. W e omit their
proofs, because all of our results are derived immediately from the theorem or from
our proof of it.

Regretably, the above questions are not affirmative in genera l. An example,
which gives a  negative answer to Question I, is presented in section 5 (cf. Example
(5.3)). We note that this gives also a new example of a two-dimensional local domain
which has non-noetherian over-rings between the  domain and  its derived normal
ring (cf. Nagata [8, p. 207, Example 4]).

Moreover, in section 6, we show that the same method gives further examples
of bad local rings. First we construct an elementary example of a two-dimensional
normal local ring which is analytically ramified (cf. Nagata [8, p. 208, Example 6]).
Using this, we finally give a new example of a three-dimensional local domain whose
derived normal ring is not noetherian (cf. Nagata [8, p. 207, Example 5]).

We conclude this introduction with the following fascinating (still-open) prob-
lems (cf. [7, (34.D)]):

Problem 1. Let A  be a noetherian ring and I  an ideal of A .  If  A is (quasi-)
excellent, is the /-adic completion A * of A  also (quasi-) excellent?

Problem 2. Let A  be a noetherian ring and I  an ideal of A. Suppose
a) A  is complete and separated in the /-adic topology, and
b) AII is (quasi-) excellent.

Does it follow that A  is also (quasi-) excellent?

O. Notation and terminology

In this article, we mean by a ring a commutative ring with identity. By a semi-
local ring (A , m 1 ,..., in,.), we understand that A  is a noetherian ring with only a
finite number of maximal ideals i n r .  A local ring is a semi-local ring with
only one maximal ideal. For a semi-local ring (A , m 1 ,..., in r ) , )1' (or A ') m eans
the completion of A  in  the in-adic topology, where in=m, • • •In r . W h e n  p  i s  a
prime ideal of a ring A, the field of quotients of the integral domain A/p is denoted
by  k (p ). The nil-radical of a ring A  is denoted by nil (A).

Let A  be a noetherian ring. When the subset Reg (A ) of regular points of the
set Spec (A) (i.e. Reg (A) =the set of prime ideals p  of A such that A l, is regular) is
open in Zariski topology, we denote by sing (A ) the maximal defining ideal of the
closed set Sing (A )= Spec (A)— Reg (A), i.e. sing (A )= n  p. In the same way,

peSing(A)

when the set Nor (A) of normal points of Spec (A) is open, we denote by non-nor (A)
the maximal defining ideal of the closed set non-Nor (A)= Spec (A)— Nor (A ) . Note
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that nil (A ), sing (A ) and non-nor (A), when they are well-defined, are all semi-prime
ideals.

Let k be a field and A  a  noetherian k-algebra. We say that A  is geometrically
regular (or geometrically normal, geometrically reduced) over k if the ring A® k k'
is regular (or normal, reduced, resp.) for every finite extension field k' of k. Let
, be a ring-homomorphism of a noetherian ring A  to a noetherian ring B .  We say

that t/i is regular (or normal, reduced) if l, is flat and, for any prime ideal p of A,
the  induced map t/'®k(p) o f k(p) to  BO A  k(p) makes the  k(p)-algebra BC) A  k(p)
geometrically regular (or geometrically normal, geometrically reduced, resp.) over
k(p).

Definition. (0 .1 )  A  noetherian ring A  is called a G-ring (or a  Z-ring, an N-
ring) if, for any p e Spec (A ), the canonical map A p —A; of a local ring A  its
completion is regular (or normal, reduced, resp.).

Remarks. (0 .2 .1 ) I f  A  is  a  G -r in g  (o r  a  Z-ring, a n  N-ring), then any its
localization and any finite A-algebra are also G-rings (or Z-rings, N-rings, resp.).

(0.2.2) (cf. [3, (7.4.4)]) A noetherian ring A is a G-ring (or a  Z-ring, an N-ring) if,
for every maximal ideal in of A , the canonical map A,„--A,"'n of a  local ring A n,  to
its completion is regular (or normal, reduced, resp.).

(0.2.3) (cf. [7, (30.D), Theorem 6 8 ] )  A complete semi-local ring is a G-ring.

(0.2.4) (cf. [7, (32.A), (32.C), (33.D)]) If a semi-local ring A is a G-ring (or an N-
ring), then Reg (A) (or Nor (A ), resp.) is open in Spec (A).

1. Lemmas

Lemma. (1.1) (cf. [8, Proof of (30.1)]) Let A  be a noetherian ring, f  an  ideal
of  A  and {ai } i c i v  a descending sequence of ideals of  A . S uppose

(1 .1 .1 ) A  is complete and separated in the I-adic topology,

(1 .1 .2 ) there is an r>0  such that cl,a / r  f or any  m >0, and

(1.1.3) f o r any  n >0, there ex ists an  integer t(n) such  that a, ( „) + P' = a„, + PI for
any  m > t(n).

Then n a„ (0).

Lemma. (1.2) (cf. Rotthaus [10, Lemma 2 ] )  With A  and I  as above, let B  be
an  A -algebra, b  a n  ideal o f  B  an d  a=b n A .  Pu t b„--1)+1"B an d  an =b„ n A
(n e N ) .  Suppose

(1 .2 .1 ) A is complete and separated in the 1-adic topology,

(1.2.2) b„=a„.8 f or any  n >0,

(1.2.3) B/a„B is faithfully flat over A la n f or any  n >0, and
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(1 .2 .4 ) n (aB +InB )=03 and n b=b.

Then aB= b.

P ro o f . Since aB n A = a, we may assume a = ( 0 ) .  Suppose 60(0). Then there
is an r> 0 such that bc,-LPB  (cf. (1.2.4)). Hence, ang  I r fo r any m > 0 (cf. (1.2.2)).
Moreover, a s  (am  +In)B=a,„B+ InB=b„,+ I"B= b„ = a„B fo r  any m >n, we have
am + I n = an (cf. (1.2.3)). Therefore, a = n a„0(0) by (1.1). Contradiction.

Lemma. (1 .3 )  (cf. [5, Theorem 134, Theorem 1 2 7 ])  L et (A , m ) be a local
ring, p  a prim e ideal of  A  and a an element of  in. L et J=p  + aA . Suppose J  is
in-prim ary . T hen

(1 .3 .1) prof A  prof A +1.

2 .  Andre's Theorem

Andre's Theorem. (2 .1) (A ndré [ I ] )  L et (A , n t)  an d  (B, n )  b e  lo cal rings
an d  a  lo c al homomorphism of A  to B . S uppose

(2.1.1) ik is formally smooth (with respect to the canonical topologies), and

(2 .1 .2) A  is a G-ring.

Then Ili is regular.

Remark. ( 2 .2 )  (cf. [3, (0,, 19.7.1), (O l v  22.5.8)]) The condition (2.1.1) is equiv-
alent to the following two-conditions:

(2.2.1) is fiat, and

(2.2.2) (= tkOk(m)) is regular.

Proposition. (2.3) (c f. [7 , (33 .E ), Lemma 3 ] )  W ith notation as in  (2.1), the
following are equivalent to each other:

(2.3.1) tk is regular (or norm al, reduced).

(2.3.2) j  is f lat and, for any prim e p of A , tliC)k(p) makes BO A  k(p) geometrically
regular (or geom etrically  norm al, geom etrically  reduced, resp.) over k(p).

(2.3.3) tk is f lat and, for any  f inite A -algebra C which is an integral domain with
f ield of quotients L, BO A L  is regular (or norm al, reduced, resp.).

Proposition. (2.4) With notation as in (2.1) and (2.2). Suppose

(2.4.1) is fiat,

(2.4.2) is normal (or reduced), and

(2 .4 .3 ) A  is a Z-ring, (or an N-ring, resp.).
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Then Ili is normal (or reduced, resp.).

P ro o f . Let B* be the mB-adic completion of B, and trf be the induced map of
to B * .  Let p (or r) be the canonical map A—, A (or B--+B*, resp.). We have the

following commutative diagram:

B*

pf IC
A B

Hence, as p is normal (or reduced, resp.) and r is faithfully flat, we may assume

(2 .4 .4 ) A is complete (cf. [3, (7.3.4), (7.3.8)]).

By noetherian induction, we may also assume

(2 .4 .5 ) A  is an integral domain with field of quotients K  and, for any non-zero
prime p  o f A , t/fO k(p) makes BO A k(p) geometrically normal (or geometrically
reduced, resp.) over k(p).

Let C be an integral domain which is a finite A-algebra. Then C  is also a Z-ring
(or an N-ring, resp.) (cf. (0.2.1)). Moreover, the induced map ti/Q C  of C to  BO A C
satisfies (2.4.1), (2.4.2) and (2.4.5) (with respect to  the pairs of the corresponding
maximal ideals). Hence, in order to prove (2.4), it is sufficient to show that BO A K
is normal (or reduced, resp.) (cf. (2.3)). Let A  be the derived normal ring of A.
Then A is a finite A-algebra (cf. [8, (32.1)]). Hence the same reasoning as above
allows us to assume

(2 .4 .6) A  is normal.

Under these assumptions, we claim

(2 .4 .7 ) B is normal (or reduced, resp.), i.e. B satisfies (S 2 )  and (R 1 ) (or (SO and
(R0 ), resp.).

Before proving the above claim, we fix some notation. Let P be a prime ideal
of B, and p= P n A . L e t a  be a non-zero element of in, Q a minimal prime over-
ideal of P-1-aB, and q -=Q n A .  (Note that a may be contained in P .  In that case
we understand Q= P . )  Then ci is a non-zero prime of A .  We denote by t/fQ  the
induced map of Aq to  B Q  and understand  Q =ti/ Q 0 k (q ).

Proof  o f  (2.4.7). Normal c a s e :  Suppose prof B p l .  Then prof BQ  2  b y
(1.3.1). M o reo v e r, prof B,2 1qB,2 51, for prof A ,  1 (cf. [7, (21.B), Theorem 50]).
Hence, iT/ Q  is regular, i.e. tfr Q  is formally smooth (cf. (2.4.5), (2.2)). Consequently,
as A, is a G-ring, 1pQ  is also regular by André's Theorem (cf. (2.4.4), (0.2.3)). On
the other hand, A I, is regular, for prof A p I  (cf. (2.4.6)). Therefore, Bp  is also
regular (cf. [7, (33.B), Lemma 2]).

Reduced case: Suppose prof Bp= O. T h e n  prof B Q  I  by  (1 .3 .1 ). M oreover,
prof BQ IciBQ  =O. Hence, is regular. Consequently, IP Q  is also regular by André's
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Theorem. Therefore, as An =K , B p  is regular. q. e. d.

Proposition. ( 2 .5 )  L et II/ be a ring-hom om orphism  of  a noetherian ring A  to
another noetherian ring B  and, for each prim e ideal P of  B , let kit), be the induced
map of A ( p n A )  to B . Suppose, for every  m ax im al ideal Q of  B  w ith q=Q  n A , that

(2.5.1)I i f lat,

(2.5.2) . ,2 (= tfr(2 0k (q)) is regular (or norm al, reduced), and

(2 .5 .3) A  is a G-ring (or a Z -ring, an N -ring, resp.).

Then Ili is regular (or norm al, reduced, resp.).

3 .  Proof of the theorem

Since a  complete (semi-)local ring is a G-ring (cf. (0.2.3)), b y  induction on
dim A ll, we may assume

c) for any non-maximal prime p of A  which contains I, the 4-adic completion
A : of A  is  a G-ring (or a Z-ring, an N-ring, resp.).

By noetherian induction, we may also assume

d) A is a semi-local domain with field of quotients K  and, for any non-zero
ideal a of A , A/a is a G-ring (or a Z-ring, an N-ring, resp.).

Hence it remains to be proved that A O, K  is geometrically regular (or geometrically
normal, geometrically reduced, resp.) over K .  Moreover, by the same argument as
i l l  the proof of (2.4) it is sufficient to prove that AOA  K  is regular (or normal, re-
duced, resp.).

Let b = sing (A) (or b = non-nor (A), b = nil (A), resp.), b„ = b + PA and an = bn n A
for any n>0  (cf. (0.2.3), (0.2.4)). We first claim

(3.1) anA=b„ for any n >O.

Proof  of  (3.1). L et b„— Q , n • • • n Q , be a  primary decomposition of b„ (with
P i-prim ary ideal Qi ( i=i ,  s ) ) .  S e t a ; -= Q1 n A  a n d  pi = P i n A .  Then q i is
pr primary and an = q i n ••• n qs (which may not be an irredundant decomposition).
We show

(3 .2 )  If P i is maximal, then q iA=Q, (this is clear).

( 3 .3 )  If p is a non-maximal prime of A  which contains I , then a„A r =(b„),, where
T= A — p.

Proof of (3.3). Let A: be the I n-adic completion of A (A T )* the /A T -adic
completion of A T . Let p  (or r) be the canonical map of A  to A  (or of AT to (A T )* ,
resp.) and let p i . (or 0 -) be the induced map of An to  AT (or of A : to (AT )*, resp.).
We have the following commutative diagram:
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AT —1,  (A T)

PI T

A A :

Since the induced map iit(=p0(A V 1A :)) of AVIA:(= (A ll) p )  t o  (A i )*/i(A T )*
(=(A /I)) is regular (or normal, reduced, resp.) by assumption b) and A: is a G-ring
(or a  Z-ring, an N-ring, resp.) by assumption c), p is regular (or normal, reduced,
resp.) (cf. (2.4), (2.5)).

Let c= sing (A ) ( o r  c= non-nor (A : ) ,  c= nil (A:), resp.) and  le t c =  c +  A t
(cf. (0.2.4)). Then, as p  is regular (or normal, reduced, resp.) and t is regular, we
have b(ÂT )* =c(A T )* and, consequently, b„(AT )* =c„(A T )*  (for a n y  n >0) (cf. [7,
(31.D), Theorem 70], [7, (33.B), Lemma 2 ]).  Hence (a)  n

O n the  other hand, since a„ contains I", we see a„A; = c„. Hence, an(A T )*
=b„(A T )*. Therefore, NA T  =(b„) T  (Thus (3.3) is proved and this also completes
the proof of (3.1)).

F in a l step o f th e  p r o o f .  By (3.1), w e have b=(b n A);:ei (cf. (1.2)). Hence
ap- '(Reg (A)) = Reg (A) (or a r  1(N or (A ))= Nor (A), nil (A)A = nil (A), resp.), for b
is semi-prime. Therefore, AO A K  is regular (or normal, reduced, resp.). q . e . d .

4. Some application of the theorem

Proposition. (4 .1 ) L e t A  be a  noetherian ring  and  I  a n  idea l o f A .  Suppose
a) A  is complete and separated in the I-adic topology, and
b) A lf  is  a  G -ring  (o r a Z-ring, an N-ring).

Then the following are equivalent to each other:

(4.1.1) A  is a  G -ring  (o r a Z-ring, an N-ring, resp.).

(4.1.2) F o r any m a x im a l idea l in o f A , the canonical m ap p,„ o f a  lo ca l r in g  A n,
to  the I,„-adic completion '4;1', of A n, is  regu la r (o r n o rm a l, reduced, resp.).

(4.1.3) T here  ex is ts  a  fa ith fu lly  fla t ring-homomorphism o f A  to  an A-algebra
B, which is a  G -r in g  (o r a  Z-ring, a n  N-ring, resp.), su ch  tha t th e  induced map

(=t1JOAII) o f A li to  B O  is  regular (o r no rm a l, reduced, resp.).

(4.2) (cf. [2, (0, 7.6.15), (0, 7.6.18)]) Let A  be a  noetherian ring, J an ideal of
A and S a multiplicatively closed set of A such that in  S = (1). Let A t be the Js -adic
completion of A s . We denote by A,s , the inductive limit Urn A (f), where A,T , is the

f e S

j r adic completion of A f . Then

(4.2.1) A  is  fa ith fu lly  flat over A ls ,, and

(4.2.2) A ls ,/JvA,s , At1JvA'sK for any v >O.

Hence

(4.2.3) A (s ) is noetherian,
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(4.2.4) Jil ( s ) is contained in the (Jacobson) radical of A(s ) , and

(4.2.5) the JA i s r adic completion of A ( s ) is identified with A .

When S = A — p with prime ideal p of A , we adopt the notation A i o  instead of A(s).

Proposition. (4.3) With notation as above, let A  be a  noetherian ring and I
an ideal o f  A . Suppose

a) A  is complete and separated in the I-adic topology,
b) A II is a G-ring (or a Z-ring, an N-ring), and
c )  f o r any  m ax im al ideal in of A  and for any  ideal J  of  A n t which contains

IA ., A i . ) (w ith  respect to  th e  J-adic topology ) is a G -rin g  (o r a Z-ring, an
N-ring, resp.).
Then A  is also a G-ring (or a Z-ring, an N-ring, resp.).

5 .  Examples

(5.1) (cf. Hochster [4, Proposition 1, Example 1]) Let k be a field of charac-
teristic 2. Letting X i be indeterminates, we set R 1 =k [X 2

i , X 3
i ] with (fixed) maximal

ideal p i =(X f, X i) I ,  2 , . . . ) .  Put R' = Ok R i and S =R '—  p i R'. Let R = R .
Then

(5.1.0) maximal ideals qi o f  R  are in one-to-one correspondence with N  via i
=p iR,

(5.1.1) R q ,=(K i 0 k R i) i . ,  where K i is an extension field of k  and iii =q i(K,O k R i )
(Note that pi is an absolutely prime ideal), and

(5.1.2) any non-zero element o f  R  is contained i n  only a  finite number of
maximal ideals.

Hence

(5.1.3) R  is a  one-dimensional noetherian domain with field  of quotients K
=k(X  1 , X 2 ,...), and

(5.1.4) R is a G-ring (cf. (5.1.1)).

Let R be the derived normal ring of R .  Then

(5.1.5) k =R [X i , X 2 ,...], and

(5.1.6) the set 11.2 = {r2  r  E 11} is contained in R.

Moreover, for any non-zero prime qi of R,

(5.1.7) R q i  is not normal, but its derived normal ring (R 4 i ) is a  finite R g i-module
(cf. (5.1.1), (5.1.4)).

(5.2) Letting T and W be two indeterminates, we set B = C =K [7 ]],
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CO= X i Ti E C, f(W)= W 2  + co2  e B[W] and g (W )=W -FoiE C [W ]. Then

(5.2.1) f(W )=g (W ) 2  i n  C [W ] and the set C[W] 2 = {h 2 1 h e C[W]} is contained
in B[W ] (cf. (5.1.6)).

We claim

(5.2.2) f(W ) is a prime element in B[W].

Proof  of  (5.2.2). Since C C [W ]lgC [W ] (this is clear), g(W ) is  a prime
element in C [W ].  Let Q=-gC[W] n B[W ] (a prime ideal of B [W ]) .  Then the set
{q 2 1 q e Q} is contained in fB [W ] (cf. (5.2.1)). Hence, Qv c fB [W ] for some suffi-
ciently large v >O. Consequently, Q is the only one minimal prime ideal of the
principal ideal fB [W ].  Moreover, as B [W ] is (locally) Cohen-Macaulay, Q is  the
only one associated prime ideal of fB [W ] (cf. (5.1.3), [8, (25.6)]). Therefore, to
get the claim, it is sufficient to prove

(5.2.3) f(W ) is a prime element in B[W] Q .

Let L be the field of quotients of B .  Then, as Q n B  (0), (5.2.3) is equivalent to

(5.2.4) f(W ) is irreducible in L[W ].

Proof  of  (5.2.4). Suppose f (W ) is reducible in  L[W ], i.e. f(W )=(W+ w) 2 in
L [W ]. There exist a, fi e B such that

(5.2.5) co= , i . e .  aco= j3.a

Let a= am Pn and fi = b„T^, where am , b„ e R .  We compare the coefficients
m=0 n=o

of T n in  (5.2.5). Then

(5.2.6) E  am X = 6 7, for a n y  n >O.
m+ j=n

Hence, letting a = a„m  where m0 =min {m1 am 00}, we have

(5.2.7) aiX f eR for a n y  j>0.

Consequently

(5.2.8) R = R [X  X  2 ,..., X i ,... ]cR o .

This is a contradiction (cf. (5.1.2), (5.1.7)). Thus (5.2.4) is proved and this com-
pletes the proof of (5.2.2).

Example. (5 .3 ) With notation as above, let A = R [T ] and I  =T A . Then

(5.3.1) A  is a  two-dimensional G-ring and B is the I-adic completion of A (cf. [7,
(33.G), Theorem 77]).

We claim
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(5 .3 .2 ) B is not an N-ring.

Proof of (5.3.2). Take a maximal ideal m of B and let q=m n R (a maximal ideal
o f R , say qi). L et M , be the  /B.,-adic completion of B .  T h en  R q[[T]].
Let n be the corresponding maximal ideal of C and C : the IC .-adic completion of
C . T h en  C: = k q [[T]] ----B :O R R, for R, is a finite R q-m odu le . Hence

(5.3.3) C :O R  K =B :O R K.

P u t  B [w ]=B [W ]l f  B [W ]c)C a n d  M = n  11 B [w ] .  Then t h e  /B[w] m -adic com-
pletion (B [w ],)* of a local domain B[w] m is isomorphic to B :[W ]if  B :[W ]. Hence
(B[w] m )*® R K =(C :O R  K )[W ]l f (C:O R K ) [W ]. M oreover, w e h a v e  already
seen that f (W )=g(W ) 2  in  C [W ] .  Therefore, (B[w] m )* is not reduced. q. e. d.

Remark. ( 5 .4 )  With notation as above, we see
a) B is complete and separated in the /B-adic topology,
b) BlIB  is a G-ring, and
c) B is a two-dimensional noetherian domain.

Hence B/b is a G-ring for any non-zero ideal b of B.

Remark. ( 5 .5 )  With notation as above, the argument in (4.3) shows that if
Boo  (with respect to the /-adic topology) is a G-ring (or a Z-ring, an N-ring), then
B is also a G-ring (or a Z-ring, an N-ring, resp.). Therefore, A gives also a negative
answer to [3 , (7 .4 .8 ), C ]. Moreover, we see that th e  following question is not
affirmative in general:

Question. Let B be a  noetherian ring, I  an ideal of B and S  a  multiplicatively
closed set of B such that I n S =  .  Let M  be the /s -adic completion of Bs . Sup-
pose

a) B is complete and separated in the /-adic topology, and
b) BII is a G-ring (or a Z-ring, an N-ring).

Then, are the canonical maps p s : 135 -43's'  and  fis : /315} -43's'  regular (or normal,
reduced, resp.)?

(5 .6 )  With notation as above, let a  be a non-zero element of MB[w] m and
(B[w]m )** the aB[w ],-adic completion of B[w]m . Then

(5.6.1) (B [w ] m )** is not reduced.

Proof  of  (5.6.1). Suppose (B[w] m )** is reduced. Then, as B[w]m laB [w ], is
a G-ring, (B[w] m )** is also a (reduced) G-ring by Theorem (cf. (5 .4 )). Hence, B[w] m

is analytically unramified (cf. [3 , (7 .3 .17 )]). Contradiction (cf. (5.3.2)). q .  e .  d.

Let P be a  height-one prime ideal of B[w] m . Since the regular local ring C.
is integral over B[w]m ,  there exists a  prim e element n  o f  C „ such that nC„ n
B [w ]M — P. L e t a  ir2 e B[w]m  a n d  (B[w] m )* *  th e  aB[w] m -ad ic completion of
B [w ]M . Then, as aB[w]m  is  P-primary, we have a canonical injection (B[w]m )**
(-0(B[w]p r  .  Hence
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(5 .6 .2 ) (B[w]p )"  is not reduced (cf. (5.6.1)).

Consequently, the derived normal ring (B[w]p) of the one-dimensional local domain
13[w]p is not a finite B[w] p -module.

(5 .7 ) With notation as above, let (B[w]m ) be the derived normal ring of B[rv]m

and (13[w]m )* the /(B[w] m )-adic completion of (B[w]m ). Then

(5.7.1) (B[w]m)*= C:.

Hence (B[w] m )* is a regular local ring.

Proof of (5.7.1). First we note that, as B[w]„,, is two-dimensional, (B[w]m ) is
noetherian (cf. [8, (33.12)]). Since C„ is integral over the normal domain (B[w]m ),
we see

(5.7.2) TvC„ n (B[w]m )=Tv(B[w],,,f ) for a n y  v >O.

Moreover, there exist canonical injections

(5.7,3) R q (B[w]m)IT(B[w]m)c--9 C nIT C„=R  •

Thus we have an isomorphism

(5 .7 .4 ) (B[w]m )1Tv(B[w]m r- - --->" C ,,IT v C „ fo r a n y  v > 0 . (This com pletes the
proof of (5.7.1))

Example. ( 5 .8 )  (cf. Nagata [8, p. 207, Example 4 ] )   With notation as above,
le t a  be  a  non-zero element o f  MB[w] hr and  D=(B [w] m ) n (B[w]A,t ) [1/a] (=the
integral closure of B [ w ] M  in (B[w] M ) [1 / a ]) .  Then

(5 .8 .1 ) D is not noetherian.

This gives an  example o f  a  two-dimensional local domain which has (an infinite
number o f) non-noetherian (quasi-local) over-rings between the  domain and  its
derived normal ring.

Proof  of  (5.8.1). Suppose D  is  noetherian. Since av(B[w]m ) n a 'D ,  we
have a canonical injection

(5.8.2) (B[w]M)lav(B[w]m) for a n y  v >0.

Then the aD-adic completion D** of D is reduced (cf. (5.7)).
Let Q' be a prime ideal of D which contains aD, the prime ideal of (B[w]m )

such that 0  n D =Q ', and let Q =Q ' n B [ W ] M .  N o t e  th a t  k ( )  is  a  finite (algebraic)
extension of k(Q) (cf. [8, (33.10)]). Then DIQ' is a  finite (B[w] m /Q)-module, for
B[w]m IQ is  a G-ring (cf. (5.4)). Hence DIQ' is also a G-ring (cf. (0.2.1)). This
means that DlaD is a  G -rin g . Therefore, D** is a  (reduced) G-ring by Theorem.
Hence D is analytically unramified. Consequently, for any prime ideal P of D[1Ia]
(=(B [w ]m )[1/a]), D p  (=B [w ]p) is also analytically unramified (cf. [8, (36.8)]).
This is a contradiction (cf. (5.6.2)). q .  e .  d.
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6 .  Further examples

(6 .1 ) We make a minor change of notation. Let R  be the same as in (5.1).
We use Y , Z . fo r X 21 _ 1 , X 2i =  1, 2,...). Letting T , U and W be three inde-

terminates, we set B =R [[T , U ]], C =R [[T , U ]], col = Y,Tie C, w 2 =  E Z U '

e C, co-= w, -l-co2 . Then

(6.1.0) B is a three-dimensional noetherian domain and C is a (noetherian) regular
domain, where the set C2 = {y2 ly E C} is contained in B.

Let L be the field of quotients of B .  Then a similar argument as in the proof of
(5.2.4) shows

(6.1.1) o) L.

Let P =(T , U)B  (a prime ideal of B ) and B ; the completion of B p . Then

(6.1.2) Bp is a two-dimensional regular local ring, and

(6.1.3) B ;=K [[T , U ]], where K  (=k (17
1, Z „ Y 2, Z 2,...)) is the field of quotients

of R.

Example. (6 .2 )  (cf. Nagata [8, p. 208, Example 6 ] )  With notation as above,
let B [w]=B [W ]/(W 2 +co2 ) and let Q be the prime ideal of B[w] such that Q fl B = P.
Then

(6.2.1) B[w],2 (=B,,[w]) is normal.

This gives an example of a two-dimensional normal local ring which is analytically
ramified.

Proof  of  (6.2.1). Let a be an element of L (w ). Then a  can be expressed as
[3+yw, where /3, y e L .  The element a is integral over Bp[w] if and only if

(6.2.2) /32 y 2w 2 = fl2 y 2 (0 2  e B p .

Let )6= and y= —

c  

, where a, b, c E B p .  Then (6.2,2) is expressed asa a

(6.2.3)

We first claim

(6.2.4)

b2, c 2c0 2
a2  — d E B p ,  i.e. b2 + c2 co2 =da 2 .

c E aBp.

Before we prove (6.2.4), we make some remarks, fixing notation. First we note
that B p  is  the ring of quotients of B  with respect to the multiplicatively closed set
.5= Ui e B [[T , U ]] r o , 0 1 .  Then, for any element x  o f Bp ,  we can
find a non-zero element s of R  such that x e R E 'T , U ]]. Hence
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(6.2.5) there exists a non-zero element s of R such that a, b, c, d e R J [T , U ]] and
that a, b, c have no common divisor in B .

Therefore, we can express a, b, c, d  as formal power series in  T and  U  with co-
efficients in Rs :

(6.2.6) a =  E b= c=  E E d 11 T2iu2i,

where cif, d11 e Rs (i, j =0, 1, 2,...).

Then, comparing the coefficients of T21 U2 4  in  (6.2.3), we have

(6.2.7) ii + E  c2 Y 2E c f „ , Z „, =  E  dk o 1 ai 2 1 2
M l+n12 = i r i t i - n 2 =  j k1-F k2= i

1 1+ 1 2 = i

for any non-negative integers i, j.

If aiÈPBp, our claim (6.2.4) is clear. Hence we may assume

(6.2.8) a e PB p, i.e. a0 0 = 0.

Moreover, we remark

(6.2.9) there exists an i >0 such that a10 0 0.

Proof of  (6.2.9). Suppose a 0 =O for any i O. C o n s id e r  the relation (6.2.3)
modulo URs [ [T ,  U ] ] .  Then, denoting by 5-c the class of an element x of Rs [[T , U ]]
m odulo  U R E T , U ]], w e  h a v e  52 + E2 w2 O . C o n se q u e n tly , a s  co2 = c 4  and
bE# 0 (cf. (6.2.5)), a), is contained in the field of quotients of Rs [ [ T ] ] .  A similar
reasoning as in the proof of (5.2.4) shows this is im possible. (Thus (6.2.9) is proved)

Finally, as X , ( = K [['T , U ]]) is faithfully flat over Bp, we note that, to get our claim,
it is sufficient to show

(6.2.10) c e aRs [[T , U ]] for some non-zero element s of R.

Proof of (6.2.4). Suppose ci4aBp. Let i 0 =min {i I a10 0 0} (cf. (6.2.9)). By
the above remark (6.2.10), we may assume

(6.2.11) a100=1.

Let j o  =min { j  c o 0 0 for some 0} and i 1 =min fi I co o  0 0}.  By adding a suitable
multiple of a to c if necessary, we may assume

(6.2.12) i1< 1 0  a n d  c .=  1  (cf. (6.2.10)).

From now on, we fix a  non-zero element s of R  which ensures the assumptions
(6.2.5), (6.2.11), (6.2.12). Under these assumptions, we can show

(6.2.13) Zi e Rs[Y ]  (= R s [Y„ Y2 ,...]) for a n y  j> 0.

Proof of (6.2.13). First we note two preliminary steps.
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Step 1. Let — 1 . Suppose

(6 .2 .1 4 )  du  is contained in the set R [Y ] 2 (=  { f 2  If e  R [ 11 } ) for any j 5  n and for
any i> 0 , and

(6 .2 .1 5 )  Z k u R s [ Y ]  for a n y  k...n — j 0 +1.

Under these assumptions, we compare the coefficients of T2 (io+i)U2 ("±l) in (6.2.3).
Then

(6.2.16)b 0 + ) ( + ] E C 1 ( + 1  Y 2
2E

m t+m 2=to+1 n i+ n2= n+ 1
(n25n— j0+ 1)

= d i ( "+ " 1,04,E io+i dk 1f1a i 2 r2 ( c f .  (6 .2 .7); (6 .2 .11), (6 .2 .12)).
li-4-12=n+1

(k1< i o r  I i< n + 1 )

Hence, by induction on i

(6 .2 .1 7 ) do +  is contained in the set R [ Y ] 2  fo r any i >0.

Step 2. Let n be a non-negative integer. Suppose

(6 .2 .1 8 ) du  is contained in the set
 R [ Y ] 2

 for an y  j 5 n  and for a n y  i > 0, and

(6 .2 .1 9 ) Z k  E  Rs [ Y ]  for a n y  k n— j 0 .

Under these assumptions, we compare the coefficients of T21 1L/2 0 +1) in  (6.2.3).
Then

(6.2.20) bi, ( „+ " +

E dk1l1ai212 (cf. (6.2.7), (6.2.12)).
k,+k2 =i,11-1-12 =n+1

(12>0)

Hence

(6.2.21) Z ( f l _ i o + i ) e  R s [Y ] .

We prove (6.2.13) by induction: Let in be an non-negative integer. Suppose

(6.2.22) Z, e R s [Y ] for a n y  k _ m ,  where we let Z 0 =0.

Then, by double induction on i and j

(6 .2 .2 3 )  du is contained in the set it 5 [Y ] 2  fo r any j in-l-j o  and for any i >0
(cf. Step 1).

Hence, the assumptions (6.2.18), (6.2.19) in Step 2 for n = in + j, are fulfilled. There-
fore

(6.2.24) Z( „,., I ) e Rs [Y ]. (This completes the proof of (6.2.13))

Final step of the proof of (6 .2 .4 ) . By (6.2.13), we have

, 2 V 2E . m i ( n + 1 )  m2
m i+m 2=11

E 4-.10.4. I )
n1+1 ,2=n+1
( n 2 5 n — .10)
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(6.2.25) TZ=R[Yi, Z i , Y 2 ,  Z 2 ,  •  •  . ]  C  1q 171, Y2,...].

This is a contradiction (cf. (5.1.1), (5.1.2)). (The proof of (6.2.4) is finished)

Fin al step o f  th e  proof  o f  (6.2.1). W e have shown that y E Bp  (c f . (6.2.4)).
Then f i is also integral over Bp . Hence fi e B p, fo r B p is regular. Therefore, a
=fl + yw Bp [w]. q. e. d.

Example. (6.3) (cf. Nagata [8, p. 207, Example 5 ] )  W ith notation as above,
let M be a maximal ideal of B [w ]. Then

(6.3.0) B[w] m is a three-dimensional (noetherian) local domain.

Let (B[w] 1) be the derived normal (quasi-local) ring of  B [w ]M .  T h e n

(6.3.1) (B[w] m) is not noetherian.

Proof of (6.3.1). Suppose (B[w] m) is noetherian. Let n be the maximal ideal
of C such that n n B [w ]=M  and let M n R =q  (say cf ). Then, as C 1 is integral
over the normal domain (B[w]m), we have

(6.3.2) Z3Cn n (B[w]m ) =  ri (B[w]m ) for a n y  v > 0.

Moreover, there exist canonical injections

(6.3.3) K21[[T, U]]=13/q 2 i Bc--> (B[w]m )/ Z j (B[w]m )

C,,/ ZiC„=K2ACT, UD.

Hence, we have an isomorphism

(6.3.4) (B[w]m)/Z)(B[w]m) 4  C 11/Z3C11f o r  a n y  v >0.

Let (B[w] m)** be the Z; (B[w] m)-adic completion of (B[w]m) and C:* the Z; C„-adic
completion of C . T h e n

(6.3.5) (B[w]m)** = C :*  (cf. (6.3.4)).

Consequently, (B[w]m )  is regular (cf. (6 .1 .0)). Therefore, a s  (B[w]m )(2 =B[w]Q ,
B[w]o  is analytically unramified (cf. (6.2.1)). Contradiction. q. e. d.
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