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§ O. Introduction, notation and definitions

0.1 0  Introduction. In the case of the scalar operators of higher order, we know the
satisfactory results on the necessary and sufficient condition for 6° well-posedness
of the Cauchy problem, if the characteristic roots of those principal part are real
and of constant multiplicity. (See M. Yamaguti [24], S. Mizohata-Y. Ohya [17],
[18], H. Flaschka-G. Strang [5], and J. Chazarin [1], [2].)

On the other hand, in the case of the first order systems, we know the similar
results under some assumptions with respect to  the structure of the eigen-spaces of
the principal symbols. Especially, when th e  multiplicities o f  th e  characteristic
roots are at most double and constant, we have the necessary and sufficient condition
for g well-posedness assuming that the dimensions of the null spaces of the principal
symbols a re  co n stan t. (See V . M . Petkov [19], [20] and H. Yamahara [25].)
However, when the dimensions are not constant, the situation is fairly different from
the previous case, even if we suppose that the  multiplicities o f the  characteristic
roots are  constant. In this article, we shall try to make clear the complexity of the
problem for the case of systems.

Let us consider the following Cauchy problem in an open set Q in R " ;

( 2 )  u(t o , x )= u 0 (x ),

where A i(t, x) and B(t, x) are Cm-matrices of order N  and A i(t, x) is real (1 n).
Throughout this paper, we are going to consider our problem under the following
assumption;

Assumption!. T h e  characteristic roots 2=- /Ii(t, X ; of det P p (t, x ; T , 0 = 0  are
real, at most double and of constant multiplicity.

We wished to give the necessary and sufficient condition for cf well-posedness
under the above assumption, but, up to now, we have not yet succeeded it. How-
ever, we can easily see the necessity of the following condition (L).

(L ) copppscopp+0120copp{ preopplIt_A i= 0 i n  0 x Rn\{0}

for the double characteristic roots, where coP p  i s  the cofactor matrix o f  Pp  and
Ps = B —(1/2) .//,i( ) i )  is  the subprincipal symbol.

i=o
In  this article, we shall consider the  consequence of the condition (L), the

existence of - stably non-hyperbolic" operators with real characteristic roots and the
additional conditions to (L) for 6' well-posedness.

Here, we shall treat the case when the dimension n  of x-space is 1. I n  the
section 1, we shall show that the condition (L) derives the smoothness of the eigen-

( 1 )  P u --  Pp u+BuF_-_--  A u—  i  A iD x .u +B u =f ,(
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vector along th e  characteristic curves. Moreover, we shall investigate when Y.
Demay's sufficient condition can be satisfied. (See Y. D em ay [3 ], [4 ].) In the
section 2, as an application of the results in the section 1, we establish a  theorem on
the necessary condition for the weak hyperbolicity and obtain some examples of
"stably non-hyperbolic" operators with real characteristic roots. O n  th e  other
hand, in the section 3, we shall present some examples of the operators which satisfy
the condition (L) but for which the Cauchy problems are  not w e ll-p o sed , and
we shall consider the additional conditions to (L) for the e well-posedness. There,
we shall restrict ourselves to the case where the eigen-vectors of the principal symbol
are piecewise smooth.

In the forthcoming paper [26], 2 )  in the sections 4 and 5, we shall generalize the
results in the sections 1 and 3 to the case of n  2. However, the results in these
sections will be a  little more rough because there exist some difficulties proper to
the higher dimension case. Nevertheless, if the size N  of the system is two, we can
avoid such difficulties. We shall announce the results in the case of N=2 in the
appendix 2. The sections 4 and 5 correspond to 1 and 3, respectively.

In  the  appendix 1, we shall show  the differences between the local g  well-
posedness "in the future" and that "in the past", between the local e well-posedness
and the e well-posedness and between the e* well-posedness and y(œ) well-posedness.

H. Uryu obtained a  similar result as Y. Demay's without assuming that the
multiplicities of the characteristic roots are constant. (See H. U ryu  [23 ].) On the
other hand, S. Tarama established a  similar result as H. Yamahara's not assuming
that the  multiplicities o f characteristic roots are constant but assuming that the
dimensions of the eigen-spaces are always o n e .  (See S. Tarama [2 1 ] . )  S. Tarama
pointed out that the  assumption on the dimensions of the eigen-spaces is rather
important than that on the multiplicities of the characteristics. Both of them are
concerned with the sufficiency. Moreover, many authors considered the problem
for the cases when the multiplicities of the characteristic roots are changeable.

0.2° Notation. 3 )  A s  usual, we shall use the following; N  is the set of the natural
numbers. We denote the number of the elements of a set A  by # A . K c  K ' means
that K  is compact and K c  Here, k and K is the open kernel and the closure
o f  K. Q  is an  open  se t in  11;- x  R . We se t 07: = f2 n {t to }, 07, n to }
and 0  = Q n { t=t o }. T * ( 0 ) = 0  x Rn is  the cotangent space of 0 ,  regarding t  as
a  parameter. T *(0 )\{ 0}  means x (R"\{ 01). 5c" =(t, x)=(x o , x) E 0,

)E R x/ in cC xR 11 , 1 1 = ( i
i=1

a aax ,=  ex , ,  D t =

2) We shall use the straight numbers in order to name the sections in this paper and the forth-
coming one [26]. From now on, we only call the number of the section in order to indicate
the section in [26].

3) Since we shall use the notes and definitions given in this paper in [26], we give here the general
notation and definitions with respect to the dimension n  of x-space.
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a(P)=P(x, means the symbol of the (pseudo-)differential operator P(x, Dr ), that

is, P(x, D x )u=1ei ( x- Y) '': P(x, )u(y)dya, d = (2n) - nck. P  Q  is the product of P(x,

Dx ) and Q(x, Dx ) as the operators and sometimes we express P 1 ...P  b y  FTP.. a k (P)

means the symbol of the homogeneous part of order k  o f P(x, D x ). A  is  the
pseudo-differential operator with symbol M when M I. U (x ,  y , Dy ) =u,o (x, y, D y )
means the Fourier integral operator with the phase function 4)(x, and the amplitude
function u(x, t h a t  is, U(x, y , Dy ) f - lu (x ,  )e i lo ( x, ) - - 3 '• ) f(y)dyi-R .  4 0 7 ,  ! )

= D a ( , ! ) - = 0 , D x , a ( R , ! ' ) , { , } is  the Poisson bracket,
( Oa abO a   ab au au t h a t  is, la, = r ( \

) . 114 1„,x=i.0 ex, ax, a,, . u =  ex ia x „
E  max 1D2u1. 11u11,, i2 is the standard norm in H ( Q ) ,  Sobolev space of order q.

la! xeK
Let Pp  be  the principal part of P= ID ,- A,(t, x; D x )+B (t, x), that is, Pp = ID,

- x; Dr ), where A i (t, x; D )=A i ( t ,  x ) D , .  Let Ps  be the subprincipal symbol
i=1

o f  P ,  th a t  is, Ps = B (t, x )- 1 ±  P
) °" '(x  x • O .  H e r e  I  i s  the identity2 i  i =0  P o °' 

matrix of order N, Al(t, x) and B(t, x) are C  matrices of order N, and Ai(t, x)
are real (1 i n). Let /1; 0, x; be a characteristic root of det P p (t, x; T , )=
(1 S). Ar n a s (t, x)=max x; 01, w h e r e  and j  run over the unit sphere in

R n a n d  1 respectively. ;„, a ),= s u p  .1n,a r (t, x), w here  (t, x ) runs over Q .
(),x)

Let R it, x ; be rank P p (t, x; ) i (t, x; ( 0 0 ),  and let us set L it, x,
= cop p p s cop p +   2

1
i  C o p { co p 11pl the so-called Levi matrix, where c°P p

= '(zlu), d u being the (i, j)-cofactor of P p (t, x; 2,
Finally, we set the Gevrey classes. L e t  y ( Q )  be  the set of C'-functions

defined in 52 whose derivatives satisfy the following:
vK : a compact set in ,Q, 3 C ; a positive constant such that sup Ifo ) (x)1

xeK
Ch 121 (1a1!)" for arbitrary a, where f ( ` ) (x)= ( T)8.4 cf(x).

W e  set y( (Q)= 71" ) (0), y<K>(Q)= m  *AO)
h >0 h>0

(= J  yo 0 (0)), yoo(Q) is called the inductive Gevrey
K.4)

does the projective Gevrey class of order K, (l < CO).

remark that y( ' ) (0) ‘(5 -2).

0 .3 °  Definitions
Let us consider the Cauchy problem (1)-(2):

{ (1) Pu_D ,u - A i (t, x; D x )u+B(t, x)u=f(t, x),

(2) u(to , x)=u 0 (x),

where A i (t, x; D x )= k(t, x )D ,, A i(t, x ) and B(t, x) are C'-matrices of order
i=1

N, and Ai(t, x) are real (1.-
ln this paper, to make our view-point clear we adapt the following definitions

a n d  y( x )(52)= y( K) (52)

class of order K  and y<K>(Q)

(See V. Y a. Ivrii [8].) We
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which are slightly different from usual ones. Therefore, we define "our words",
here.

Definition 1. (1  w ell-posedness.) The C auchy problem (1)-(2) i s  I  well-
posed 4 )  in Q , if, for each to such that Q  there exists the unique solution in
S (Qt.) for each u 0 ( x ) e ‘ ( 2 . )  and each f  (t, x )e ‘(Q1 -.).

Remark. In this definition, Q will be restricted to some special shapes for the
uniqueness. However, we shall omit the proposition on the shape of Q . (S ee  the
theorems in the sections 3 and 5.)

Definition 2 .  (H yperbo lic ity .) P  is hyperbolic in  Q , if the Cauchy problem
(1)-(2) is d' well-posed in Q.

If P is hyperbolic in Q, we can see, by virtue of Banach's closed graph theorem,
that "the loss of regularity" on each compact set is finite.

Definition 3 .  (Loss of regularity.) Let P  be hyperbolic in Q  and let K  be an
arbitrary compact set in Q .  The loss of regularity on K  from to  is 1, if the restriction

p-1-1
of the solution on K t. belongs at m ost to  n  6 , i(HP - 1 - 1 (10 ) for arbitrary uo(x)

j=1
in Hf

0 c
(S2,.) and f (t, .x) = 0 , (p »  1 +1 ) . Moreover, the loss o f regularity in Q is the

supremum of the loss of regularity on K  from to  fo r  arbitrary compact set K  and
arbitrary to .

(See also V. Ya. lvrii-P. V. Petkov [10] and V. Ya. Ivrii [9].)
We also use weaker notion than the hyperbolicity.

Definition 4. (Local well-posedness.) The Cauchy problem (1)-(2) is locally
S well-posed at (to , x 0 ) E Q , if there exists a  neighbourhood co of (t o , xo )  such that
the Cauchy problem (1)-(2) has the unique solution in S (w )  for each uo (x)e
and each f (t, x ) e e(Qt.).

Definition 5. (Local hyperbolic ity .) P is locally hyperbolic at (to , x o ) E Q  [in
Q], if the Cauchy problem (1)-(2) is locally 6° well-posed at (t0 , x o )  [at every point
in Q, respectively].

Remark. We shall present an operator which is locally hyperbolic in Q but is
not hyperbolic in Q in the appendix 1.

Moreover, we introduce the notions on the stability of the local hyperbolicity
with respect to the lower order term.

Definition 6. (Strong hyperbolicity.) P,„ is strongly hyperbolic at (to , x o )  [in
Q ], if  Pp +B  is locally hyperbolic at (t o , x o )  [in  Q , respectively] for every lower
order term B(t, x).

Definition 7. (Weak hyperbolicity .) Pp  is weakly hyperbolic at (to , xo )  [in C2],

4 )  W e shou ld  say "un iform ly I w e ll-posed", but we om it the w ord  "un ifo rm ly".
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if there exist two lower order terms B(t, x) and B'(t, x) such that P p +B  is locally
hyperbolic at (t o , x o )  [in  Q, respectively] bu t P p + B ' is not locally hyperbolic at
(t o , xo ) [in 0, respectively].

For convenience sake, we introduce the following notion.

. Definition 8. (S tab le  non-hyperbolicity.) P p  is  s ta b ly  n o n -h y p e rb o lic  a t
(t o , xo ) [in 52], if there exists no lower order term B(t, x) such that P p +B be locally
hyperbolic at (t o , x o ) [in Q, respectively].

Finally, we introduce two more notions on hypersurface and domain.

Definition 9. (Space-like hypersurface.) A hypersurface T defined by t —11/(x)
e Coe is called space-like, if Az.ir t fr, (x)l< 1 on T.

Definition 10. (Lense-shaped dom ain.) A  domain w is lense-shaped if we can
find a constant t' such that w is included in  Ott  and  {(t, x); Ix — X 1 1 fliax • It—  0 1 ,

t ' < t _ t 1 }  is included in w for arbitrary (0, )0) e o), where =  su p  2,„.(t, x).max (t,x)eco

§1 . Consideration of the condition (L)

1.1° Necessity of the condition (L)
As well known, if P is locally hyperbolic in  Q, the characteristic roots of Pp

must be real in Q .  (P. D. Lax [14] and S. Mizohata [16].)
In  th is  paper, we consider local hyperbolicity o f  P(t, x; D,, D x )  under the

following assumption.

Assumption 1. Each characteristic root t = .1; (t, x; of det P p (t, x; T, )= 0 is
real, of constant multiplicity and at most double.

Let Ai  be double for 1 j  r  and be simple for r+ 1 j ( =N—r).
Since the necessity of the Levi condition in V. M. Petkov [19], [20] and in H.

Yamahara [25] is proved micro-locally, the  proof rem ains true only under the
assumption 1.

Their conditions are equivalent to the following (L) a t  the points where Ri

rank P(t. x ; x; ) =N —1. 5 )

(L) L i(t, x , )-cop p p s eopp + I c o p p .Ep p , A i ( r , x ; 4 ) =

o n  52 x R n {0}, (1 r) .

The condition (L ) makes sense only at the points where Ri (t, x,
because at every points where R i (t, x , )=  N -2 , L i (t, x, vanishes automatically

Proposition 1.1. (Necessity of the condition "L i (t0 )=0".)

5 )  S. Tarama pointed out the equivalence of the condition (L) to H. Yamahara's one in [25] at
the points where Ri (t, x, e)=N— 1 , (1 5  j5  r ) . (Unpublished.)
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Under the assum ption 1, if  P is locally  hyperbolic at (t o , x o ),

L i (to , x o , )=1::1 f or arbitrary E R "  a n d  1

Corollary 1 .2 .  (Necessity of the condition (L).)
Under the assumption 1, if  P is locally  hyperbolic in Q, the condition (L) must

be satisfied.

Under the assumption 1, if Ri =- constant, (L) is also the sufficient condition for
the hyperbolicity of P in  Q .  (See H. O. Kreiss [12], P. V. Petkov [19], [20] and
H. Yamahara [25].)

However, i f  Ri  i s  n o t  constant, we need m ore precise consideration of the
operators which satisfy the condition (L ). In the cases of n =1  and of n  2, the
situations are essentially different. From now on, in the sections 1, 2 and 3, we
consider the case of n= 1, that is,

P(t, x; D„ Dx )=D t — Aqt, x)D x +B (t, x ) , (x =x i ).

Here, Ri (t, x, is not independent o f  (0 0). W e w rite  R i (t, x )  instead of
B p , x,

1 .2 °  Smoothness of the eigen-vectors
Let G i be an  arbitrary connected component o f  { (t, x)e Q; R i (t, x)=N -1},

(1 j r ) .  GI is o p e n . We can take the real unit eigen-vector gi (t, x) of A l(t, x)
belonging to )..; in  C"(Gi), but, in  general, éi (t, x) cannot be extended in  C (G i).
However, for the operators which satisfy the condition (L), we have the following.

Theorem 1 .3 .  (Smoothness of éi (t, x) along the characteristic curves.)
In  ad d itio n  to  th e  assum ption 1, suppose that P(t, x ; D„ D x ) satisf ies the

condition (L).
( i )  I f  n(s) is a  characteristic curve of  Ai (t, x ) such  that n(s)eal w hen 0_ .s<s'

and  n(s)e  OW , (that is , ir(s)  is  the f irs t point along n(s) w here R i = N— 2),
then, g i (t, x ) can be ex tended a s  a  C '-re al unit eigen-vector in  co n Gi, where
w is a neighbourhood of 7c(s') in Q. (See the f igure 1.)

Figure 1.
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(ii) When RJ =N —1 in co\c3Gi (if  necessary, shrinking co), we can take g7(t, x) in
C(co n G-1) and -e-

it-(t, x) in Cœ(co n GP') by (i). i f  lim  éj(n (s ))=  lirn éli(n(s)),
s-pe+0

"é7(7c(s)), s s',

t(ir(s)), s s',

is inf initely  dif ferentiable at s=s'.
Moreover, if  éj(t, x) and -él(t, x) coincide on w n

è j( t, x ) , ( t , )0 E 0 ) n
"M t, x)=

1. git(t, x), (t, x) e n

is, in fact, infinitely differentiable on co n OW , that is, éj (t, x) belongs to C"(co).

P ro o f . At first, we reduce P(t, x ; D„ D x )  to  a  family of the systems o f  size
2  x  2  a n d  th e  scalar operators. W e  u s e  —  i n  o rd e r  to  express asymptotic
equivalences.

Lemma 1.4. (Emblocking operator.)
For arbitrary  (t, x ) in  Q, there ex ists a  neighbourhood 0 of  (t, x) such that

P(t, x; D„ Dx ) has an  "emblocking operator" .4(t, x; Dx ) which satisfies, in 0, the
following;

CO

(i) (1.1) a( t , x ; E. a -k(t,

where the right-hand side is a formal series.
(ii) ( 1 .2 )  P(t, x; D„ D r ). x; D x ) .q(t, x; W(t, x; D„ Dr ), mod.

0

( 1 .3 )  W(t, x; D„ D x )=

o wr+1

• Ws/

where ' i ( t ,  x ;  T, WAt, x; t , r i  is  o f  siz e 2 x 2 when
ic=0

1 an d  is scalar w hen r+ 1 _ C (t, x ; T, T/2 — x ) and
V-1"(t, x )  has the double eigen-value k i (t, x) w hen 1 an d  C (t, x ;
= r xX when r+1 .1__s. (1 2  is  the unit m atrix  of order 2.)

Here, as .1(t, x; Dr ), we take a pseudo-differential operator which has the
asymptotic symbol given by the right-hand side of  (1.1).

(iii) C(t, x, r, )+W.1,(t, x) satisf ies the condition (L ) in  0 , i f  an d  o n ly  if
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P(t, x; 2, satisfies the condition L i (t, x)(r--L R2N-
i (t, x, 2)=0 in O.

This lemma shall be proved for general dimension n as Lemma 4.6 in the sec-
tion 4.

From now on, we write / instead of /2•

L et us set Wl,(t, x; r, )= ('r  )L j(t , X )0 /  — .X), tha t is, i-{ ; (t, x)= '1'(r, x)
—11 (t, x)/, and 21' ; (t, x )  b j ( l ' x )

' = 1

- *r). Since Â; (t, x ) h a s  thex )  d i ( t ,  x ) )  " .
double eigen-value 0, the followings are satisfied;

a(t, x )+d i (t, x) =-  0, (ai (t , x))2 + bp, x)ci (t, x) - - 0,{

(A» , x )) 2 --.T... 0 a n d  c0W1(t, x; r , ).( 'L  —  ) » ,  xg)I + A i (t, x ) .

The eigen-vector gi (t, x) of A t(t, x) belonging to ,1. ; (1, x) is given by ./ 0 (t, x).
2f-1 2./ss," •,./

gi' (t, x ) where é'i (t, x) has the form t(0,..., 0, e1 , e 2 , 0,..., 0) a n d  -e(t, x)=t(e i , e 2 ) is
the eigen-vector of 71 ; (t, x). A t  th e  p o in ts  where b (t , x) 0 , P(t, x) is given by
t(b ; , — a; ), that is, ' ( 1, — ai lb ; ) and at the points where ci (t, x )  0 ,  é(t, x) is given
by t(ai , c; ), that is, t(a; /c; , 1). Since lb ,(t, x)I+ lc i (t, x)I 0  in G ,  a t least one of
t(1, —ai lbi )  and t ( 0 1 / C , ,  1) has the  sense in  G i .  We shall consider the behaviors
o f  —ai (t, x)/bi (t, x) and a; (t, x)/c ; (t, x) near OW.

From now on, we om it the suffix j  and write A(t, x) and B(t, x) instead of
2=1; (t, x) and W4(t, x), respectively. Using x 0 = t, x, = x, ',„=1. a n d  i  =  we calcu-
late the left-hand side of the condition (L) with respect to  C i (t, x; '2, ) -E Cat, x).

(1.5)

Mo  — )I++  1 A} [B _  - -  . i0 Igo - - - A Al — g 1 4 0 1  MO —  /
1' 1)I + 1/4}

4- +  {g0  —  A l)/  +  . 1 "
4 1 E to  ( 0 - 1 ) ( 1 ) I — ( 1 A ) ( ) }  {g 0  — ) I +g1401

— ± M0 — '141)0)1 — ( 1A)( )1 {go —  /1 1)( i ) I - 1-- g iA )" ) }114.= 4,t=o

AAA(,)+ ABA)a

a a L e t  u s  s e t  at =  at a(t, x ), ax —  
- a ( t ,

 x )  a n d  s o  o n , a n d  le t  B(t, x )  be

_ \ 7_1 (a 0(1, x) f i . ( 1, x)
\ y ( 1 ,  x )  60 (4 x )) •

By virtue of (1.4), (1.5)=0 becomes

(1 .6 )  ( — alb), - 1 ( — alb)x — fl0( — alb)2 — (a° —60(—alb)+y 0 =0, w h e n  b00,

(1 .7 ) (al 0, —  A(a I c)x —  .(a I c)2 — (60 — a o )(a 1 c)+ )60 =0, w h e n  c  O.

Let us put g=  —alb, h=a/c, cc= Re a o , )6= Re fl o , y= Re y „  a n d  6= Re (So .
Since — alb and a/c are always real, we consider only real solutions of (1.6) and (1.7).
The real parts of (1.6) and (1.7) become

(1.4)
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(1.6') g,— Ag„— fig 2  —  (a— (5)g +y=0,

(1.7') h,— .1.11„—yh2  —((5 a)h+ 13 =O.

(1.6') and (1.7') have the real solutions g =  —  a(t, x)lb(t, x) and  h= a(t, x)Ic(t, x)
when b(t, x )00 and when c(t, x)0 0, respectively. Regarding g  and h  as the un-
known functions, let us seek for the solutions of (1.6') and (1.7') which coincide with
—  a(t, x)lb(t, x) when b(t, x)0 0 and with a(t, x)Ic(t, x) when c(t, x)0 0, respectively,
in G n 0. (1.6') and (1.7') are the ordinary differential equations along the charac-
teristic curves of 0,— A(t, x)ex .

(1.6") 4 = /342 + (c c _ (5)g

(1.7") h=yh 2 +(5 —7)h

where ci is da  ( _  d
) ,

a th e  derivative along the characteristic curve. Settingds dt
M =  s u p  {la(t, 11)(4 I6((, 4 1 ,  both (1.6") and (1.7") are majorized

(t,x)e0
by the following:

(1.8) 2M(1 + H2 ) .

L et us take 01 =Arctan 2, 02= Arctan 3, co  =(0 2  —  01 )/4M, i =s' — Bo  a n d  rc(s' — co )
=(1, 57). S ince  ir(s' —  co ) is c o n ta in e d  i n  G ,  o n e  o f  —  a(t, )11)(1, and
la(t, 5i)l has the sense and is smaller than o r  equal to 1. For example, we
treat the case when l Ob(1, W e can take a  neighbourhood of
such that l — a(1, x)/b(1, x)I <2 for x  C. Let w in Theorem 1.3 be the intersection
of {(t, x); It — < (02  — 0,)/2M} and the set covered by the family of the characteris-
tic curves starting from C. The solution of (1.6') which satisfies the relation g(1, x).=

a(i, x)/b(, x) on {i} x C exists at least in w and it is smaller than 3. Shrinking C,
if necessary, w contains the piece of OG which is covered by the characteristic curves
starting from C. g(t, x) belongs to C (w ) and coincide with — a(t, x)lb(t,x) in G n w
by the uniqueness of the solution of the Cauchy p rob lem . (v ± g2) - 1t(1 ,  g(t ,

Figure 2.
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gives the eigen-vector of C (t, x) in  G n 0). Thus the property (i) is proved.
From now on, we assume that R(t, x)=N — 1 in co\OG. By virtue of the prop-

erty (i), we can take the unit eigen-vectors V (t, x )--t(e7(t, x ), ei(t, x )) and g±(t, x)
=t(et(t, x ), x ) )  in  C'(co n -6) and  in  CG°(con Ge), respectively (shrinking co , if
necessary). Suppose t h a t  V (7r(s))= -0 -(7r(s')). B y th e  a b o v e  p ro o f  o f (i) , as
g < 3  in  G n 0), we have the estimate eT(t, x) (\ /10) - '  o n  OG n co. Then, there
is a  neighbourhood co o ( c co) o f n(s') such that e t( t, x )0 0  in w o n G ,  because of
e;(7r(s))> 10- 1 /2 . Since the dimension of the eigen-space of C (t, x ) is one in
co\OG, ef(t, x)let(t, x) coincide w ith  — a(t, x )lb(t, x ) in  a)„ n G  a n d  in  0)0  n Ge,
respectively. Therefore,

{ ei(t, x)1e7(t, x), in n C,
g =

ei(t, x )lel(t, x ), in w 0 n Ge,

satisfies the equation (1.6") in (00  n G and in w o  n  G ,  respectively and it is contin-
uous at it(s). This implies that g is the solution of (1.6") on 7r(s) n co o , and then,
it is infinitely differentiable at s=s'.

Moreover, if V (t, x)= x) on ac n co o , g satisfies the equation (1.6') except
ac and it is continuous on ac. This implies that g is the solution of (1.6') in coo ,
and then, it belongs to C°°(coo ). On the other hand, if 141, .)1c(1, 5 )1 we have
the same consequence by the similar w a y . Thus the property (ii) is also proved.

Q .E.D .

R em ark 1 . O f course, near the first point 7r(s") along n(s) where R 1 = N - 2
(s"<0), we have the same results as (i) in Theorem 1.3 and this is already used in
order to state the property (ii).

Remark 2. Y. Demay [3], [4] gave a sufficient condition for the hyperbolicity
under the assumption 1;

(L') 1Let /p —P.,°°Pp + I{ P p ,°°Pp l  and  /' =°°P p Ps + 1{ °°P p , Pp l. There
are two symbols of the pseudo-differential operators S. a n d  S';  o f  order
N - 2  s u c h  t h a t  /p . Pp S i,  a n d  /p'....S 'i P p  m odulo  { t— ) (r, x ;  )}  n e a r
'7 = .1.1 (t, x; ), (1 _.<_ j:5_r). (See also K. Kajitani [11].)

Obviously, the condition (L') is stronger than (L) in  some cases in algebraic
sense.

The condition (L') seems to be realized only for some special class of P p . For
example, if n=1, (L') can be satisfied only when R;  is constant on each characteristic
curve. In  fa c t, by  v irtue  o f  Theorem  1.3, we h a v e  a  "Jordan's normalizer"
J(t, x ; D x )  o f  Ci(t, x; D„ D x )  su c h  th a t  JO  = JD i  a n d  Di =1(1),— )(t, x )D x )+
( 0  8 ; 0 ,  x ) )

Dx + • •• in (con Gi) x R\{0} (co being a  neighbourhood of Te(s)). O nV) 0
the other hand, we can see the invariance of (L') under the transformation NPN -1 ,
where u(N )(t, x ; 0  is an  arbitrary regular matrix of degree zero . T hen , if  there
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d exists Si , c; (t, x) must satisfy the equation of type ei=aci along the characteristicds
curve 7r(s) starting from a point in Gj as far as n(s) stays in  G j .  This implies that
6i 17,( 0 00 if and only if 8./1, ( 0 ) 00, that is, n(s) never crosses OW . Especially, if  all
of coefficients of P p  depend only on t and R i  is not constant for some j ,  the con-
dition (L') cannot be satisfied for any lower order te r m . (See Corollary 4.9 and the
remark of Corollary 4.2.)

Moreover, (L') is stronger than the necessary and sufficient condition even if
each Ri  is constant on every characteristic curve.

Example 1.

(  0  x (t 2 +x 2 )
P1 —I D - D „,  x e R '.

\ O0

Let B  be ( 4 4 x )  ) 6 ( 4  x ) ) .  For P 1 , (L) is equivalent to y=y(t, x )  6 ( 4  x )
y must identically vanish because of the continuity of y(t, x).
sufficient for the (local) hyperbolicity of P 1 + B in R 2 .

However, there is no B(t, x) such that P, +B satisfies the
On the other hand, (L') covers a  typical case when Ri (t,

remark 3.)

0 when x 0 0 .  Then,
Conversely, y #0 is

condition (L').
x) changes. (See the

Remark 3. éj (t, x) is, in general, not smooth near aGj which coincide a char-
acteristic curve. It is neither guranteed by Theorem  1.3 nor necessary for the
weak hyperbolicity.

Example 2. L et us take real functions a(x ), b(x) and  c(x) which belong to
C (R )  and satisfy the relation a 2 (x)+ b(x)c(x) 0 on R.

/ a(x ) b ( x )  \
P2= ID,— Dx

c (x )  — a(x )

has some B(t, x) which satisfy (L'), (for example B(t, 0). Therefore, P, is weakly
hyperbolic in R 2  when lb(x)I + Ic(x)I #0.

However, the eigen-vector g(x), which is expressed by {a 2 (x )±c 2 (x)} - 1 /2 t(a(x),
c(x)), o r  {a 2 (x)

±  b 2 ( x ) } - 1 / 2 t (b(x), — a(x)) when lb(x)I + Ic(x)100, does not always
belong to C"(6).

F o r  example, l e t  a(x)= (p(x) cos sin x
l ,  b(x)= — 9(x) cos 2  ix  a n d  c(x)=

9(x) sin2 ,  where 9(x ) belongs to C '(R 1 ), vanishes at the origin of infinite order

and does not vanish in R \ {0}. Then G is G ,={ (t, x )I x or G.  ={ (t, x)1 x 01,

but ê(x)=1-(cos '  sin -1 )  belongs neither to 0 (G + )  nor to  C°(G _). Moreover,x  
o n  th e  operator P2, even if  R=1 in  R 2 \R 1 x {0} a n d  è(x) belongs to C"(R 2\R
x {0}) n CAR2 ), in  general, we cannot take -6 in  C"(R 2 ). F or example, le t a(x)
=1xl(p(x), b(x)= —(1)(x) a n d  c(x)=x 2 (p(x), where cp(x) is  the  above o n e .  Then
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é(x )-(1+ x 2 )- 1 /2 t(1, 1x1) belongs to C°3 (R 2 \R x {0}) n Co(R2 )  but does not belong
to Ci(R 2 ).

It is interesting to compare the example 2  and the examples 6  and 7  in the
section 2.

Remark 4. é i (t, x) is, in general, not smooth across OW even if OW does not
coincide with any characteristic curve. It is neither guaranteed by Theorem 1.3 nor
necessary for the weak hyperbolicity.

Example 3.

where ti(t, x)
>0,

/ 0 141, x)
P3= ID ,-

v(t, x) 0

if t>0,

=0, if t

v(t, x)
=0, if

>0, if t<0.

G+ = f t > 0 1  a n d  G-  = {t <01. L et us tak e  52=R 2 . Since è = (1 , 0 )  in  G+ and
é=t(0, 1) in G- , we cannot take é. in  C°(R 2 ). However, for t, <0, we can uniquely
solve the Cauchy problem (1)-(2) step  by step  in  [t o , 0] x R  and [0 , co) x R  if
P=P 3 +B  satisfies the condition (L), that is, P  is hyperbolic in R 2 under the con-

a ( t  x )  k t  x )dition ( L ) .  (Setting B (t, x )= ( ,
) '( t ' x . the condition (L ) is  equivalent) 5 ( t  x )

to  "fi(t, x)= 0 when t . _0 and y(Yt, x)= 0 when t 0 - .) Here, the loss of regularity
in R 2 is 2. More precisely, for to  0 ,  the loss from to  is  1, but, for to  <0 and t>0,
the loss from to  is 2. (Even if to  <0, the loss from to  is  1 as far as t 0.)

1 .3 °  Analyticity of the eigen-vectors
In spite of the remarks 3 and 4  o f Theorem 1.3, in the case when /1.1(t, x) is

real analytic, the eigen-vector éi (t, x) behaves more simply.
Let us set 52 ={(t, x)e x )= N -  1} and C4 = {(t, x)e fl1R j (t, x )=N  -2}

(=52\04,). S24, is open and S21 is closed in Q.

Theorem 1.5. (Analyticity of the eigen-vectors.)
Suppose the real analy ticity  of  A 1-(t, x) and the assumption 1. Then, for each

j, only one of the following arises, (1 j . r ) ;
I) 52:‘ = 52,

II) f2 =5-2, that is, Q-si = aQ4,.6)
Moreover, in the second case, if  P(t, x; D„ I) ) ) satisf ies the condition (L), we can
take the eigen-vector g j O, x) in the real analy tic class in Q.

Remark. Theorem 1.5 does not remain true in the case of

6 )  7 4  is the closure of (21 in  Q and asaz is the boundary of Q,in in  D.
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Example 4.

/  x ,x , 2
P4 = ID,— x e R" 2) .

\ xi —x i x, /

L et Q be R " .  Qs = {x, =x 2 =0}. P4 itself satisfies the condition ( L ) .  However,
é=(x f  +xi) - 1 / 2 t ( x l ,  x 2 ) is not continuous on at2,,,= Qs .

Besides, P4 is weakly hyperbolic, because  P4 +B satisfies the condition (L') for
some B(t, x ) , for example B  = a(t, x )I. (See the remark 3 o f Theorem 1.3. It is
interesting to compare this example and the example 5 in the section 2. See also
the appendix 2.)

Proof of Theorem 1.5. If /11(t, x) is real analytic, we have only one of the
cases I and II for each j  (1 because 52.1s is  the zero set of the real analytic
function E (41, )2 , where zli, k is the (i, k)-cofactor of A'(t, x)— /1 (t, x )I and i and k

i ,k
run over k

We shall prove the latter half of the theorem . W e use the same notation which
appear in  the  proof o f Theorem 1.3, omitting the  suffix j. L et us set A (t, x )=
C (t , x)— x )I =(1 t

t : V)  _ b
 a
(1? x  ) ) a ( t ,  x ) ,  b ( t ,  x )  a n d  c(t, x )  a r e  also

real analytic and satisfy the condition (1.4):

(1.4) (a(t, x))2 +b(t, x)c(t, 0.

In the second case, (b(t, x)) 2 +(c(t, x)) 2 0 i n  0 except the analytic set Q .  T h e n ,
a(t, x )lb(t, x ) is  meromorphic. Near the  determinate pole o f  — a(t, x)lb(t, x),

a(t, x)Ic(t, x )(=[ — a(t, x)lb(t, x)] - '-) is holomorphic. Therefore, if  we show that
—a(t, x)lb(t, x) has not the indeterminate poles, at least one of —  a(t, x)lb(t, x) and
a(t, x)Ic(t, x) has the sense everywhere.

W e shall show  the absence of the indeterminate pole  b y  th e  reduction to
absurdity.

Suppose that — a(t, x)lb(t, x) has the indeterminate poles. Since the dimension
of (t, x)-space is two, the indeterminate poles are the isolated po in ts . L e t (t', x ')
be one of them and n(s) be the characteristic curve which pass (t', x '). We take
a positive number co ( <(0 2 - 0 1)/4M , see the  proof o f Theorem 1.3.) sufficiently
small such that 7r(t' —  so )(= (1 , 5e )) is not an indeterminate pole and {t =1 }  is not con-

Figure 3.
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tamed i n  Q5 (= 0 0 „ ).  Then o n e  o f  1— a(t, .t)lb(1, .57)I a n d  la(l, 5Z)/c(I, has the
sense and is smaller than o r equal to 1 by the relation [—a(t, x)lb(t, x)] [a(t, x)I
c(t, 1. (If (i, is on Qs , that is, a(1, .)=b(1, 5Z) =c(1, .))=0, we use —41, )1
b(1, —a(t, x)/b(1, x) o r  a(1, .t') =1im a(1, x)/c(1, x). A t least one of

them is decided because { t=i}  traverses 052 and (I, .tr) is  n o t a n  indeterminate
pole.)

F irst w e consider th e  ca se  where I —a(1, I. — a(t, x)lb(i, x) is
holomorphic near L as the function with one value x .  By virtue of the proof of
Theorem 1.3, the C-solution 7 ) g of

(1.6') g Ig  x  1 3 9 2  ( c (  (5)g  _F y

exists in  a  neighbourhood a) of (I, which contains (t', x'). (See the figure 3.)
Since g coincides with —a(t, x)lb(t, x) in Ow  n w, (t', x') can not be an indeterminate
p o le . (It is a removable pole.)

In the case la(I, k-)1 we also has the solution h of

(1.7') h,— Ahx —yh2 —(6 — oc)h + 13= 0,

in a neighbourhood co which contains (t', x') and this implies that (e, x') is not an
indeterminate pole of a(t, x)Ic(t, x). (It is a  removable pole or a determinate pole
of —a(t, x)lb(t, x).)

In either case, (t', x ') must not be a n  indeterminate p o le  o f  —a(t, x)lb(t, x).
This is contrary to the hypothesis.

Since at least one of — a(t, x)lb(t, x) and a(t, x)Ic(t, x) has the sense at every
point in 0, we have the local expression of g(t, x);

"e(t, x) (= a  2 + )  1 1 2 t(b, — a) o r  = (a2+ c 2)- 1 /2t( a ,

We can continue them in O because they are real and normalized, the dimension of
the eigen-space is one on Q„, and ‘2  is dense in Q . (T he  normal real eigen-vector is

2 i-1

unique except the product o f ( - 1 ) . )  Let us set é =as 0 gi' ,  where g =(0,..., 0, e

e2 , 0,..., 0) and g=t(e i , e2 ). Since 671 is  the real eigen-vector of A'(t, x) belonging
to A; (t, x ), J (t, x) is given by I ré'.» - 'é'.; in O. Once again, we continue éj (t, x) in Q
by the same way as the above. Q. E. D.

§ 2 .  Stably non-hyperbolic operators

In  this section, we apply Theorem 1.3 to  the  necessity fo r the  weak hyper-
bolicity. By virtue of Corollary 1.2 and Theorem 1.3 or Theorem 1.5, we have the
following;

Theorem 2 . 1 .  (Necessity of the smoothness of the eigen-vectors.)
Under the assum ption 1, suppose that P p  is w eak ly  hy perbolic in Q .  Then,

7 )  In general, a, p, r and 3 are not holomorphic but only infinitely differentiable.
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some of  R», x ) are  not identically  N - 2  (I j_ r) . N e x t, w h e n  R i ( t , x )#  N -  2
(that is, Q4,0 (1)), w e can tak e the unit real eigen-vector ê», x ) which satisfies the
properties (i) and (ii) in  Theorem  1.3 (or the property  in  Theorem  1.5 when the
coefficients of P p  are  all real analy tic).

By virtue of this theorem, we are in a position to  show several examples of
stably non-hyperbolic operators.

Example 5• 8 ' The following P5 is stably non-hyperbolic in any neighbourhood
of the origin.

P5=ID,—
( i x t2

Dx .
X

2  
— iX

H e r e ,  is 0 and 52„, is R 2 \{0}, but é(t, x)=(t 2 + x2 )- '/ 2 t(t, x) does not belong to C°
in  any neighbourhood of the origin. This is contrary to Theorem 2.1. (See also
Theorem 1.5.)

More precisely, P 5 is stably non-hyperbolic at the o r ig in . This was shown by
H. Yamahara through the direct p roof. (U npublished .) In this case, for P 5 +B,
there is an open set co' in any neighbourhood of the origin such that co' n Itool o
and

( . )

1L = cop5 p scop5 +   2 i  cop 5 {p 5 , cop 5 }1, _ 0 0  0  o n  a .

Therefore, the local uniqueness of the Cauchy problem (1)-(2) in co' with the initial
line {t=0} is guaranteed by the similar way as in W. M atsum oto [15]. Then, the
local hyperbolicity at the origin implies the local hyperbolicity at (0, x o )G How-
ever, this is contrary to (*) by Proposition 1.1.

Even if all coefficients depend only on t, we have the following example.

Exam ple 6. The following P3  is stably non-hyperbolic in any neighbourhood
of (0, x o) for each x o e R.

1 • 1cos—
t  

sin —
t  

-c o s 2

P6= ID , — (p(t) Dx ,

t
1- c o s -

1
 s in—

t  /

where yo(t) belongs to C "(R ') , vanishes at the origin of infinite order and does not
vanish in R\{0}. Here, is 0 and f2,-= {0} x R .  H ow ever, g(t)=((cos , sin  
does not belong to C ° (w )  for any neighbourhood co of (0, x o). T h i s  is contrary to
Theorem 2.1. (See the property (i) in Theorem 1.3.)

In this case, it is difficult to show the stable non-hyperbolicity at (0, x o). How-

8 )  The examples 5 and 6 were presented in W. Matsumoto [15] concerning the local uniqueness
in the Cauchy problem.
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ever, if we require a little stronger uniqueness property of the solution in the definition
of the local 6° well-posedness like V. M. Petkov [19 ], [20], we can see it easily.

P ,  and P6 are stably non-hyperbolic even if  w e take Q =R 2 8- ( = {(t, x)ER 2  I
t_0}) or = R .  O n  the  o the r hand, the following P , is weakly hyperbolic in Ra+
and in Ra -  b u t  it is stably non-hyperbolic in  any neighbourhood of (0, x o ), for
each x o e Ri

Example 7.

13
7 =1D,—(p(t)( iti —

1 )  Dx ,
12

where ç(t) is that in the example 6.
Here, A=0 and Qs = {0} x R. =  +  0 ) - 1 /  2 t (1 ,  tl) does not belong to Cl(w)

n o  matter how it belongs to Cœ(R 2 \{0} x R) n C°(R 2 ), w here (.0 is  a n  arbitrary
neighbourhood of (0, x o ) and x o i s  an  arbitrary point in R .  This is contrary to
Theorem 2.1. (See the property (ii) in Theorem 1.3.)

0In  this case, P 7 +( t  . , C )
a ( t ,  x )

)  is hyperbolic in R6+, (especially, at each
point on It=01). H ere, a(t, x ) is an arbitrary element in Cœ(R 2 ). Therefore, P,
is weakly hyperbolic at each point (0, x o )  b u t it is stably non-hyperbolic in  any
neighbourhood of (0, x o ).

In the examples 5, 6 and 7, P i has no lower order term such that Pi + B  satisfy
the condition (L), (1=4, 5 and 6). However, there is another sort of stably non-
hyperbolic operators which have some lower order terms by which the condition (L)
is satisfied.

Example 8.

P8 = ID — (  
0 k t ,  x)

Dx ,
V(t, X) 0

CO

> 0 ,  on [( —  co, 0) (V.) (a21 , 1 , a 21))]x R ,
w h ere  p(t, x) 1=1

= 0, otherwise

> 0 ,  o n  V.) (a21, a21-1) x R
v , x) 1=1

= 0 ,  otherwise.

Here, {ai } is a decreasing sequence, it converges to 0 and a 1 = o o .  The characteristic
r o o t  of P8 is O and always double, and Qs =  {a 1} x R U {0} x R.

Let B (t, x) be ( * ' x ) x ) •)  The condition (L) is equivalent to•))(t, x) b ( t ,  x )  

"y (t, x )=0 on supp it a n d  f l(t, x )=0 on supp v".
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We shall consider the stable non-hyperbolicity of this example in detail in the next
section.

It is rem arkable  that ciPo(P 8 +B )[féeiPck ]=0(1) under the condition (L),
where è is the eigen-vector of A =

( 0  p )

' 0  is an arbitrary real phase function andv 0  
f  is an arbitrary scalar element in  C"(52). (See V. M. Petkov [20].) The reason
why P8 is stably non-hyperbolic differs from those of P 5 , P, and P 7 .  The condition
(L) is also necessary for the local hyperbolicity in  th e  Gevrey class yoo, where
K>2. 9 ) Here, we seek th e  unique solution in g(col-.)  corresponding to the data
uo (x ) in  y<o(cor .) and the right-hand side f ( t, x )  in  y<o(cot.). (See the definitions
4  and 5.) Therefore, P 5 , P 6  and P 7  are also stably non-hyperbolic in  the  class
yoo, (K > 2). O n the other hand, P8+ B  is hyperbolic in the class y ( ')  under the
condition (L).'°) We can prove this by the similar way as in the next section.

§ 3 .  On the sufficient conditions for the hyperbolicity

In this section, we show that we need some additional conditions to (L) for the
hyperbolicity in  Q through the examples if the coefficients of P i,  belong only to
C '( Q ) .  Moreover, we establish two theorems fo r  th e  hyperbolicity under some
additional conditions which refuse such examples.

Under the assumption I, the operator P is reduced to a family of the systems of
size 2 x 2 and the scalar operators. The simplest hyperbolic operator of size 2 x 2
is the following:

( 2 ( t ,  x )  s ( t ,  x )  ) D ( o c ( t ,  x ) x)
(3.1) Po+B =ID ,— x +

0 2(t, x) y(t, x )  O ( t , x )

where B(t, x)_0  or y(t, x) a.-  0 in Q.")
The former condition e(t, x) --_E0 is equivalent to rank  p o I A o ,

 and the latter
one y(t, x)_.0 is guaranteed by both of rank P = i o n  a  dense set in 52 and the
condition (L) because the condition (L) is equivalent to e(t, x)y(t, x).- 0.

Corresponding to the above, we introduce the following hypothesis.
(H .1 ) For each j, j _ r ) ,  only one of the followings arises:

1) Q {(t, x) eQ I R i (t, N — 2)),
Il) 52= 524,(-m-- the closure of {(t, x) E Q I R i (t, x)=N — 1)).

9) This is provable by the m odified m ethod of S. Mizohata [16], using V. Ya. lvrirs idea [8].
Here, w e assume th a t  the coefficients of P  belong  to  r ( '+'/i). However, this assumption
w ill be relaxed, in  the forthcoming paper, the precise proof will be given.

10) S. Tarama also showed this in  much more general class. His proof is very different from
o u rs . (See S. Tarama [29].) Here, we assume that all coefficients of P  belong to r  ( - ) .  The
solution u, in fact, belong to y (-). A remark on the hyperbolicity in class r (-) and in more
wide classes will be announced in the forthcoming p ap e r . (See [27] and [28].)

11) This is seen by the similar way as the proofs of V. M. Petkov [19], [20] and of H. Yamahara
[25]. H . Yamahara assum ed that, for all j ,  R i (t, x ) - N - 1 or N - 2  in f2, but we can relax
"for all j "  to  "for each j " , ( 1 5  j 5 r ) .
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In the case I, the highest two terms of Wi(t, x ; D„ D,) in Lemma 1.4 has auto-
matically the form (3.1) where e(t, O. However, in the case II, in general, we
cannot transform Wi(t, x; D„ Dx ) smoothly to the form (3.1). (See the remarks 3
and 4 of Theorem 1.3.) Therefore, we introduce one more hypothesis:
(H .2 ) In the case II, gi (t, x) is taken in Coe (52).

Obviously, if P satisfies the hypotheses (H.1) and (H.2) P is hyperbolic, because
P is transformed to the systems of type (3.1) with e=- 0 or y O and the scalar oper-
ators. (See Corollary 4.9.)

3 .1 °  The case with real analytic coefficients
If all of the coefficients of P i, are real analytic, the hypotheses (H.1) and (H.2)

are satisfied by virtue of Theorem 1.5. Therefore, we have the following theorem.

Theorem 3.1. (Hyperbolicity in the case with real analytic coefficients.)
Suppose that the assum ption 1 is satisf ied and  that all coefficients of P p  are

real analy tic and bounded in  Q .  Then, P=P p +B is hyperbolic in  S2 under the
condition (L).

Here, if  the case! arises for every  j ,  the loss of regularity  in Q is 0, and if  the
case II arises for at least one of f , the loss is 1 in Q j r).

Remark. For the local hyperbolicity in 0, we need not the boundedness of the
coefficients of P„ in Q.

3 .2 °  The case with C'-coefficients
In the case where the coefficients of P„ belong only to C '(2 ), the situation is

much more complicated. Here, we restrict ourselves to the cases where gi (t, x) can
be extended on  each G i in  Coe-class, and we use only the modified Petkov's and
Yamahara's techniques. (We do not use Demay's id ea .) For such restriction, we
introduce the following new assumption. (See the remark 3 of Theorem 1.3.)

Assumption 2. The boundary of each connected component o f 04, lies on a
family of some disjoint space-like curves { T i}  ( 1  j  . r ) ,  in general as a subset.

Remark 1. The determination of such curves is not unique.

Remark 2. I f  all of coefficients of P i , depend only on  t, the assumption 2 is
automatically satisfied.

{Ti} i divides Q into a family of open connected subdomains {Qi} k and a closed
set Ei , where Ri (t, x) is constant on each Qi and  where E i Q U  71 and = 4),

(See the figure 4.)

Remark 3. R i (t, x ) is free on Ei, that is, Ri (t, x) is changeable only o n  Ei .
Of course, R; (t, x) need not change on V .  Under the assumption 2, gi (t, x) can be
extended on  each Q  in  Coe-class by virtue o f  Theorem 1.3, but neither the hy-
pothesis (H.1) nor (H.2) is , in  general, satisfied. When o n e  o f  th e  hypotheses
(H.1) and (H.2) fails, P(t, x ; D„ Dx ) may not be hyperbolic in Q even if the condition
(L) is satisfied. W e shall show this by the examples in  the  paragraphs 3.3° and
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Figure 4.

3.40 . However, if  w e add the  following assumption, P  is hyperbolic under the
condition (L).

Assumption 3. {71} 1 in  th e  assumption 2  does not accumulate on  arbitrary
compact set K in 0 for each j, that is,
( 4 )  There exists a positive constant 6K  such that

dist (T1 n K, T1 n K ) 6 K , i f  k01, j r).

Remark. Under the assumption 3, I  =  Tj.

Theorem 3 .2 .  (Hyperbolicity in the case with Cc*-coefficients.)
Suppose the assumptions 1, 2 , 3 a n d  boundedness of the coeffi c ie n ts  o f Pp .

Then, under the condition (L), P  is hyperbolic in  Q .  H ere, the  loss o f regularity
on K fro m  t, is at most max # n R » , x )=  N —1 on Q1, where K

is lense-shaped.

Remark 1. For the local hyperbolicity in 0, we need not the boundedness of
the coefficients of P p  in  Q.

Remark 2 .  The loss of regularity in Q may be infinite, in general.

Example 9.

where p(t, x)
>0 9

( 0
P9 =ID, -

v(t, x)

t+a 2 1 <x<t+a 2 1 ,

x) \
Dx,

0 )

(i>0),

=0, otherwise,

v(t, x)
>0, t +a 2 i _ 1 < x < t+ a 2 1 , (i>1),

= 0, otherwise.

1Here, ao = — co and a i =
k=1
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Obviously, the  characteristic root A is  0  and double, and Qs = {x=
= {T i } i . P 9 + B is hyperbolic in R 2 under the condition (L) by virtue of the above

theorem . The loss of regularity on [0, e] x [x,.„ an ]  is /„=max j;

• • • + —
1

<e} — n  +1 . (x , is an arbitrary point less than a„. See the proof of Propo-
n+ 1 

+  
n+2

1 1 

sition 3.8. Then, the loss of regularity in [0, e] x R is infinite because sup In = co.

Theorem 3.2 will be proved in the section 5 as Theorem 5.3 for general dimen-
sion. I ts  p ro o f  is  lo n g .  However, if  TI are expressed by fail x R  for all t and j,
since we can uniquely solve the Cauchy problem on each ([a i , xR) n 0 , we
can obtain the solution (1) and (2) in  521- solving the Cauchy problem step by step
o n  Q if . n Q q  Q g n g i g +  „ . . .  a n d  01-

i, n QT, where {al} = {d i  < • • • < d , }  and
aq ._, to <dg ap <t -Cip + 1 .
This shows the conclusion of Theorem 3.2.

3.3° The case where the hypothesis (H.1) fails
In this paragraph, we present an example in which the hypothesis (H.1) fails.

Example 10.

> 0 ,  o n  (a 2 1 .", a 2 1 )xR ,
w h ere  IL(t, x)

= 0 ,  otherwise,

( i 1 ) ,

fai l decreases strictly and converges to 0 as i tends to infinity. Here, for convenience
sake, we set a l = Co and a2 <1.

L et Q be R 2 . Here, ).=0,

=( — co, 0) x R, —w=
x R .  (See the figure 5.) Then

Ti = x R, T = {0} x R,

a21 ) x R  a n d  ‘2,— [a21,
1-1

0 ,0 0  and  Ow  00, that is,

52,=(a i + 1 , ai ) x R , 520

a2 1 _ 1 ]x R u  (— oo, 0]

th e  hypothesis (H.1)

a2

M / M I  1  VA IrA % M A W /
AIIIMUNIAW

a,
as

a5

a 6

a,
asa,

supp

Figure 5.
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fails. H ow ever, the hypothesis (H.2) is satisfied because we can take "44 x)=t(1, 0)
in Q.

(a(t, x ) 13(4 x ) ) the condition (L) is equivalen t to  theSetting B(t, x)= X )  (5(4 X )
following:

(L 1 ) y Oo n  Ow .

Obviously, for to >0, the Cauchy problem (1)—(2) is uniquely solvable in [t o , oo) x R
under the condition (L) solving step by step in  [t o , x R, [ak , ak _ 1 ] x R,..., and
[a 2 , co) x R . (ak is  the least element in {a,} greater than to .) On the other hand,
for to <0, (1)—(2) is also uniquely solvable in [t o , 0] x R under the condition (L).
Therefore, we need consider only the case when t0 =0.

Let u s  s e t  ço(t, x )=ex p — oc(r, x)c/TI, x)=exp {— t S ( t ,  x)dr},

0 t i f ( t , X ) ) u(
,  
x )  a n d  vo(x)

= ( p ( t o ,  x ) 0

o tfr(to, x) 0
)u  (x), = ((p(t, x) 0 t h e n  the

Cauchy problem for P i o +B  is transformed to the following:

(P i o  + I -3)v =- v —

( 0  r i ) a ( 0  f i )
Ox v— v =f ,

(3.2) 0  0 5', 0

v(10 , x)= vo (x),

where p=p9[0] - 1, fl =113+,1,5t 6:x er, x)dt}9[0] - 1, ii=yt/f[T] - 1 a n d  /= ( (f)0
Let us set

(3.3) .4t'21- 1(c121— 1, azi; x )
=

0 - 1 ( 0 j , k =  1,2

1 0 t - i2 sk s2
= I+  E Bok, x)dsk B o k _  x v s k _  • • •1 B(s i , x)ds i ,

a2, a2i 0 2 1

where r3(t, x)=
0 f l ( t ,  x )

) ,  and let us set d(x )= # { i>2; b _ 1(x) 0 } .  Here,G(t, x) 0

 J ( s ,  x ) d s ,
02

r t - i  1 0 3  1 0 2
A S 3 , 4 0 2 ,  X Y A S I ,  X V S id S 2 d S 3 + • • •

02i 021 02i

a 2 i-1 1 s2 k + i s2k1
••• Y(52k+15 4 0 2 k ,  X ) • • • X S i ,  x)ds i ds 2 •••ds2 k + i

02t 0 2 1 021 a 21

We set R o = max flfi(t, x)i, x)I}, where (t, x) runs over [0, a2 ] x K.
(r,x)

Proposition 3 .3 .  (Hyperbolicity of P 1 0  +B.)
The necessary and sufficient condition for the hyperbolicity  of  P=13

1 0 +B  in
R 2  [the local hyperbolicity  of  P near (0, xo ), xo being arbitrary point in R] is the
condition (L 1) and the following (M1).



.-‘21(t2, t1)==--.02i(t2, t1; x, ax )

( 0 (
t,

x)dT 1 1 t 2 X )C h

0 1

(3.4),

0 0 •
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(M1 ) For arbitrary  compact set K  in R x ,

dic suip l d (x )<  .c 

Here, if  P  is hyperbolic, the propagation speed is 0 and the loss of  regularity
o n  R x  K  f rom  0  is  at m o s t 4 + 1 .  (M ore precisely, f o r  exam ple, if
( 1R0 )• e - ( 1 /2 ) R * , the loss on R x K from  O is exactly  d + 1 .)

Since the proof of the sufficiency suggests the necessity of the condition (M,),
first, we show the sufficiency.

Proof of sufficiency. (1. solvability.)
Under the conditions (L 1 ) and (M 1), we solve (3.2) from to = s > 0 to a2  with the

data vo (x) and the right-hand side 0 and then we make s tend to O. From now on,
we omit - of ft, fl,j," and f.

Let us set

(3.4)01 ( t 2 ,  t 1)=..,# 2 i _1 0 2 , t1;

Sk fs 2

= I +  i BO 0 ,C)CISk 13(S k
 — 1

 X)dSk _ i '• • BO „  x)ds,
k=1  t , t , t1

= /± .1 2 1 - 1 ( t 2 ,  1 . 1; x ), (a 2 1 ..t 1 < t2 .._ a2 i _ 1 ),

and

t1; x, (a2 1 + 1  t  < t 2 a2 i )•

when ai + , to =s< t ai , the solution of (3.2) is given by

(3.5) v(t, s)vo.

Therefore, the solution of (3.2) for O< aq + 1 to =s<a q ap + j < t a p  is given by
the following:

(3.6) v(t, x)=E(t, s)v 0 =E(t, s; x, D x )v„(x)

q_,
=.4 '( t,  a p + 1 ) [ a i,i)]. s)vo.

Here, we establish a lemma on d x . Let us set d(x)= # ii>21( g b i l _ i (x)00

for som e k O , and dK = sup a(x).xeK

Lemma 3 .4 .  If  th e  compact set K  has not the  isolated points, we have the
following:

dK = ax •
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P roo f. Show tha t dl c d-
 K . Since a(x ) is upper semi-continuous, there is a

point xo E K  such that d(x0) = 1 .  ( 1 =4  when aK < oo and  1 is  an  arbitrary large
number when aK  = oo.) By the  assumption, we can take i(1),..., i(/) such that

(

a ) k i ( i ) bil ( j ) - 1 0
) 0 0  ( k ic  > 0 )  O n  th e  o th e r  h a n d , i f  (  a  )kb 21

OX .0 =  • a X 2 1 - " X ° j 7 -

there is a  neighbourhood U 2 i _  o f  xo w h e re  bil_ 1(x) 0  except at {xo }.
Since xo i s  n o t  a n  isolated point, K '=K  n(n u 2 „ ., , _ 0 \ { x 0 }  is not em pty and

i= 1
bil t n _ i (x )0 0  in  K '.  This shows th a t di c ..d f c . O n  th e  other hand, obviously
dK ^ dK . Therefore, we obtain the equality dK =d K . Q. E. D.

From now on, we assume that K  has not an  isolated point. L e t  D=

(

a k
ax )  b

2
l (x)00, for some be {i(1)< i(2)< ••• < i(01, (1-d K ). Since

x) is  of type ( g  0
* )  and  0'.4 1(t, s) is  upper triangle  for /O D  and  a

-Can,•••a„„,..,C, =0 (NOD, Then, by (3 .4 )0, (3•4), and (3.6), the  so-
lution v(t, x) is expressed as the following;

(3 .7 ) v(t, x)=E(t, s)v o

=11+ E
k=1 k=0 i1<•• . < i k  j

+ E E ,,,,e 'fi a * * . - a * * * . - i 'h a * * * * • • •  i k
k = 0  ii<•••<ik h<i2

+ E E • •••16 , • ••-g"h  •••-w ;„ ,•k=- 0 i t< • • •< ik  /1 < • - < im
i k } y o

= {I +E 0 (t, s)+ Eat, s)+ • • • + E,„(t, s)}v o ,

where aq+1 <a p+1 <t ,< a  r = [ q + 1 1 - 1 11-1 ,m =# ([p +1 , q nD)+1— q= =  p 2 2
4 + 1 ,  i is odd and j„ is even. In the above formula, 1,_ 1 and  1, run under

the restriction of { i 1 ,...,n i n + i )  n Do 4 )  in  Ei (t, s) (1._2), and a; and
express a 1 = ai+1) and . ,g ;=.,;(d i , a i , i ) when p <i, j<q , a p =  » , a p + 1 ),

ap + 1 ), a g = ag(ag, s) and .,K =.,g (a q , s).
Now, let us establish a  lemma on the estimates of a i and Here, .,1(t, s)

«dr(t, s) means that each component of .At(t, s) majorizes the corresponding one of
s) as a differential operator. Let R be the maximum of the absolute values of

the derivatives of u(t, x), 13(t, s) and y(t, x) of order up to 2N + dx  +1 on [0, a2 ] x K.

Lemma 3.5.

R' 2 (t—s) 2 /2 R' (t s )
(3.8) acla i (t, s)<<exp [R ' ( t s)] E  az,

R '( t  s ) R' 2 (t— s) 2 12) a= 0

f o r  0 N.
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(  1 i \ p
(3.9) O'fcallai(t, s)«rx!( R 'i)ex p [RV— s)] E

j=1 1 6=0

If 1  . c)c. N  and 0_f 3 N.

(3.10) ac.. i(a i , a i , i )«ex p[R '(a i —ai + i )]

I R ' 2 (a i —a". 1 ) 2 /2
E

0 R '2(ai— a1+1)2/2 a=0

f or i f  iitD.

(3.11) 0 ;.,ei (t, s)«2k (t— s)

(3.12) act'g ,1 " ; (t, s)«2 1 +1 R'

f o r  0<cit N.

f o r  1.- cx__N  and

( 1 1  )p -i-a
(3.13) & g E h 0(t, «  Ca (dK , p, h, N) E ai;„ for

1 )
°

Here, R' — 2"R an d  Co (dK , p, h, N ) tends to 0  w hen p tends to inf inity  (that is, t
tends to 0).

Pro o f . The (1, 1)-component W (t, s) of a i (t, 0 is given by

(3.14)
CO T kE As k , o i s k 1s k  y(rk , x)dT k . /Ask _ x)dsk _,

k=1 s

S . S k - 1 SI

X y(t k  _ 1 , x)dt k  _ • • •$ ( s 1 , x)ds, yet 1 , x)d-c 1 .

Then, 0,f ill(t, s) is majorized by the following as a differential operator;

00 k c ±  e a
(3.15) s ) « (2k +1 )  R 2 k  S ) 2

k=1 ( 2 k ) !  a = 0  x

oo 5 ) 2 k  c‘ s ,<, E  ( 2 NR ) 2k  (t 
k=1 j (2k)!

R' 2 (t—s) 2

exp [R '(t— s)]2 a=0

Moreover, for and

P
(3.16) aT gb il( t, s)« (2k +1 fpR2k E  . 0 2 k —  -i ( E

k=1 (2k — j)! b= 0

( j  runs from 1 to min {2k, a}.)
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00 (t —s)} 2 k- i  « a!  R' E E ab
J=1 k=[(j+1)/2] (2k —j)! b=0

« a ! ( R 'i) exp [R'(t — s)] E
1=1 1)=0

Since the other components of a  x ) are majorized by the same way, we can see
(3.8) and (3 .9 ) . I f  i OD, the (2, 1)-component acM '( a i , a i + V ) P0 (a i , a i + 1 )  of

a i + 1 ) vanishes. This shows (3.10).
(3.11) and (3.12) are easily seen.
Now, we show the estimate (3 .1 3 ). If all of j1 do not belong to D, the following

is obtained by (3.10);

(3.17) acl a 11(a 11, a i i +  1 ) «  (k+ 1)2 1V2 1c exp [R'(a i i — ai k +
1=1

(2— k 1
X j j  (a h

 — a11 +1) tc1=1 0 2 - k  a= 0
1=1,..., k).

Here, we have used 0 < a i a 2( i  2).
Moreover, if i do not belong to D except j 1 , we have the following estimate;

(3.18) Ocl rj, 11(a 11 , a i ,+ 1 ) «2(k+1)"./V 2 k exp [R'(a i i —a i k + i )]

(  1  1 \
 ( i i  eD and i i OD, 1= 2,..., k).

1=1
x tI (ai 1 — a+

1 1  a = °

By (3.18), we see the following:

(3.19) a i i +  1i ,"•_ „asp a i  + 1 )• • • a ik (a ik , a i k + i )

« ( k  +  2 ) 1
22-h R , 2h+ e x p aik+

(3.7), (3.8), (3.18) and (3 .19) bring us

x (a i —ai +  i) n  (a i ,— a i1 +  i )

1=1

( 0

0

1

1

„ E l

E
) '1= 0

e D a n d  OD, 1=2,..., k).

(3.20) acl a

« 2 2 m(k ± h +1)".12,2k e x p  [Ko j i - aik +

(  1a + h
nx i ) (a i ,—a i ,±  i ) E
n=1 1=1 1 1 a=0

because ik } contains at most m-1 elements of D: {n 1 ,..., n ,} , p (t, a + 1 )
and a g (a,,, s) may not be triangle even if p  and q  do not belong to D, (1  D m



l
aff(ac,capo, ap+ MEh(ap+  i , 01 if p is odd,

(3.25) algEh(t, s)=
[(ô.4 ',(t, ap+ i))Eh(dp+i, s)], if p is even.
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=2m( a n d  we regard the left-hand side of (3.20) as a ;[( a i i • • •)(.1„,•••). ••

( a „ . • • • ) a  i j .  By the inequality:

(3.21) LI (a11
— ai i +pSi1<•••<ik5q1=1

= E (a11

—a11 + 1 )  E  (a12
— a12 +1) . •• E (a — a i )

P±k- 1
f j  a i ,
i=p

we have the following by virtue of (3.20), (3.21), m . d K  +1 and a 2 <1;

+k-1 a+h
( 3 . 2 2 )  a c l E h ( t ,  s ) < < 2

2 (d .+ n we  ( 2 N K r  P+rh il a i ±P (2N R'2)( a i( E
i=p k=6 i=p a=0

c±) P+k-1œ + h
« C  ( 4 ) ( a  p R ai(

6 i=p a=0

where C(dK )=2 2 (dic+1)ew , R 1 =2N R ' R 2 = 2 1 ' R ' 2 ,  6 =1  if h= 0 and 6 =0  if h  1.
Let us take p o  such that a

p0
R 2

 1
2 - and p o >  p .  Then,

p +k -1 P o - p P ± k -  1 P o - 1
(3.23) E n a i <  E n  a i+ R 2 P . - -P

(  1  )k
a i E

00 

k=15 i=p k=6 i=p i=p k=1

P e -P -1
2a p R 2  E  (apR2) k , ( 6 = 1 ) ,

k=0

Po-P
2  E  (ap R 2 )",

k=0
(6=0).

Therefore, (3.22) is majorized as the following:
a+h

C(dK , h, N )(a p R 2 )  E (h=0),
a=0

(3.24) s
a+h

C(d K , h, N)(apR2) h E  a5
a=0

(h 1).

Obviously, the right-hand side of (3.24) tends to 0  when ap  tends to 0  (that is, t
tends to 0).

For a f g E h(t, s) we can see (3.13) by the similar way as the above esti-
mate, using (3.10), (3.12), and the relations

Q. E. D.

Since E (t, s )=I+ E h (t, s) and m  dK  + 2, Lemma 3.5 implies that E(t,
h=0

converges to an element of cr,([0, a 2 ] ;  . r )  as s tends to 0, where .F  is the space of



74 Waichiro Matsumoto

th e  bounded operators o n  S ' (K ) .  W e  s e t  E(t, 0) E(t, s). T hen , E(t, 0)
s O

=lim E(t, (10 is of order at most 4 + 1  and E(0, 0)= / because Co (d„, p, h, 0) tends
q-.110

to  0  in  (3.13) a s  p  tends to infinity (that is , t  tends to  0). Moreover, i f  a,
( \ /2/R0 )e - Ro/2 , bP ,_, in  (3.3) is positive by virtue of (3.8), ( j= 1 , 2). Thus, each
dt„,•••..,#* ,#,,,g * ,,---(/„ ., has the true order 1 for nk ct Do = {2i 311)31_ ,(x)0 0},
(1 j )  and even i. This implies that E(t, 0) has the true order 4 + 1  for suf-
ficiently large t at some point x o in  K where d(x 0 )= d ,,  that is, the loss of regularity
is exactly d,+1  on  R x K from O.

The solution of (3.2) is expressed by the following:

x)= E(1, 1„; x, 8x )v,,(x)+ 1 E(t, s; x, ax )1(s, x)ds, < t a 2 ) .
to

Q.E.D.

Proof of suf f iciency . (2 . Finite propagation speed.)
In order to see that the propagation speed is 0, we only need show that the

backward Cauchy problem for P* =(P 1 0 + Br on  [0, a 2 ] x R  is solvable and that
the backward propagation speed is zero. (See, for example, H. Kumano-go [13 ].)
Under the condition (L 1 ) , obviously, P* has zero backward propagation speed in
(0, a 21 x R , that is , o n  [0, a2 ]  x R .  O n the other hand, the backward solvability
on [0, a 2 ] x R  can be seen by the same way as the proof of the forward solvability
under the conditions (L 1) and (M ,) with respect to  the backward direction. (We
exchange a 2 ,_ ,  and  a 2 ,  each other in the condition (M O .) Therefore, we only
need show the following lemma.

Lemma 3.6. (Invariance of the conditions (L ,)  and (M ,)  under the *-trans-
formation.)

13 *  satisfies the conditions (L ,) and (M ,) w ith respect to the backward direc-
tion, if  and only  if  P  satisfies the conditions (L I ) and (MO.

P ro o f . With respect to  the condition (L ,), the invariance under the *-trans-
form ation is easily seen. Now, we consider the condition (M ,). "b i)._ ,(x )= 0"
means that the fundamental matrix E(t, a 2 1 )  of the ordinary differential equation
d u + Bu =0 (E(a 2 i , a2 1 ) = I )  is upper triangle at t = a 2 i 1 •

 T h e n , (E(a21 _ l ,dt —  

is also upper triang le . By the way, E(t, a 2 1 )(E (a 2 1 _ 1 , a 2 i )) - 1  i s  the  fundamental
d matrix of u +B u =0  (E (a , i _,, I )  and, obviously, it is upper triangledt

at t=a 2 1 . This implies the following.

(3.26)
Sa2i

bilL i (x )a,y ( s i ,  x)ds i + •••
a2i-I

( anS 2 k S2

Hh Y(S 2k + X)/3(S2k1
a2i-I a2i-1 a 2 i-1

•••y(s,, x)ds i • ••ds2 k ds2 k + 1 + ••

=0.
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The converse is also easily seen.
On the other hand, P* is expressed by the following:

0  0 0P* 0) _ 0 1 ) ,  (a means the complex conjugate of a).

Since ( °  ( ) )  is lower triangle, now, we need consider the (1, 2)-element of the
p  0

backward fundamental matrix on [0 2 1, a 2 1 _ 1] x  R , where fl O. Then, we set

b 12 *  l a 2 i2i—  — (s1 , x)Ids + • • •

a 2 i I y 2 k

— .P (S 2 k +  )0 }  { - f l (  2 k ,
) 01 . —

a 2 i - I  : : •  0 2 i - I • 0 2 i

—')7(51, X)1 liSi • • •Cif S2k- - 2k+ 1 + '•',

and d*(x )= # 1(x)0 01.
By virtue of the above consideration, b 1(x) = 0  if and only if

bil... 1 (x )= 0 . This im plies that d (x )=d*(x ). Therefore, the following condition
(Mr):
(M t )  For arbitrary compact set K  in R x ,

sup d*(x)<oo,
xeK

holds good if and only if the condition (M,) is satisfied. Q .E.D .

Proof of necessity.
Since the necessity of the condition (L I ) is already shown, we now show that

P=P i o +B  is not locally hyperbolic at some point (0, xo ) under the condition (L 1),
supposing that the condition (M 1 ) fails.

Let cl,= cc, fo r  some compact K . W e  c a n  f in d  a sequence {x 11 such that
d(x i ) /  and which converges to  xo . We lead the contradiction, assuming that P
is locally hyperbolic at (0, xo ).

In the first place, we establish an apriori estimate of the solution of (3.2) for
/0 =0.

Lemma 3.7. (Apriori estimate.)
If  P is locally  hyperbolic at (0, x 0 ), there exist a positive integer N , a positive

constant C and a com pact set S o = [0, E0 ] x [x. — Bo ,  x o +s o ] contained in co, such
that

(3.27) 141, x)10,e„ C {14 0 , x)Ini,o.+ If (t,

This lemma easily follows through Banach's closed graph theorem.
Let us take p0 which satisfies cl R 1  and set e=min {eo , ap .}. W e set S

= [0, 8 ] x [x o —E, x o +E ] and fix / such that x i e (xo  —e, x o +s) and # D(x i) :N +  2
where D(x,)= {2i — 1 a 21 _ a n d  bil_,(x i ; 021 _ ,, 02 1 )0 0}= {i(1), i(2),...}. Set p
= i(1)— 1 and q = i(N )+1 . Both p and q are even.

From now on, we consider the solution of the following equation:

0 2 i - 1
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a +., < t< aq =  =  p ,

v(t, x; = n(t)((x)tO t13(T, x)ch, 1)e 1x4 , 0  ..-5t 5aq +  , ,

a y . !

where n(t) e C'([0, a i ]), 'i(t)= {16
E  q ([X o  — 8 , X0  + 8 ]) and ax 1) =  1 .  Let us set

0, (0 _ t_ a q .,.2 and a q + ,_- _t_a p ) ,

(P i o + r3)n(t)C(x)tO t
) 6(T, X )CiT , 1 ) e i X 4

aq+1

(3.28)
{F'10(t, x; at, ax)+B(t, x)}vo, x; o=o,[

(el = (a q +  — aq + 2)0), (-)c)

=17'(t)C(x)fO tA T ,  x)dr, 1)eix4

0,2+1
(3.29) f ( t ,  x ; )=

Pt

— n(t)C(x)y(t, x) fl(r, x)de(0, 1)eix 4 ,
a q+1

(aq-1 -2 - t a g -F 1 )•

Then, the following estimate holds;

(3.30) I f (t, x ; N ,c7.) = 6 1 ( V )  •

f ( t ,  x; belongs to C ( ã )  because supp n'(t) and supp n(t) are respectively con-
tained in [a q + 2  +s„ a q + , — e l ]  and in [a 4 + 2 +8 1 , a p ] ,  and because y(t, x) vanishes
on t = a

q  +  1  
of infinite order.

On the other hand, v(t, x) is expressed by

(3.31) v(t, x; = E(t, a q +  „)t(O, C(x))eix4 ,

especially, near t =a q + 1 ,

C(x)t(
t

f3c1T,l)e 1x{, a q + , —s i t<a q + ,,a g + i  

C (x)t(gÇ id s +1 '13dt, 1)eix 4

a. +1 ag+i

+ C'(x)tO t dt, 0)eix 4 , a t aq.a•

Then, v(t, X ; 0  is connected smoothly across t=a q . , , ,  because /A t, x) vanishes on
t = a q + , of infinite order.

Now, let us consider the behaviour of v(a p , x i ; 0  with respect to E(a p , a q +  1 ;
x1, ax ) is of order N +1 and 0. , + ,(E(a p , a q +  x , ,  x )) is expressed by the following:

(3.33) N  i(ga p , aq +  1, x1, ax »
E i(k) . • • ̀ -‘ 1.1k • •

i t ...... i N - 1

(mod. order N),

(3.32)

a , +1
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where i(k)e D(x i ), k 5 N), is even (1 5 15_ N —1), ..1.1i= 
r a j

x ) d < Q 0  01) ax
and ••• expresses the product of (41+1; x) for odd V i1 ) ( x i). Let us set
. i (ai , ai + ,; x)=(b1"(x)) k ,i , i ,2  f o r  odd i  an d  mi (x)= a1.4'.(a1, p ( T , x ) c l t  for even j.

aj+1
Then, we have

(3.34) al(-,#i(k)".•-#1*•.)= m i(ri
0  b 21

i(k) i t 12

w h ere  and i2 run over i(k) —  2 1 and j+ 1 + 1) + 2 respectively,
because ..g ) is of type Co  0

* )  and is upper triangle when i is odd and is not
contained in D(x i). Therefore,

(3.35) cr,+,(E(ap, aq + ,; xi , 0g ))

N-1 0 l \
= mpIng bN) 11 Cbf4) E mi(11 b1,1 )(11 N M (

k=1 12 0  
0  e l + 1 ,

where i „  i2  and j  run over i(k)+ 2 j— 1, j+ 1 i(k + 1) - 2 and i(k)+1
j . i(k +1) —  1, respectively. Here, the right-hand side o f (3.35) is no t zero

because in ;  >0 by virtue of g t ,  x)>0  in  (ai + ,, ai )  and because b'tk — bil k I
11—(ap R)2 /2 by (3.8) and by the choice of ap  and because bfjk ) 0 0. Therefore,

we obtain the following;

(3.36) Iv(ap, xdi = IE(a a q + ,; axy(o, cooeix4)1
> c 0 1 +1, for sufficiently large

where co >0.
(3.30) and (3.36) are contrary to Lemma 3.7. Q. E. D.

3 .4 °  The case where the hypothesis (H.2) fails
Secondly, we present an example for which the hypothesis (H.2) is not satisfied.

It is the example 8 presented in the section 2.

Example 8.

a o p(t, x) a
axP 8  = I  at v(t, x) '

> 0 ,  in (a2".1, a 2 1) x R
where !At, x) 1=1

= 0 ,  otherwise,

> 0 ,  in lJ (a21, a21- i)x RU ( —  oo, 0)x R,
v(t, x) 1=1

= 0 ,  otherwise,

and {a i } is the same one in the example 9.
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Remark that pv---.0 and then )=O  is the double root of det P 8 (t, x; A, 1)=0.
Let 52 be R 2 . Here, "Ti = x R, To = {0} x R, 52,=(a 1, 1 , a i) x R, 520 =(— oo, 0) x R

00

and S-2 =R 2 \ ■.) Tf . Then, Ow =R 2 , that is, the hypothesis (H.1) is satisfied. How-
ever, Ot, x) is extended on each f2- , as the following:

{  1(1, 0)
x)=

1(0, I)

o n  supp p,

o n  supp V,

then, the hypothesis (H.2) fails.
The condition (L) is equivalent to the following:

y=0, o n  supp p,
(L 2 )

= 0, o n  supp v.

In this case, similarly as in the example 10, the Cauchy problem of P8 + 8 is
uniquely solvable in [to , oo)x R  for to >0 and  in  [t o, 0] x R  fo r to <0 under the
condition (L 2 ). However, for arbitrary lower order term B(t, x) such that P 8 +8
satisfies the condition (L 2 ), P8 + 8  is not locally hyperbolic at (0, xo ). ( x o  i s  an
arbitrary point in R.)

Proposition 3 .8 .  (Stable non-hyperbolicity of P8.)

P8 is stably non-hyperbolic near (0, xo ), where xo is  an arbitrary p o in t in  R.

P ro o f .  T o  see  th e  above proposition, w e on ly  need  to  show th a t  P 8 +B

is not locally  hyperbolic  a t (0, xo )  under the condition (L 2 ). L e t B(t, x ) be
(ct(t, x) 13 (t, x ))•  The Cauchy problem fo r  P8 + /3 is transform ed to the  fol-y(t, x) 6(1, x)
lowing by the similar way as in the reduction with respect to  P, o +B;

-15 v-a(P 8 +T3')u_ v— x
0 )  a  y —  ( 0

0 v=1,
(3.37)

0   
0 /

u(t„, x)= v o (x).

Here, since supp supp i, supp r3 and supp .T are invariant under this transfor-
mation, the condition (L 2 ) is also invariant.

W e  set mi(t, s; x)= 1 ' ikr, bi(t, s; x)= 'x ) ( 1 1 - , s; x, x ) =
((()) n ; x ) ) ,0  di (i) ( t 5 ;

S  x ) = (1!) b i (t, is; x)) , s; x, 8x ) =../g1(t, s; x, ax )+

,gAt, s; x) for ai + , _ s < t a i when i is even, and mi(t, s; x)=Ç x)cit, b i(t, s; x)

) i
11 3 ])'=5 'x ) d - r , )—( nis; x , a °x 1(t, s; x) o r - s; x=  (b(1,  s :  x )

s ;  x, ax )=,c(r, s; x, ax )+.4'7(t, s ;  x) for ai + ,_,,s<t a i when i is  o d d . For
aq + j to =s <a q ap + l < t a p , the  fundamental matrix E(t, s)=E(t, s; x, ax ) of the
Cauchy problem (3.37) is given by

(3.38) E(t, s)= p(t a +  1 )  1-1 . 4' ,(a1, a 1 + 1 ).9'q (aq , s).
i=p+1

q--1
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The order of E(t, s) is  q -  p + 1, and moreover, o- q _p + ,(E(t, s)) has the  following
form:

( 0  1 \
(3.39) icr q - p + i (E(a p , aq + ,))= % '(a, a i + ,)= m i (a i , a l +  ,)

i=p i=p \  0  0

if p  and q  are even. Since  rn (a 1, a 1 + 1 )>0, q - p + 1 is the true order and this is
independent of the choice of B(t, x) and x .  Therefore, it is shown by the same way
as the proof of the necessity in Proposition 3.3 that P8+ B is not locally hyperbolic
at (0, x o ). Q. E. D.

The examples 8 and 10 suggest that we need introduce some additional condi-
tions to (L) for the hyperbolicity when the principal part has the coefficients in C .
They must be very complicated because the roles of the components in the lower
order term are different each other. For example, in the example 8, if we relax the
requirement on p and y as the following:

00 OD

supp p= a2i) x R  a n d  supp v=[ ( a 2 i , a 2 i _ 1 ) u  (- co, 0)] x R,
i=1 1=1

P , may not be stably non-hyperbolic and we can obtain the necessary and sufficient
condition for the hyperbolicity of P8+ B but it is very complicated.

Appendices

§  A .1 . Differences between some notions on the hyperbolicity
In this section, we show the differences between some notions on the hyperbo-

licity through some examples.

A .1 .1 °  Forward and backward local hyperbolicities
For the present, in order to speak precisely, we add the word "forward" to the

terminologies defined in  the  definitions 4, 5, 6, 7 and 8. (For example, "forward
locally hyperbolic - .) We say that the Cauchy problem (1)-(2) is backward locally
g  well-posed at (t o , x o ) if we have the unique solution u(t, x) in  g (co) for arbitrary
uc (x) in S ( 0 )  and arbitrary f ( t , x) in e(s-4:,), where co is a neighbourhood of (to , x o ).
Moreover, we say that P is backward locally hyperbolic in Q, if the Cauchy problem
(1)-(2) for P is backward locally g  well-posed at every point in Q . W e show that
the forward local hyperbolicity in Q does not imply the backward local hyperbolicity
in Q.

We consider the operator P 8 . For convenience sake, we change the variable
t to -  t.

Example A.

0 11(4 x) ) D x

v(t, x) 0
PA =  I D , -  (
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where At, x)
>0,{ in u(a 2 i , a2 ,,, ) x R u (0, co) x R,

i

=0, otherwise,

v(t, x)
{ > 0 , in ■..) u2i)x R, 

=0, otherwise.

Here, {a i } is a  strictly increasing sequence and it converges to 0. We regard a,
as — co.

Proposition A.1. PA  +B  is forward locally hyperbolic in  0  under the con-
dition (L) but P A  is backward stably nonhyperbolic in 0, if  Q n { t=0}04).

P roo f. The former is obviously seen because, for each (t o , x.) in R 2 , there
exists a neighbourhood co such that R(t, x)-=- rank 

(
Y )=1  in concoi..v  0

The latter is proved in Proposition 3.8. Q. E. D.

A.1.2° Hyperbolicity and local hyperbolicity
From now on, we omit the word "forward -  a g a in . Now, we show that the

local solvability at every point does not imply the semi-global solvability.

Proposition £2. P A  +B  is locally hyperbolic in Q under the condition (L)
but it is not hyperbolic in S2 for any lower order term B if  On {t=o } ocb.

P roo f. The former is the result in Proposition A.1 and the latter is provable
by the same way as the proof of Proposition 3.8. Q. E. D.

A.1.3° d'-hyperbolicity and r(œ)-hyperbolicity
Many authors set y(")) =6" when they treated y(K) well-posedness. However, in

this article, we set y(œ)= J y(K ). Obviously, y(œ) e.
1

In order to make clear the word, we use the terminology "i-hyperbolic" in
stead of "hyperbolic" in the definition 2. We say that the Cauchy problem (1)—(2)
is y(K) well-posed in 0, if we have the unique solution u(t, x) in (1(0,- ) for arbitrary
u0 (x) in y ( 0 . )  and arbitrary f(t, x) in yoo(fg) and for every to . We say that P is
y(")-hyperbolic in Q, if the Cauchy problem for P is y(K) well-posed in Q. Therefore,
if P is e-hyperbolic, it is also y ( k ) h y p e r b o l i c .  H owever, the converse is not true.

Proposition A .3 .  P g  is i-stably non-hyperbolic i n  0 ,  i f  Qn { t= 0} 0  .

However, P=P 8 +B is y ( " ) -hyperbolic under the condition (L) if the coefficients of
P belong to y(œ)(52), where the solution u(t, x) also belongs to y(œ)(52).

P roo f. The former is given in Proposition 3.8 and the latter is provable by the
same way as the proof of Proposition 3.3. (See also S. Tarama [29].)

Q. E. D.

In the forthcoming paper, we shall discuss the best possible space of functions
where the Cauchy problem (1)—(2) is well-posed under the condition ( L ) .  (See [27]
and [28].)
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§ A .2 . Formulation in case of N =2
The assumptions 1 and 2 restrict the number n of the dimension of x-space

related to the order N  of the system. Especially, in case of N =2, n  must be  1.
However, in such case, we can have the similar results as Theorem 1.3, 1.5, 3.1, and
3.2 for arbitrary n under the following formulation.

Assumption 1.A. The equation det P p (t, x; T , )=  0 has a double root )1(t, x;

x; is automatically real because the coefficients of Pp  are all real. M o re -
( t  x )  b ( t  x )over, it has the form A i(t,xK . Let us set .4f(t,x)—Ai(t, x)I J a i , i ,

V i (t, x) d i (t, x)P
then ai , bi , c i and d, satisfy the following:

(A.1) di(t, x) — a i (t, x), ( a i (t, x))2 +b 1(t, x)c i (t, x)_=0.

Under the assumption 1.A, Proposition 1.1 and Corollary 1.2 are also valid.
Put R(t, x)= Ê  (Ib i(t, x)1+ Ic i (t, x)i). W hen ± x,)i 00 , Pp  is expressed by

i=1 t= t
1ID,— ± x)D x  —(c )-7 ( 1 ' x) _  do ,  . 0 )• x)D co i n  a u neighbourhood of

t= c(t, x
(to , x0 ), where ci(t, x) and "C(t, x) belong to COE)(co), and when E x0)1 00, Pp  is

i=
g i(t X )expressed by ID,—  'E Ai (t, x)D„ 1 —(

1 2 '( t

1
' x ) —

: - ) •
n

 c ".(t x ) D
x i

 in  a  neigh-a' (t, x)
bourhood co' o f (t o , xo ), where .a"(t, x) and g'(t, x) belong to C '(c o ').  These are
derived from the assumption 1.A and the fact that CH 1 , is a unique factor-
ization r in g .  Therefore, we can take the real unit eigen-vector g(t, x) on the region
where R O. H e re ,  è is independent of L e t  G be an arbitrary connected compo-
nent o f  {(t, x)e Q; R(t, x)001. We have the following theorem corresponding to
Theorem 1.3.

Theorem 2.1.A. (Smoothness of -44 x) along the bicharacteristic curves.)
In addition to the assum ption 1.A, suppose that the condition (L) is satisfied.

Then,
(i) I f  n(s) is  a  bicharacteristic curv e belonging to 20, x; such  that n(s)

e G xlin\{0} when s <s' and 7c(s')e eGx lin\{0}, then "g(t, x) can be extended
as the real unit eigen-vector on a) n 6  in  Coe-class, where co is a  neighbourhood
of {n(s); 0 . .s..5_s'} in O.

(ii) W hen ROO in  co\OG ( if  necessary , shrink ing a)) w e can tak e r ( t ,  x )  in
Coe(co n 6 ) and  g+(t, x) in  Coe(co n Ge) by  (i), I f  lim V(tr(s))= lim g+(n(s)),

s--•e+o

r(n(s)), (s 5 s') ,
g= 

1 é+(n(s)), (s

is inf initely  dif ferentiable at s=s'.
Moreover, if  g- (t, x) and ré+(t, x) coincide on a) n ac,

r(t, x ) , (t, x) e co n G,

I. g+(t, x) (t, x)ew  n 67
,
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is, in reality , infinitely  dif ferentiable on co n ac, that is, 6'(t, x) belongs to Cœ(w).
By Theorem 2.1.A and Corollary 1.2, we have the following theorem on the

necessary condition for the weak hyperbolicity.

Theorem 2 .2 .A . (Necessity of the smoothness of é(t, x).)
Suppose the assum ption 1 .A . I f  P ,  is w eak ly  hyperbolic in  0 ,  w e can take

the unit eigen-vector x) which satisfies the properties (i) and (ii) in  Theorem
2.1.A.

In order to obtain a similar result as Theorem 1.5, we need some additional
assumptions besides the assumption 1.A. (See the example 4.)

Theorem 2 .3 .A . (Analiticity of g(t, x).)
Suppose the assumption 1.A and that the coefficients of 13 ,  are all real analytic.

Then, only one of the following two cases arises;
(I) R a-0 in 0.
(II) ROO in Q except an analy tic set. H ere, if  the z ero set of  R(t, x) does not

contain the projection of  any  bicharacteristic curve to Q and the condition (L)
is satisfied, we can take "e(t, x) in the real analy tic class on O.

Remark. In the situation under the assum ption 1.A , the bicharacteristic
curves are independent of then the projection of them to Q is a family of curves.
Under the additional assumption in the case II, the projection of the bicharacteristic
curves may cross or contact the zero set of 1Z(t, x).

Theorem 2.3.A brings us the following theorem.

Theorem 2 .4 .A . ((Local) hyperbolicity in the case with real analytic coefficients.)
Under the assum ption 1.A, suppose that all coefficients of Pp  are  real analy tic

and that the zero set of il(t, x) does not contain the projection of any bicharacteristic
curve to Q when R(t, x ) # 0 .  Then, the condition (L) is necessary and sufficient for
the (local) hyperbolicity  of P  in Q.

Here, the loss of regularity  in 0  is 0 in the case I  and is 1 in the case II.

Remark. Of course, for the hyperbolicity, we assume the boundedness of the
coefficients of Pp  in Q.

For the case with C'-coefficients, we introduce an assumption corresponding
to the assumption 2.

Assumption 2 .A . The boundary of each connected component of the non-zero
set of R(t, x) lies on some disjoint space-like hypersurfaces {T,} , in general as a
subset.

{T,} divides Q into a family of the open connected subdomains {52,} and a
closed set Z, where R(t, x)---  0 or a. 1 on each Ok , E J  T , and =  .

—

Theorem 2 .5 .A . ((Local) hyperbolicity in the case with C-coefficients.)
Under the assum ptions 1.A, 2.A and 3, P  is (locally) hyperbolic in Q, if  and
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only if  the condition (L) holds good in Q.
Here, the loss of  regularity on K from  t o  is at most  # { Q , ;  Q k n 4) and

R (t, x )00 on Ok }.

Remark 1. Of course, for the hyperbolicity, we assume the boundedness of the
coefficients of P p .

Remark 2. Under the assumptions in Theorem 2.5.A, there are elk (t, X ),  6(t, X )

and ek(t, x) in C œ ( )  su ch  th a t Pp I(Dt — ) 1(t, x)D„)— Ak(t, x) (b i (t, x)
lik(t x) bk(t x)—c i (t, x))D , on Ok,  where :4- k(t, x)= ( 0 0 : x )  _  a k ( t : x ) )  and Ak(t, x)=-0 or 0

0 on Ok .

The theorems in this section are provable by the same ways as the proofs in
the sections 1 and 5.
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