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§0. Introduction

We consider the non-characteristic Cauchy problem with meromorphic initial
data for a linear partial differential operator with holomorphic coefficients in
the complex domain.

Y. Hamada, J. Leray and C. Wagschal [1] treated this problem for the
operator with constant multiple characteristics. Y. Hamada and G. Nakamura
[2], [4] treated this problem for the operator with involutive characteristics of
variable multiplicities. In the preceeding paper [5], the author treated this
problem for the Tricomi operator Di—tD?% with lower order term whose coeff-
icients depended on only ¢. In this paper we remove the condition on the lower
order term’s coefficients and treat the more general operator than the Tricomi
operator with arbitrary lower order term.

Our method is to costruct the formal solution which was developed by D.
Ludwig in [3] and to verify its convergence by using the majorant functions
@a(z, £, y) due to Y. Hamada, which make us be able to remove the conditions
on lower order term.

The author wishes to express thanks to Professor Y. Hamadr for his valu-
able advices.

§1. Assumptions and results

Let 2 be a neighbourhood of the origin of C**!, and x=(x,, x1, -*-, x») be a
point of £2. By L*(2), we mean the set of all linear partial differential operators
of order % whose coefficients are holomorphic in £. Let P(x, D)eL™Q),
Q(x, DyeL*™(2) and R(x, D)eL®™-(2). We shall be studying a linear partial
differential operator belonging to L?™(Q):

L(x, D)=P(x, D)*—x,Q(x, D)+ R(x, D).

We shall impose on P(x, &) and Q(x, &) the following conditions, where
E=(&o, &1, -+, En).
Assumption (A) (i) P(x, & is a homogeneous polynomial in & of degree m.

(ii) P(x,1,0,--,0=1.
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(iii) The equation P(0, &, 1, 0, ---, 0)=0 has mutually distinct m roots 2;
(=1, -, m).
Assumption (B) (i) @(x, &) is a homogeneous polynomial in & of degree 2m.

(ii) Q(O; 'ziy 1! 0: Tty 0):'&0 (l:]-; ) 771)

Then there exist m characteristic surfaces K; (=1, -+, m) issuing from
(n—1)-plane x,=x,=0. K; are defined by the eqations ¢f:=0. Here ¢i(x) are
the solutions of the eikonal equations,

{ L(x, pt)=0
(0, x)=x,, and @i (0)=24;,
where L(x, &)=P(x, £)*—x,Q(x, &) and x'=(x,, -, Xz).
(In §4, we shall study the construction and some properties of f(x) precisely.)
We write K= Q K;. In order to describe the results, we need the auxiliary

functions X, and Y,. For the precise definition of X, and Y,, first we introduce
the so-called wave forms k.(p):

oo ey (og o+ gla+1)

especially |a+1|!(=1)*"1p* for a=—1, =2, ---.,
d

—a-l"(a)
&)

Next, we introduce the multi-valued functions X.(@, p) and Y.(f, p) as the
solution of the Cauchy problem for the Tricomi equations:

(35— 00 X(6, 0)=0

where ¢(a) is di-I" function, namely , and « is a complex parameter.

with the initial data
{ Xa(0, p)=FkJ(p)

Xa0(0, p)=0,

(05—005)Y o(60, p)=0
with the initial data
{ Y o0, 0)=0

Y400, p)=ka(p)

We remark that the following explicit representations of X, and Y, are known;

_ 0l 1. ety (D)
X0, P)= 54 [F(s' @ i l= F(a—l—l)]

. 0 5 5 ) + A(ph)®
V0 =g (5~ 31 ) Ty )

where go+=p+%03/2 and g0'=p—%03’2 are so-called characteristic coordinates of
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the Tricomi operator, (see [5]).
Now, we consider the non-characteristic Cauchy problem with singular data,

L(x, D)u(x)=0
1,1

2u(0, x)=wx(x) (h=0, -+, 2m—1),
where w,(x’) have poles along x,=x,=0 and D;= 32. :

Then our theorem is as follows.

Theorem. Under the assumptions (A) and (B), for r>0 sufficiently small, the
Cauchy problem (1,1) has a unique holomorphic solution on the universal covering
space over D\K, where D,={x€, |pf(x)|<r}. More precisely, the solution is
expressed by

u@= 3 B e (1) XapO5(), pa(X)+ga. 5(X) X0 (05(x)p5(x))

B=1a=-1-2

Fa, 8(X)Y ap(0p(x), pp(x))+ha, s(x)Y ao(05(x), pp(x)),

where | is the highest order of poles of the initial data and u. g(x), ga p(x),
Va, 8(x), ha, s(x), 05(x) and pp(x) are holomorphic in D, ( as for 6g(x) and pg(x)

such that go§(x)=p,g(x)i%[0ﬂ(x)]2’3, see §4).

To prove this theorem, first we construct the formal solution of the Cauchy
problem (1,1), which is due to D. Ludwig [3] and then confirm the convergence
of the formal solution by the method of majorant function. For the construction
of the formal solution, we prepare some caluculations and some properties of
the auxiliary functions in the next section.

Note: We show the following examples as the simple operators which
satisfy Assumptions (A) and (B).
Example 0. (Tricomi operator)
D2—x,D?
Example 1. L(x, D)=P(x, D)*—x,Q(x, D’), D’=(D,, -+, D,) where P(x, &)

satisfies Assumption (A) and Q(x, &) is homogeneous in & and Q(0, 1, 0, ---, 0)
#0.

Example 2. L(x, D)= ;ﬁ; [Pu(x, D)2—x,Qx(x, D)] where P,(x, D) L™2(Q)
are such that P(x, &)= ,i[l P.(x, &) satisfies Assumption (A), and Q.(x, &) are

homogeneous polynomials in & of degree 2m, and Q,(0, 1,0, ---, 0)#0.

§2. Preliminary calculation

In the construction of the formal solution of the Cauchy problem (1,1), we
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need to represent 0,0jX, or 0i0}Y. in terms of 0iX,, 050y X, and 0iY,,
0k0,Y » (R=i+j) respectively. So we employ the following formula.
(F1) Let U4, p) satisfy the Tricomi equation, namely (05— 6005U=0. Then
we have
{ 0FU=0705U~+r(r—1)07205 " 0,U+ ---,

O U= 0730, U+ 07 55U+ -
Let K(x, & be the homogeneous polynomial of degree l in §=(&, &, -+, En).

. i) A\ i, 5 —
We shall write K®(x, &)= a& ——K(x, &), K®?(x, &)= 35 85 ~=—K(x, &), Ku(x, &)

=D;K(x, §) and K(x, §)=DFK(x, §), where a=(ay, a;, -+, a,)=(NJ{0})**,
We define K(x, &, n) by

l l
K(x, ré+sy)= E& Kix, r&, sp)= gariS’"“Ki(x, & 9
where p=(7,, 71, -+, 7a) and », s€C'. We shall use 0,=6,,0p+ 0,0, (=0, --- n),

0=(0,, -+, 0,) and Diaj=0151j30+,01izjap-
We shall sometimes use the following Leibniz formula

(F.2) K(x, D)[u(x)v(x)]:WZLL%D"u-Kw’(x, D)y
and the following formula by chain rule
(F.3) D*U(6(x), p(x)):a"‘U-l—%iéo(a“)“'”(Dﬁj)U-l—
From (F,2) and (F,3), we have
(F.4) K(x, D)Lu(x)U(8(x), p(x)]=u-K(x, a)U—l-u-%K“-f)(x, oXD,0,)U

+Diu-K®(x, 0)U~+(lower order term).

(repeated index 7, j will be always summed from 0 to n).
From the definition of Ki(x, &, »), we have

(F,S) K(xy a)—_—K(.X, 0180+anp): 120 Ki(xy 61‘) Px)aéa;lﬂ_l .

(F,1) and (F,5) lead us to the following formula (F,6) and (F,7)
(F,6) Let U8, p) satisfy the Tricomi equation.

(i)
[i/2] .
K(x, O)U ,(6(x), p(x))=[ 2 Kz, 02, px)ﬁ‘]ab“U

[C=1)/2] ) /el )
[ Kunx, 02 02008000+ B #Kuinatx, 02, 000 |00

e | )
+[ S i— DK, 0., p,)ﬁ"z]a};"lagU-}—



On Hamada's theorem 521
—;IK(X’ 03” pz)a‘l’+lU+2I<(x: 0@ px)a:llaOU"l'sK(X, 0.7:’ Pz)a};U
+1K(x, 02, p2)05'0sU+ .

(i)
[Ct-1)/2]

Kx, DU(0), poD=| 8 Kuens(x, 02, 0% |057U

1=

[L/21 ‘ t/21 o
8 Kutx, 02, 02008000+ S Kutx, 02, p2ic0™ ol

[C1-1)/2] . X
+[ 2" Kulx, 02, pz)l(l-i-l)ﬂ“‘]aﬁ"U-!-

='K'(x, 04, p)05 ' U+2K'(x, 05, p2)0ld?U+*K'(x, 0, p2)05U
+4K'(x, 04, p2)05 00U+ -+
We immediately see the relation ‘K’=2K-6 and *K’'='K. So we have (F,7).
(i) K(x, 0)03U="K'05""0oU+O0CK")o;** U+ -+ .
F7 (if) K(x, 0)0,0,U="K'05**U+*K'0s*'0,U+ -+ .
(iil) K(x, 0)03U =Ko} *U+-2Kas*'0,U+ - .

To examine "K(x, 0, p,) and "K'(x, 0, p,) (h=1, 2, 3), note the relations
Ky(x, & n)=K(x, n), Ki(x, § p)=KP(x, n)&;, and Ky(x, §, 7))=%K“'”(x, NEE;
and then we have
(1) 'Kx, 0z, p)=K(x, p)+0:K(x, 02, pa),

(i) *K(x, 0z, p2)=KD(x, p:)0,,+0:K(x, 05, p2),
(i) 'K'(x, 0z, p2)="K(x, 02, p2)-0,
(iv) *K'(x, 02, p2)='K(x, 02, pz),

(V) K, O, p =G KOz, 0020240 R(x, 0, 02

Next we shall study the composition of two operators of the form K(x, 0).
(F,8) Let M(x, d) and N(x, 0) be linear differential operators in 0 of order m
and n respectively. We get

() M(x, HN(x, D3, U=(M-'N+ M -2N)p+»+U

+ M- INA2 M 2 N)BR+3,U +(CM- 1N

FIM NN M AN U

LM ANAM N+ M ANAEM NP9, U + -
(i) Mz, )N(x, )3pU=CM-'N'+1M -2N)3p+m+1U

(M- IN MNP0, U
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+(3M. IN/+3M/.2N/+1M_3N’+1M/.4N/)a;n+nU
FOMIN M AN 2 M BN 2 M AN =19, + -,

where "M="M(x, 6., p2), "N="N(x, 0, p.) (h=1, 2, 3, 4) and so on.
Now, making use of (F,1) (F,8), we calculate

L(x, D)[u(x)U ,(6(x), p(x)+g(x)U4(6(x), p(x))]
where U(6, p) satisfies the Tricomi equation.
L(x, D)[u(x)U ,+g(x)U,]
=u-L(x, )U,+g-L(x, dU,;+u-[PO(x, )P9(x, )

+P(x, )P (x, a)—%on("'j)(x, a)](Dia,)U,,
+g-[P®(x, 0)PP(x, 0)+ P(x, )P (x, 0)
3 %0Q4 P (x, DDAV o+ Den-[2P(x, )PV (x, 9)

—x0Q®(x, 9)JU,+D;g-[2P(x, )P (x, 0)—x,Q(x, 9)JU,
+u-R(x, 6)U,,+g-1°?(x, 0)Uy+(lower order term),
where R(x, £)=P®(x “€)Puy(x, &)+ Rum_1(x, £). We have
(F9  L(x, D[u(x)U,+g(x)U,]
S S S SO S
L0 LG+ MUA(G gy Pl 0+ Oy P+ L' +0-2R)g]
F (022, Pl 0+ 020 - @42 L+ ROu1GE™U
ALLu+HG+ (02 iz, Phy+ 020 - PY+ L+2R)U
02y Pht 0+ 0z yay P LI+ R) 115, U

+(lower order term),

where
L=L(x, 0, Pz, D)=[2("P(x, 0., Px)'zp(i)(x: 02, Pa:)

F2P(x, Oa 2 PO(x, Oy pa))—x0-Q(x, B, p2)IDs )
H=SH(x, B2, pur DY=L2P(x, B, p2) PO(x, b2, po)

0-2PD(x, B, p2)-P(x, Os, p))— 50 QV(x, Bsy p2)IDs,
EP%J“: EIP(i) . 2P(j)+2P(i) . 1P(f)+1P.2P(i.f)+2P. IP(i-j)

3 xtQEONx, O, p),

ﬂ’%jZEIP(i) JgApaipgipapapjepd.epgep,.apid g
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— 370 QPN x, By o).

For the proof of the convergence of the formal solution of the Cauchy
problem (1,1) we need the closer information on the lower order term in (F,9).
From (F,3) and (F,5), we have

(F,10) (i)
L(x, D)u-U,
2m 1 2m 1
=( 3} —DuL(x, DU,= ¥ ——Du
laj=0 X! laj=0 !
2m-lal 2m-1-lal o
[ Eo ‘iﬁ”&f,‘U-{- #z=:0 2L§f"'3ﬁaaUp+"']
em [em-v 1
— @, _~_Dea o
- ugo[lmzloliy a! Dfu+ ]3,,Up
2m-1 2m—l—v2 (M.L a A
+ =0 [ |:2=‘o E” al D+ ]aﬂaaUp>
= 3 LLnU+ 3 LLudaeU
where

L,='L/(x, 8, p, D)eL*™ Q)

*L.=*L(x, 8, p, D)eL*™ ()
and we have

(i) L(x, D)g-Us= 3 *LLgIOWU,+ 3, *L.L&1OAU ,

where
SL,=*L.(x, 6, p, D)eL*™ ()

‘L,="L.x, 8, p, D)eL*™ (L)

We see also the following relations from the above.

1= > 1Lk, 4, p,)l' (mod. 8)
lal=2m -y al
o] — 2 [ (a) D«
L= 3 'Lk 0 p)— (mod 6)
(F,11) )
e ° Da
3LP:0.|:m|=§m—uL( (%, 02, pz)?] (mod. 6%)
o = li(a) D
L"’— 2 (x: 01‘7 Pz)'—‘ (mod. 0),
lal=2m-v .

where "L, are the principal part of *L, respectively (h=1, 2, 3, 4).
From (F,9) and (FF,10) we have
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"Low(x, 8, p, D)="L(x, 0., 0.
[ZLm(x, 4, p, D)=2L(x, 6., 0z)
lsLm(x, 8, o, D)=2L(x, 0, p.)-0
‘Lon(x, 0, p, D)="L(x, 0., pz)

(F,12)

"Lom-i(x, 0, p, D):ﬂl+(,01ixi'§’?j+0-ﬁri,j-f%j—l-ali—}-‘f?)
13 [ZLm-xx, 0, p, D>=£+<p“,j-sz°%j+0xiz,.-9%,+4i+iié>

"Lon-i(%, 8, 0, D=0 -[LA(pz,ny Pyt Oz p0 - P+ RI]+HL!

14Lm-l<x', 0, p, D)= HA (022, Piyt0- O - P+ L/+R) .

In §4, we shall treat (F,11) for the determination of the phase function and
study (F,13) for the research of the transport equations.

§ 3. Construction of the formal solution of the Cauchy problem

Employing the formulae obtained in the preceeding section, we shall con-
struct the formal solution of the Cauchy problem (1,1). Taking account of the
principle of the superposition, we have only to treat the following Cauchy
problem with the special data;

L(x, D)u(x)=0
31D
tu0, x)=wa(x") k_(xy) (h=0, -+, 2m—1),

where x”=(x,, -+, x,) and w,(x”) are holomorphic functions in x” in the neigh-
bourhood of 0=C™~1.
We seek the formal solution in the following form

(3.2) uw= 3 B e s(0Xep(050), psx)

B=1 a=-1-2

+ 8, 5(x) Xao(0s(x), pp(x)Fva, g(2)Y 2,(0p(x), pp(x))
Fha, 5(2)Y ap(05(x), pp(x)).

Making use of the relations X,,=X._; and Y.,=Y,.;, we determine the
coefficients ua, 5, Za '8 Va.p» Na.p and the auxiliary phase functions 65, ps. Sub-
stituting the formal solution (3,2) in Lu=0, we obtain

m 2m
Lu= 3 z[ UL, sttass 5+ Lo s ﬁ]Xa,,w,a(x), 05(x)

B=1 a Lv=1

o

v=

2m

+[2"‘ ‘L, 3@arn g+ Lo gllass, ﬂ]Xaowﬁ(xx 04(2)
+{

Lo pvass g L phass. s |V a(0500), ps(x)

°

v=
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2m .
[ B Lo phass s Lo pvars |V asOa(), pp(x)=0
where "L, ;="L.(x, 03, pg, D)EL*™ Q) (h=1,2,3,4) and especially 2Lo.p
=2Lo,ﬁ:O. .

Setting the coefficients of Xa,, Xs0, Ya, and Yay equal to zero, we have
the recursion formulae for u., ,, Za, o Va.p a0d ha,,

2m

’E) [lLv. BUa+y, ﬁ+8L», B a+v, ﬂ]:()
2m .

»—ZO [4Lu, pEa+v, ﬂ+2LV, BU .+, ﬁ]:()

2m
vE=0 EILV. fla+v, ﬁ+3Lv,ﬂha+L, ﬁ]=0

3

E4L», ﬁha+v. ﬁ+2Lv. Bla+y, ﬁ]zo

v=0
Here we set
33 lem,ﬁ:2L2m,ﬁ:3L2m,ﬂ:4L2m,ﬂ:O ’

From these non-linear partial differential equations of first order in 65 and pyg,
we determine 3 and ps. We shall study these equations in the next section.
Thus we have reached the system of the transport equations.

m—
*Lom-1, pUat+2m-1,=— Eo 4Lu.ﬂga+u,ﬁ

. 2m-2
(1) - l;) 2Lv,ﬁua+v.ﬁ

3 2m-1
Lzm—l.ﬁga+2m—l. = »go lLy,ﬂua+u,ﬁ

2m-2
(3,4) - v;o 3Lu,ﬂga+v.[3
2m-1

2L2m—1,ﬁvn+2m—l,ﬂ = 20 4L»,ﬁha+v,ﬂ

y=

2m-2

(i) — 26 ®L, gVasv, B

2m-1

3L2m—1,ﬁhn+2m—l, = 2% lLy,ﬂUa+v,ﬂ

2m-

2
- 2 va,ﬂha+v,ﬁ

v=0
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On the other hand, from the initial data by calculating Diu(x)]z4=0 in the
similar way we have

'El L0820(0, )1 (thass, gFha )+ R -[psz,0, )] 1050, x")va,

m h-1
+ El [ k2=0 M s(uasrsr-n gFRass-n g)+M'EpGarrsi-n. g

+Nl’el,ﬁ11a+k-n.,5'|'M”£l.ﬂua+k+1—n.5+N'fe’,ﬁha+k-n]

29=0

{ wr(x") for a=—I[4+2m-+h
0 otherwise

where M} g, N} are linear ordinary differential operator in D, of order h—#k
and M'%g, M"}s, N’} are linear ordinary differential operators in D, of order
h—k—1. These operators are determined only by the coefficients of L(x, D),
65, ps and have the holomorphic coefficients in x’.

Note that the determinant of the following 2m X 2m matrix

1, 0 -1, 0
Tl) ]- rm, 1

L @uoDpmet e 7, @m— Dy
(Th=pnrz,0, x))
does not vanish if y, (h=1, ---, m) are mutually distinct, (in the next §4 we

shall see 7, are mutually distinct). Then we have the following lemma.

Lemma 3.1. uas1, 3t ha glzg=0 and va, glzo-0 are represented as the linear
combination of H)g(x’, Do)(Uawr-p, gt ha-p )0, x7), Hio15(x’, Do)gar1-p (0, x7),
H}, a(x", Do)va-p, 800, x°), Hyoy g(x’, Do)ha— . p(0, x") and HE, 1, p(x", Do)t as1-p, p(0, x7)
where HE g(x’, Do) (¢g=1, -+, 5) are the ordinary differential operators in D, of
order v and are determined only by L(x,D) and 6p, pg. Hence we have the
Cauchy problem for the first order system (3,4) with the initial data;

(35 ()
ua+2m—1,ﬁ(0’ xl)+ha—2m—2. ,9(0» xl)

m-1 m
=[5 3 dhatOH A, DOtasimos oyt hasamsep X0)

+dfz.r(x,>Hi-1.r(X'; Do)ga+2m—1—p,r(x)
4+d3 (xVH2, (x, Do)Vasem-2-p. () Fd3 (X VH} 1, (x", Do)hasem-2-p, (%)

b, (3, Dottasam-s- ()|

’
0=0
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(ii) Un+2m—l,p(0v X’)
=["E 3 b L', Ddasamor- oy havam-s- . )0)
p2gp:

+e,24.7(x,)Hz—x,r(X/, Do)ga+2m—1—p,r(x)
+ed, (xVH3, (x", Do)vasam-2-p.1(x)

teb (X VH -1, (x, Do)harem-2- (%)

’
29=0

tes (xXVH s (X, D(,)uam-,-#.,(x)]

where d¥,,(x") and e, (x') are holomorphic functions in x’ in a common neigh-
bourhood of 0€C™.

We first remark these problems take the same form
[2xoDo+1)+ (x5 ai(x)Ds+x07:(x)) g +(x0fi(x)Di+0:(x)u=S(x)
{ (2Do+ x 0 i(x)Di+72(x))u+(x o f:(x)Di+0:(x)) g=T(x)
u(0, x)=uy(x")

where a;(x), Bi(x), ri(x), d;(x), S(x) and T(x) are holomorphic in a neighbour-
hood of 0=C™*!, (for the proof see §5).

For this Cauchy problem, there exist unique holomorphic solutions u(x) and
g(x). We can easily prove this fact using the method of indetermined coeffici-
ents due to Fuchs.

To be precise, coefficients uq, g, ga. 5, Va, g, ha p are determined in the follow-
ing way:

First, we suppose all u, s, gy.5, vy 5, hyp (FSa+2m—2, f=1, ---, m) are
determined and then the right hand side of (3,4) and (3,5) (i) are known. From
the remark described above, we determine ugism-1, and ZGa+em-1, by solving the
Cauchy problem (3,4) (i) with the initial data (3,5) (i). Then va4e.m-1(0, x’) are
given by (3,5) (ii). From the remark described above, we determine vqsom-1,
and hqiam-1, DY solving the Cauchy problem (3,4) (ii) with the initial data (3,5)
(i) Thus we can determine holomorphic coefficients wu. 5, Za.p> Va.p, ha.p
inductively. We shall prove that these coefficients have a common existence
domain and suitable estimates in § 6.

§4. Construction of the phases ¢3(x) and 05(x), ps(x)

First we solve the eikonal equations (3,3) 'Lym, s=%?Lom. s=>Lom. s=*Lom, =0
and study the phases ¢j(x) and the auxiliary phases 6g(x), pg(x). According
to (F,11) and (F,5) we see the eikonal equations (3,3) are equal to the following
equations (4,1) and (4,2)

@D Lx, 032, pp)= 3 Lux, 052, ppa)0=0
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o -1 o
(4.2) *L(x, Opz, ppe)= 2 Los(x, Opa, pp2)0*=0.

v=0

Multiplying (4,2) by +6}/* and taking account of the definition of Lalx, &, n)=
Lu(x, & pr* (h=0, -, 2m), we have

L, Oz ppa)= 3 Lulx, 20405, pp)=0

o m-1
*L(x, Opz, pp2)= %, Loz, 20} 051, p5:)=0
And then adding these two equations and noting the relations
. 2m 2
L(x, §+n)= 2 L.x, & 7 and g(ﬁjé’z)z:ﬁk”-ﬁpz,

we obtain the ordinary eikonal equations

2
L(x, (op=503) )=0
or .
. . 2
Lix,, ¢5)=0 where gj=ps=-—03".
Solving the Cauchy problem L(x, 5 z)=0 with the initial data ¢3(0, x")=x,,

we get the phases ¢f and the auxiliary phases 6, ps. For this aim, we prove
the next proposition.

Proposition 4.1. There exist the solutions ¢;(x) (v=1, ---, m) of the Cauchy
problem
{ L(x) 9051):0
@0, x)=x, and ¢, (0=, 1,0, ---, 0)

Precisely speaking ¢i(x) are expressed in the form
2
gof(x)zpv(x)ig(ﬁp(x))“.

0.(x) and p.(x) are holomorphic functions in a neighbourhood of 0€C™** and
satisfy the equations (4,1) and (4,2). Moreover 0.(x) are represented as follows

0b<x):x0' Uv(x)

where o,(x) are holomorphic and do not vanish in a neighbourhood of 0Cr+,
As for p.(x), p.(0, x)=p;(0, x’) hold.

Proof. Considering the change of the variables x,=t?, x'=x', we get

0=L(x, goz)=l°,(t2, X %gat, ¢x)
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’. 1 2 2 /. L
Z[P(tzy x5 TQDh SD.Z")} —tZ'Q(t y X5 % Dty SDI’)
So we have the new Cauchy problem
1 1 172
p t2) x'i_QDygDz' Zit'[Q tz’ x';—SOt; (2] ]
(4,3) ( 2 ) ( 2t )
SDD, X Jio=1x1

Taking account of Assumption (A,iii) and (B,ii), implicit function theorem and
Cauchy-Kowalevskaya theorem guarantee that this Cauchy problem has 2m
solutions ¢3[#, x’] which are holomorphic in [#, x’]. We have the relations
oil—t, x"1=¢;[t, x'] and ¢;[—t, x’1=¢{[¢, '] by the change of the variables

from ¢ to —¢. Setting p.[t, x’jzé(go;‘[t, 1+, x7]), we see p,[—t, x]

=p,[t, x'] from the above relations. Thus p,[t, x’] are even functions in ¢
and so p,[t, x’] are holomorphic in x=(x, x’). We write p,[t, x']=p.(x).

Setting 0.[1, x’]z(%(so:[t, x1—gilt, /D), we see 6.[—t, x’1=0.[¢, x'], too.
Hence 6,[¢, x’] are holomorphic in x, too. We write 6,[t, x’J=60.(x). There-
fore plt, x':|=Pu(x)i%(ﬁy(x))“’”:go?(x). On the other hand differentiating the

equation (4,3), we have the relations ¢i[0, x']J=¢;[0, x’]J=x;, &[0, x"]

:$017t|:0, xl:l-:()’ SD;/'_HI:O; xl:|=§0u_u|:0, x/]’ and SDsztz[Oy 0:|=——|—_-2(Q(0r Xw 1! 0’ 0))1/2

X I;[ (2,—2)#0 from Assumptions (A iii) and (B ii). So 6.(x) can be expressed
23%

in the form
0 (x)=x00.x) (6,(0)%0).

§5. Properties of the operators "L, 4

As for the transport operator *L,,_, 3 namely the most important operator
in "L, 5, we have the following proposition

Proposition 5.1. L., _, 5 are expressed in the following form

$Lom-1, =L@ (0, x/, 08200, x))-xo(0 500, x"))*D;
1.
+§L‘°'°’(O, %, ppx(0, x )00, x))24x3- L5, {(x)Di+x0c5(x)

where L (x) and cg(x) are holomorphic in a neighbourhood of 0€C™*'.

Proof. From the definition of *L,n_1.g, we have

Lom-1,p=0pLs+08L0p. , *Pisp+0s, ~Fiis

+RO(x, 5,05, 057 Rz, 05, 05,01+ L,
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where
Ls=[2P(x, O, pp,)-*PP(x, Op,, pp,)+°P(x, Op, P8,)

PO(x, 05, ps)—x0-2Q O (x, O, pp,)ID
and

1. . 7
3[5:7L“'”(x, ppz)ﬁﬂxiﬁpzj-l-ﬁpi(x, Os.r 08,

On the other hand, from the definition of *K(x, £, 7) (h=1, 2) and 0g(x)=x,-05(x),
we see Lp|z5-0=L (0, 2, p5,(0, x")a(0, x")D; and

1
siﬁ|x0=o='§i(o'o)(0: x’, pp0, x))ap(0, x7)*.
Thus we proved the Proposition 5.1.

For the method of the majorant function, we introduce the new variables
Y5=(Yo.8, 1.8 **» Yn.p) (B=1, -+, m) as follows.

Yo, p=X
We set { e

Ya. =Pa. p(x) (a=1, -+, n)

where ¢, g(x) are the solutions of the Cauchy problem
P®0, x', pg(0, x')Digha, p(x)=0

with the initial data ¢, 50, x")=x,.

Considering the transformation of the variables x into yg, we have the
following proposition about the operator *L, g which shall be employed in the
estimates of the coefficients of the formal solution in the next section.

Proposition 5.2. (i) Using the new variables, we represent

1
$Lom-1, ﬂ=a,e(y,e)(yo, g Dy, p-l-?)'!'yﬁ, 8ap:(¥8)Dy, s+ o 8c8(38)

where
ap(yp)=L"0, ", pp, 0, )50, x")*+0,

n+1

and ag(yg), cg(yp) are holomorphic functions in a neighbourhood of 0€Cy3'.
(ii) In *L, 5 (h=1, 2, 4), the terms Dy Dy, s (#=0, -+, n) always have the

factor y,, .
(ii) In ®L, g, the terms D" ¥-1D (=0, -+~ n) always have the factor 3§, g.
B V1. 8 Vp g B

Proof. (i) Note the relations

n

DO:DUo-ﬂ+ = ¢av.3.t .Dllz.ﬁ 4 DT= agl S["a-lng‘D!/a.ﬂ

a 0

(r=1, ---, n) and P90, x’, pp,0, x)-D;=P(0, x’, pp,(0, x’))-Dyo,ﬁ and then
we obtain (i).
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(ii) From (F,11), we have ‘l‘:y,‘glz(,:o:‘liy,,glxo:o,

5 . D«
1Ly'ﬁlxo':o:]a]:;m—yll‘(a)(o’ x/y 0,3_,;(()’ x/), Pﬁz(o, x/))W ’

, D«
*Loglamo=, 3 L0, 17, 05,00, 2, 05,0, x D7

From L(0, x’, ¢1.5,0, x'D=LP(O, x’, 15,0, ')I’=0, we have L0, x/,
¢1,8,0, x))=0 (=0, ---, n), too. We get the Euler’s identity

<¢1’:5.t(0’ x/))a 1) (a ’ 4
D e RS L0, 1, g, (0, 1)

_ @2m—D!
T (k—=D12m—Ek)!

L0, x', ¢1,5,(0, x))=0.

Hence D"’u’;‘,";‘lD“,ﬁ (¢=0, -+, n) cannot appear in ”]:y,,glx0=0 (h=1, 2, 4). (iii) In

the similar way in the proof of (ii), we can verify (iii).

§6. Convergence of the formal solution

As for our formal solution (3,2), we know the coefficients are determined
successively by solving the Cauchy problem for the system of transport equations
(3,4) with the initial data (3,5) in §3. Moreover, we investigate transport
equations, especially transport operators more precisely in §5. It remains to
verify the convergence and the uniqueness of the formal solution (3,5). How-
ever, the uniqueness of the solution follows from the Cauchy-Kowalevskaya
theorem. In this section, we are to prove the convergence of the formal solution
(3,2) by the method of the majorant function. To do so, we introduce a family
of functions {g.(z, {, ¥)}2-, which play an important role in the proof of the
convergence of the formal solutions (3,2),

Bz, L =0tz &, =3 UMY

nz0,j20 ]' nl

2
r(SG+n+D+a |
, G >_ ¥ -(p2)"
[R_(3/2)Cja+(213)(j+n+l) *

2.
I(5(+n+1)
The following proposition can be easily verified.

Proposition 6.1. ¢.(z, {, ¥) have the following properties.
(1) (22D1+1)¢a+2m>>ZDz¢a+2my ZD§¢a+2m—l .

(2) (22D, +Dasen> mew-y (v=3, -, 2m+1)

where a is a constant.
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2

3 Dg¢a+2m—1>> %—ZDZQS,,HM, Z¢a+2m—1 .

1

@) Difaran-s> gy

D:¢a+2m+1—y (V:2, ey, 2771).

1 1
8
TR =@ (R —pz—y1 V"> (R RXR'— R

where R'">R, R”> R®®

®)

D¢

1
6) Pari> pT‘”isr’- D.¢..

Proposition 6.2. For the Cauchy problem
(2xDo+1)g+(x3a:Dit+x071)g+(x0f:Di+0)u=Sx),
{ 2Dou+(xoa;Di+7)u—4(x08:Di+0:)g=T(x)
with the initial data u(0, x")=u.(x).

there exist unique holomorphic solutions u(x) and g(x) in the neighbourhood of
0€C™.  Moreover, assuming a;<ai, Bi< i, 11 <Fn, 00<8n, S8, T« T and
oL fo, it is verified that u(x)<ii(x) and g(x)Kg(x) if #(x) and §(x) satisfy the
following majorant relations,

(2x Do+ 1) > (x3@;:Di+ xo71) E+(x0f:Di+61) 8
2D, (x0@:Di+7o)u+(x0f:Di+062) g
(0, x") >,
(for the proof see [5]).

From these propositions, we obtain the following proposition.

Proposition 6.3. There exist positive constants A, B, C, D, E, F, R and K
such that

~ K
ua.p(yﬁ)<<AK“Dz¢2(yo,ﬁ, Y1, 8 :;2 JH,/E)
~ K
2a. 6K BE gz v0.5 v150 3 Yuup)
~ 13
va.,a(yﬁ)<<CK““Dz¢z+1(yo,,s, Y18 §2 Y. p)
~ n
e 8 DE 65,4 30,5315, 3 31.8)

(o a4 ho1, )0, 2V EKD,42(0, 31, 3 x.)
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Ua 50, x')<<FK?D,¢;(0, x, :2,;:) (@=a+142m)

where these constants are independent of a and depend only on L(x, D) and 65(x),
p3(x).

Therefore we Know ua,g, ga, 8 Va.p, Ne, g have a common existence domain
that is a neighbourhood of 0=C"*!' and the estimates |u.,sl, |ga 815 a8l

| he, 5| <Caly® in this domain, where C, y are positive constants independent of

1
a. On the other hand, we have the estimates |X.|, |Y.| <mer“‘1 on

any compact set K in D,\K, where a>0 and Cx is a constant independent of
« and depends only on the compact set X, (for the proof see [5]). Thus choosing
r such that »<7~ !, we prove the convergence of the formal solution of the
Cauchy problem (1,1) on D,\K. We remark u(x) does not ramify on x,=0 x,#0
because of the Cauchy-Kowalevskaya theorem.

Proof of Proposition 6.3. We prove this proposition by induction of a.
Assume that these estimates are valid for a=—1+42m—1, -+, a+2m—2. Let
coefficients of differential operators is (3.4) and (3.5) <K M(R'—(2/3)y:, ) " (R"—

n
0Yo, 58— };2) ¥..8)"". First we have the following estimates about the initial data
from (3,5 i)

(ua+2m-l,ﬂ+ha+2m-2,/§)(0y xl)<<MD’5(ua+2m—1—/1,r+ha+2m-z—,a,r>(0y x)

+AIKQHM_2<¢&+2m—1+Dz¢&+2m-1+¢d+2m—1)<0; X1y é x,) .

As for the estimates of D4(uqr2m-1-p, g+ Aasem-2-p4, p), We make use of the fact
that D§=Ss(ys, Dyg)Dy,, s+ Ts(ys, Dyp), where Sg is a partial difierential
operator in Dy, of order p—1 and T is a partial differential operator in
D;ﬁz(Dyl,ﬁ, e, Dyn,ﬁ) of order p. So we get
D‘Ol(ua+2m—l—,u,ﬁ+ha+2m—2—/t.ﬁ)(yﬂ)lyo,ﬁ=0
:Sﬁ(yﬂy D;‘g)Dyo. ‘g(ua+2m—1—p.ﬁ+ha+2m-2-p.ﬁ(yﬂ)|yo,ﬁ=0
+Tﬂ(0, yéy D;/Ig)(ua+2m-l-p,ﬁ+ha+2m—2—,u,ﬂ)(0: yé)
To the former part of the right hand side of this identity we apply the

estimates ua,,g(y,g)<<AKZDz¢z, ha’}g(y,g)<<DK7’+1¢g+2. To latter part of the right
hand side of this identity, we apply the estimates (uq, g+ha-15)0, x)

<<EKZDZ¢3. Then, we get the estimates from (3,5 i):

(Uarsmos, 3+ hasam-o, )0, x)KAMEF*% D650 (0, 71, 3 x.)

<<EKZ+2m—1Dz¢?£+2m—1(0, X1, i x,,)
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(in this section we use M as a suitable positive constant).
As for the estimates haysm-2(0, x’), we restrict the equation

. 2m =1 2m =2
Lzm-l,ﬁha+2m—2.ﬁ=_ u§o lLv.ﬁUa+v—l,ﬂ_ go 3Lv,ﬁha+u—l,ﬁ

on x,=0, and estimating the right hand side of this restricted equation by
assumption of the induction, we get the estimates

Ravam-s,50, XV CMEF*m 1D, Garsn (0, 51, 33 5.

From this estimates and the relation (4a+em-1. s+ Aarem-2,8)— Ratom-2 p=Uat+zm-1, 5>
we get the estimates

o n
Uarem-1, 0, VKPR D, 65000 4(0, x4, 3 x.).
Next, taking account of the properties of *L, 5 obtained in Proposition 5,2

(ii), (iii) and using Proposition 6,1 with the assumptions of the inductionwe get
the following estimates

o 2m-v
4Ly,ﬂga+u,5((BMKa+y<xo¢&+2m+1+x0Dz¢d+2m+ EZ D'§‘¢&+2m—p

«BMK#(p~+p7+ 2:‘22 (pR*))Dipisom-1

for v=0, ---, 2m—2
4L2m.-1,ﬁga+2m-1,p((BMK&Hm_Ingﬁ&wm—l »

. em
2L,,,ﬁua+,,,ﬂ<<AMI a+v(X0Dz¢&+zm+ El D’f¢&+2m-y
. 2m
CAME**(p"+ 35 (pRV)*)Digarem-

for v=0, ---, 2m—2,

o 2m-v
lLv.Bua+u,ﬂ<<AM “*”(xoquij—l-xongS&“m_l-l— #2;42 D/z"+l¢&+2m-y>

for v=0, :--, 2m—2,
'Lom-1,8Uasem-1, s K AMK ™Y1+ p=)(2D,+ Ddasem ,

. 2m-v
‘L, p8ass. s < BMK**(xpasomt 3} %oDEBisem-r)

< BME*(p R+ "33 (pR"%)#)2D,+Darim

for v=0, ---, 2m—2.

If the following majorant relations are proved, from Proposition 6,2 we see
that our statement is valid for a+2m—1
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AKD2@arom-1>[2mM(A+B)(p~*+ p~*+4mb*™ %)
+BMK(p*+p ) IDiPss+om-1

BEK(@2D,+1)¢s10m>[2mM(A+ B)1+ p~*+4mb*™ 2

+AMK(+p)]2D,+1Dda+2m
CKD2psrom>[(2mM(C+D)(p 2+ p *+4mb*™*)+ DMK (p*+ p *) 1D} Pa+om
DK(@2D,+1)psrem+1> [2mM(C+D)1+p ' +4mb,™ %)

+CMK(1+p 12D, +Da+zme1

CD.@a+em| 20=0> EMD,Parom| zg=0
AD.ba+sm-1l 2g=0> MFD,Paszm-1] 240

where b=pR*.
These majorant relations are reduced to the following systems of inequalities,
AK>2mM(A+B)Yb*™*+BMp~?
BK>2mM(A+B)b*™*+AMK
CK>2mM(C+D)b*™*+DMp~*
DK>2mM(C+D)b*™*+CMK
A>FM
CK>EM

On the other hand, for p and K sufficiently large, and R sufficiently small,
can choose positive constants A, B,C, D, E, F, K, R, p such that the

system of these inequalities are valid. Thus we prove Proposition 6,3.

L1l
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