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1t is known that there exist three simple Lie groups of type E; up to
local isomorphism, one of them is compact and the others are non-compact.
In this paper, we shall consider the compact case. (As for one of the non-
compact cases, see [6]). Our results are as follows. The group

Ey={acsAut(ef) |[<aR;, aR;> =<{R,, R;>}

is a simply connected compact simple Lie group of type E,; where ef is the
complex Lie algebra of type Es and {R,, R,y a positive definite Hermitian inner
product in ¢f. This group E; contains a subgroup

E,={acEs|al=1}

which is a simply connected compact simple Lie group of type E,.
Thus we have been able to construct all simply connected compact simple
Lie groups of exceptional type explicitly [1], [4], [5], [9], [10]:

G:={aelsog (€, €)|a(zy) = (az) (ay)},

F.={aclsog(X, ) |a(XeY) =aXoaY}
={aelson(J, ) |a(XXY)=aXxaY},

E,={a€Is0g(3°, 3 |det aX =det X, {aX, a¥>=<(X, YD}
= {aelsoe (%, IO |rar (X xY) =aX XaY,{aX, aY>=<(X, Y},

E;={aelsoc(P°, P°) |aM® =WC, {aP, aQ} = {P, Q},<{aP, aQ>=<{P,QD}
={aeIsor (B, RO) | (P xQ)a'=aP xaQ, {aP, aQ>=<{P, Q>}

and
Ey= {aslso¢(ef, ef) |a[Ry, R:] = [aR;, aR;],{aR,, aR;> =<{R,, R;)}.

In the last section, we calculate the Killing form of the Lie algebra ef.

Throughout this paper, we refer many results of [1], [2] with their
proofs. We pay our height tribute to Freudenthal’s excellent works of the
exceptonal Lie algebras.
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§ 1. Inner products in Lie algebras ¢, ¢{ and .

1.1. Exceptional Jordan algebra €

Let @€ denote the split Cayley algebra over the field of complex numbers

C and J°=(3,BC) the split exceptional Jordan algebra over €. This J¢

is the Jordan algebra consisting of all 3 X3 Hermitian matrices with entries
in €

§i oz T

X=|7z & =

z T &

N E,—EC,xiE@C

(z is the conjugate of x in the Cayley algebra) with respect to the multi-
plication

XoY=%(XY+YX).

In 39, the symmetric inner product (X,Y), the positive definite Hermitian
inner product (X,Y), the crossed product X XY, the cubic form (X,Y, Z)
and the determinant det X are defined respectively by

(X,Y) =tr (XoY),

X, Y)=(X,Y)=(X,Y),
X><Y=%(2XoY—tr(X)Y—tr(Y)X+ (tr(X)ir(Y) — (X, ) E),
(X,Y,2) = (XxY,Z),

detX=%(X, X, X)

where 7: J¢—>JC is the complex conjugation with respect to the basic field
C (X is also denoted by X) and E the 3X3 unit matrix.

1.2. Lie algebra {¢.

For later use, we review some properties of the exceptional simple Lie
algebras ef and f¢ over C [1]:

ef = {peHome (I, IO | (¢X, X, X) =0}
= {p€Hom¢(J°, IO | (X, Y, 2) + (X, ¢Y, Z) + (X, Y, ¢Z) =0},
€ — {5 = Homg (€, XC) |6 (X oY) =0X oY + Xo0Y}
= {0 €Homg (X, I€) |6 (X XxY) =0X XY + X X 0Y}
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={0eef|(0X,Y) + (X,0Y) =0}
= {0 €ef|0E =0},
For A€ we define a linear transformation A of € by
AX=AoX, Xege.
If Ac3¢={AeJ°|tr(A) =0}, then Aeef. In fact,
(AX, X, X) =(AcX,XxX)=(A,Xo(XxX))= (4, (det X)E)
= (det X) (A, E) = (det X)tr (A) =0.
And, for A,BeS°, we have [4, B]=AB-BAef{. In fact,

~ ~

[ﬁ,§]=[(A—%tr(A)E>, <B——%—tr(B)E>]ee? and [4, B]E=0.

Proposition 1. For 0&f{ and A, BeJC°, we have
[0, [A, B]1=[0A, B]1+[A,JB].
In particular, {[A, B]|A, BEC} generates {¢ additively.
Proof. [0,[A,B]1X=0[4,B]1X—[A4,B]éX
=0 (Ao (BoX) —Bo(AcX)) — Ao (Bo0X) +Bo(A0X)
=0Ao(BoX) + Ao(0BoX) —0Bo(AsX) —Bo (0 AcX)
—[64,B1X+[A,fB]1X, for any Xe3°.
This shows that a={3] [4,, B.]|A;, B,€3°} is an ideal of §¢. From the

simplicity of {{, we have a=ff.

In f¢, we define an inner product {0y, 0, by
<3, [4,B1>=<9B, 4>, 0eff, 4,BeJ°.

More preCise]y, for 61= iZ [Av{, Ei]) 62:' Z [5], ﬁ,], Ai, Bi, Cj, D,ESG, we
7
define

<61, 62>= iz;: <[£t, Ef]ﬁh C.1> .

Proposition 2. The inner product {0,,0,) in {§ is Hermitian and
positive definite.

Proof. The inner product {0, 0;» is Hermitian, since

([4,B],[C, D1y=<[A4, B]1D, Cy={As(BoD) —Bo(A-D), C>
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={(BoD, A:Cy—{AoD, B-C>

={C+(DB),Ay— (D-(C-B), A>

=<[C, D1B, Ay={[C, D1B, A>={[C, D1, [4, B]} .
From this, for 6,:;[’0‘,, D,], we have

<[4, B],8:>=<[4, B], 23[C,, D,1>=<S [C,, D1, T4, B>

=<§2 [6!’ ﬁl]F» A>=<62§1 A> .

This shows that the definition of {0y, 0,) is independent of expressions of 8,
and hence of 0,. Finally, under the following notations in ¢

1 0 O 0 0 O 0 0 O
E=(0 0 0|, E=[01o0|, E=|0o0 o0,

0 0 O 0 0 O 0 0 1

0 0 O 0 0 =z 0 = O
E(x)=|0 0 x|, Fo(x)={0 0 0], Fs(x)=|Z 0 0],

0z O x 0 0 .0 0 O

we can easily verify that

VZIE, Fi(e)], VZIE,Fi(e)], VZ[E, Fi(e)], i=0,1,2,--,7,
7172_—[F, (e, Fie))], 0<i<i<7

(where {eo, ey, €z, -++, €s} is an orthonormal basis in €€) is an orthonormal
basis in {¢. Hence this inner product {0;,0,) is positive definite.

1.3. Lie algebra «¢f.

For later use, we continue to consider the Lie algebra e¢.
Proposition 3. Any ¢=ef can be represented uniquely by
¢=0+A, oeff, AeSS.

Proof. Put A=¢E, then tr(A) = (¢E, E, E) =0, so Aecef and (9— A)E
=0, hence 0=¢— A f¢.

For ¢g=ef, we denote the skew-transpose of ¢ by ¢’ with respect to the
inner product (X,Y) in §¢:

(¢X,Y) + (X,¢Y) =0.
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Proposition 4. For ¢ecf, we have
(1) If ¢=0+A4, 0ei¢, AcSS, then ¢’ =0—A. In particular, ¢’ ef.
2 HXXY)=¢XxY+Xx¢Y, X, YeiC.

Proof. (1) is easy. (2) is also easy, since
(B(XXY),2)=—(XxY,¢'2)=—(X,Y,¢'2)
=@'X,Y,2)+(X,¢'Y,2)
=(@'XxY+Xx¢'Y,Z), for any Z e,
For A, BEJC we define AVBeef by

~

AVB=[A4, B] + (AoB—%—(A, B)E).

Proposition 5. For A, BeJ°, we have
@ (AVB)’=—BVA,

@ (AVB)X=%(B,X)A+%(A,B)X—2B><(AxX), Xege.

Proof. (1) is easy. (2) It suffices to show that (in the case of A=X)
(XVB)X=—;—(B, X)X+%-(X, B)X—-2Bx (XxX), Xe&°,

that is,
2BX (X XX)=Bo(XoX)—2(BoX)oX+ (B, X)X

and furthermore for XeJ={XeX°|X=X}. Since any X & X can be trans-
formed in a diagonal form by the group

Fi={aelson(X, Q) la(XoY) =aXoaY}
= {ae€lson (3, ) |a(X xY) =aX xaY}
={aelsonr (3, ) la(XxY) =aX xa¥, (X, aY) = (X,Y)}

51 0 0 Bl b3 —b-l
[1], it suffices to show it for X=| 0 & O | (and B=|5; B & [|). Now,
0 0 & by by Bs
by the direct calculations, we see that both sides of the above are
Be€2b1+ Bebaéy —§16:04 *

* Bséséa+ Bi6ié, —&:630,
— 3610, * Bi€1€s+ Babaés
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Proposition 6. For ¢cef and A, BEJC, we have
[¢, AVB]=¢AVB+ AV¢’B.
In particular, {AVB|A, BEJC} generates ef additively.
Proof. (Propositions 4, 5). [¢, AVB]X=¢((AVB)X)— (AVB)¢X

=¢<%(B,X)A+%(A, B)X—-2Bx (A ><X)> — (AVB)¢X
=%(B,X)¢A+%(A, B)¢X —2¢’'Bx (AxX) —2Bx ($A %X X)

_2Bx (AX¢X) —%(B, ¢X)A-%(A, B)$X+2BX (Ax¢X)

I

(B, X)¢A+%(¢A, B)X—2Bx ($Ax X) +%(¢’B, XA

+%(A, ¢’B) X —2¢’Bx (AxX)

= (pAVB) X+ (AV¢’'B) X , for any Xe§°.
This shows that a= {3} (A,VB,)|A,, B;€J°} is an ideal of ¢f. From the
i
simplicity of ef, we have a=cf.
For ¢=ef, we denote the skew-transpose of ¢ by "¢ with respect to the
inner product {(X,Y> in {C:
BX,Y)+<X, ¢Y>=0.

Then obviously we have

Proposition 7. For ¢cef, we have '¢=t¢’t. In particular,’¢ e ef.

Now, in ¢f, we define a positive definite Hermitian inner product <{¢,, ;>

by
{1, o) =<04, 02D + Ay, A
where ¢i=6i+jii, 6;Eff, Atesg, i=1,2.

Proposition 8. For ¢cef and A, BEJ®, we have

¢, AVB>=<{¢B, A>.

Proof. If $=0+C, d&ff¢, CeS¥, then
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~

<4, AVBy=(3+C, [4,B]+ (4B~ > (4, BE)>
<3, [4, B1>+(C, A-B~— (4, B)E>

— (0B, A>+{C>B, A>—%(A, B)tr (C)
={(0+C)B, A)=<¢B, A>.

Proposition 9. For A, B,CeJ°, we have
AV(BxC)+BY(CxA)+CV(AxB)=0,

Proof. (Propositions 4, 7, 8). For any deef,
(p, AV(Ax A)>={p(Ax A), Ap={2¢’"Ax A, A
=g’ A, AX A>=2(t"$pA, AX AD=2{$A, Ax A
=—2(A, J(Ax A)y=—AK$(Ax &), Ap=—2(p, AV (A X A)).
Therefore {¢, AV(AX A)>=0 and hence AV(A X A)=0. Polarize this, we
have the required result.
1.4. Lie algebra cf.
Let € be a 56 dimensional vector space defined by
PC=J°DI’DCDC.

For gef, A, Be€J° and peC, we define a linear transformation @ (¢, A, B, 0)
of PC by

X ¢—%01 2B 0 A)(x
7 1
0@, A,Bo)| Y |=| 24 #+501 B 0 ||y
0 A 0 0
B 0 0 —p

¢X—%0X+ 2BXY +7A

_|24 xX+¢’Y+%pY+$B

(A4,Y) +0¢
(B, X) —on
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Then Freudenthal has shown in [2] that
ef ={0=0(¢, A, B, p) €Hom¢ (P, ) [4€ef, A, B€J°, 0C}

is a simple Lie algebra over € of type E;. The Lie bracket [@,, @;] in ef is
given by

[0 (1, As, By, 01), D (¢2, As, By, 0:) ] =0 (4, A, B, 0)
where

( ¢=1[¢s, ¢.] +24,YB,—2AVB, ,
= 2 _ 2
A= <¢1 + “5011> A, <¢2 + 3 021) A, ,

| 5 <¢; __g_p,l)Bg— <¢; —%021>Bl ,

0= (A, B;)) — (B, A4s).
For P=(X,Y,¢&,7), Q=(Z,W,{, 0) eP°, we define PxQeef by

¢=—%(XVW+ZVY),

A=—%(2Y><W~$Z—CX),

PXQ=0(¢) A’ B’ 0), [
B=%(2X><Z—77W—w¥),

p:%((x, W)+ (Z,Y) —3(E0+£1)).

Proposition 10. For @cef and P, QePBC, we have
[0, PXQ]=0PxQ+Px0Q.

In particular, {P xXQ|P,Qe& P} generates ef additively.

Proof. (Propositions 4, 5,6,9). It suffices to show [0, P X P]=20P x P.
For 0=0(¢, A,B,p) ¢, P=(X,Y, ¢, 1) e°,

[0, P x P]

=[m(¢, A, B, p),w<~XVY, —%(YXY——EX),
1 1
T @xX -1, L(x, 1) -3¢ |

=¢<[¢, —XVY] +2AV% (X xX—7Y) —2<——%(Y><Y—$X)>VB,
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(¢+ pl)(—_(YxY tX)) ( XVY+——((X Y) — 3577)1)

(# = Z01) (S (XxX=11)) = (= X01)' = £ 2((X, V) ~3¢0)1) B

(4 —(XxX 7)) - (—%(YxY—SX),B»
=20<—%<¢X~%0X+2BXY+77A)VY
_%X\/<2A><X+¢’Y+%OY+SB>,
_%<2<2A><X+¢’Y+%0Y+$B>xY—((A,Y)+05)X
_5<¢X—%0X+2B><Y+77A>>,
%<2<¢X—-‘;—0X+ZB><Y+77A>XX—-((B,X)—077)Y
—g(2axX+#Y+Lov+¢B)),

—;—<<¢X—%0X+2B XY 274, Y) n <X, 2AX X+ ¢’Y+%0Y—2$B>>>

=20Px P,
This shows that a= {3} (P:; X Q) |P;, Q;=PC} is an ideal of ¢f. From the
[

smplicity of ef, we have a=¢¥.
In PBC, we define a positive definite Hermitian inner product {P,Q) by
(P,Q>=LX, ZY+<Y, W) +E + 7w

where P=(X,Y,§,7), Q=(Z,W,{,0) eP’. For decf, we denote the
skew-transpose of @ by ‘@ with respect to this inner product {P,Q):

KOP,Q>+<P,"0Q>=0,

Proposition 11. For 0=0(9, A, B, 0) €¢f, we have
‘0=0('¢, ~B, - A, —p).

In particular, '@ < ef.

Proof. For P=(X,Y,&,1), Q=(Z,W,{, 0) e%°,
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<oP, Q>=<¢X—%0X+ZB><Y+vA, Zy+4{2A ><X+¢’Y+%0Y+$B, w>

+ (@A, V) +05¢+ (B, X) —om)o

= (X, ’¢Z+%EZ—ZA><W—@E>—<Y, —2BxXZ+ ()W
——;—EW—CE—?(— (B, W) —58) —7(— (&, Z) +p0)

— —(P," 00 .

Now, in ef, we define a positive definite Hermitian inner product {@;, @,»
by

{01, 050 =2{¢y, $op +4{A;, Ap) + 4¢{B,, B;) + %5102
where 0¢= 0 (¢¢’ At, Bi, 0;) S5 670, 1= 1’ 2,

Proposition 12. For @ccf and P,QePC, we have
{0, PxQ>={0P,Q)
where P=(-Y,X, —7,8) for P=(X,Y,€,7).

Proof. (Proposition 8). It suffices to show <@, Px P>={0P, P>. For
0=0(¢,A,B,0)ee?, P=(X,Y,§,71) eP°,

(0, PxPy=(0($, 4, B,0),0(~X"Y, ~ L (¥ x¥ —£X),
1 1
L @xX-m), 1(X ) -3 )>
=2{¢, —XVY>+4(A, —%(YXY—EX)>+4<B, %(XxX—nY))

_|.

w | oo

%a((x, Y) —3¢7)

=<—¢7+%p7+23 X X+EA, X>+{—2A x?+¢’X+%p)_{—ﬁB, 10

+ (A4, X) -0 €+ (— (B,Y) —08)7
=<0P, P>

Proposition 13. For 0cc¢f and PePC, we have

JQs o~
OP="0P
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Proof. (Proposition 12). For any Qe°,
=~ —~ —~ N\
OP,Q>=<"0,PxQ>="0Q, P)=—<Q,0P>=<0P,Q) .
Hence 0/?='0P.
Proposition 14. For 0,0,, 0, ¢f, we have

<[w, @1] s ¢2> + <@1, [’@, @2]>=0 .

Proof. (Propositions 10, 12, 13). It suffices to show it for @,=P XQ,
P, QepC.

[0, PxQ], 0:>=<OP xQ+ P x0Q, 0>
= (0P, 0,05 +<P, 0,00> = —<P,’ 00,05 +{P, 0, 00>
= _<P: [’@, mz]Q>= _<PXQ’ [,w9 ¢2]> .

Finally, we define a skew-symmetric inner product {P,Q}in BC by
where P=(X,Y,¢,7), Q=(Z,W,{, 0) €RC.

Proposition 15. For P ,QeB°, we have

(P><Q)P=(P><P)Q—%{P,Q}P.

Proof. (Proposition 5). For P=(X,Y,&,1), Q=(Z,W,{, 0) eBC,
PxQP

=(p<—_;_(XVW+ZVY), —%(ZYXW—SZ—CX),%(ZXX Z— W —0Y),
%((X, W)+ (Z,Y) —3(6w+€77))) (X,Y,§,m
_%(XVW)X—%(ZVY)X—Z%I((X, W)+ (Z,Y) —3¢0+ln) X
+%(2sz_ﬂw-mxy%n(zYxW—eZ—z:X)

—%(ZYXW—SZ—CX) ><X+%(WVX)Y+—12—(YVZ)Y

+2l4((X, W)+ (Z,7) —3(5w+Cv))Y+—il1—5(2XxZ-v;W—wY)
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_%@mw—sz—cx, Y) +%((X, W) +(Z,Y) —3(E0+En) €

%(ZXXZ~—77W~¢0Y,X)—%((X,W)+(Z,Y)—3(Ew+C77))77
—%(Y,Z)X—%(X,Y)Z—%(X,W)X+2Y><(XxZ)+(X><X)
XW —gW xY — 2oy xy+Lenz+ Leox+ 3enx
2 4 8 8
%(X,W)X+%(X,Y)W+%(Z,Y)Y—2X><(YxW)—(YxY)
1 o1 1 3
Lexwx—Legw—Legy - 3eny
><Z+$Z><X+2CA><,X 4577W 8(77 8$a>
1 3 1 1 3m 3
——2—(Y><Y,W)+§€(Z,Y)+—4~C(X,Y)+§$(X,W) Séw 86(:77
1 3 1 1 3 3, 2
?(XXX,Z) —8—77(VV,X) Zw(Y’X) gW(Z,Y)“*'gfwﬁ‘*‘gC??
—(XVY)Z—ILZ((X,Y)—3$7I)Z+(X><X—77Y)><W
—%w(YxY—SX)—%((X,W)—(Z,Y)+$w—C77)X
—(YxY—éX)><Z+(YVX)W+1—lé((X,Y)—3$77)W
_ +%C(X><X~vY)—%((X,W)-(Z,Y)+$w—C77)Y

—%(ny—ex, W) +711-((X, Y) —35n>c—§((x, W) —(Z,Y)

+éw—Cn)§

%(XxX—vY, ) —%((X, Y) —3en>w—§((x, W) —(Z,Y)

+ &0 &7

=0(—XVY, —%(Y XY —£X), %(XxX—vY), %((X, Y —3)en)(Z, W, ¢, o)
—_g_((x, W) —(Z,Y) +&0—C7) (X,Y, &, 1)

=(P><P)Q—%{P,Q}P.
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2. Lie algebra ef.

We consider the simple Lie algebra ef over € of type E; constructed by
Freudenthal in [2]. Let ¢§ be a 248 dimensional vector space defined by

ef = e FOP’OP°DCDCDC.
The Lie bracket [R,, R;] is defined by
[(wl, Pl, Ql, 7y, S1, tl) ’ (02, P’y QZ’ 73, S, tz)} = (¢’ P’ Q: r,s, t)

where

0=[0,,0,]+P,xQ:—P: xXQ,,
P=0,P,— 0,P,+rP,—r;Pi+ 5:Qy — 5.0 ,
Q=0,0,— 0,0, — Qs+ Q1+, Py —t,P, ,

J —%{Pl, Q) +%{Pz, O} +sits— sty ,

= % (P, Py} +2rs—2rs:

1
t= __4“{Q1, Qz} —2rity+ 21, .
By the straight-forward calculations, we see that ¢ is a Lie algebra.

Remark. For (0, P,Q,r,s,t) €ef, the notation used by Freudenthal in

@ (7760 (o)

Theorem 16. ¢f is a simple Lie algebra of type E,.

Proof. We use the following notations in ¢§ =ef@RCPPCHCHCHC
=efPR briefly:

(0,0,0,0,0,0) =0, (0, P,0,0,0,0) =P,

(0,0,Q,0,0,00=Q,  (0,0,0,7,0,0) =7,

(0,0,0,0,s,0) =5, (0,0,0,0,0,2) =¢ .
Let a be a non-trivial ideal of ¢f.

Case (1) aNef={0} and aN®={0} (this case does not occur). Let
p:ef—ef, q:ef—>8Q denote the projections. Now, in this case, pla:a—ef
is a monomorphism. Then, since p(a) is a non-trivial ideal of ef, we have
p(a) =ef from the simplicity of ¢f. Therefore pla: a—ef gives an isomor-
phism between a and ef, so dim a=dim ¢f=133. On the other hand, gla:a
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—& is a also a monomorphism, so dim a<dim® =115. This is a contradiction.
Case (2) aNef+#{0}. From the simplicity of ¢€, we have ¢fCa. And
[#(0,0,0,1), (0,0,1,0)"]=(0,0,1,0)"€a,
[©(0,0,0,1), (0,0,1,0)_]=(0,0,1,0) _=aqa,
[(0,0,1,0), (0,0,0,4)"]=1€q,
[(0,0,1,0)_, (0,0,0, —4) _J=1€a,
[1,1]=1€aq,
[1+1,0+P]=P+Qea, for P,Qe%C.

Therefore a=¢°.

Case (3) aNK+*{0}. Let R be a non-zero element of aN K.

(i) R=(0,P,Q,r,s,t), P#0. In this case we have

[[[R,1],1],1]=Pea.

Choose P,e%3¢ such that P X P;50. (Such P, exists. In fact, if contrary,
PxP=0, ie.,, PEMC={PePC|P x P=0, P50}, so there exists & € Ey_y3
(see § 5) such that P=ca(0,0,1,0) for some c=R ([4] Theorem 9). How-
ever, for (0,0,1,0) €PBC, we can find P& PC such that (0,0,1,0) x P;=0,

so PXaP,#0. This is a contradiction). Next choose @€ef such that
[Px P, 0]#0. (Such @ exists because ¢f is simple). Then we have

[[P,P,],0]=—[PxP,0]<a.

So we can reduce to the case (2).

(ii) R=(0,0,Q,r,s,t), Q0. This case is similar to ().

(ili) R=(0,0,0,r,s,¢), r0. In this case we have

[[[R,1],1], P]=2rPea, for 0£PePC.

So we can reduce to (ii).

Giv)y R=1(0,0,0,0,s,2), s50. In this case we have

[R,1]=s€<aq.

So we can reduce to (iii).

(v) R=(0,0,0,0,0,¢), t=<0. This case is similar to (iv).

Therefore in any case we have a=¢f. Thus we see that ¢§ is simple. Since
the dimension of ¢€ is 248, it must be of type E,.

For R=(0,P,Q,r,s,t) €cf, we denote the adjoint transformation ad R
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of ¢ by @(0,P,Q,r,s,t):

(0;\ (ad0 —Q P 0 0 0\ (0

P1 —-P @-}-7‘1 S —-P ’—Q 0 Pl

(0 -Q ¢t 0-r1 Q 0 —P||Q

1, 1
1o _1p o —

@(@,P,Q,r,s,t) & = 0 8Q 8P § ™
5 0 %P 0 —2s2r 0 ||s

t 0 o —-1o 2 o —2-||a

\ 4 /\ )

/ [0,0,] -Q%xP,+PxQ, \
—@1P+wP1+rPl+sQ1—r1P—le
—0,Q+tP,+0Q,— Q4+ rQ—t, P

1 1
—E{Q’ P} —‘g{P,Ql} —tisi+ st =[R,R]=(adR)R, .

211_ (P, P} — 257+ 275,

- % {Q, Qi} +2tr,—2rt,

Since ef is simple, the Lie algebra Der (e§) of all derivations of el consists
of ad R, Reef:

Der (¢f) ={0(0, P,Q, 7,5, 1) |0 ef, P,QePC, 1,5, €C}

and it is also isomorphic to the Lie algebra ¢f. We denote Der(ef) some-
times by the same notation ef.

Now, in ¢f, we define a positive definite Hermitian inner Product {R;, R,>
by

SRy, Ry =0y, 05 + Py, Py)+<Q1, Q) + 87173+ 4515, + 4712,

where Ry= (0, Py, Q:, 74,54, 8) €¢f,i=1,2, For @cef, we denote the skew-
transpose of @ by '@ with respect to this inner product (R, Ry)>:

{BR,, R;)+ <Ry, "OR;>=0.,

Proposition 17. For =6 (0, P,Q,r,s,t) €¢f, we have
‘0= (,0, _Q’ P’ -7, —Z9 —§)°

In particular, 'O < ef.

Proof. (Propositions 12, 14). For R,= (0,, Py, Qs, 74,51, t) €ef, 1=1, 2,
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<@R1,R2>=<[0, ¢1]_QXP1+P><Q1, 0,>+<{—0,P+ OP,+rP,+:s0Q,
~7rP—50, P)+{—0,Q—tP,+0Q,—rQ,+r.Q—tP,Q;»

n 8<_ % (Q, Py — % (PO} —tsi+ stl> ot 4(% (P, P} — 257, + 2751)-92

n 4( _% {0, Q\} +2tr, —2rt1> ty

=0, ['0,0,] —Px P,—Q x Q) — (P, 0,Q +'OP,— 7P, —Q,
+72,Q\-52P>—<Q1, —mzp"‘§P2+,¢Q2+7Q2+7‘2P+tzé>

—87( = LB, P} + 140, 0 + 55— 72 45, (~ 240, Py + 227,
8 8 4
_27‘82> _4tl(~—41I{P’ Qg} —2§r2+2Ft2>

=—{Ry,’OR;> .

3. Complex Lie group Ef.

The group E¢ is defined to be the automorphism group of the Lie algebra

ef:
E¢=Aut(ef) = {a€lsoc (ef, ¢f) |a[Ry, R] = [aR;, aR,]}.
Theorem 18. The group Ef is a connected complex Lie group of
type E,.

Proof. The type of the group E¢ is obviously E; because its Lie
algebra is Der (ef) which is isomrphic to ¢§. The group Ef=Aut(ef) coin-
cides with the inner automorphism group Innaut(e¢f) which is the group
generated by {exp(ad R) |Rec§}, since, as is well known (e.g. [7]),

the group of the symmetries of

Aut(ef) /Innaut (ef) = < ) = {1}.

the Dynkin diagram of ef

Hence E¢ =Innaut(¢f) which is connected.

4. Compact Lie group E.

The group E; is defined to be the subgroup of Ef which leaves the
inner product {R;, R,> in ¢§ invariant:
Ey= {ae Aut (cf) [<aR:, aR:) ={Ry, R}
={aelsog (ef, ¢f) |a[Ry, R)] = [aR:, aR;], (&R, aRy) ={Ry, R} .
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Theorem 19. E; is a compact simple Lie group of type Es.

Proof. The group E; is compact as a closed subgroup of the unitary
group

U (248) =U (ef) = {a€Isoc (¢f, ef) [{aRy, aR;>={ Ry, Ry)}.
The Lie algebra e; of the group E; is

¢s= {0 €Der (¢f) [<OR,, R;)+ <Ry, OR,) =0}
= {® €Der (¢f) |’6 =6}
={0(0,P,P,r,s, —5)|"0=0c¢f, PePC, r,seC, r+7=0}
from Proposition 17. Therefore the complexification of es is ef, so the type
of the group E; is E,.

In order to prove that the group Ej;is connected, we shall give a polar
decomposition of the group E€.

Lemma 20 ([3] p. 345). Let G be an algebraic subgroup of the
general linear group GL (n,C) such that the condition A€G implies
A*eG. Then G is homeomorphic to the topological product of GNU (n)
and a Euclidean space R*:

G=(GNU(»)) xR*
where U (n) is the unitary subgroup of GL(n,C).

To use the above Lemma, we show the following

Proposition 21. Ef is an algebraic subgroup of the general linear
group GL (248, C) =Isog (ef, ¢€) and satisfies the condition e E§ implies
a*e EY, where a* is the transpose of « with respect to the inner product

<R1, R2>: <C¥R1, R2> = <R1’ a*R2>.

Proof. As mentioned in Theorem 18, the group Ef=Innaut(ef) is
generated by {exp 0|0=0(0, P,Q,r,s,¢t) €e¢f}. From Proposition 17, 'O € ¢f
for @€ef, so (exp ®) *=exp(—'0) €EF, hence o E implies a* = Ef. It is
obvious that Ef is algebraic, because EY is defined by the algebraic relation

a[R]’ Rz] = [CKR,, a.Rz], .R], Rz (S5 eg.

From the definition of the group E; obviously
E§NU (ef) =E,s

and the dimension of the Euclidean part of E¢ is
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dim Ef —dim E;=2 x 248 — 248 =248 .

Hence we have

Theorem 22. The group EE is homeomorphic to the topological
product of the group E; and a 248 dimensional Euclidian space R*®:

Ef~E;x R* .

In particular, the group E, is connected (from Theorem 18).

From the general theory of the compact Lie groups, it is known that
the center z (Eg_zs) of the simply connected compact simple Lie group Eg_ s
of type E, is trivial [8]: 2(Es_us) ={1}. Therefore the connectedness of
E; implies the simply connectedness of E;. Thus we have the following
Theorem which was our purpose.

Theorem 23. The group Eq= {a&Iso¢(ef, ef) |@[Ry, R;] =[aR;, aRs],
{aRy, aR;>={Ry, Ry} is a simply connected compact simple Lie group of
type Ea.

5. Subgroup E; of E,.

We have proved in [5] that the group

Eq 1= {B<=Is0¢ (‘Bo, PO IB(P xQ) B~'=BP xBQ,<BP,BQ>=LP,Q>}

is a simply connected compact simple Lie group of type E,. We shall find
a subgroup in E; which is isomorphic to Eq_s.

Proposition 24. (1) For f€E;_ i and P,QePC, we have
{BP,BQ} = {P,Q}.

(2) For B€Eqy 13 and 0y, 0,€ef we have

{po,p7, BOR~D = {0y, 0 .

Proof. (1) (Proposition 15). If P=0, then (1) 1is obviously wvalid.
If Ps£0,

%{BP, BQ}BP = (BP X BQ)AQ — (BP x BP) BP

—B(P x P)B-'8Q —B(P x Q) B~'GP
—B((PxP)Q— (PxQ)P) =%{P,Q}BP.
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Hence we have {8P,BQ} = {P,Q}, since SP+0.
(2) (Proposition 13). First we shall show that, for f&E;_y, and

PePC, we have
N\ A
BP =8P .
The Lie algebra of the group Eq_ys is e;={0ef|0="0}. Since the group

E;_1s is connected and compact, any B€ E;4 can be written by f=exp O
for some Oee;. So

Iﬁa: ((exp 0) P,B =i l(GJ"P/S =3 —1—'0"16 (Proposision 13)
k=0 k! k=0 k!
=5 L g*P= (exp 0) P=pP .
k=0 k!

Now, to prove (2), it suffices to show it for @,=P X Q.

(80,67, B(P x Q) 8-> =<B0,8~", BP x fO> =<BO,8~'AP, BOD
=<B0,8-'RP, BQ> =<B0,P, BQ>={0,P, Q> =(0,, Px Q>

In the followings, we use the notations @, P,Q,1,1,1 of Theorem 16.
Proposition 25. If a€E; satisfies al=1 then al=1, al=1.

Proof. Put al=(0,P,Q,r,s,t), then
—21=a(—-21)=a[l1,1]=[al,1]= (0,0, —P,s, 0, —27),

7 s

hence P=0, s=0, r=1. And the condition {al,al>={1,1>=8, that is,
{0,0>+40,0>+8+4tt=8 implies =0, Q=0, t=0. Therefore al=1.
Simlarly al=1.

Theorem 26. The group Eg contains a subgroup
Er={aeEal=1}
which is a simply connected compact simple Lie group of type E..
Proof. We shall show that the group E, is isomorphic to the group

E; 1. Making use of Proposition 24, it is easy to verify that, for f&€ Eq_ss,

the linear mapping «: ¢f—ef,

AdB O 0 0 0 O
0 B 000 O
0 08 000
““l 0 001 0 0
0 000710
0 00001
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(where Adf:¢f—c¢f is defined by (AdB)@=F0B") belongs to E;. Con-
versely, suppose a€E,; satisfies al=1, al=T1 and al=1 (Proposition 25).
Since a leaves the orthogonal complement ¢S@PCPAPC of CPHCEAC invariant,
« has the from

(Bi B Bs O 0 O

Ba B Bs O 0 O
e By B2 B O O O =<B 0)
0O 0 0 1 0 O 01

0O 0 0 01 0

0 0 0 0 0 1

where fi: C?”’d’, ﬁz, Bs: EBC—’Sﬁc, ﬂzl, B 9?“’530, 312, Bis: g»BC"*CvC, st, Bss:
PC—>PC are linear mappings respectively. From the condition [a@, 1]
=a[0,1]=0, that is,
0= [(ﬁl¢a Bﬂw’ Balm, 0’ 09 0) ’ (0’ O’ 09 19 0’ O)]
= (0, —'Bglw, ﬂ;lﬁ, O, O, O) for any Oe e?,

we have (35, =f4=0. Similarly, from [aP, 1]= —aP, [@Q,1]=aQ, we have
B12=P32=0, Biz=P2=0 respectively. Thus

B 00
B=|0 B 0
* 0 0 8

Furthermore the relation [P, Ql]= <P xQ,0,0, ——;—{P, 0}, 0, O> implies

Bi(PXQ) =8P xBQ, {8.P, B:Q} = {P, Q}, €))

and [P,Q] =%{P, O}, [0, P]1= (0P imply

{8:P,5:0} ={P,Q},  B.(0P) =B,08,P (i)

respectively. From the above we have fB,=f; (putf), and from (ii) we have
BOB'=pP,0. Therefore from (i) B satisfies B(PXQ)B'=BP xPQ, and ob-
viously {BP,BQY>=<aP,aQ)=<P,0>={P,Q>. Hence P&E; i and f;
=AdpB. Thus Theorem 26 is proved.

6. Killing from of cf.

In this section, we calculate the Killing form of the Lie algebra ef
according to the preceding notations. For this purpose, we first describe the
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Killing forms of the other exceptional Lie algebras with several representa-
tions.

Proposition 27. The Killing forms B=Bg of the Lie algebras g=1{¢, ¢
and ¢f are given by

Fi: (1) B(0,,0,) =3tr(d,0,), 0.eff.
(2) B(@,[4,B])=—-90A,B), 0deif, A, BeC.
Ei: (1) B($y, ¢) =4tr(d¢y), &€ ef
(2) B(¢’ AVB) =—12 (¢As B) 5 ¢E eg’ A: B 630
(3) B (61 + T], 62 + Tz) = %th (61y 62) + 12 (Tl: Tl) ’ 6‘ = f?’? T € 8"0‘

E1: (1) B(@,, 02) =3 tr ((D,@z) s $¢E e?.
(2) B(0,PxQ)=—9{0P,Q}, 0cef, P,OQ=PC.

3) B(0(¢:, Ay, By, 0), 0(¢, Ay, By, 02)) Z%Be? (¢4, 62)
+ 36 (Al, B2) + 36 (Bh Az) + 240102) ¢‘ S eﬁc’ Aiy Bi S 305 pi € C-

Theorem 28. The Killing form of the Lie algebra ef is given by
B((ml’ Pl; Ql’ 1y S1, tl) ’ (mh P2, QZ’ T, Sa, tZ))

= -g-Be'c' (0, Os) +154Q,, Py} —15{P,, Qs} + 12077, + 6025, + 605,25

Proof. For Q= (0,P,Q,r,s,t) cef, we define "Reef by "R= (0,
—-Q, P, -7, —f, —5). Then we have

"[Ri, R:] =["R;, " Re].

In fact, if we identify Reef with ad Readef, then we have {’[R;, R:] Ry, R
= —{Ry, [Ry, RJR) = —<{Rs, RiIR:R(— R:R\R; — 'R/ R;R;, Ry ={['Ry, 'R;] Rs,
R) (Proposition 17) for R, R,e¢f. Now, we define a linear form B, of
ef by

Bl (Rl, Rz) = </R|, R2> .

Then this B, is an invariant form of ¢§, since B;([R, R,], R;) =<"[R, R, Ry
={['R,’Ry], R)=<{"R’'R,, R;>=—<{"Ry, RR;)= —B(R,, [R, R;]) (Proposition
17) for Reef. Therefore the Killing form B of ¢ is equal to B, up to a
constant k: B=%B,. Considering special elements of ¢f, for example Ri=R,
=(0,0,0,0,0,1), we can easily obtain 2= —15 and we see that —15B,; has
the form stated in Theorem 28.
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Remarks. The Killing form of the Lie algebra gf=Der(€°) ={De

Hom¢ (B€, €©) | D (xy) = (Dx)y+x2(Dy)} is given by

(1]
(21
[3]
[4]
[5]
[6]
[7]
[8]
[91]

[10]

(1) B(D,, D;) =4tr(D;Dy), D,egf.

(2) B(D, D,,;;) =—28(Da,b), D,D,,sq¢f (where D, (a,bCC°,
a=—a,b=—5b) is defined by D, ,x=a(bx)—0b(ax)+ a(xb)
— (ax) b+ (xb) a— (xza) b, x = E°).
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