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1. Introduction

(1)

In this paper we investigate the ordinary differential equation

d 2 u1  duv 2

dr 2
+  

r  d r  
—  r2  u— u

3  -  u (r >0).

Here y is a positive param eter. This equation is called Abrikosov equation and
describes vortex lines o f  a  superconductor of type II in  the  theory o f  supercon-
ductivity. The existence and uniqueness of a global solution satisfying 0<u
have been established by Y. Kametaka, [3]. Besides this global solution there are
solutions with movable infinitudes, that is, solutions blowing up at r= R , R  being
an arbitrary finite positive num ber. W e are interested in the nature of the movable
infinitudes of the equation.

If y =1/3 the equation is equivalent to the second Painlevé equation

d2 w 
dz 2  

—2w 3 +z w

by the change of variables*

2
I  3 3

Z  =  -  (  
3  

 r) 
3

= 2  2u .

Therefore if y =1/3 a ll possible infinitudes are simple poles. However if y 0 1/3
there appear movable infinitudes which involve logarithmic terms in the expansions.
In Section 2 of this paper such infinitudes are constructed. They can be called
'pseudo-poles' after E. Hille, who emphasized that such infinitudes appear in the
Thomas-Fermi and Emden's equations ([2], Chapter IX).

On the other hand it is known that Abrikosov equation has a family of solutions
which are asymptotically equivalent to a o rv as r-4 +0, a c, being an arbitrary positive
constant ([3], Theorem  5). The bounded solution mentioned above is asymptotic
to a o (y )rv  with a certain value a o =a 0 (v) of the constant. What happens if we con-
tinue the solution starting with a 0 0 a0 (v) from r = +0 to the right? We will devote

*  due to a private communication with Y. Kametaka.
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Section 3 to a proof of the an sw er: If (20 > a0(v) the solution in question is continued
to an infinitude investigated in Section 2, that is, a pole if v =1/3 or a pseudo-pole
if v 01/3 respectively.

2. Existence of movable infinitudes

This section is devoted to construction of local solutions having infinitudes of a
certain type. We will prove the following theorem.

Theorem 1. Abrikosov equation (1) has a solution u=u(r; R, C) hav ing the
following series expansion in a neighborhood of r=R :

u =  \,/ 2  F: I  R—r + (   5   _  1  v 2 +  1  R 2 VR— r  V
+(2) R — r  

1 +  
6 R 36 6 6 A  R  )

+  
\
(  31  _   5  y 2 _  1   R 2 y R — r y  +

216 12 12)  R  )

+ c (R — ry
R

+   4   (v 2 —  I   ) lo g  
 R

( R  — r ) ( R — r ) 4   +15 \ 9 ) \ / \ \  R
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I ) 1 0 g ( R — r ) + C  

-
1 2

 (  R— r  ro+ii+4;2] .

5 52Jo+i1+412 15 9 R _ \  R

Here R, R>0, and  C  are  arb itrary  constants, the triple pow er series E aj o j i h .
X40X11X-12 has positive radii of  convergence and the coefficients aj o i ,h 's are poly-
nom ials in  v2 whose coefficients are  rational num bers independent of  R  and C.
The series (2) converges and gives an  actual real-valued solution if  R—r is suffi-
ciently  small and positive.

Remark. We can substitute complex-valued r  in  th e  series provided that

1R; r1a n d

X-2 =
(  

 145  v 2 1 4 3 5   ) 1 0 g ( R R — r )

are smaller than the radii of convergence of the triple power series Z a j o i i h X4oXIIX12.
If  v =1/3, that is

'
 i f  -4 - (v2 — ±-)=0, the expansion is reduced to  that of a15 9

sim ple pole. However if y 01/3 the infinitude is not a  true pole but a pseudo-pole.
Indeed the remainder of the expansion is 0(Ilog (R — r)I(R — r)5) as rt R . Therefore
it is clear that the expansion cannot be that of a true pole.

R—r r — R
R—r b y  l o gIf we replace of the first term by 

r — R  
and log we get

a  real-valued solution for R<r<R+.5, where C is supposed to be real and 15 is suffi-
ciently sm all. I f  v =1/3 this solution coincides with the analytic continuation of
— u(r; R, C). However if v 0 1 /3  it is  no t th e  c a se . Indeed the continuation of

I R — r  4

I R



lo g  
r — R v+C+-4

15
(  2 — I i r \ I —1 and will not be real-valued.

9
Suppose th a t v 01/3 and  consider the  analytic continuation of the solution

u(r; R , C) along the curve

r = r(t)= ().. t <+oo ,

(3 being a  sufficiently small positive num ber. Then although r(t) remains on the
small circle with center R , the absolute value of X2,
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— u(r; R , C) around r= R  along a  small semi-circle in  th e  complex r-plane will

have the expansion in which — (v 2 — —I ) log
15 9

R — r  +C  is replaced by —4  (v 2 — ± )
R 15 9

4

1,1721 = 64 [ ( C ±  ( /
4
5 V 2 4  j i z y ,, 6 ) 2 +  6 45  v 2

i 3 5  )lo
4 )2 

t2

 ii/2
,135

tends to infinity and may exceed the radius of convergence of the series if it is finite;
the substitution of r(t) in the series expansion may fail to be reasonable for large t.
What happens for the  further continuation? It  is  an open problem beyond the
scope of this paper.

Proof of T heorem  1. The existence of a formal solution of the form (2) can be
seen by substituting the series in the equation (1) and by equating the coefficients of
[log (R —  r)](R —  r)k's. To prove the convergence we apply the scheme o f  R. A.
Smith, [41

Let us begin with transforming the equation (1) to a convenient system of first
order equations. Put

(3 )
1
-  u 2 +u 3 — u, f (v )dv u4—

G ( u ) = uf ( u ) 4  F(u) 1—u

and write the equation (1) as

d2 u1   duv 2  u =f (u).dr2r  d r r2

Then we see that the change of variables

u d r x —
(   d r   ) 2  

F(u)
  d u  ' =  du

transforms th e  equation (1 ) t o  th e  following two-dimensional nonautonomous
system;

dx  —  x[l G(u)y — v 2 x 2 ],• du

d

•

 Y  y [G ( u ) +2 x - 2 G ( u ) y - 2 v 2 x 21.du

(4)

(5 )
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Given a solution x = x(u), y y(u), (l <)u 0 u <  + ,  of the system (5) such that
x(u)> 0 and y(u)> 0, we will define a function r= r(u) by

r(u )=uF(u) 2 x (u)ly (u) 2 .

Then r= r(u ) is a strictly increasing function satisfying the equation

dr 
d u  

=x(u)r,

and the inverse function u =u (r)  turns out to  b e  a solution of the equation (1).
The right-hand sides of the system (5) vanish simultaneously for x=0, y =1/2

identically with respect to  u. We will investigate solutions of (5) which converge
to x=0, y=1/2 as u tends to infinity.

The change of variables

1 1t -= x  x ,  y  = +  x +  Y

transforms the system (5) to an equivalent system of the following form:

dx1 2 - x +   x +   -  Y+ —I v 2 x 2 1,dt 2 1 - t 3(1-t) 1  -t 2

dY
- 2 Y +

2t1 - 3 t  x + Y +  - +  v 2 ) x 2 +dt 3 (1 - t) 1- t 9(1-1) 2

1 + t1 2 1 2  3 +v2x2Y.xY+ —
6

v2 Y + —
6

v x+  1  - t

Thus we can apply Picard's theorem concerning the equations of Briot-Bouquet
type ([2], p. 50 and p. 81) to this system. As a result of solving a suitable recurrence
formula, we can reduce (5) to a simplified system

(7)
cg1 dri2  2 )  4t t (  

3  
v  -   2  

d i 2 '  d t 27

The reduction is given by a local analytic transformation of the form

(8) x  =  CI + E ;2 tic' .1 111-1211,

1 1
Y = + d-)1+ E P2- • j  • t i ° V2 t + i 2 . . / 0  132

H e r e  a n d  herea fte r  P„,(X 0 , X 1 , X 2)= P.Lio.iii2x4° ) f1 1 x . 2 , m =1, 2,-, 7 ,
always denotes a triple power series with positive radii of convergence such that
P .(0 , 0 , 0 )= 0. The coefficients are polynomials in  v2 independent of the other
parameters cl , c2 , R and C introduced later.

The transformation ( ,  n)->(x, y) given by (8) sends a neighborhood of =  = 0

onto  a  neighborhood of x=0, y=1/2  provided that t =u - 2  is sufficiently small.
Any solution of the reduced system (7), say

(6)



where s -  .f 2 ._ log [ r(u; c 1 , C2) 1.
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4 4 
= c 1 1

, 2 n =  [ , 2 4 .  ( i  v 2
2 7 ) cf log (t 2 )1 t 2 ,

c, and c2 being arbitrary constants, can be inserted into (8) provided that t =u - 2 ,
ci t = c,u - '  and [c 2 + hcf log (0 / 2 ) ] t2  =  

[ C 2  hcf log (u - 1 )]tt - 4  a re  sufficiently small.
Here we write

4 4 h =  v 2

3 -r7

for brevity. Then we obtain a solution x=x(u ; c1 , c2 ), y= y(u ; c„, c2 ) of the system
(5) of the following form.

x(u; c1 , c2 ) =c 1 u- 1 [1 +P c1u-1,[c2+hcf log (u- 1 )]u - 4 )],

(9)
1 1 _ 1y(u; c 1 , c2 ) = +  3  c i u  +

+ [c 2 +hcf log (u- I )]u4+  p 2( u -2 ,  c i  -U  1 , [C2 hcf log (4 - 1 )]u - 4

Supposing that c1 >0, we put
_

(10) r(u; c l , c2 )= u F (u ) 2 X ( 4 ;  c 1 , c2 ) - ty(u; c 1 , C2) 2  .

Then it is clear that

\/2 
R  lim  r (u ; c 1 , c 2 ) =

.-co c , •

The inverse function u = u(r) of r=r(u; c l , c2 )  satisfies the equation (1). W e are
going to find a series expansion of the solution at r = R.

The expansion of r(u; c,, c 2 ) can be obtained by integrating the equation (6):

„- 2 1

r=R exp  [- -2- c,t 2 [1 +  P i (t 2 ,  c 1 t ,  [c 2 +hcf log (t 2 ) ] t 2 A r l d t l _

= R exp [ - c, u - 1 [1 + /3
3 (u- 2 , c, u - 1 , [c 2 + hcf log (u - 1 )]u - 4 ) ] ].

Here the power series P 3  whose coefficients are independent of cl  and c2 is obtained
by integrating term-by-term. The absolute convergence of P 3  can be verified easily
by the majorant series argument.

Let us rewrite the above expression as

(12) s=u-1[1+P3(u-2, c 1 u- 1 , [c 2 +hcf log (u- 1 )]u - 4 )] ,

This relation can be regarded as an equation for the unknown function u- 1  o f s.
A slight generalization of R. A. Smith' lemma ([4], p. 309, Lemma) implies that the
equation (12) has a  unique small solution u- 1  p ro v id e d  th a t s2 , c,s and [c 2 +
hcf log (s)]sf are sufficiently small, and that this small solution admits the following
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series expansion

(13) =s[1 + P 4 (s2 , c i s, [c 2 +hcf  log (s)],s4 )] .

This expansion is obtained by imbedding the equation (12) into the system of equa-
tions

so= to[1 +P3(to, t 1, t2)] 2 , s i = t i+ P 3 ( t o ,  t i , t2 ) ] ,

s 2 = t,[1+ P 3 ]4 + h ti[ l +P 3 ] 4  log [1 +P3 ],

where

s i  = ci s, s2 =[c 2 + het log (s)],s4 ,

to = u - 2 , t2=[c2+hcf  log (4 - 1 )]u - 4 .

Since the Jacobian determinant of the analytic mapping (t o , t , ,  t2 )-4.90 , s i , s2 ) is
equa l to  1 for 10 = 0, the analytic implicit function theorem implies the
existence of its inverse mapping of the following form:

to = so [l +P 5 (so , st , 52 )], = si [1 + P4 (s o , s i , s2 )], t 2 =s 2 +P 6 (s0 , s 1 , s2 ),

w h e r e  P 6 ;
100 =  P6;010 =  P6;001 = 0 . The second equation gives (13).

Finally let us substitute

RR  R - r 1  ( 1 2 - r   Y
-  log -   —  E

r 2  k .0  k +1 R

into (13). Then we get the following expansion for the inverse function of r(u; c i ,
c2 ):

R - r  ( R - r
R - r

4
u =  ‘ / 2  [1 +  P.7 ( ( R  r ) 2 ,

r  
 [c' + h log R  ) ) i =

\/ 2  [1 +IP7 ;i0 iii2 R 2 i° [c '
R R- r   T2 (R — rVio + ic1-442] ,

R - r + h log R  )
where

R4 4
C   = c , +  4  v 2 - 

 2 7  

) log
'  

h = —4  v 2 - 4
4 3 3 27 •

This gives the announced series expansion (2) through a suitable change of the para-
meter from c' to  C.

The coefficients of the lower terms in the expansion (2) are determined by sub-
stituting it in the equation (1) formally and equating the coefficients of [log (R  - OP •
( R - r) i  .  The procedure is the same as that of E. Mlle's textbook, [1], pp. 453-
454, so we describe the outline.

Let us introduce the variables
R - ru= - = z _1U, z  
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and rewrite the equation (1) as

/  d  \ 2 ,r
dZ ) 1

zz d U   +( 2 +
— z dz 1—z —1/2 

( l

Z 2

z ) 2

=  2 U 3  — 2R  z 2U.

It has been verified that there exists a solution of the form
CO

U = E  U ; (log z; R, C, v)zi ,
i= o  -

where th e  I / i s  are  polynomials in log z =log 
R —  r  

 o f degree  j/4. Substituting

this in the above equation and equating the coefficient of zi, we have an infinite
system of second order equations for the successive determination of the Lfi 's. For
j= 0 we get

LT; — 3U+ 2U0  =2U8, ' — d  d(log z)

which admits the expected solution U 0 1. T h e n  for j l  we get

+ (2j — 3)U'i  +(j — 4)(j + 1)Ui  =

where H i  is  a polynomial in Uk , k . j - 1 ,  v 2  and  R2 a s  follows.

H  = [U  (k  — 1 )U k] + V2 ( j  — k — 1)Uk
k=0 k=0

+2  E

For j= 1, 2, 3 th e  Ui 's  are constants. For j= 4  the equation will take the form

4 4 + 5U:4 =1/4  = v 2

3 27
The polynomial solution is

U4= log z + C,

where C is an arbitrary c o n s ta n t. If we fix the constant C, then the equation for
j  5 will determine the unique solution IT;  which is a polynomial in log z successively.
Thus we can determine the coefficients a 0  i i h 's from the coefficients of the Uf 's as
polynomials in log z , R  and C .  This completes the proof of Theorem 1.

From the manner of construction of the solutions u(r; R , C) we have the follow-
ing proposition immediately, which will be used in the next section.

Proposition 1. Let 0 <ro < R  +  co and let u=u(r), r o < R ,  be a solution of
the equation (1) such that

±  c o , d u F ( u )  u 1(14) + oo andu  d r (  du Y
dr
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a s  rt R .  Then R< + co and there exists a constant C such that u(r) is identical with
u(r; R , C) for R -6 <r< R , 6 being a sufficiently small positive number.

P ro o f . Let r =r(u) be the inverse function of u=-u(r) and put

x(u)— (u)—
F(u)d  

Y —r(u)u'(r(u)) u '(r(u))2  ' dr •

They are well-defined for sufficiently large u because u'(r) is supposed to be positive
when r is near R .  Then x =x (u), y= y(u) is a solution of the system (5). The con-
dition (14) means that x(u)—>0, y(u)—>1/2 as u +  cc. O n  th e  other hand the inverse

transformation (x, of (8) can be applied provided that x, y -  -  
I

-  and u - 2

2
are sufficiently small. Therefore the solution x(u), y(u) should be identical with
x(u; c„ c 2 ), y (u; c„ e 2 ) f o r  suitably chosen c l , c, > 0 , and c 2 . Then R =.\/21c 1 ,
which is finite, and the inverse function r(u) of the solution u(r) in question turns
out to be identical with r(u; c 1 , c 2 )  defined by (9). This completes the proof of
Proposition I.

3. Continuation to movable infinitudes

Let us recall the results of Y. Kametaka.
1) The exists a unique solution u = w(r; v) of the equation (1) satisfying 0<

u  1 for any r, r> 0 ([3], Theorem 6 and 7).
2) In  a  neighborhood of r=0 there exists a  solution u = w(r; v, a o ) such that

w(r; v, a o ) = ao rv +0(rv+2 )

as r.--*O. Here a o is an arbitrary positive constant ([3], Theorem 5).
3 )  The unique solution u = w(r; y) satisfies

w(r; v )=a o (v)rv +0(rv+ 2 ),

where a 0 (v) is a  suitably chosen positive constant ([3], Theorem 6).
In  this section we discuss the behavior of the solution w(r; v, ao ) continued

from  r= +0 to the right as long as possible along the positive r-axis. We will prove
the following theorem.

Theorem 2. If  a o >a o (v ) then there exist constants R= R(v, a o ), O<R< +co,
and C= C(v , a o ), ICI< + co, such that the solution w (r; v , a o )  exists f o r 0 <r<R
and  coincides w ith the local solution u(r; R , C) hav ing the series expansion (2)
f o r R - 6 <r<R , 6  being a  suff iciently  small positive n u m b e r. This infinitude is
a pole if v -= 1/3 or a pseudo-pole if v 1/3 respectively.

We need some preliminary propositions for the proof of th is theorem . For
brevity we will write

u(r)=(r-;--v ,-a0),

supposing that a o >a o (v). H e rea fte r  the symbol ' denotes differentiation.



Pseudo-poles of Abrikosov equation 673

Proposition 2. There exists r 0 >0 such that

(15) u (r0 )> 1  a n d  u '( r 0)> O.

P ro o f . Let (0, R) be the maximal interval of existence of the solution u(r)
in question. The inequality

(16) w(r; v)< u(r)

holds for sufficiently small r , since u(r)= aorv + 0 ( r v + 2 ) ,  w(r; v)= a o (v)rv +0(rv+ 2)
as 40 and since a o > ao ( v ) .  We shall show that the inequality (16) holds for any
r ,0 < r< R . If it were not true there would exist a point r=r*, 0<r* <R, such
that w(r*; v)=u(r*) ----u* and w(r; v)< u(r) for 0 < r * .  This leads a contradiction
as follows. The equation (1) yields the equation

r _i d
r  

 dud w  
dr dr drw — r -  f ( r,  w)u,

where u= u(r), w=w(r, v) and

f (r, u )=  
 r 2  

u+u3—u.

Integrating this equation yields

r * f ( r ,  u ( r ) )  _  f ( r ,  w ( r ; ) )

u ( r ) w ( r ;  v ) r d r ,u' — w'fr*  ; v) r *u * 30 L u (r ) w (r; v)

where u* = u(r*)=w(r*; v)> 0. Since 0 < w(r; v)< u ( r )  fo r  0 < r < r *  and since
a

  [   f ( r ' u )   1— 2u > 0 for u> 0, the above relation yields
au

w'(r* ; v)<u'(r*)

so that u(r)< w(r; v) for r* —5<r <r*, (5 being sufficiently small. This contradicts
the definition of r * .  Therefore the inequality (16) holds for any r, 0 < r<R.

Suppose that u(r) for any r, therefore that the inequality

0<w(r: v)<u(r)._ 1

holds for 0  r  R .  Then this a priori estimate implies the existence of u(r) on the
whole positive r-axis, that is, R= + co, for f( r , u )  is bounded and continuous in

u  1 and ro . _ r< + co jointly, ro being an arbitrary positive number. However
this contradicts the uniqueness of w(r; v). Therefore there must exist r, >0 such
that u(r i )> 1. Since u(r) vanishes as r—*0 it is clear that there exists ro between
0 and r , for which u(r o )> 1 and u'(r 0)> O. This completes the proof of Proposition
2.

Let (0, R) be the maximal interval on which u(r) exists and satisfies u> u(r o ).
Then we have

Proposition 3 .  u'(r)> 0 for any  r, r o Lç.r <R, and
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(17) lim u(r)= + co.
r •R

Pro o f . Integrating the equation (1), we get

(18) u'(r)=r0r-lu'(r0)+1.-1 j(s, u(s))scis,
ro

V
2

w here j(r, u )= u + u 3  - u .  Since u(r0)> l, w e can  find  a positive constantr2

a such that

r(r,

for any r_ r o a n d  any u _ u(r o ). Then, since u '(- 0)> O and since ./(s, u ( s ) )  8 >  0
for r o s< r, we see from (18) that u'(r)> 0 for any r < R .  Integrating (18), we get

'C 2 8 2u (r)  u ( r o ) + [ro u' (re ) - ro
2 l1og -  — r o + — r

ro4 4  •

If R = + co the above inequality shows that u(r)- + co as r->R = + c o .  lf R < + co
and if u(r) is bounded, then, as easily seen from (18), u'(r) should have a finite limit
as r-*R, as well as u(r), so that u(r) should have a continuation such that u(r)>u(ro)
across r=R to the right. It contrad ic ts the definition of R .  Therefore u(r) cannot
be bounded, whether R is finite or n o t .  This completes the proof of Proposition 3.

(19)

Proposition 4. We have

Pro o f . Put

ru'(r)lim. sup  „  -  +  co.
r—, 12

v o  _  ru'(r) 
u(r) •

Suppose that v(r) were bounded.
Case A :  Suppose that R = + co. The equation (1) yields

dv =v 2  - v 2  + r2  f l u ( r ) )  
dr u(r)

where f(u )= u 3 -  u. Since f (u)lu- + co as u-).+ oo and since v(r) is supposed to
be bounded, we have the inequality

du r  > - M + br 2 .d r  -

where O< â , M < + cc. T h en  it is  c lea r  th a t v(r)- + oo as r R = + c c  this con-
tradicts the boundedness of v(r).

Case B :  Suppose that R < + co. Then the boundedness of u(r) implies that
u(r), which can be written as
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u(r)=u(r o)exp [ 1  v(s)s - Ids]
ro

from the definition of v(r), converges to a finite limit as r—r.R< + oo; this contradicts
the unboundedness of u(r).

Therefore in each case v(r) cannot be bounded. This completes the proof of
Proposition 4.

Thus we know that u(r) is  monotone increasing fo r ro _ r< R  and tends to
infinity as r t R .  Hence the inverse function r= r(u ) of u=u(r) is well-defined for

< + co . Put

x(u)— u y ( u ) _  F ( u )  
r(u)u ' (r(u)) ' u'(r(u))2

Then we have a solution of the system

( 5 )
dx — x[1—G(u)y—v 2 x2 ] ,
du

dyu = y[G(u)+ 2x — 2G(u)y —2v 2 x2 ] .
du

Here the notations

1(3) ) u 3 — u , F (u )= tes— u2 1
4 and

4 G(u)— 1—u- 2

are used samely as in Section 2 . W e want to prove that lirn x(u) a n d  lim y(u)

exist and are equal to 0 and 1/2 respectively.
We will assume the already verified fact that the solution (x(u), y(u)), u o u<

+ G O , in question of the system (5) admists the following two properties:

(20) 0<x(u), 0<y(u),

which follows from Proposition 3 and the definition; and

(21) urn. inf x(u)= 0,

which is the conclusion of Proposition 4 .  We are going to replace "lim. inf" in
(21) by "urn". I n  order to do it we use the auxiliary function

(22) S(x, y)= 1 —4y — 2v  x 2.

Thanks to the estimate

G(u)> 4

we see that if  S(x(u), y(u))< 0 the first equation of (5) will imply ud(log x)Idu =
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S -(G -4)y < 0 so that we will be able to remove "inf -  of (21).

Proposition 5. Under the conditions (20) and (21) there exists u i  ..u o  such that
the inequality

(23) S(x(u), y(u))< 0

holds f or u =u i .

Pro o f . Suppose on the contrary that

S(x(u), y(u)) ---- 1- 4y(u)- v 2 x(u) 2 . - 0

holds for any u Then it is necessary that

(24) 0<y(u)._ —
4  '

Since Jim. infx(u)=0 and since y(u) is confined to the compact interval [0, 1/4] byH-4-00
(24), there exist a sequence (u,,),, 1 2 accumulation value b of y (u ) such that

+ c o , x (u ) - 0  a n d  y(u„) —> b,

as n-+ co, where b  1 / 4 .  Let us prove that b> 0 making use of the function

V(x, y)= \/x 2 + y2

in a neighborhood of x= y= 0. It is c lear tha t the trajectory derivative of the func-
tion V

dV aV a  V =  x [ l  -G y  v 2 x 2 ] + y[G-2Gy +2x - 2v 2 x2 ]  =du ax

- 1 2- [ X  ± G y 2 -  Gx 2 y + 2xy 2 - 2Gy 3 -  v 2x 4 _  2 v 2x 2y 2]
V

turns out to be positive provided that ti0 u < + co and 0 <  V(x, V0, V , being a
sufficiently small positive number, because the estimate

4  4<G(u) 1 -u 0
- 2

holds for any u Since y(u 0 ) >0 we can find a positive number V, Vo  such that

0 < V, < V(x(u 0 ), y(u 0 )).

Then we have V(x(u), y(u))> V, for any u  u0 , a fortiori

h= V(0, b)=1im V(x(u„), y(u„))_V,  > 0.

This shows that b00, therefore

10<b..5. —-  4
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Let us fix a positive constant e satisfying the condition

(25) 0 < s< 2 — 2e — 2v2 s2 .

Then we can find a sufficiently large n such that

x(u n ) <(2b) 7 c  and < y(u„).

The first equation of (5) yields

dx = x[1— G(u)y —v 2x2]
du

< X .

Integrating this differential inequality, we see that the estimate

0<x (u)_x (u n )  u  < 8
u„

_t
holds a s  long a s  u„.. 14 t l

* ( 2 b ) u„. Since G> 4, 0<y .1/4, Ixl a and since
2 — 2c — 2v2 e2 > c, the second equation of (5) yields

dy 
—  y[G(u)(1 — 2y) + 2x — 2v2 x21

du

Y [4 @ _ 2 . 
1 — 2c — 2v 2 e2 1

> ey

as long as u „<u  <u * . Integrating this differential inequality from u=u„ to u =u*
yields

-1,(u*) y ( u "  ) ( u*—   I   v t u l
un

Y   2 b

The right-hand side exceeds 1/4 because y(u „)> b /2 .  This contradicts the assumed
estimate (24); therefore S 0 cannot remain valid. T h i s  completes the  proof of
Proposition 5.

Proposition 6. Under the conditions (20) and (21) the inequality  (23) holds for
any if  it holds for u=u 1 . M oreov er w e have

(26) lim  x (u)=0.

Pro o f . Firstly we will prove that the inequality

(23) S(x(u), y(u)) -E.- 1-4y(u)—  2 x(u) 2 <0

holds for any If this were not true there would exist u*, u* tt,, for which
S(x(u*), y(u*))= 0 a n d  S(x(u), y(u))<0 f o r  u ,  _ u <u * .  Applying S = 0  t o  the
trajectory derivative of S  at u=u*, we have
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du S (x (u ) , y (u ))1 „,.= Y (u * )[ 2 G(u * ) + 8 x (le)]•du

The right-hand side is negative since y> 0, G> 4 and x >O . Then w e have S(x(u),
y(u))> 0 for u* —(5< u <u*, 6 being a sufficiently small positive num ber. This con-
tradicts the definition of u * .  Therefore (23) holds for any u , .  Now we are ready
to prove x '(u)< 0. The first equation of (5) can be written as

du d u  x (u)=x(u)[S (x (u), y (u))— (G(u)-4)y (u)].

This is strictly negative because 0<x, 0<y, 4<G  and since S <O . Therefore x(u)
is monotone decreasing a n d  lim  x(u) exists and is equal to lim . inf x(u)= 0. This

u-4-Fço
completes the proof of Proposition 5.

Proposition 7. For any  solution (x(u), y(u)) satisf y ing y (u)>0 the condition
(26) implies

(27) lim  y (u)=—  .
u-H-00 2

P ro o f . Let s be a positive constant such that

(28) 0 < s ( 1  + v 2 )<1.

Fixed such an e, we can find u2 =u 2 (s) such that the inequality

4< G(u).4(1

and the estimate

IX(14)1 E

holds for u _>_u2 . Such a large u2 can be found because lim  G(u)=4 a n d  lim  x(u)
u-.+00

= 0 , (26 ). Then the second equation of the system (5)

dy u  = y[G(u)+ 2x —2v2 x2 — 2G(u)y]
du

yields the following differential inequalities.

dy y[4 — 241 + v 2 )— 8(1 +s)y] u du —

y[4(1 +s)+2s(1 + v 2 ) — 8y] .

Applying the comparison theorem ([2 ], p . 18, Theoreme 9), we have

caua .CAuA
1+ cbu° CBuA — 1

for u>u 2 , where

a =4-28(1+ 1 2 ), b =8(1 +c), c=a-luiA y (u2);
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A=4(1 +s) + 241 + v2 ) ,  B = 8  a n d  C =

Therefore

a 2- (1+ v 2 ) < lim . in f  y(u)-5
4 (1 + 0

lim. sup y( ) A 2(1 + 8)+ 41+ v 2 ) 
4

Since e can be chosen arbitrarily small see that lim y(u) exists and is equal to 1/2.
u--roo

This completes the proof of Proposition 7.

Combining the above propositions with Proposition 1 prepared in Section 2,
we can give a proof of Theorem 2.

Proof  of  Theorem  2. W e  a re  concerned with the solution u(r)=w(r; v, a 0 )
provided that c/o > (L ay ). Let (0, R) be the maximal interval of existence. From
Propositions 2 and 3 we see that u(r) is monotone increasing and u(r)> 1 for r ro ,
I-, being a  suitable positive number, and that u(r) tends to infinity a s  r t R .  Thus
we can define the corresponding solution

( u )  F ( u )  x(u) -

r (u )u '(r (  ) ) ' u'(r(u))2

of the system (5). It follows from Propositions 6 and 7 that the solution x=x(u),
y= y(u) converges to x =0, y =1/2 as u  +  o o  . Then Proposition 1 can be applied
to the solution u(r), for the required condition (14) follows from

. ru '(r) -  I im , -  +  c o
r-R  u (r ) x(u)

and

F(u(r))lim 1- lim  y (u )= 2

This completes the proof of Theorem 2.

4 . Appendix

As for real solutions we can assert that there will not appear essentially different
movable infinitudes other than those having the expansion (2). W e shall show it
in this appendix.

Let us consider a solution x=x(u ; c1 , c2 ), y=y(u; c 1 , c2 ), u o u< +co, given
by (9), of the system (5). Now we assume that c, <O . Then w e put

(10) - r ( u ;  c l , c2 )=  -u F (u ) 2;  c l , c2 ) - iy(u; c l , c 2 ) 2

and
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VT
R  lim  r (u ; c ,, c 2 ) = c l

(Compare with (10) or (11) of Section 2, respectively.) Then the inverse function
u =u(r) is well-defined, monotone decreasing for R < r . r o

- -r(u o ; c,, c 2 ) and satisfies
the equation (1). This solution admits a  series expansion which is convergent for
R <r < R +6, (5 being a  sufficiently small positive number, and is essentially the same
as the expansion (2). That is, in parallel with Theorem 1 we have a solution u=
u- (r; R, C) having a series expansion of the form

.s/(2) -  u —  r _ R [1 + E a j o i i , R 2 j0R  1
4
5 y 2 —  1 3 5

4  log 0 - R ) +\  R

+C if2 (R_ r

Here the coefficients a j o i ,h 's are the same as those of (2). This is an actual solution
for R < r< R + S  if C is real and (5 is sufficiently small.

There exist n o  movable infinitudes for real-valued solutions of real variable
other than those o f  + u(r; R, C) and + u- (r; R, C)'s. More precisely we have the
following theorems.

Theorem 3 .  L et O<R< + oo and le t u=u(r), r o r< R , be a solution of  (1)
such that u(r)-÷ +oo as  r t R .  T hen there ex ists a  constant C  such that u(r)=
u(r; R, C) f o r R —6 <r< R, 6 being a suff iciently  small positive number.

Theorem 3 - . Let O<R< +oo and let u =u(r), R<r...5_ro , be a solution of (1)
such that u(r)-4 +oo as  r1 R . T hen there ex ists a constant C  such that u(r)=
u- (r; R, C) f or R< r<R +6, 6 being a sufficiently small positive number.

Remark. It is clear that a negative movable infinitude of a real solution can be
identified with —u(r; R, C) o r  —u - - (r ; R, C), because the equation (1) is invariant
under the change of the sign of u.

Proof of Theorem 3. Let u=u(r), r o r<R , be a solution such that lim u(r)=
rtR

+ CO. We may assume that u(r0 ) > 1 and u'(r 0 ) > 0 .  Then we can repeat Propo-
sitions 3 and 4. Thus the inverse function r= r(u ) is well-defined and we obtain a
solution (x(u), y(u)), <  +  op, o f  th e  system (5 ), which satisfies (20)
and (2 1 ) .  Propositions 5, 6  and 7 can be repeated to deduce from (20) and (21)
th a t  lim  x(u)= 0 a n d  lim  y(u)=1/2. Then we are ready to apply Proposition 1.

u--Fcc
This completes the proof of Theorem 3.

Remark. The above argument does not require the hypothesis that R< + co.
Therefore we see that any real-valued solution cannot approach a "fixed -  infinitude
at r = + oo along the real axis.

Proof  of  T heorem  3. Let 0 <R  and let u=u (r), R  < r r o , be a solution such
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tha t lim u(r)=  + c .  T h e n  the integration of the equation (1) from  r ,  R < r r o ,
r1R

to  r ,  shows that u'(r)< 0 for R < r _ r o (see (1 8 )) . Therefore the inverse function
r=r(u ) of u =u(r) is well-defined and monotone decreasing for uo u(ro ) u < + co.
Moreover we have

(19)- urn.r u ' ( r )  _  _  0 0 .

r-.12 u(r)

Indeed, otherwise

u ( r ) = u ( r 0 )  e x p L —  
r° ( S )   s _  

d sr u ( s )

would tend to a finite limit as r —q?> O. P u tt in g

x(u)—    Y (u )— F ( u )
r(u )u '(r(u )) u, (r(u))2

we get a solution (x(u), y(u)) of (5), which satisfies

(20)- x(u)< 0 < y(u)

and

(21) - l i r n , sup x(u)— O.
II-'

 we can verify the following propositions successively.

Proposition 5 - . U nder the conditions (20) -  a n d  (21) -  th e re  ex is ts  u1 u 0

such that the inequality

(23) - S ( x ( u ) ,  y ( u ) ) - 1 - 4 y ( u ) — v  x ( u ) 2 <0

and the estimate

(29) —1 <x(u)<0

hold simultaneously for u=u,.

Proposition 6- . U nder the conditions (20) -  a n d  (21) -  t h e  inequality  (23) -

and the estimate (29) hold for any Moreover we have

(26) lim x(u)=0.
u-H- co

Let us postpone proofs of these propositions, which are essentially the same as
those of Propositions 5 and 6. Assuming these propositions at the instance, we can
repeat the statement and the proof of Proposition 7  to  d e r iv e  lim  y(u)= 1/2.
Then the analogue of Proposition 1 shows that r(u) is identical with r(u; c l , c2 )  if
we choose suitable constants c,, c,< 0, and c2 . This completes the proof of Theorem
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It remains to prove Propositions 5 -  and 6 - .

Proof of Proposition 5 - . Suppose on the contrary that

— 1 < x(u)< 0 im p lies S(x(u),

a fortiori

(30) — 1 <x(u)<0 im p lie s  0 < y (u ) . .

Since lim. sup x(u)=0, there exists a  sequence (u n= 1 ,2 ,... such  that u„-i + c o  and
x(u„)-40. We may assume that — 1 < x(u„)< 0. T h e n  the hypothesis (30) confines
the values of y(u„) to  the compact interval [0, 1/4], therefore we may assume that
y(u„)— +b,0_b_ 1/4. B y  using  the function V (x, y)-=- \ /x 2 + y 2 we see that b  should
be positive . Fixed a positive number e satisfying the condition (25), we find a large
number n such that

— (2b)-is<x(u„)<0 a n d  —

b  
<y(u„).

Then we have

— e<x(u)<0

for any u, u„_._u u* ----(2b) - lieu„, by integrating the first equation of (5) in the same
manner as in Proposition 5. Since we can take E so that e<  1, we may assume that
the above estimate o f x (u) requires y(u)__ 1/4 by the  hypothesis (30). Then the
second equation of (5) yields

d u v (u )>iv (u )d u  -

as long as u„- . u u* and it follows that y(u*)> 1/4 while — 1 < — e<x(u*)<0; this
contradicts th e  hypothesis (30). T h is  completes th e  p roo f of Proposition 5 - .

Proof  of  Proposition 6- . Suppose that the inequality (23) -  and  the  estimate
(29) hold simultaneously for u =u 1 . Then they hold for any u u 1 . I f  this were
not true there w ould exist u *  >u , such  tha t S(x(u), y(u))<O, — 1<x(u)<0 for
u , u  <u *  and either

A: S(x(u*), y(u*))_< 0  and —  1= x(u*),

or

B: S(x(u*), y(u*))= 0  a n d  — 1  .x(u*)

If A is the case, then the first equation of (5) yields

d x (u)I„=„*=x (u*)[S (x (u*), y (u*))— (G(u*)-4)y (u*)] >0,
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therefore x(u)< —1 for u* — (5<u <u*, ô  being a  sufficiently small positive number.
This contradicts the definition of u * .  I f  B  is the case, then applying S=0 to the
trajectory derivative of S, we have

d u S (x (u ) , y (u ))du „=„.= —  y(u*)[2G(u*)+8x(u*)] <0,

because G> 4 and 1x1 1, therefore S(x(u), y(u))> 0 for u *--(5 < u < u *. This con-
tradicts the definition of u * .  Therefore (23) -  and (29) hold for any u

Then it is clear from the first equation of (5) that x'(u)> 0 for any and
lirn x(u)=1im. sup x(u)= O. This completes the proof of Proposition 6 - .

u--Foe

R em ark. The above modification of Proposition 5 and 6 is unnecessary if we
suppose th a t  v  I  f ro m  the start. Indeed, in the case w here  y  1 , the hypothesis
S=0 implies ixl< liv 1 provided that y >O. Then, avoiding the additional discus-
sion about the estimate (29), we can assert that the trajectory derivative of S turns
out to be negative everywhere as long as S= 0 and y >O.
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