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O. Introduction

Let W be any subdomain of C " ( n  1), the n-dimensional complex Euclidean
space. By R2 " we denote the underlying real 2n-dimensional Euclidean space of
C", as usual. Throughout this paper we shall assume that W admits either noncon-
stant bounded analytic functions, o r nonconstant bounded harmonic functions.
H( W) will denote the commutative Banach algebra of all bounded analytic functions
on W endowed with the uniform n o rm . HB R (W ) is the order complete Banach
lattice o f all real-valued bounded harmonic functions in  W  R2 "  with the sup
norm topology. M w ( w )  will stand for the maximal ideal space of H'(W ).

This paper deals with the Dirichlet problem on the Shilov boundary S  of
M H.(w). Namely, under the appropriate conditions we investigate a positive
linear map from CR (S )  into HB R ( W) which acts on Re IV( W ) (  CR (S )) as the
identity m a p . Since HB R (W ) is  an order complete Banach lattice, such a map as
above always exists: we can apply techniques of the positive extension in Hahn-
Banach's extension theorem to this problem. The solution obtained by this method,
however, gives us few information on the maximality in the following sense. Let L
be any solution of the problem, and consider the functional CR (S) 3 g-÷L(g)(p),
where p is an arbitrary, but fixed, point of W. Clearly this functional is represented
by the probability measure which is uniquely determined, and is supported on S.
Denote this measure by d v .  Then by the positiveness, and from Harnack's inequality
we have the nonnegative kernel Q(z , ) of L '(dv) such that L (g )(z )= gQ (z , )dv
for all g e CR (S) and for all z E W . By the maximality for solutions we mean that the
induced measure dv for p as above is a boundary measure in the sense of Alfsen [1].
Thus our aim in this paper is to investigate the maximal solutions of the Dirichlet
problem on S in terms of Choquet order relation.

In case that Wis a subdomain of the complex plane, or more generally, a Rieman
surface, the author characterized a  representing measure dv for any point of W
such that d v  is  a  boundary measure and has a positive kernel Q (z , ) of L'(dv)
with a parameter z c W: Q(z , )dv satisfy the following [3].

1) For every z e W, Q(z, )dv  is a  representing measure for z  with respect to
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11(W ).

2) For every g e L '(dv), gQ(z , )dv  is a  bounded harmonic function on W

with gQ(z, )dv
co —

3) F o r  every h e C R (S), hQ(z, )d v extends continuously to the Choquet

boundary of M  Hoo(do and coincides with h on it. Hence hQ(z, )dv

h holds.
CO

1') Q(z , )dv is a Jensen measure for every z e W, if we modify the maximality
condition appropriately.

we call such a  measure du a  singular harmonic measure for the point. N ow , same
results as above are still valid for any closed subalgebra of H ( W )  with unit 1.
Specifically, in case that W is a bounded plane domain, and that A(W) is a subalgebra
of H ( W )  defined  by  H (W ) n C( W), every situation takes the concrete form.
Indeed the maximal ideal space of A(W) is just identical with W, including the topo-
logy. Hence all measures involved are  actually Baire measures in  th e  complex
p la n e . In  such a situation, for some class of domains (e.g. the one constructed by
Gamelin [2]) the Dirichlet problem on S(= OW) relative to A(W) admits an infinite
number of solutions, and a singular harmonic measure is mutually singular with the
ordinary harmonic measure on the topological boundary aw. This phenomenon
motivates the author to extend the preceding results to an arbitrary subdomain of C .

For out aim we shall characterize the induced measures from solutions of the
Dirichlet problem on  S .  Proofs will be made in view of the purely real analysis.
So the analogous results are always valid for every real or complex linear subspace of
HB(W ), which denotes the Banach space of all bounded harmonic functions on W
endowed with the uniform n o rm . That is, let B(W ) be any, not necessarily closed,
real or complex linear subspace of HB(W ) with unit 1. S u p p o se  B(W ) contains at
least one nonconstant function. Then there exists a  probability measure with a
positive kernel which is also a  boundary measure relative to  B(W ) and satisfies the
condition 1), 2) and 3). Further our measure has no mass on (the canonical image
of) W.

In section 1, we shall give another proof o f  Cartier's theorem in  th e  form
suitable fo r  o u r p u rp o se . Section 2 —4 w ill be devoted to proofs o f the  above
statem ent. In section 5, however, our concerns turn toward a closed subalgebra of
11(W ) with u n it  1 . There we will discuss the condition 1') about Jensen measures.

The author should like to thank Professor Y. Kusunoki for his valuable sug-
gestions, above all, for the one that results in [3] may be applicable to subdomains of
C".

1. Comparison of measures

Throughout this paper w e follow  the usefull terminologies in Alfsen [1],
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Gamelin [2] and Schaefer [5]. Moreover the term 'measure' shall signify, in  all
cases, a finite regular Borel measure on some compact Hausdorff space.

In  th is section we shall assume tha t X  is  a n  arbitrary, b u t fixed, compact
Hausdorff sp a c e . M (X ) denotes the real linear space of a ll real measures on  X.
In particular M -1-(X ) stands for the set of all positive elements of M (X ) .  We regard
M (X ) as the dual of CR (X ) .  In this point of view we shall often use the notation

v(g) for g d v ,  where g eCp(X) a n d  v  M (X ) .  Let P  be a max-stable admissible

cone o n  X .  Namely P g CR (X ) is  the convex cone satisfying the  follow ing. P
contains the constants and separates the points on X .  f  y g is in P iff and g belong
to P .  Since P is a convex cone of CR (X ), it defines an order on M (X ) .  This order
relation is symbolized by "<p. Further we will denote by OpX the P-Choquet
boundary, and  by  S p  the Shilov boundary o f  X  with respect to P . S p  coincides
with the closure of 0,,X and is the minimum closed set on which every function of P
attains its m axim um . Let f be any real valued bounded function with dom ( f )  0 ,X .
The P-lower envelope f r  o f  f  is defined a s  a  function : fp= sup {h e P: f  on„ -
dom ( f  )}. The P-upper envelope f p  of f  is a function f p =  -  ( - f )

P •
Using the P-lower envelope, boundary measures relative to  P is defined as fol-

lo w s . A  measure dv is called a  boundary measure if  it satisfies f = f , ( = j p )  a.e.
Idyl for all f e  C p(X ). It is known that every boundary measure has no mass on a
Baire set disjoint from Op X, and hence it is supported on Sp .

Recall that P  contains the  constan ts. So the relation du -<), dv for positive
measures implies 11 du = Iidv. Hence we see that the order ("<e) on M±(X) is in-
ductive. It is known that every maximal element of M+(X) is a boundary measure
and conversely any positive boundary measure is maximal in M +(X) under
These imply, in particular, that for every du e M+(X) there exists a positive boundary
measure dv with du -<pdv. Concerning all of the above, the details can be found in
Alfsen [1].

Our main object stated early is obtained as a corollary of the general theory on
the above order relation. M ore precisely, it is a special application of the theory on
the comparison o f  measures. Indeed, proofs in  [3 ]  heavily rely o n  th e  method
employed in [1] for the proof of Cartier, Fell and M eyer's theorem. So, we reprove
and extend this theorem along the way whose ideas are found implicitly in [3].

Theorem 1.1. Let v and u, be positive measures and u 2 a  nonnegative measure
on X .  A ssume that inequalities ii 1 (g)+u 2 (g )_v (g ) hold for all nonnegative g e P.
T hen there ex ist nonnegative h, and  h2  o f  1., (dv) such that hi + h 2 a n d
dui <ph i civ ( j 1, 2).

P ro o f . The proof will be made in view of separation theorem in  /4 (dv). S e t
Q =IfEP: u 1 ( f )> 1 1  a n d  R = {P :0 : fe  P  a n d  v ( f )  u 2 ( f ) < 1 } .  D en o te  b y  C
and U the positive cone and open unit ball of Li(dv), respectively. T denotes the
convex hull of (U—C) U R where U—C= {f— g :fe U , g e C } .  Observe tha t T is
o p e n . Here we require that in LI(dv), T is disjoint from the convex set Q .  To see
this, assume T n Q 3 f. Then f(e Q) takes the form f=(1 — s)h + sg w h e re  0  s  1 ,
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heU— C and g e R .  First of all we have

1—s0 v  ( 1 —  s)hdv = 0v ( f — 0 v  ( f —  sg)(dv— du,)

On the other hand, the following inequalities hold.

0 v (f— sg)(dv— du 2 )  =  {(sg v f)—sg}(dv — du,)_> (sg v f ) (dv — du 2 ) — s.

From sg y f(e P), it follows that

(sg v f)(dv —du 2 ). (sg v f)du i 1 >  1.

These yield 1— 0 v (f—sg) (dv — du 2 ) > 1 — s, a contradiction. Thus we see that
Q n T =0.

By separation theorem, there exists a continuous linear form V/ and a constant
c such that W (Q )c  and c P(f )  for all f  G T  Since —Cc T, W is positive. So we
may assume W(r)= 1, where r=1/ du1 II. O bserve th a t {r} +E[Q — {r}] coincides
with Q for every positive e. This yields P (Q ) P (r )= 1 .c . W (T). In particular
W (R )1  and P(U)__ 1, so  tha t, 119  1. Let h ,  L (d v ) be the function which
corresponds to  P .  Then w e have 0h 1 1  a n d  h,dv = d u  =

Next we verify du, -<), hi dv. For this consider any f  of P and any positive E.

A  function: (f+ If II +1+ e)/ ( f  +  f + 1)du , belongs to Q .  This im p lie s  ( f

IlfM + 1 + e ) h i d v >  (f+ II f II + 1)du1 ,  so that, (f + i clv f d u „.  Letting e— >0,

we h a v e  fh i cl.v fdu i , i.e. dur <p h i dv. Similarly for any positive E and for any

nonnegative f  e  P, a function f /(E+1f(dv —  du2 ) )  is contained in R .  This yields

E±  f(dv — du2 ) f l  i dv , and h e n c e  f(1 — h i )dv f d u  2 ho ld  for all nonnegative
f G P .

Now, if du2 is  a zero measure, all is over here. In case that du2 is  positive,
consider (1— hi )dv, du2 and a zero measure as the measures dv, du , and du2  of the
theorem . A pplying the above argument to  th e m , w e  h av e  a  function k  of
L'((1-11 1)dv) such  tha t 0 k 1  and  du2 '<p  k (1— h,)dv . Here we m ay view
k(1 — 111 ) as an element of L (d v ) .  Setting h2 = k(1— h 1 ), we establish the assertions.

Corollary 1.2. L e t  d u  an d  d v  be positiv e m easures o n  X .  S uppose that
u(g)..v (g) holds f o r ev ery  nonnegativ e g e P. T hen there ex ists a nonnegative
element h of L(dv), 1 -h, w ith du-<, hdv . In case that Null = Ildv11, h is identical
with 1.

Corollary 1.3. L et du and dv  be any  positive m easures w ith du-<, dv . Then
f or any finite positive decom position du= ± du k of  du there exists a corresponding

k=1
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positive decomposition dv= dvk  of  dv with duk <pdv k  (1 . k rz ).
k=1

Pro o f . The proof is obtained by induction about n. In case n =2, Theorem
1.1 guarantees the assertion. To derive the case n=m+ 1  from that of n = m,

m+1
consider any positive decomposition du =  E  du k  o f du . By Theorem 1.1 there is a

k=1
m+1

positive decomposition dv = dv i  + dv2  of dv such that E duc <pdv2 and du i ..< p dv i .
k=2

Thus by induction we have the assertion.

Theorem 1 .4 .  L et du and dv be positive measures on X  with du<p dv. Then
there ex ists one linear m ap T  of  LP(dv) into LP(du) which satisfies the following
conditions co).

1) For any fe  LI-(dv) fdv =1 T(f)du

2) T is positive, and f urther T(g) . g a.e. du f or any  g e P.
3 )  T  is  a  norm  decreasing map,

P ro o f . Let [Ci E k ]  be any finite decompsosition of X into Borel sets such that
k=ri

u(Ek n E.)=0 for every distinct k and j. Consider the family of all such decom-

Cpositions. We define an order ( o n  a s  follows. Namely for any a = [ Ek ]
k=1

and fi = [ Ci E A  the relation : oc._:fl holds if any Ek of a is contained in some E of
=i

/3 a.e. du
i

.  (i.e. u(Ek\E'i ) = 0 ) (Obviously, the order is well-defined, under trivial
modifications.) Every element a = [ Ci E k ]  of induces a positive decomposition

k=1

on du such that du = thdu, where Lk denotes the characteristic function of
k=1

Ek n). By corollary 1.3, there is a positive decomposition dv = dvk  o f
k=1

dv with thdu-< p  dvk  (1 k  n). Fix the one for each a = [ Ek ]  and set T0 ( f )=
k= 1

fdVk) 111  It/ 11 dVkil for all fe  L œ (d v ). Observe that Ta  is  a linear map of Lœ(dv)
k=1

into L œ ( d u )  for each Œ. We can easily verify the following. 1') fd v  =  Ç TOE(f)du

2') Ta  is  positive. 3 ') II Ta(f)liœ  11f11. and 1ITOE(f)rdu IflPdv where f  is any
function of L'(dv) and 1 p < co.

Set Bf  = {g e Lœ(du): g  If  c o }  for every f e Lœ(dv), and consider the
direct product space B=17{B f : fe L œ (d v )} . Since each Bf  is weak* compact, B
is also compact. Here we can identify each TOE with an element {TŒ( f )} f e v . ( d o  of B.
Observe that { :  a e R} is directed upwards under the induced order from Fy". This
implies that the family {Ta }, each of which is viewed as an element of B, forms a
filter base in B .  Hence it has a cluster point. Pick up the one, say {gf}fOEL.(dv),
and fix it throughout. Define T(f)= g f  for all f E L '(d v ) .  Then T  is a linear map
of Lœ)(dv) into L (d u )  because each TOE is linear. S in c e  T (f )  is weak* adherent to
the subset {TŒ( f ) :  a e RI of L'"(du), T also satisfies the above three conditions 1'),

117- 11p 1, co).
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2') and 3') for all fe  L '(d v ) .  Next we claim that T(h)...h a c . du for every h E P.

Set h e P, and for any positive e, choose an ao  [ Ç i  K  j ]  such that the oscillation of

h on any K i  is less than E. T ake any a [ C.) EJ so that cx a,. Let dv = dv,
k=1 k=1

11

be the positive decomposition of dv which corresponds to du =  E i/Jk du. From
k=,

tpk au-<pdvk , it fo llow s hdv,/ dv,11?-.. hthduillifr,du . Since any Ek is contained in

some K  a.e. du, we h a v e  hdv,/lidv,11 h —8 a.e. du on E k  so that, TOE(h) h — e

a.e. du. This yields T(h)__ h - E .  Letting e-÷0, we have T(h)_:h a.e. du.
Finally, by the condition 3') on T, we can extend the map T onto the whole

L '(d v ). The extended linear map which is again denoted by T , of course satisfies
the conditions of the theorem.

Corollary 1.5. Under the saine assumptions and notations as in the preceding
theorem, T(1 )._ hp holds for every T ip  of bounded real h with dom (h)_0,,X.

P ro o f . Since du and dv are regular, we can view h as the lattice theoretic
supremum of a family {g e P: g h on dom (h)} with respect to du + d v .  So there
is  an  increasing sequence {g u } ,  of P  such that g„/ hp in  L'(du +dv). This
implies that T (g„ )/ T (4 ), and hence h  holds.

2. The state space of B(W )

Let HB(W ) be the Banach space of complex valued bounded harmonic functions
on W ( R 2 ") endowed with the uniform n o rm . In the sequel we shall assume that
B(W) is a linear subspace of HB(W ) with unit 1, and that B(W) contains at least one
nonconstant function. We should, however, point out that the quite same, or rather
simple, arguments are also applicable when B(W) is contained in HB R (W).

We will denote by Re B(W) the real linear space of the real parts of functions in
B (W ). Re B(W ) is a  normed space with a unit, and has the canonical order (
i.e. f .. g<r>f(z) g(z) for all z e W . Let K  be the state space of Re B (W ). Under
these circumstances, every state of Re B(W ) acts on B(W ) as a linear form with a
unit norm . So we can embed K  into the unit ball of the dual B (W )* . Namely
K=1LeB(W )*: =L(1)—

We take K  as the space X  of Section 1 when we view B(W ) merely as a linear
space. In case that it is further a  closed subalgebra of Hx(W ), we consider the
maximal ideal space MB as X .  In the latter case, MB is identified with the closed
subset of K, the set of all multiplicative linear forms of K.

Each point of W acts on B(W) as a point evaluation, and hence it can be regarded
as a point of K .  Under these identifications, every subset of W is also a subset of
K  which we call the canonical image of the set. Note that such identification is
not injective in general. The canonical image of E (  W), however, will be denoted
by the same symbol E, unless confusions arise. Since the weak* topology on W is
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coarser than the metric topology, the canonical image of any compact set in W is
also compact in K .  Specifically W ( K ) is a-compact. Observe that the canonical
image of W is contained in MB when B(W ) is a closed subalgebra of 1-1°°(W).

Let P(K ) be the convex cone of CR (K ) which consists of all continuous convex
functions on K . P (K )  is a  max-stable admissible cone. Further each function of
P(K ) is uniformly approximated from below by a  function of the form sup Oka
Re B ( W ) : 1  k  n }  .  So a  function g W (g e P(K )) is always a  continuous sub-
harmonic function on W with respect to the Euclidean metric.

An ordering over M (K ) relative to P(K ) is known as the Choquet's ordering
on the compact convex set K .  The P(K)-Choquet boundary then coincides with the
usual Choquet boundary of K , the set of all extreme points of K .  Following custom,
we remove the prefix P(K )-, etc. from all notations concerning this order relation.
In such a situation, the definition of the lower envelope f is equivalent to saying that
f  = sup { he Re B(W): f  on dom  (f)}. So by Harnack's inequality, every f i  W
is a continuous subharmonic function on W.

Now, when B(W ) is a  closed subalgebra of 11'(W ), consider a function u on

M B which takes the form u= ak log ifk i, where a k 0  and f k E B (W )(1 -k n ) .
k=1

Set J' = {sup  (U ,: 1  k  0}  and J= J ' n CR (K ) .  J  is a max-stable admissible cone
on M B , because J  contains Re B ( W ) . For any function g  of J, g I w is a  con-
tinusous subharmonic function on  W . Hence every J-lower envelope fi r has the
least harmonic majorant on W.

At the end of this section, one comment should be made concerning the Shilov
boundary relative to J. First, observe that ajM B contains OK, the Choquet boun-
dary of K .  This implies S g S i . On the other hand, every function of J  attains
its maximum value on S, because every function of B(W) does the maximum modulus
on S .  Combining these, we conclude S =S j .

3 .  Harmonic measures on K

The purpose of this section is to construct harmonic measures on K .  For
this we will consider the real Banach space HB R (W ) .  It is known that HB R (W)
is an order complete Banach lattice under the canonical order ( Let H  be the
state space of HB R (W ) . H  is of course weak* compact convex set and contains W
canonically. The Choquet boundary OH of H consists of all lattice homomorphisms
of HB R (W) with unit norm into the scalar. S o  011 is closed. Specifically we have
that HB R (W ) OH =c R (8H), and that every continuous linear form on HB R (W ) is
represented on OH by a  uniquely determined measure. In other words, the state
space H is a Bauer simplex. Let dw z  be a measure supported on OH which represents
a point evaluation of HB R (W) at z e W . Each dwz  is uniquely determined, and is a
probability measure. We need one information about {dwz : z e W}.

Lemma 3.1. (H arnack 's inequality ) L et HP(W ) be a set of  all positive har-
monic functions on  W . For any  pair (z , x ) of  W xW , the Cartesian product of two
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copies of  W , def ine p(z , x )= sup { h(x )Ih(z )v  h(z )lh(x ): he HP(W )). T hen p is a
finite continuous function on W x W  with p l and p(z , x )=p(x , z ).

Recall that Re B(W ) is a  subspace of HB R (W) with a  u n i t .  So each point of H
acts on B(W ) as if it belongs to K .  More precisely, there exists a continuous map
r of H into K  such that .f(q)=f {r(g)} for all f e B(W ) and any g e H . Note that the
map r is surjective. Define a  probability measure di, o n  K  by  tz (E)=w z {r- '(E)} ,
where E is any Borel set on K .  The measure dtz is  a  regular Borel measure on K
fo r  every z G  W . Further th e  family {dtz : z E  W I satisfy th e  following: dtz =

gordw z  fo r all g e CR { r(OH)} . In particular, fdt z =f (z ) for all f e  B (W ) . More-

over, by Harnack's inequality, we have p(z, hdtx:5_ p(z, hdt z  fo r

all nonnegative h e CR {r(OH)} and for all (z , x ) o f Wx W . The latter implies that
p(z, x) - 1 p ( z ,  x ) .  Choose any point p  o f  W and fix it throughout. Set
H (z , )=dt z ldt p  and  dt =dt p . Then H(z , ) satisfy H(p, 1 and p(z, x) - 1 11(z,
H(x , ) p(z , x )H(z , ) a.e. dt.

R em ark . Harmonic measures H(z , )d t a re  supported o n  r(OH) a n d  hence
weak* adherent to W in  K .  In case that B(W ) is a  closed subalgebra of Hœ)(W),
this implies that H(z , )dt are supported on M .

Proposition 3.2. For any  f e L "(dt), 1f H (z , )dt is a  bounded harmonic fun-
ction on W  whose m ax im um  m odulus coincides w ith f  z o . Fo r any  bounded f
w ith  dom (f )Q 0K , 111(z , )dt is the least harm onic m ajorant of  f IW . S im ilarly

)dt is the least harm onic m ajorant of  LI W . where f  is any bounded real
function w ith dom  (f ) 3.04 8 .

P ro o f . The former assertion is trivial. For the la tter observe that f o r is the
supremum of the family in  HB B (W): {h G Re B (W ): h  f  on dom ( f ) ) .  Thus we
have the conclusion for the assertion on f . For the one about f j , observe first that
the least harmonic majorant of any function f  in J is obtained by f H ( z , ) d t .  This
yields the last assertion, because f ,  is the lattice theoretic supremum of a family
{g e J: f  on dom (f)} with respect to dt.

Theorem 3.3. Ev ery  boundary  m easure on K  (resp. M B )  w ith respect to -<
(resp. -< j ) has no mass on the canonical image of W.

P ro o f . Since arguments are same, we will prove only for the order For
the assertion, it suffices to show that there exists a  function h e CR (MR ) such that
fiJ I F> kf F, where F is a given compact set on W.

First of all we shall prove that W is disjoint f r o m  K. A ssu m e  some point
p e W lies in O K , Since B(W ) is nontrivial, there are another point g e W and a
function fe B (W ) with f ( p ) = f ( g ) .  Let g be a function of CR (K) such that g



Comparison of measures 563

g(p)=1 and g ( q ) =0 . We have then si(p)=g(p)= 1. Let {L} be th e  sequence of
Re B(W ) such that f,, g  on K  and f„(p)— >1. Since {L} forms a normal family, we
may assume f n —>f on every compact set of W, where f  is a harmonic function. By
f „  g 1(n e N ), we have f  1 , f  (p )= 1  and f  O. This is of course a contradic-
tion. Thus we see that W is disjoint from OK.

Let F be any compact set of Wand consider harmonic measures H (z , )d t . Then
dt can not have full measure on F. In fact, assume the contrary, t(F)= I. F o r  any

f  e B (W ) w e h a v e  f (z)l = fH(z , )dt 511 f  II F ,  so  that, f  II = Ilf IIF. This yiedls

S g F and hence O K  F, a contradiction Thus we have t ( F ) <1 .  By the regularity
of dt, there is a compact set E of MB such that t(E)> O and E n F = ø .  Let h be the
function o f  CR (M B )  such that h h  I F = 1  a n d  hIE =O . From  Harnack's

inequalities for H (z , )dt, it follows H(z , )d t> 0  so that, 1 hH(z , )dt <1 for all

Z E W . Hence we have 1>  1;,11(z, )dt j (z) for all z e W .  Thus the inequalities
rzj  F =1 > stij I F hold, and these assert the theorem.

4 .  Singular harmonic measures

Using harmonic measures H (z , )dt, we define a  singular harmonic measures
supported on K , K  being the state space of B (W ). Note that H (p, )= 1 a.e. dt where
p is any, but fixed, point of W.

Definition 4 . 1 .  We call a positive boundary measure dv a  singular harmonic
measure for p E W, if it satisfies dt -<dv.

Proposition 4 .2 .  There always ex ists a  singular harm onic m easure for every
point of  W . In particular it has no m ass on W  and is supported on S.

Theorem 4 .3 .  L et dv be any  singular harm onic m easure f or p  e  W . T hen
there exists a positive kernel Q(z , ) of  L'(dv) w ith a  param eter z  e W . Q(z, )dv
satisfy  the following.

1) For any  g  e  L'°(dv), gQ(z , )dv is a  bounded harm onic function on W
whose m axim um  modulus does not exceed Ilg11. and Q(P, ) = l.

2) Every  Q(z , )dv is a singular harm onic m easure for z  e W.
3 )  For any  h E C R (S ), /112(Z, )dv extends continuously to OK and coincides

with g  o n  i t .  So we have, in particular, hQ(z, )dvl

P ro o f . Let T  be the linear map of Ll(dv) into L l(dt) constructed in Theorem
1.3. Since T is a positive map with II T111 1 ,  the adjoint map T* of Tis also positive
and norm decreasing. Set T *(H (z , ))= Q (z , ). Then we see Q(z, 0, Q(p, )= 1
and p(z, x) - 1 Q(z, p(z , x )Q(z , ) a.e. dv for all (z , x ) o f  Wx W, because
H(z , ) satisfy the same inequalities. We can easily verify that Q(z, )dv satisfy the
condition (1). For conditions (2) and (3) choose any g e CR (S). Recall that I w

11h11.
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is subharmonic and its least harmonic majorant is given by 5 H ( z ,  )dt (Proposition

3.2.) From Corollary 1.4, it follows gQ(z, )dv Q (z , )d v =  T (4 )H (z , )d t.>

1 H(z, )dt fo r  every z E  W . N a m e ly  gQ(z, )dv 4(z) holds. Specifically if  g

is  in  P (K ) , w e have 1 gQ(z, )dv =?__ gH(z, )dt, so  that, H(z, )dt-<Q(z, )dv. In
other words, for every z e W Q(z, )dv is a  singular harmonic measure for z. ln
particular we see fQ(z, )d v=  fH(z, )dt=f(z) for all fE B(W), on account of the
fact + Re B(W)c P(K).

From the above inequalities, gQ(z, )dv follows, where g  denotes any fun-
ction of CR (S). Since 4(resp. "g) is lower (resp. upper) semi-continuous on K , and
coincides with g  on OK, w e conclude that gQ(z, )dv extends continuously to OK
and agrees with g on it.

R e m a rk . The terminology of singular harmonic measure is far from suitable
in this general situation.

By the similar arguments we can characterize positive measures induced by the
Dirichlet problem o n  S .  L et L  be any solution of the Dirichlet problem o n  S.
Namely L is a positive linear map from CR (S) into HBR ( W) with L(u)= u on  W for
all u e Re B (W ) . By a  measure for p  induced by the Dirichlet problem on  S  we
mean a probability measure on S corresponding to the functional CR (S)B g—>L(g)(p).

Theorem 4.4. A  probability m easure d u  on S is  a  measure fo r  p induced by
the  D irich le t problem  on S if and  o n ly  i f  it satisfies dt -< du.

P ro o f. The sufficiency is contained in  the  proof o f  th e  preceding theorem.
For the necessity, observe that L(g)_:g on W, where L is the solution corresponding

to du and g e P(K). This implies that L(g) gH(z, )dt on  W, and hence dt -<du.
We define a J-singular harmonic measure on M R by means of harmonic measures

H (z, )dt similarly to the preceding section.

5. J-Singular harmonic measures

In this section we shall assume tha t B(W ) is  a  closed subalgebra of H ( W )
with a unit.

Definition 5.1. W e call a positive boundary measure du o n  M B relative to
a J-singular harmonic measure for p E W if it satisfies dt

Proposition 5.2. There always exists a J-singular harmonic measure for every
zE W . Specifically it has no mass on W and is supported on S (= Sj ).

Theorem 5.3. L e t dv b e  a n y  s in g u la r h a rm o n ic  m e a su re  fo r pe W . T h e n
there exists a positive kernel of L'(dv) as follows.
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1) F or any  g e Lœ(dv) gQ (z , )dv  is  a  bounded harm onic function o n  W

whose maximum modulus does not exceed 110 9  and  Q (p , )= l.
2) Every Q(z, )dv is a J-singular harmonic measure f o r  z e W.

3) F or any  hE C R (S), hQ (z , )dv  ex tends continuously  to 0, 1 114, (hence to

OK), and coincides with h on it. In particular, hQ(z , )dv
4) Q(z , )dv is a J en sen  measure for every z  e W.

Pro o f . The same arguments as in the preceding section are available up to the
condition 4). T h e  la s t assertion  is, however, easily verified; fo r  every f eB (W ),

( — n)v log I f  (n  e N) belongs to i ,  so  tha t, 1 (— n )v  log I f IQ(z, n)v  log •

f1-1(z, )dt. Letting n—*co, w e conclude 1 log IfIQ(z, )dv> log If IH(z , )dt, and

h e n c e  log If1Q(z, )dv log I f(z)I.
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