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0. Introduction

Let W be any subdomain of C"(n=1), the n-dimensional complex Euclidean
space. By R2" we denote the underlying real 2n-dimensional Euclidean space of
C, as usual. Throughout this paper we shall assume that W admits either noncon-
stant bounded analytic functions, or nonconstant bounded harmonic functions.
H*(W) will denote the commutative Banach algebra of all bounded analytic functions
on W endowed with the uniform norm. HBg(W) is the order complete Banach
lattice of all real-valued bounded harmonic functions in W< R?" with the sup
norm topology. My« will stand for the maximal ideal space of H*(W).

This paper deals with the Dirichlet problem on the Shilov boundary S of
Mpyew, Namely, under the appropriate conditions we investigate a positive
linear map from Cg(S) into HBg(W) which acts on Re H®(W)(<Cg(S)) as the
identity map. Since HBg(W) is an order complete Banach lattice, such a map as
above always exists: we can apply techniques of the positive extension in Hahn-
Banach’s extension theorem to this problem. The solution obtained by this method,
however, gives us few information on the maximality in the following sense. Let L
be any solution of the problem, and consider the functional Cg(S)3g—L(g)(p),
where p is an arbitrary, but fixed, point of W. Clearly this functional is represented
by the probability measure which is uniquely determined, and is supported on S.
Denote this measure by dv. Then by the positiveness, and from Harnack’s inequality

we have the nonnegative kernel Q(z, ) of L*(dv) such that L(g)(z)=SgQ(z, )do

for all g € Cx(S) and for all ze W. By the maximality for solutions we mean that the
induced measure dv for p as above is a boundary measure in the sense of Alfsen [1].
Thus our aim in this paper is to investigate the maximal solutions of the Dirichlet
problem on S in terms of Choquet order relation.

In case that Wis a subdomain of the complex plane, or more generally, a Rieman
surface, the author characterized a representing measure dv for any point of W
such that dv is a boundary measure and has a positive kernel Q(z, ) of L*(dv)
with a parameter z e W: Q(z, )dv satisfy the following [3].

1) For every ze W, Q(z, )dv is a representing measure for z with respect to
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H>(W).
2) For every ge L*(dv), SgQ(z, )dv is a bounded harmonic function on W
with HggQ(z, )do wgﬂgHm.

3) For every he Cg(S), ShQ(z, )dv extends continuously to the Choquet

boundary of My« ,, and coincides with s on it. Hence HS hQ(z, )dv” =

“h

1) Q(z, )dv is a Jensen measure for every z e W, if we modify the maximality
condition appropriately.

holds.

we call such a measure dv a singular harmonic measure for the point. Now, same
results as above are still valid for any closed subalgebra of H®(W) with unit 1.
Specifically, in case that Wis a bounded plane domain, and that A(W) is a subalgebra
of H®(W) defined by H®(W)n C(W), every situation takes the concrete form.
Indeed the maximal ideal space of A(W) is just identical with W, including the topo-
logy. Hence all measures involved are actually Baire measures in the complex
plane. In such a situation, for some class of domains (e.g. the one constructed by
Gamelin [2]) the Dirichlet problem on S(=0W) relative to A(W) admits an infinite
number of solutions, and a singular harmonic measure is mutually singular with the
ordinary harmonic measure on the topological boundary éW. This phenomenon
motivates the author to extend the preceding results to an arbitrary subdomain of C”.

For out aim we shall characterize the induced measures from solutions of the
Dirichlet problem on S. Proofs will be made in view of the purely real analysis.
So the analogous results are always valid for every real or complex linear subspace of
HB(W), which denotes the Banach space of all bounded harmonic functions on W
endowed with the uniform norm. That is, let B(W) be any, not necessarily closed,
real or complex linear subspace of HB(W) with unit 1. Suppose B(W) contains at
least one nonconstant function. Then there exists a probability measure with a
positive kernel which is also a boundary measure relative to B(W) and satisfies the
condition 1), 2) and 3). Further our measure has no mass on (the canonical image
of) W.

In section 1, we shall give another proof of Cartier’s theorem in the form
suitable for our purpose. Section 2~4 will be devoted to proofs of the above
statement. In section 5, however, our concerns turn toward a closed subalgebra of
H*(W) with unit 1. There we will discuss the condition 1') about Jensen measures.

The author should like to thank Professor Y. Kusunoki for his valuable sug-
gestions, above all, for the one that results in [3] may be applicable to subdomains of
cr.

1. Comparison of measures

Throughout this paper we follow the usefull terminologies in Alfsen [1],



Comparison of measures 557

Gamelin [2] and Schaefer [5]. Moreover the term ‘measure’ shall signify, in all
cases, a finite regular Borel measure on some compact Hausdorff space.

In this section we shall assume that X is an arbitrary, but fixed, compact
Hausdorff space. M(X) denotes the real linear space of all real measures on X.
In particular M*(X) stands for the set of all positive elements of M(X). We regard
M(X) as the dual of Cg(X). In this point of view we shall often use the notation

v(g) for Sgdu, where g € Cgr(X) and ve M(X). Let P be a max-stable admissible

cone on X. Namely P< Cg(X) is the convex cone satisfying the following. P
contains the constants and separates the points on X. fvgisin P if fand g belong
to P. Since P is a convex cone of Cg(X), it defines an order on M(X). This order
relation is symbolized by <p. Further we will denote by 0pX the P-Choquet
boundary, and by S, the Shilov boundary of X with respect to P. S, coincides
with the closure of dpX and is the minimum closed set on which every function of P
attains its maximum. Letf be any real valued bounded function with dom (f)20,X.
The P-lower envelope fp of f is defined as a function: f,,—sup {heP: h<f on

dom(f)}. The P-upper envelope fp of f is a function fp= —(\—7),,.

Using the P-lower envelope, boundary measures relative to P is defined as fol-
lows. A measure dv is called a boundary measure if it satisfies f=f:,(=f,,) a.e.
|dv| for all fe Cr(X). It is known that every boundary measure has no mass on a
Baire set disjoint from 0,X, and hence it is supported on Sp.

Recall that P contains the constants. So the relation du<,dv for positive
measures implies ||du| =|dv||. Hence we see that the order (<) on M*(X) is in-
ductive. It is known that every maximal element of M*(X) is a boundary measure
and conversely any positive boundary measure is maximal in M*(X) under <.
These imply, in particular, that for every du e M*(X) there exists a positive boundary
measure dv with du<pdv. Concerning all of the above, the details can be found in
Alfsen [1].

Our main object stated early is obtained as a corollary of the general theory on
the above order relation. More precisely, it is a special application of the theory on
the comparison of measures. Indeed, proofs in [3] heavily rely on the method
employed in [1] for the proof of Cartier, Fell and Meyer’s theorem. So, we reprove
and extend this theorem along the way whose ideas are found implicitly in [3].

Theorem 1.1. Let v and u, be positive measures and u, a nonnegative measure
on X. Assume that inequalities u,(g)+u,(g)<uv(g) hold for all nonnegative g € P.
Then there exist nonnegative h; and h, of L®(dv) such that 0<h,+h,<1 and
du;<ph;dv (j=1, 2).

Proof. The proof will be made in view of separation theorem in Li(dv). Set
0={feP:u,(f)>1} and R={f=0:feP and v(f)—u,(f)<1}. Denote by C
and U the positive cone and open unit ball of Lk(dv), respectively. T denotes the
convex hull of (U-C)UR where U—-C={f—g:feU, geC}. Observe that T is
open. Here we require that in L§(dv), T is disjoint from the convex set Q. To see
this, assume TnQ>sf. Then f(e Q) takes the form f=(1—s)h+sg where 0<s<1,
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heU—C and geR. First of all we have

1—@& ov(l —s)hdv=S ov (f—sg)dvgg 0v (f—sg)(dv—du,).
On the other hand, the following inequalities hold.
S Ov (f—sg)(dv—du2)=S {(sg vf)—sg}(dv—duz)gg (sg vf)(dv—du,)—s.
From 0=<sg v f(e P), it follows that

[ o v@o—duz{ g v ridu, 2{ sau,>1.

These yield 1—sgS 0v (f—sg)(dv—du,)>1—s, a contradiction. Thus we see that
onT=g.

By separation theorem, there exists a continuous linear form ¥ and a constant
¢ such that ¥(Q)=c and c=¥P(f) for all fe T. Since —Cc<T, ¥ is positive. So we
may assume ¥(1)=1, where t=1/|du,||. Observe that {r}+¢[Q—{r}] coincides
with Q for every positive e. This yields P(Q)=2¥(r)=1=2c¢=¥(T). In particular
PY(R)<1 and Y(U)<1, so that, || <1. Let h; e L{(dv) be the function which
corresponds to ¥. Then we have 0<h, <1 and S hydv=|du,|=1""1.

Next we verify du;<ph,;dv. For this consider any f of P and any positive e.

A function: (f+| f[|+1+a)/g (f+1fl+ Ddu, belongs to Q. This implies S(f+
T +1+e)h1dvgg(f+ I£ll+1)du,, so that, S(f+s)h1dvgg fdu,. Letting e-0,
we have thldvggfdul, i.e. du; <phydv. Similarly for any positive ¢ and for any
nonnegative fe P, a function f/<£+Sf(dv—du2)> is contained in R. This yields

s+Sf(dv—du2)gthldv, and hence Sf(l —hl)dvggfduz hold for all nonnegative
feP.

Now, if du, is a zero measure, all is over here. In case that du, is positive,
consider (1 —h,)dv, du, and a zero measure as the measures dv, du, and du, of the
theorem. Applying the above argument to them, we have a function k of
L*((1—hy)dv) such that 0=<k<1 and du,<pk(l—h,)dv. Here we may view
k(1—h,) as an element of L*(dv). Setting h, =k(1 —h,), we establish the assertions.

Corollary 1.2, Let du and dv be positive measures on X. Suppose that
u(g)<v(g) holds for every nonnegative ge P. Then there exists a nonnegative
element h of L*(dv), 1= h, with du<p hdv. In case that ||du| =|dv|, h is identical
with 1.

Corollary 1.3. Let du and dv be any positive measures with du<pdv. Then

n
for any finite positive decomposition du= 3. du, of du there exists a corresponding
k=1
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positive decomposition dv= Z"‘, do, of dv with du,<pdyv, (1=<k=n).
k=1

Proof. The proof is obtained by induction about n. In case n=2, Theorem
1.1 guarantees the assertion. To derive the case n=m+1 from that of n=m,

m+1
consider any positive decomposition du= > du, of du. By Theorem 1.1 thereis a
k=1

m+1
- positive decomposition dv=dv, +dv, of dv such that kZz du,<pdv, and du,;<pdv,.

Thus by induction we have the assertion.

Theorem 1.4. Let du and dv be positive measures on X with du<pdv. Then
there exists one linear map T of LP(dv) into LP(du) which satisfies the following
conditions (1< p=< ).

1) For any fe L'(dv) Sfdvzg T(f)du

2) Tis positive, and further T(g)=g a.e. du for any g € P.
3) T is a norm decreasing map, |T|,=1, (1=Sp=<00).

Proof. Let [\"J E,] be any finite decompsosition of X into Borel sets such that

k=1
u(E, n E;)=0 for every distinct k and j. Consider the family § of all such decom-
positions. We define an order (£) on & as follows. Namely for any oc=[k\jj1 E.]

and ﬂ=[\'§ Ej] the relation: o= holds if any E, of a is contained in some E; of
=1
p ae. dul. (i.e. u(E\Ej)=0) (Obviously, the order is well-defined, under trivial

n
modifications.) Every element a=[\U E,] of & induces a positive decomposition
k=1

n
on du such that du= Y y,du, where ¥, denotes the characteristic function of
k=1

E, (1£k<n). By corollary 1.3, there is a positive decomposition dv= kznl dv, of
dv with Y, du<pdv, (1=k=<n). Fix the one for each oz=[k\ijl E,] and set T(f)=
Ejl (S fdv,,)t//k/ ||dv,|| for all f e'vL°°(dv). Observe that T, is a linear map of L*(dv)
into L*(du) for each «. We can easily verify the following. 1) S fdv= S T.(f)du

2) T, is positive. 3') [T/ =] fll, and SITa(f)I"dué S |fIPdv where fis any

function of L®(dv) and 1 < p< 0.

Set B;={geL®(du): |gllo=|fllo} for every feL®(dv), and consider the
direct product space B=1II{B,: fe L*(dv)}. Since each B, is weak* compact, B
is also compact. Here we can identify each T, with an element {T,(f)} jer~(0y Of B.
Observe that {T,: a € &} is directed upwards under the induced order from §. This
implies that the family {T,}, each of which is viewed as an element of B, forms a
filter base in B. Hence it has a cluster point. Pick up the one, say {g} reL=av)
and fix it throughout. Define T(f)=g, for all fe L*(dv). Then T is a linear map
of L*(dv) into L*(du) because each T, is linear. Since T(f) is weak* adherent to
the subset {T,(f): e &} of L®(du), T also satisfies the above three conditions 1°),
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2') and 3’) for all fe L*(dv). Next we claim that T(h)=h a.e. du for every he P.

Set h e P, and for any positive ¢, choose an oy = [j\’_;l K ;] such that the oscillation of
h on any K; is less than &. Take any az[k\:Jl E,] so that a=0a, Let dv= kél do,
be the positive decomposition of dv which corresponds to du= ki‘,] Y,du. From
Vdu<pdu,, it follows ghduk/udvkll gShtpkdu/llwkdull. Since any E, is contained in

some K; a.e. du, we have Slrdv,(/||dvk||g/1—s a.e. du on E, so that, T(h)=h—c¢

a.e.du. Thisyields T(h)=h—e. Letting e—0, we have T(h)=h a.e. du.

Finally, by the condition 3’) on T, we can extend the map T onto the whole
L(dv). The extended linear map which is again denoted by T, of course satisfies
the conditions of the theorem.

Corollary 1.5. Under the same assumptions and notations as in the preceding
theorem, T(hp) = hp holds for every hp of bounded real h with dom (h)=20,X.

Proof. Since du and dv are regular, we can view EP as the lattice theoretic
supremum of a family {ge P: g<h on dom (h)} with respect to du+dv. So there
is an increasing sequence {g,}%, of P such that g,,/‘lv1,, in L'(du+dv). This
implies that g, < T(g,),” T(EP), and hence E,g T(ﬁp) holds.

2. The state space of B(W")

Let HB(W) be the Banach space of complex valued bounded harmonic functions
on W(<R?") endowed with the uniform norm. In the sequel we shall assume that
B(W) is a linear subspace of HB(W) with unit 1, and that B(W) contains at least one
nonconstant function. We should, however, point out that the quite same, or rather
simple, arguments are also applicable when B(W) is contained in HBg(W).

We will denote by Re B(W) the real linear space of the real parts of functions in
B(W). Re B(W) is a normed space with a unit, and has the canonical order (),
ie. f<g<f(z)<g(z) for all ze W. Let K be the state space of Re B(W). Under
these circumstances, every state of Re B(W) acts on B(W) as a linear form with a
unit norm. So we can embed K into the unit ball of the dual B(W)*. Namely
K={Le B(W)*: |L|=L(1)=1}.

We take K as the space X of Section 1 when we view B(W) merely as a linear
space. In case that it is further a closed subalgebra of H*(W), we consider the
maximal ideal space My as X. In the latter case, My is identified with the closed
subset of K, the set of all multiplicative linear forms of K.

Each point of Wacts on B(W) as a point evaluation, and hence it can be regarded
as a point of K. Under these identifications, every subset of W is also a subset of
K which we call the canonical image of the set. Note that such identification is
not injective in general. The canonical image of E(< W), however, will be denoted
by the same symbol E, unless confusions arise. Since the weak* topology on W is
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coarser than the metric topology, the canonical image of any compact set in W is
also compact in K. Specifically W(<K) is o-compact. Observe that the canonical
image of W is contained in My when B(W) is a closed subalgebra of H(W).

Let P(K) be the convex cone of Cg(K) which consists of all continuous convex
functions on K. P(K) is a max-stable admissible cone. Further each function of
P(K) is uniformly approximated from below by a function of the form sup {u, e
Re B(W): 1<k<n}. So a function g|W(ge P(K)) is always a continuous sub-
harmonic function on W with respect to the Euclidean metric.

An ordering over M(K) relative to P(K) is known as the Choquet’s ordering
on the compact convex set K. The P(K)-Choquet boundary then coincides with the
usual Choquet boundary of K, the set of all extreme points of K. Following custom,
we remove the prefix P(K)-, etc. from all notations concerning this order relation.
In such a situation, the definition of the lower envelope f is equivalent to saying that
f: sup{heRe B(W): h<f on dom(f)}. So by Harnack’s inequality, every f[ w
is a continuous subharmonic function on W.

Now, when B(W) is a closed subalgebra of H®(W), consider a function u on

My which takes the form u= ‘2 a,log|fil, where a,=0 and f,e BW)(1<k<n).
k=1

Set J'={sup (uy: 1=k=<n)} and J=J' N Cg(K). 7T is a max-stable admissible cone
on My, because J contains Re B(W). For any function g of J, g|W is a con-
tinusous subharmonic function on W. Hence every J-lower envelope f, has the
least harmonic majorant on W.

At the end of this section, one comment should be made concerning the Shilov
boundary relative to J. First, observe that 0,My contains 0K, the Choquet boun-
dary of K. This implies S=S,. On the other hand, every function of J attains
its maximum value on S, because every function of B(W) does the maximum modulus
on S. Combining these, we conclude S=S,.

3. Harmonic measures on K

The purpose of this section is to construct harmonic measures on K. For
this we will consider the real Banach space HBg(W). It is known that HBg(W)
is an order complete Banach lattice under the canonical order (<). Let H be the
state space of HBR(W). H is of course weak* compact convex set and contains W
canonically. The Choquet boundary 0H of H consists of all lattice homomorphisms
of HBg(W) with unit norm into the scalar. So 0H is closed. Specifically we have
that HBg(W)|0H = Cg(0H), and that every continuous linear form on HBg(W) is
represented on 0H by a uniquely determined measure. In other words, the state
space H is a Bauer simplex. Let dw, be a measure supported on dH which represents
a point evaluation of HBg(W) at ze W. Each dw, is uniquely determined, and is a
probability measure. We need one information about {dw,: z e W}.

Lemma 3.1. (Harnack’s inequality) Let HP(W) be a set of all positive har-
monic functions on W. For any pair (z, x) of Wx W, the Cartesian product of two
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copies of W, define p(z, x)=sup {h(x)/h(z) v h(z)/h(x): he HP(W)}. Then p is a
finite continuous function on Wx W with p=1 and p(z, x)=p(x, z).

Recall that Re B(W) is a subspace of HBg(W) with a unit. So each point of H
acts on B(W) as if it belongs to K. More precisely, there exists a continuous map
r of H into K such that f(q)=f{r(q)} for all fe B(W) and any g H. Note that the
map r is surjective. Define a probability measure dz, on K by t,(E)=w,{r \(E)},
where E is any Borel set on K. The measure dt, is a regular Borel measure on K

for every ze W. Further the family {dt,: ze W} satisfy the following: Sdtz=
S gordw, for all g e Co{r(@H)}. In particular, S fdt,=f(z) for all fe BOW). More-

over, by Harnack’s inequality, we have p(z, x)7! Shdtzgg hdt, < p(z, x)S hdt, for
all nonnegative h e Cg{r(0H)} and for all (z, x) of Wx W. The latter implies that
p(z, x)"1<dt,/dt, < p(z, x). Choose any point p of W and fix it throughout. Set
H(z, )=dt,/dt, and dt=dt,. Then H(z, ) satisfy H(p, )=1 and p(z, x)"'H(z, )<
H(x, )< p(z, x)H(z, ) a.e. dt.

Remark. Harmonic measures H(z, )d¢ are supported on r(6H) and hence
weak* adherent to Win K. 1In case that B(W) is a closed subalgebra of H®(W),
this implies that H(z, )dt are supported on M.

Proposition 3.2. For any fe L*(d1), SfH(z, )dt is a bounded harmonic fun-
ction on W whose maximum modulus coincides with || f|l,. For any bounded f
with dom(f)=20K, SfH(z. )dt is the least harmonic majorant offIW. Similarly

Sf,H(z, )dt is the least harmonic majorant of f,l W, where f is any bounded real
Sfunction with dom (f)=20,My.

Proof. The former assertion is trivial. For the latter observe that for is the
supremum of the family in HBg(W): {heRe B(W): h<f on dom(f)}. Thus we
have the conclusion for the assertion on f. For the one about f 7, observe first that

the least harmonic majorant of any function f in J is obtained by ng(z, )dz. This

yields the last assertion, because f, is the lattice theoretic supremum of a family
{geJ: g=< fon dom(f)} with respect to dt.

Theorem 3.3. Every boundary measure on K (resp. Mg) with respect to <
(resp. <) has no mass on the canonical image of W.

Proof. Since arguments are same, we will prove only for the order <;. For
the assertion, it suffices to show that there exists a function he Cx(Mj) such that
hy| F>ﬁ, | F, where F is a given compact set on W.

First of all we shall prove that W is disjoint from 0K. Assume some point
pe W lies in K. Since B(W) is nontrivial, there are another point ge W and a
function fe B(W) with f(p)+f(q). Let g be a function of Cg(K) such that 0=g =<1,
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g(p)=1 and g(q)=0. We have then §(p)=g(p)=1. Let {f,} be the sequence of

Re B(W) such that f,<g on K and f,(p)—1. Since {f,} forms a normal family, we

may assume f,—f on every compact set of W, where f is a harmonic function. By

<g=Z1(neN), we have f<1, f(p)=1 and f(¢q)<0. This is of course a contradic-
tion. Thus we see that W is disjoint from dK.

Let F be any compact set of Wand consider harmonic measures H(z, )dt. Then

dt can not have full measure on F. In fact, assume the contrary, {(F)=1. For any

feB(W) we have |f(Z)|=’SfH(z, )dt’ S1fllr, so that, [ fl=]fllr. This yiedls

S<cF and hence dK £ F, a contradiction. Thus we have t{(F)<1. By the regularity
of dt, there is a compact set E of My such that #(E)>0and En F=g. Let h be the
function of Cr(Mp) such that 0=<h<1, h|F=1 and h|E=0. From Harnack’s

inequalities for H(z, )dt, it follows g H(z, )dt>0 so that, ShH(z, )dt<1 for all
E

ze W. Hence we have 1>S I;,H(z, )dtgﬁ,(z) for all ze W. Thus the inequalities
hy|F=1> h ;| F hold, and these assert the theorem.

4. Singular harmonic measures

Using harmonic measures H(z, )dt, we define a singular harmonic measures
supported on K, K being the state space of B(W). WNote that H(p, )=1 a.e. dt where
p is any, but fixed, point of W.

Definition 4.1. We call a positive boundary measure dv a singular harmonic
measure for p e W, if it satisfies d¢ < dv.

Proposition 4.2. There always exists a singular harmonic measure for every
point of W. In particular it has no mass on W and is supported on S.

Theorem 4.3. Let dv be any singular harmonic measure for pe W. Then
there exists a positive kernel Q(z, ) of L®(dv) with a parameter ze W. Q(z, )dv
satisfy the following.

1) For any ge L*(dv), SgQ(z, )dv is a bounded harmonic function on W
whose maximum modulus does not exceed |g| ., and Q(p, )=1.
2) Every Q(z, )dv is a singular harmonic measure for ze W.

3) For any he Cg(S), ShQ(z, )dv extends continuously to 0K and coincides

with g on it. So we have, in particular, “S hQ(z, )dv“ = h|.

Proof. Let T be the linear map of L'(dv) into L!(dt) constructed in Theorem
1.3. Since T'is a positive map with || T||; <1, the adjoint map T* of T'is also positive
and norm decreasing. Set T*(H(z, ))=0Q(z, ). Then we see Q(z, )=0, O(p, )=1
and p(z, x)71Q(z, )SQ(x, )< p(z, x)Q(z, ) a.e. dv for all (z, x) of Wx W, because
H(z, ) satisfy the same inequalities. We can easily verify that Q(z, )dv satisfy the
condition (1). For conditions (2) and (3) choose any g € Cg(S). Recall that § | W
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is subharmonic and its least harmonic majorant is given by SéH(z, )dt (Proposition
3.2) From Corollary 1.4, it follows SgQ(z, )du=§éQ(z, )dv=S T()H(z, )t
SJH(Z, )dt for every ze W. Namely SgQ(z, Ydv>g(z) holds. Specifically if g

is in P(K), we have SgQ(z, )dvgggH(z, )dt, so that, H(z, )di<Q(z, )dv. In
other words, for every ze W Q(z, )dv is a singular harmonic measure for z. In
particular we see SfQ(z, )dv=SfH(z, ydt=f(z) for all fe B(W), on account of the
fact + Re B(W)<= P(K).

From the above inequalities, § =\ gQ(z, )dv follows, where g denotes any fun-
ction of Cg(S). Since g(resp. §) is lower (resp. upper) semi-continuous on K, and
coincides with g on 0K, we conclude that SgQ(z. )dv extends continuously to 0K

and agrees with g on it.

Remark. The terminology of singular harmonic measure is far from suitable
in this general situation.

By the similar arguments we can characterize positive measures induced by the
Dirichlet problem on S. Let L be any solution of the Dirichlet problem on S.
Namely L is a positive linear map from Cg(S) into HBg(W) with L(u)=u on W for
all ueRe B(W). By a measure for p induced by the Dirichlet problem on S we
mean a probability measure on S corresponding to the functional Cg(S)3 g— L(g)(p).

Theorem 4.4. A probability measure du on S is a measure for p induced by
the Dirichlet problem on S if and only if it satisfies dt <du.

Proof. The sufficiency is contained in the proof of the preceding theorem.
For the necessity, observe that L(g)=g on W, where L is the solution corresponding

to du and g € P(K). This implies that L(g)gg gH(z, )dt on W, and hence dt<du.

We define a J-singular harmonic measure on M z by means of harmonic measures
H(z, )dt similarly to the preceding section.

5. J-Singular harmonic measures

In this section we shall assume that B(W) is a closed subalgebra of H®(W)
with a unit.

Definition 5.1. We call a positive boundary measure dv on My relative to
< a J-singular harmonic measure for pe W if it satisfies dt <, dv.

Proposition 5.2. There always exists a J-singular harmonic measure for every
ze W. Specifically it has no mass on W and is supported on S (=8)).

Theorem 5.3. Let dv be any singular harmonic measure for pe W. Then
there exists a positive kernel of L*(dv) as follows.
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1) For any geL”(dv)SgQ(z, )dv is a bounded harmonic function on W

whose maximum modulus does not exceed |g| ., and Q(p, )=1.
2) Every Q(z, )dv is a J-singular harmonic measure for ze W.

3) For any he Cg(S), ghQ(z, )dv extends continuously to 0;Mp (hence to

S ho(z, )dv” —|lh].

0K), and coincides with h on it. In particular,

4) Q(z, )dv is a Jensen measure for every ze W.

Proof. The same arguments as in the preceding section are available up to the

condition 4). The last assertion is, however, easily verified; for every fe B(W),
(—=n)v log|f|(ne N) belongs to J, so that, S(—n)v log | f1Q(z, )dv gg(——n)v]og-

| fIH(z, )dt. Letting n—oo, we conclude Slog | f1Q(z, )dvgglog |fIH(z, )dt, and

hence | log 110(z, Moz log |/(2).
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