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Introduction

On the Teichmiiller space of a compact Riemann surface, Ahlfors [2] first
showed the continuity of Dirichlet norms of Abelian differentials with prescribed
A-periods. Recently, this result has been extended to some classes of open Riemann
surfaces (cf. Kusunoki-Taniguchi [8], Shiga [16]).

On the other hand, Minda [12] proved that a quasiconformal mapping of
Riemann surfaces induces isomorphisms between the Hilbert spaces of square
integrable differentials with specific properties, and these isomorphisms are quasi-
isometric (cf. Proposition 2.2).

To generalize these results, we shall define here the notion of the “deformation
family of Hilbert spaces’ and investigate the variation of reproducing kernels for
bounded linear functionals (Sec. 1).

The subspaces of square integrable harmonic differentials and the isomorphisms
induced by quasiconformal mappings whose maximal dilatations converge to one
are typical examples of our deformation family.

In Sec. 2, we shall prove the variational formulae of the period reproducing
differentials for subspaces of square integrable harmonic differentials by using the
results of Sec. 1 (e.g. Theorem 2.3). Further we shall show the continuity of norms
of reproducing differentials for a fixed Jordan arc on a surface, which gives an
extension of the author’s previous result [17].

We shall use freely the concepts in Ahlfors-Sario [4] (or Kusunoki [7]), especi-
ally notations and basic facts for the square integrable differentials on Riemann
surfaces.

Finally, the author wishes to thank Professors S. Mori and Y. Kusunoki for
helpful conversations with valuable suggestions.

§1. The deformation family of Hilbert spaces
1.1. Let H,, H, be Hilbert spaces and 4 be an isomorphism of H, to H,.
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One can consider the adjoint mapping A, of A such that

(1.1)  (A(x), y)a=(x, A(1), for any xe H; and ye H,, where (,); are
are the inner products in H; (i=1, 2).

Lemma 1.1. The adjoint mapping A, has the following properties;

(1) A, is an isomorphism of H, onto H; and | A4| = A|,

(2 Ay.u=A, and

(3) Let S, be a closed subspace of H, and S,=A(S,). Put Ay=(Als)s
then A oP,=P,cA,, where P; are orthogonal projections of H; onto
S; (i=1,2).

Proof. Since (1) and (2) are classical, we prove (3) only. For any xe S; and

any y € Hy, (x, AxoPy(); =(A(X), Po(»))2=(A(x), y)2=(x, Ax(¥)1=(x, P1roAx(M)s,
that is, AyoPy =P cA,.

1.2. Let H, (t=0) be Hilbert spaces and 4, (t>0) be isomorphisms of H, onto
H,. We call {(H,, 4)};>0 the deformation family of H, if there exist constants
K, (=1) such that lim K,=1 and for any x€ H,,
t=0

(1.2) K72 xllo 2 14X = K12 xlo,

where || - ||, denotes the norms in H,.

Considering a bounded linear functional L, on H, for each ¢, we denote by b,
the reproducing kernel for L, on H,, that is, L(x)=(x, b,), for any x e H,, where
(,), is the inner product in H,.

Lemma 1.2. Let {(H,, A)};>o be a deformation family of H, Suppose
that there exist bounded linear functionals L, on H, (t20) such that lim L(A,(x))=
=0

Lo(x) for any xe Hy. Then

l_iﬁ ||b,||,g ” bo”o-
t=0
lim 1bl; = llbollo if and only if lim (A4)x(be) — bollo=0.
Proof. From the above assumption we have
(x, bo)o=Lo(x)=lim L,(4,(x)) =1im (4 (x), b )i=lim (x, (4)x(bo))o-

Namely, {(4)«(b)};>o converge to b, weakly in H, as t\,0. Therefore,
lti_% [(ADx(B)llo2 lbollo-
On the other hand, from (1.2) and Lemma 1.1 (1) we have

liﬂ ||(At)*(b:)|]o = 11_m “bt”r
t=0 t—0

The last statement is easily obtained.

Theorem 1.3. Let {(H,, A)},>o be a deformation family of Hy and L, (tZ0)
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be linear functionals with reproducing kernels b, on H, satisfying lim L{A/(x))=
t—=0
Lo(x) for any xe Hy. For a fixed closed subspace S, of H,, put S,=A4,S,) and de-
note by c, the reproducing kernel for L,|s, on S,. If lim ||b|l,= ||bollo, then lim
t—0 t=0
lle:lle=1lcollo-
Proof. Recall that ¢,=P/(b,) where P, are orthogonal projections of H, onto
N
S, (t=0). Putting (;1\,31*=(A,|so)*, we have (A4,)4(c)=Pyo(A4,)4(b,) from Lemma
1.1 (3). So, we have from Lemma 1.2

lim II(A,)*(Cr) Collo=1im [ Po((4:)x(b) = bo)llo = im [[(4)(br) — bollo=0.
Thus, from Lemma 1.2 agam 11m lede=lcollo-

§2. The quasiconformal deformation of Riemann surfaces

2.1. Suppose that f: R—»R’ is a K-quasiconformal mapping of a Riemann
surface R onto a Riemann surface R’. Then f induces an isomorphism f#: I'(R")—
I'(R) as follows (cf. [12]).

For each w'=a(w)dw+b(w)dw e '(R’) in terms of a local parameter w in a
neighbourhood of p'=f(p), f*(w') e I'(R) is defined by

fH@)={a(Nf.+ b))}z +{a(f)fs +b(f)():}dz

in terms of a local parameter z in a neighbourhood of p.
Furthermore, we define f§ as P,of ¥, where P, is the orthogonal projection from
I onto I',.

Proposition 2.1 ((12]) (i) f* is an isomorphism of I' (R') onto I'(R), where
r.=r.r,r, /Iy, Iy and for any o' eI'(R")

2.1 K™ 12| o' ||g S [ fH(@) g S K2 || @' || g--

(ii) f% is an isomorphism of I' (R"), where I'.=T", I'so, T'ye T'hos s and for
any o'eI'(R")
(2.2) K712 ||o'|| g S I fi(@)r S K2 ||| o

To use the results of the preceding section, we shall consider a bounded linear

functional L:w— S o on I',(R) where c is a 1-cycle on R. Now, we note the fol-
c

lowing;

Proposition 2.2 (¢f. [12] Theorem 4). Let f: R-»R’' be a K-quasiconformal
mapping. For every 1-cycle ¢ on R and 1-cycle ¢’ determined by f(c),

2.3) S w=gc fiw) welR).

2.2, Let f, (t>0) be K,-quasiconformal mappings from R, onto R, with
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lim K,=1. Then from Proposition 2.1 (ii), {(I'/(R,), (f)D}>0 is a deformation
t-0
family of I',(R,).

For each closed subspace X(t) of I'(R,) and every 1-cycle ¢, on R,, one can find
the X(t)-reproducing differential o(X(?), c,), that is, it is the differential in X(¢) sati-

sfying S w=(w, o(X(t), ¢,), for any we X(t) where (, ), is the inner product on
F,,(R,).

Theorem 2.3. For each closed subspace X(0) of [',(Ry) and a 1-cycle ¢, on R,

we put a(X(0))=0(X(0), ¢o) and a(f,; X(0))=0((f)i(X(0)), f7i(co)) respectively.
Then

(V2] lo(fe; X(0) ~(f)i(a(X(ODIl, < /2(K, = D) a(X(O)llo, and
(2.5) K72 a(X(O) o = lo(fs XO)DI, < K[ o(X(0))]lo,

where | - |, is the Dirichlet norm on I'(R,).

Proof. From Proposition 2.2, when X(0)=T",(Ry), o(I'y(Ry))=(f)i«(c(I'(R,),
fi1(co))) where (f,)i, are adjoint mappings of (f,)§ (t>0) (cf. 1.1). Hence from
Lemma 1.1 (3) we have

a(X(0)) = Pox(a(I'i(Ro)))
= Poxo(fhs(a(TW(R)), f7*(co)))

N~
=(fDisoPex(a(Ty(Ry), £7(co)))
N
=(fDix(o(f;: X(0))),
where P,y (resp. P,x) is the orthogonal projection of I',(R,) onto X(0) (resp. I'(R,)

~N

onto (f)i(X(0))) and (f)f«=((f)i|x©0)« Therefore, we conclude
lo(XO)lo= | (Fiala(fi: XOlo
N

SRl ol XODI =1 RN o(fe: X0,
=Ki2|o(f: XO)II.-

By considering f;! we obtain the other inequality of (2.5) similarly.
Furthermore, from the above consideration we have

lo(fes X(0) — (f)i(a(XO)IIF
=llo(fe: XODIF+ I(Di(e(XOMIF
= 2(a(f:: X(0)), (f)i(a(X(0))),
Zllo(fe; XODII? + K.l a(X(0))11F — 2(a(X(0)), a(X(0))o
S2(K,— Dlla(XO0)]3.

Thus the proof is complete.
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Corollary 2.4. We denote by u, (t>0) the complex dilatations of f,. Sup-
pose that lim || ||/t =0, where ||| =ess. sup |u,|. Then
=0

2 No(£:; X (0) — (f)i(o(X(0))) ,-0=0, and

72%‘ lo(fs; X))l le=o=0.

Proof. Since K,=(1+|)lo)/(1—|litllw), We can easily show the statements
from the above theorem.

Corollary 2.5. Let ¢, be another 1-cycle on Ry and ¢, be the 1-cycle determined
by f7'(co). We define the reproducing differentials y(X(0)) and y(f,; X(0)) for
co and c; respectively as in Theorem 2.3. Then

|§.. otis X = | ox)]

< V2KK, =D (X O]l o W(XO)o.
Proof. Since Y(X(0)=(f)bx(W(f,: X(O)),
[ ocx=exo), vexom

=(0(X(0)), (f:)\?.;(tﬁ(f,; X))o
=((fi(e(X(0))), ¥(f:; X(0))),.
Hence from (2.4) and (2.5) we have

{ ot xon- 1 atxo)

=1(o(fi: X(0), ¥(f:: X(0))), — (a(X(0)), Y(X(0)))ol
=(a(fr: X(0)) — (f)i(a(X(0))). ¥(fi: X(0))),]
SV2ZKLK, = DIa(XO)oly(X(O0)) 0.

2.3. Remarks. 1) For a quasiconformal mapping f: R—»R’ it is known (cf.
[10] Lemma 3) that for w,, w, € I'(R’) :

(filw)*, fi(@or=(0,, ®;)g -

Hence we have f},(0)= —((f}) (w*))* for we ['(R).

2) From Proposition 2.1, fi(F(R)=T«(R) for I',=T,, @y, Ty, I, and
Iy, Hence Theorem 2.3 implies variational formulae of {a(I'y(R,), fri(co)},
I'.-period reproducing differentials.

On the other hand, it is shown in [10] and [12] that I'* is not preserved by a
quasiconformal mapping generally. Hence Theorem 2.3 is not applicable to



402 Hiroshige Shiga

I'(R,)*-period reproducing differentials. But by considering the orthogonal
decompositions in I',, we can show the continuity of their Dirichlet norms (cf.
Theorem 2.7").

3) As for the fact ],irré la(fy; XO)|,=1lo(X(0))]o, one can give a simpler proof

as follows. Let C, (resp. C,) be the homology class on R, (resp. R,) determined by
¢o (resp. ¢,=f71(cy)). Then it is known that

lo(fis T RNIZ=la(I(R), e)IZF=XC)),
where A(C,) is the extremal length of C/(cf. [1] or [7]). By the quasiconformality
of fi, lim [lo(f;; I'(Ro))ll,=1lim A(C))'2=2A(C)'/?=|la(I',(Ro))llo- Thusfrom
t-0 t=0

Theorem 1.3, we obtain lim | 6(f,; X(0))|,=10(X(0))|l, for every X(0)=TI",(Ro)-
t—0
4) From (2.4) and (2.5) we can easily show that

lo(fes X(0)) — (f)*(a(X Ol = M,[|o(X(0))llo,

where M,=/(K—1)(3K,+ DK; 1.
As for I'y,-period reproducing differentials, the similar result is known in [8].
Another result for the variation of I',o-period reproducing differentials is given in [18].

2.4. Let po and g, be arbitrary fixed points on R, and let d, be a fixed Jordan

arc from p, to g and d,=f;(d,). Then linear functionals L,: w—\ w are bounded
de

in I'(R,) (t=0). For each closed subspace X(t) of I'(R,), we denote by ¢(X(?), d,)

the reproducing kernel for L[y, in X(¢).
For X(t)=T,.(R,), the following is known:

Proposition 2.6 (c¢f. [17] Theorem 5). Let f,: R,—»R, (t>0) be K,-quasi-
conformal mappings with lim K,=1. Then
t—0

lim [|o(Ie(Ry). d))l:= [(I'se(Ro). do)lo-

In this section we shall extend the above result to arbitrary subspace as follows;

Theorem 2.7. Let R, be an arbitrary Riemann surface and let f,: R,—»R,
(t>0) be K,-quasiconformal mappings with ]1m K,=1. For each closed subspace

X(0) of I')(Ro), we put ¢(X(0))=ep(X(0), do) and o(f,; X(0))=o((/)i(X(0)), d))
respectively. Then

(2.6) lim [lo(f:; X)) = llo(XO)o-

To prove this theorem we need some lemmas. At first, we consider a set E,
on R, such that E, is the union of at most countable number of analytic curves on
Ry, and Ry=R,—E, is simply connected. And put E,=f;!(E,), R;=R,—E,.

We may consider I',(R,) as a closed subspace of I',(Rp) and assume that d,
is in R;. Then we have
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Lemma 2.8. Let @(f,; I'(Ry)) be the reproducing differential for
L:|(f'.)if(r;.(Ro)) on (f)i(I(Ry)), where f =fz|R,- Then

@7 lim [[¢(f:5 Ti(RoDll:= lo(T'W(RoDllo-

Proof. By [17] Theorem 1, for each we I, (Rp)

lim L((f)i(@))=Lo(@) -

Hence from Proposition 2.3 and Theorem 1.3, (2.7) is easily obtained.

Lemma 2.9.

(2.8) lzl-»nﬁl lo(fe; TR Z o, (Ro)llo-

Proof. Suppose that each f, is real analytic. For each wel(R,) we set
(@) = (@) + 0l Oloe TooR). Then| o = (@={ Mi@+( ot

Since ||wiy|,—0 as t—0, we can show that

tim{ (M@= o
t—=0 Jd. do
by the same method as in [17] Theorem 1. Hence from Lemma 1.2 (2.8) is valid.

For arbitrary quasiconformal mappings {f,} it is known (cf. [8] Lemma 2)
that for sufficiently small ¢ (>0) there are Riemann surfaces R, and K,-quasiconformal
mappings f;: R,—~R, such that each f, is real analytic and (R,, f;!) is equivalent to
(R, 7Y in T*R,), the reduced Teichmiiller space of R, (cf. [6]). And we can
show (2.8) by the similar method to that of [17] Lemma 4. For convenience, we
shall sketch the proof.

From the definition of the equivalence class in T#(R,), there exist conformal
mappings ¢,: R,—R, such that ¢, is homotopic to f;!of,, Hence as t—0, F,=
feedof 71 which are homotopic to the identity on R,, converges to the identity uni-
formly on every compact subset in Ry,. Hence [|[@(I,(Ro))llo=Ilo(T'y(Ro), do)llo=
lo(T(Ro), Fdo))llo+0(1) as t—0. From this result we can show that the difference
between the Dirichlet norm of I',(R,)-reproducing differential for f;!(d,), say e(d}),
and the Dirichlet norm of I'y(R,)-reproducing differential for ¢,of 71(d,), say e(¢,d,),
is o(1) as t—0. Further ||@(f;; I'(Ro))|,=e(¢,d,) because ¢, is conformal. Hence

we have
ltiTng lo(fe: F/.(Ro))l|,=1}_£13) e(¢,d0)=!1;_11(} e(d§) 2 (I (Ro))llo- q.e.d.
Lemma 2.10. For weI'y(Ry), (f)i(w)e '(R,).

Proof. For each dg,eI,o(R,), by Proposition 2.1, there is dgq € I',o(R,) such
that (f,)*(dgo)=dg,. So, by 2.3 Remark 1) we have
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((fDi(@), dgF) == ((fDi(@)*, dg )k
=—((fD*(@)* dg)r, (T%)*=I.>T.)
= — ((f)*(@)*, (f)*(dg0)).
=(®, dg8)o=0.  (I'yLT3%)
Therefore (f;)i(w) € (IF*(R)* =T (R,). g.e.d.

Lemma 2.11. Let R, (t=0) be compact or compact bordered Riemann surfaces
and let f,: R,— R, be K,-quasiconformal mappings with lim K,=1. Then
=0

lim [|pCf;: Tu(RoDlli= ll9(I'(Ro)llo-

Proof. First we assume that f;! are differentiable on R, and conformal on
R, —V, for each t>0, where Vj is a fixed local disk on Rj,.

Denote by P, (t=0) the orthogonal projections of I'(R,) onto I',(R,), then we
can show that P,o(f))}I,(Ro))=T,(R,) as follows.

It suffices to show that Pyo(f; Di={P,o(f})i}"'. For each wel(R,) put

Uo,(p)= Sp o (p e Ry) on R| and denote by u,, the solution of Dirichlet problem on

R; with tﬁoe boundary value wug,of, on dR;=0R,UEfUE;. Then u, has the
boundary value ug,°f,, Where the boundary value means the non-tangential limit on
the boundary almost everywhere if the boundary represents the unit circle by a
conformal mapping. Then (f)i(w)=du,, In fact, (fI)*(w)—(f)i(w) is the
differential of a Dirichlet potential v, on R,. Since a Dirichlet potential is a Wiener
potential (cf. [5] p. 81), there exists a potential U on R, such that |v,|<U from [5]
Hilfssatz 6.4. By Littlewood’s theorem (cf. [19] Theorem IV. 33) U has the radial
limit zero almost everywhere on dR}, and v, also does. Hence (f}){(w) is the differ-
ential of HD-function whose boundary value is ug,°f,, that is, (f})i(w)=du,,,.

Therefore for any closed curve y, on R,,S f ;)2(w)=g o where y,=f(7,).
Ve Yo

By Lemma 2.10 and the same argument as above, P,o(f})i(w) has the same y,-
period as (f})f(w) and Sp P,o(f))i(w) on R, has the boundary value ug,f, on JR,.

Considering the same argument for Pyo(f;™')§, we can verify that w’'=Pye
(f,"HioPo(f1)i(w) has the same period as w for any closed curve on R, and has
same boundary behavior near R, as w. So, we conclude ' =w.

Thus ¢(f;; I'y(Ry)), the reproducing differential on I',(R,), is PAG(fr: T'i(Ro))),
the reproducing differential on Po(f)i(I'(Ro)), and [B(f; I'(Ro)lg; 2 llo(f::
T (Ro)),. Hence we have from Lemma 2.8 and 2.9

lim fie(fi; Fi(Ro))lle=llo(I'i(Ro)llo-

For an arbitrary {f,} it is known (cf. [13] Proposition 6) that for sufficiently
small ¢ (>0) there are Riemann surfaces R, and K,-quasiconformal mappings f;:
R,— R, such that {f,} satisfies the same condition as above and (R,, f;!) is equivalent
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to (R, fy') in T*R,). By the same proof as in Lemma 2.9 we can prove our
conclusion for an arbitrary {f,}.

2.5. Proof of Theorem 2.7. We may assume that d, is in R{=R,—E,.
Further, as in the proof of Lemma 2.8 we may assume that each f, is real analytic on
R,. Then by Theorem 1.3 it suffices to show that lim | @(f,; T'W(Ro))|l;=1lim ||o(I'(R,),

=0 t—0

d)lle=llo(I'i(Ro))llo-
First we shall show that for each R,

(2.9) le(TW(Ry), d)ll,=inf {[@,(W)llw,: W, is a regular subregion
of R, and contains d,.},

where ¢, (W,) is the I',(W,)-reproducing differential for L,|r,,)-

Since I'(R)<=T(Wy), (I (R), d)lI: < | @u(W)llw,. On the other hand, it is
known (cf. [15] p. 100) that o((R,), d)=dp;,+dp}.. where p;, is the (I)-L,
principal function for the singularity ¢ =log|(z—q,)/(z—p,)| (0d,=q,— p,) on R, and
pi. is the (I)-L, principal function for the singularity t=arg(z—q,)/(z—p,) on R,—
d,. The similar result is true for ¢,(W,). Hence by [14] II 1. H Theorem, we
conclude Wlig}( lodWllw,. = llo(I'(Ry), d)l;. Consequently (2.9) follows.

If lim |o(fy: T/(Ro)l:= 0T (Ro)llo is not true, then there exists a sequence
t=0
{tu}w=1 such that lim ¢, =0 and lim |lo(f,,; T(Ro))ll;,,> llo(I'(Ro))llo by (2.8). Then

we take a regular subregion W, of R, such that
lilg lo(frs TR e, > l@s(Wodllwo 2 | @(Ts(Ro)lo-
On the other hand, from Lemma 2.11 for sufficiently large n we have

lesWe)llwe, =l Wo)llw,+ y/2,
where W, =f7(Wo) and y=lim llo(f,,: TR, = @i Wolw,>0.
Hence from (2.9) we have for sufficiently large n
le(fr; TR, = ll@(TW(Rs,), di)ls,
< louW,)llw,, < lim lo(f,,: TR, ~ y/2
This is a contradiction. q.e.d.

By the similar proof to that of Theorem 2.3 and Corollary 2.5, we can prove the
followings.

Corollary 2.12. For each closed subspace X(0) of I'(Ry),
(2.10) lim [[(f)i(@(X(0) — o(f;; X(O)I|; =0

Corollary 2.13. Let d; be another Jordan arc on Ry and d,=f;1(dy). Then
Sfor each closed subspace X(0) of I',(Ry)
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tim{ ot XO)= S p(X(0)).
t—0 Jd; do

2.6. We note that for ¢(X(0)) and ¢(f,; X(0)) the same inequalities as in The-
orem 2.3 do not hold generally.

In fact, when Ry=R,={z; |z| <1} and f(z)=2z|z|* (1>0), it is known (cf. [11])
that

lo(IW(Ro)) 3= — = log (1—r?), and

lo(f:: TW(R) 2= — L log (1—r26+1),

where p,=0 and gqo=r (0<r<1). Hence the simple calculation gives the fact
sup {|@(TW R )lo/llo(fi; T(R))|,: 0<r<1}=+ 00, and we can obtain the desired
results.

2.7. As 2.3 Remark 2), we know that Theorem 2.7 implies the continuity of
I -reproducing differentials under quasiconformal deformations, where I',=
Tys Thos Thse» OF T'o.  Furthermore, we can show the continuity of I'}-reproducing
differentials by considering the orthogonal decompositions I'y=I+ T}, =T+
T'¥o=Ty,+T¥e=Iyo+ '}, and Theorem 2.7. More generally,

Theorem 2.7'. Let R,, f,, d, be the same as in Theorem 2.7. For each closed
subspace X(0) of I'(Ro) we put o(X(0))=q(X(0)*, do) and ¢*(f;; X(0)=a((f)}
(X(0))4, d,) respectively, where X* is considered in I',. Then

(2.6) lim lo(fe; XN, = o (XO))llo-
In [11], Minda studied the pseudo distance

dR(a, b)=sup {Ju(a)—u(b)|/ /Dr(u); u € KD(R), Dg(u)#0.}

where a, be R and KD(R) is the space of u e HD(R) such that du* eI, (R). Itis
easily seen that d®(a, b) is the Dirichlet norm of I',(R) N I, (R)*-reproducing dif-
ferential for a Jordan arc from a to b.

Hence from Theorem 2.7’ and the orthogonal decomposition I'y,=I},+ 4. N
T'¥.., we have:

Corollary 2.14. Let R,, f,, d, be the same as in Theorem 2.7 and put p,=

fi(po)s 4:=f7'(qo). Then
11_{13 dﬁ‘(Pn qt) = dﬁ"(po, qo) .
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