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Introduction

On the Teichmtiller space of a compact Riemann surface, Ahlfors [2] first
showed the continuity of Dirichlet norms o f  Abelian differentials with prescribed
A-periods. Recently, this result has been extended to some classes of open Riemann
surfaces (cf. Kusunoki-Taniguchi [8], Shiga [16]).

O n  the  other hand, M inda [12] proved that a quasiconformal mapping of
Riemann surfaces induces isomorphisms between the  H ilbert spaces of square
integrable differentials with specific properties, and these isomorphisms are quasi-
isometric (cf. Proposition 2.2).

To generalize these results, we shall define here the notion of the "deformation
f am ily  of  Hilbert spaces" and investigate the variation of reproducing kernels for
bounded linear functionals (Sec. 1).

The subspaces of square integrable harmonic differentials and the isomorphisms
induced by quasiconformal mappings whose maximal dilatations converge to  one
are typical examples of our deformation family.

In  Sec. 2, we shall prove the variational formulae of the period reproducing
differentials for subspaces of square integrable harmonic differentials by using the
results of Sec. 1 (e.g. Theorem 2.3). Further we shall show the continuity of norms
of reproducing differentials fo r  a  fixed Jordan arc on a surface, which gives an
extension of the author's previous result [17].

We shall use freely the concepts in Ahlfors-Sario [4] (or Kusunoki [7]), especi-
ally notations and basic facts for the square integrable differentials on Riemann
surfaces.

Finally, the author wishes to thank Professors S. Mori and Y. Kusunoki for
helpful conversations with valuable suggestions.

§ 1 .  The deformation family of Hilbert spaces

1 . 1 .  Let H 1 ,  H 2  be Hilbert spaces and A  be an  isomorphism of H 1 to  H 2 .
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One can consider the adjoint mapping A , of A  such that
( 1.1) (A(x), Y)2=(x, A*(01 for any x e H i  a n d  y e H2 , where (

are
are the inner products in H i (i = 1, 2).

Lemma 1.1. The adjoint mapping A , has the following properties;
(1) A*  is  an isomorphism of H 2  onto H , and  11A*11=11/1 11,
(2) A = A ,  and
(3)

 
L et S , be a  closed subspace o f  H , and S 2  A(S i ). P u t  -ii,= (A is t )*,
then 21-„.P 2 = P 1 0A,, w here P i are  orthogonal projections o f  H i onto
S, (i = 1, 2).

P ro o f . Since (1) and (2) are classical, we prove (3) o n ly . For any x e S, and
any y c H 2 , (x , i r e P 2 ( 0 1

 = (A (x ) , P2(02=(A(x), Y )2 
= ( x ,

 A * (0 1 = 0 05 PeA*(01 ,

that is, A * .P 2 = P 1 cA* .

1 .2 .  Let H, 0) be Hilbert spaces and A, (t> 0) be isomorphisms of H, onto
H t . We call {(H„ A„)},,, the deform ation fam ily  of H, if  there exist constants
K ,(_ 1 ) such that lim K 1 =1 and for any x e H,

(1.2) Ki-1/214110511A1(Ol15_-1(1/211xdo,

where 11•11, denotes the norms in H1.
Considering a bounded linear functional L, on H, for each t, we denote by b,

the reproducing kernel for L, on H„ that is , Lf (x)=(x, b,), for any x c H„ where
( , ), is the inner product in H,.

Lemma 1 .2 .  L e t  {(111, A d ) ,"  b e  a  deform ation fam ily  o f  H o . Suppose
that there exist bounded linear functionals L, on H, (t 0) such that lim L,(A,(x))=

t-13
L o (x) f or any  x e H o . T h e n

lim M b1111 -. M b 0  Mo.

lirn Ilb = Mb 0 M0 if  and only  if  limll(At)*(bd — bollo= 0 .
t-, c1

P ro o f . From the above assumption we have

(x, 1)00  =L 0 (x)=1im L1(A,(x))=1im (A (x), b (x, (A 1)*(b1))0.
t t-40

Namely, {(A,) * (b ,)} ,,, converge to  130 w e ak ly  in  H , a s  t\ O. Therefore,
lim11(At)*(bt)ll o b0Mo.t—o
On the other hand, from (1.2) and Lemma 1.1 (1) we have

lim11(At)*(bt)110= 11mIlbtlit-t-40

The last statement is easily obtained.

Theorem .1.3. L et {(11 r, A1))1>0 be a deform ation fam ily  o f  H o  an d  L, (t 0)
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be linear functionals w ith reproducing kernels b, on H, satisfy ing lirn L,(A,(x))=
t—■0

L o (x) for any  x e H o . For a fixed closed subspace S, of H 0 , put S t = A t (S0 ) and de-
note by ct th e  reproducing kernel f o r L,I s ,  on  S t . If  Jim tbM= Ib 0 I0 , th en  Ern

t-o
IletIlt= Ilcollo.

Pro o f . Recall that ct =  P (b ) where Pt are orthogonal projections of II,. onto

S, (t 0). Putting (A ) * =(A t Iso) * , w e have (At)*(ct)= Po°(At)*(bt) from Lemma
1.1 (3). So, we have from Lemma 1.2

Ern 11(4 * (0  -  co  11 0 = Jim 11Pa(At)*(bt) -  /01105 Jim 11(At)*(bt) - 1 7 0110 = O.
t-o t-o t-o

Thus, from Lemma 1.2 again, lim o.t-o

§ 2. The quasiconformal deformation of Riemann surfaces

2 .1 .  Suppose that f :  R -).R ' is  a  K-quasiconformal mapping of a Riemann
surface R onto a Riemann surface R '.  Then f  induces an isomorphism f ' :  F(K)->
F(R) as follows (cf. [12]).

F or each of = a(w)dw + b(w)diT, e F (K ) in  terms of a  local parameter w in  a
neighbourhood of p' =f(p), f 5 (co')E F(R) is defined by

f ° (& )= {a (f ) f z + b ( f ) ( j ) z }d z + {a (f )f ,+ b (f ) (f ) ± }d2

in terms of a local parameter z in a neighbourhood of p.
Furthermore, we define f 1, as P a ',  where Ph is the orthogonal projection from

F onto Th.

Proposition 2.1 ([12]) (i) f 5 i s  an  isomorphism of  I'„(R ') onto f„ (R ), where
z = F„, F e , Fc 0 , 1e 0 , and for any co' e TOO

(2.1) K - 1 / 2
11(011R,511PlaHR.5.-K1/211(0111R,.

(ii) f :  is an isomorphism of F z (K ), where T z =1",„ T h e '  T h e ,  T ho , T h m ,  and for
any co' e Th(R')

(2.2) IC-1/211(0'11R, Ilft(a)IIR l< 1/2 11(0'

To use the results of the preceding section, we shall consider a  bounded linear
functional L:(0.- w on Fh (R ) where c is  a  1-cycle on R .  Now, we note the fol-
lowing;

Proposition 2.2 (cf . [12] Theorem 4). Let f :  R-4R' b e  a  K-quasiconformal
m apping . For every 1-cycle c on R and 1-cycle c' determined by f(c ),

(2.3) (0=5' f (co) co e F h(R) .

2 .2 .  Let f ,  (t>0) b e  K c quasiconformal m appings from  R , o n to  Ro w ith
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lim Kt = 1 . Then from  Proposition 2.1 (ii), {(F h (R t) ,  ( f t ) ) } , , 0  i s  a  deformation
family of Fh(Ro).

For each closed subspace X(t) of Th (R ) and every 1-cycle ct on R„ one can find
the X(t)-reproducing differential o- (X(t), ce ), that is, it is the differential in X (t) sati-
sfyingc o = ( o ) ,  o -(X(t), c t )), fo r any con X (t) where ( , ), is the inner product on

ct
r h (R t).

Theorem 2.3. For each closed subspace X(0)of F h (R o ) and a 1-cycle c o on Rcl,
we p u t o-(X(0))=0-(X (0), c o )  an d  o-( f t ; X(0 ))= 6 ((f)3 (X ( 0 )), f  '(c 0 )) respectively.
Then

(2.4) X(0))— (Pt( 0-(X (0 ))11t \ 1 2 (Kr - 1 )11a(X(0 ))110, and

(2.5) KT I-12 110-(X(0))11 0 5 II c(fi, X(0))111 /q / 2 110.(X(0))11

where Il • l is the Dirichlet norm on T(Rt).

Pro o f . From  Proposition 2.2, when X(0)=Fh(R0),o(rh(R0))=(ft)*(a(rh(R,),
f t 1(co))) where (ft ) *  are adjoint mappings of (PI,' (t> 0 ) (cf. 1.1). H ence from
Lemma 1.1 (3) we have

a(X(0 ))=Pox(a(rh(RoD)

=Pox°(M*(a(rh(Ri),.fTqc0)))

=(.1;),*°P,x(a(Th(R), f Ti (co)))

=(ft)f.*(a(ft; X(0 ))),
where Po x  (resP. P t x ) is the orthogonal projection of Fh (R o ) onto X(0) (resP. h(Rt)
onto ( f ) (X ( 0 ))) and (Pt* =Oft», lx(o))*• Therefore, we conclude

a(X(0 ))II o = (0(ft ; X(0))) o

5 II (Pi:* II II cr(f.,  X(0 ))II :5 II ( f ) II a(ft; X(0))11,

_<__KU2 I1(4.fr ; X(0 ))111.

By considering f 1 we obtain the other inequality of (2.5) similarly.
Furthermore, from the above consideration we have

110- (ft; x(0)) — (ft)f,(a(X(0)))11

=11a( f t ; X(0 ))112fr +11(f)i,(0-(X( 0 )))11
— 2(u(ft; X(0 )), (ft)t(0-(X(0 ))))t

IIc(ft; x(0))11 + KtIla(X(0))11ô ---- 2 (a(X(0 )) , c(X(0 )))0

2(Kr — 1) 110-(X(0 ))11 ô.

Thus the proof is complete.
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Corollary 2.4. W e denote by  at (t> 0 ) the com plex  dilatations of  ft . S u p -
pose that lirn 111,411.4= 0 , where ilyt ijœ =ess. sup Itit l. Thent-o

d
—

d t  
110- (ft

"  
X (0)) - (ft)f.( 0- (X (0 )))11?It=o =0, and

d 
110-(f • X(0))11 I 0 =0.-d i t , t t-

P ro o f . Since K, = (1 + lit11.0)/( 1  - 11/1t11 cc), we can easily show the statements
from the above theorem.

Corollary 2.5. Let cO be another 1-cycle on Ro  and c; be the 1-cycle determined
by f ; - ' ( 4 ) .  W e define the reproducing dif ferentials til(X(0)) an d  tk(ft ; X(0)) f or
ci; and c; respectively as in Theorem 2.3. Then

o-(f;; X (0 )) - 4 o-(X(0))1

._ ,I 2 K,(Kr - 1 )110-(X(0 ))11o110(X(0 ))11o.

P ro o f . Since ii/(X(0))=--( ft)4011(ft ; X(0))),

c ; o-(X(0))=(o -(X(0)), 111(X(0)))0

= (a(X(0)), (ft) 11,*(0(ft; X(0 ))))0

=((ft)f,(0 (X(0 ))), kft; X (0 )))t.

Hence from (2.4) and (2.5) we have

c,

, 0 - ( , f ; ; x(0))— ( . , a- (X(0))

=1(a(ft; X(0)), k f t ; X(0 )))r - (a(X(0 )), 0(X(0)))0l

=1(c(ft; X(0 )) .f.,)(c (X ( 0 ))),tP(ft; X( 0 )))tI

5,1 21 <,(K - 1)11c(X(0 ))11 ollt11(X (0 ))11 0.

2.3. Remarks. 1) For a quasiconformal mapping f : R -4 V  it is know n (cf.
[10] Lemma 3) that for ai l , W2 E r hy o

(ft(wi)*, f t(cot))R = (a) 1,
Hence wewe have ft* ( 0)) = - ((f :) -11 (0)*))* for CO E  h(R).

2 )  From  Proposition 2.1, ft,(T .„(10)= T .,,(R ) for r x =r„, T hse ,  r  he , T ho and
hm . Hence Theorem 2 .3  im plies variational form ulae o f  {o- (F x (R,), f N c o ))} ,

Tx -period reproducing differentials.
On the other hand, it is shown in [10] and [12] that is not preserved by a

quasiconformal mapping generally. Hence Theorem 2 .3  i s  n o t  applicable to
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Tx (Ri.)*-period reproducing differentials. B u t  by  considering  the orthogonal
decompositions in  Th ,  w e can show the continuity o f their Dirichlet norms (cf.
Theorem 2.7').

3) As for the fact lirn a ( f t ;  X(0 )) t = 11(7(X(0 )) II 0, one can give a simpler proof
t—o

as fo llow s. Let Co  (resp. CO be the homology class on R o (resp. R,) determined by
co (resp. c 1 =fT 1( c 0 )). Then it is known that

IIo ( ;  rh (R = a(Fh(Rt), et) II?' =2(C1),

where 2(C1) is the extremal length of C,(cf. [1] o r  [ 7 ] ) .  By the quasiconformality
of f t , lirn  o-(f,; F  h (R 0 ))11, =lim 2(C1)1 / 2  _ 1 ( C 0 ) 1  / 2  =  lio-(Fh (R0))10. Thus from

t-o t - o

Theorem 1.3, we obtain lirnIlcr(f,; X(0))II t =110-(X(0))11 0 for every X(0)c Th (R 0 ).
t-qr

4) From (2.4) and (2.5) we can easily show that

11(7(f,; X(0 )) — ( ft) 1(a(M O M  t u(X(0)) o,

where M 1 = V (K -1)(3K 1 +1)KT'.
As for T„-period reproducing differentials, the similar result is known in [8].

Another result for the variation of F 0 -period reproducing differentials is given in [18].

2.4. Let p o  and g , be arbitrary fixed points on R o  and let do be a fixed Jordan
arc from p ,  to g, and d 1 = fT l(cl 0 ). Then linear functionals L1 : o).—› co are bounded

d t

in 1,,(R 1) ( t  0). For each closed subspace X (t) of F h (R ,), we denote by 9(X (t), d 1)
the reproducing kernel for L t l, (

,) in X(t).
For X(0= F h e (R t), the following is known:

Proposition 2.6 (c f . [1 7 ]  Theorem 5 ) .  L et f,: R 1—>R0  ( t > 0 )  be  K 1-quasi-
conformal mappings with l im  K ,= 1 .  Then

t - o

lirn it yo(F e (R,), d1)IIt= ii(P(Fhe(Ro), 0.t - o

In this section we shall extend the above result to arbitrary subspace as follows;

Theorem 2.7. L et R ,  be  an  arb itrary  R iem a n n  surface and let f , : R 1—>R0

( t> 0 ) be K r g u a s i c o n fo rm a l mappings with lim  K t = 1. For each closed subspace

X (0 ) o f  F h(R , ) ,  w e p u t  9(X(0))= 9(X(0), do )  an d  9 ( fr ; X (0))=  9((f,g(X (0)), d 1)
respectively . Then

(2.6) 1 im ; X(0 ))II t = ii (Pa n )  i0.t-o

To prove this theorem we need some lemmas. At first, we consider a set E 0

on R , such that E 0 is the union of at most countable number of analytic curves on
Ro , and R = R 0 —E0  is simply connected. And put E1 = f 1 (E0 ), R ;= R 1 —.E1.

We may consider T h(R o )  as a  closed subspace of r h e ( R )  and assume that d ,
is in R .  Then we have
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Lemma 2.8. L e t  C,6(f,; Fh(R 0 )) be the reproducing d i f f e re n t ia l  for
L

tl(n t(rh (R o)) on (f;)(Fh(Ro)) , where f;=.1 .,1R ,. Then

(2.7) lirh MCPV : ;  rh(RAL = M(P(Fh(Ro))ci.t-c•

Pro o f . By [17] Theorem 1, for each co e The (12'0 )

lirn Ltqf ;) 111(c0 ))= Lo(a)) •

Hence from Proposition 2.3 and Theorem 1.3, (2.7) is easily obtained.

Lemma 2.9.

(2.8) lirn 1 ( f ;  " h(RO)Mt 119(F h(Ro))llo•t-o

P ro o f . Suppose that each f ,  is  rea l ana ly tic . For each co e T h(R o )  w e set

(ft) 5(w)= (.ft)(o0 )+ coteo, w teoe F t,o(Rt). Then w  = (.ft)5(w) = (M O  +  wte0.
do d, d, d,

Since 11 Oa  t - ( )  as t-or), we can show that

liM (f t )t (W )=
atd

by the same method as in [17] Theorem 1. Hence from Lemma 1.2 (2.8) is valid.
For arbitrary quasiconformal mappings { ft }  it is know n (cf. [8 ]  Lemma 2)

that for sufficiently small t ( >0) there are Riemann surfaces R, and Kt-quasiconformal
mappings f  : R ,-qt o  such that each f t is real analytic and ( R ,  f ' )  is equivalent to
(R , f 1)  in  T 5 (R0 ), the reduced Teichmiiller space of Ro  (cf. [6]). And we can
show (2.8) by the similar method to that of [17] L em m a 4 . For convenience, we
shall sketch the proof.

From the definition of the equivalence class in  T 4 (R0 ), there exist conformal
mappings I t ,  such that 4), is homotopic to fT loft . H e n c e  as  t->0,  Ft =
f,09,0fT 1 which are homotopic to  the identity on R o ,  converges to  the identity uni-
formly on every compact subset in Ro . Hence 119(F h(R o ))11 0 = 119(f V it o ), 4)11 0 =
119(rh(R0), F ,(d o ))11 + o(l) as t - - 0 1  From this result we can show that the difference
between the Dirichlet norm of F 1(R) -reproducing differential for f Tqd 0 ), say e(dt,),
and the Dirichlet norm of F h(R t)-reproducing differential for Otof -, 1(do ), say e(9,d 0 ),
is o(1) as t--*O. Further 119(ft ; rn(Ro))llt = e(Otdo) because 4), is conformal. Hence
we have

lim 9(ft; Th(R0))11t =lim  e(9,d0 ) = lim e(C14)?_: 119(r h(RoDllo•t-o t-.0 (-.0

Lemma 2 .1 0 .  For co e rh(Ro), D'h(w) E rc(Rd•

q. e. d.

Pro o f . For each dg, e Fe o (R,), by Proposition 2.1, there is dgo e  e o (R o )  such
that (f)'(d g o )=  d g ,. So, by 2.3 Remark 1) we have
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M X 0-0 , dg '7 )t=  - X (c )) * , dg()

=  ( ( f ; ) ' (w ) * , dg ((1-10)± = e)

= - ( ( f t ) '(c ) ) * , (ft)(d go ))t

= (w , d98 )̀ 0 =0. ( r  n e
k

o )

Therefore ( f Dti(CO)E (FL(R)) ±  = -G(Rt). q. e. d.

Lemma 2 .1 1 .  Let R 1 (t be compact or compact bordered Riemann surfaces
and let f t : R,->R o  be K r guasiconformal mappings with Ern K r = 1 .  Then

(-■0

lirn Ilcp(f,; Th(R0))11t=1140 (rh(R0))11c,-(-0

Pro o f . First we assume that are differentiable on R o a n d  conformal on
R0 -170 for each t> 0, where Vo is a fixed local disk on R .

Denote by P, (t_0 ) the orthogonal projections of  P C(R I)  onto Th(R,), then we
can show that P,o (f;)(1 '(R 0 ))=-- F h(R 0 ) as follows.

It suffices to show tha t P 0 o(f; - 1 )f,={P 1o(f;)f,} - 1 . F o r  each 0) E FaRo) put
u , o(p)= 1c, (p e R ) on R6 and denote by u,0 the solution of Dirichlet problem on

Po
R ; with the  boundary value uo ,,of, o n  OR; = OR, u E;F u E .  T hen  u, the
boundary value uo „of,, where the boundary value means the non-tangential limit on
the  boundary almost everywhere if the  boundary represents the unit circle by a
conform al m apping. Then (f;)(co)=du,,,,. In  f a c t ,  ( f ; )° (c o )- (f ; ) (c o ) i s  the
differential of a Dirichlet potential y, on R .  S in c e  a Dirichlet potential is a  Wiener
potential (cf. [5] p. 81), there exists a potential U on R; su c h  th a t IN  U from [5]
Hilfssatz 6.4. By Littlewood's theorem (cf. [19] Theorem IV. 33) U has the radial
limit zero almost everywhere on 0R , and y, also does. Hence  (f (w) is the differ-
ential of HD-function whose boundary value is tto w cf;, that is, (f;)f,(co)=du ro y

Therefore for any closed curve y, o n  R „ 1 ( f ( c o ) --= c o  where yo = fr(yt).
Yr YO

By Lemma 2.10 and  the  same argument as above, P,o(fX,(co) h a s  th e  sam e y,-

period as ( f (co) a n d  
1,

Pt .( f (w) on  R', has the boundary value on  OR,.

Considering the  same argument for P0 .(f , - 1 ) ,  w e can verify  that of  =P o o
(f , - 1 ) . P 1o(f;)f,(w) has the same period as co for any closed curve o n  Ro a n d  has
same boundary behavior near OR0 as co. So, we conclude w' =w.

Thus yo(f,; Fh(R 0 )), the reproducing differential on TARO, is /3 ,(c7)(f;; raRom,
th e  reproducing differential o n  P,o(f;)(1',,(R 0 ) ) ,  and 1101f ; rh(R R; (19( f t
r IOW) L. H ence w e have from Lemma 2.8 and 2.9

lim 1149 (.ft; ri,(R0))11,= go(rh(Ro)) 110.t-o

For an  arbitrary { ft } it is know n (cf. [13] Proposition 6) that for sufficiently
small t ( >0) there are Riemann surfaces R, and K r quasiconformal mappings f,:
R,-4R 0 such that {f,} satisfies the same condition as above and (R , fT l) is equivalent
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to  (R „  f il) in  V (R 0 ). By the  same proof a s  in  Lemma 2.9 we can prove our
conclusion for an arbitrary { f } .

2 .5 .  Proof o f  Theorem 2.7. W e m ay  assume th a t d o i s  i n  R6=R 0 —E0 .
Further, as in the proof of Lemma 2.8 we may assume that each f t is real analytic on
R .  Then by Theorem 1.3 it suffices to show that lim 119(ft; rh(RiAllt=lim 119(FARt),r-.0 t—c)
dt)111=119(rh(Ro))llo.

First we shall show that for each R,

(2.9) II 9(.1"and, dt)11t=inf {1149/M liw t : If, is a regular subregion

of R, and contains dt.}

where 49h(Wt) is the r h(Wt)-reproducing differential for Lt Ir b o v o .
Since Fh(R i ) c r h( Wt ), II 9(r h(R,), coilt-tkpawollwt. O n  th e  other hand, it is

known (cf. [15] p. 100) th a t  (p(Fh (R t), dt)=dPi ct+dp lir .  where pt. h, i s  the  (1)- L1
principal function for the singularity o- --log I(z—q,)1(z —14 (0d,=q,—p,) on R, and

is the (I)-L 1 principal function for the singularity  = arg (z — qt )1(z — pt )  on R -
d. T h e  sim ilar result is true for (Ph(W ) .  Hence by [14] I l l. H  Theorem, we
conclude urn 19aW011wr = 119(raRt), cit)Ilt. Consequently (2.9) follows.

Tv t
If lim 119(ft; F1(R0))11f=119(F(R0))110 is not true, then there exists a  sequence

{t„} 1 such that lim t„ 0 and lim II ; FaRo» > 119(FgR0))11 0  by (2.8). Then
n 11—•00

we take a regular subregion Wo  of Ro  such that

II 9(i;„ ; F h(R0))IIt„> II 9")11 Wo II (Pa VR0)11 o.

On the other hand, from Lemma 2.11 for sufficiently large n we have

119a Wt„)II wt„ W011 }v.+ Y/2 ,

where 14/, =1;nqW0 ) and Y =Jim 11(P(f„; rh(Ro))Ilt„ —  1191.(W0)11w0 >  O.
„ ,0 0

Hence from (2.9) we have for sufficiently large n

IIP(.ft„; Fh(Ro))lIt„=II40 (rh(Rt„), dt„)IIt„

119 h( 1 lt)11w „< Fh(Ro))IIt„— y12.

This is a contradiction. q. e. d.

By the similar proof to that of Theorem 2.3 and Corollary 2.5, we can prove the
followings.

Corollary 2 .1 2 .  For each closed subspace X(0) of Fh (R 0 ),

(2.10) lim II(D :(9 (X ( 0 ))) — (X.fr; XODIlt =O.

Corollary 2 .1 3 .  Let dO be another Jordan arc on R o  an d  d = fT 1 (4 ) .  Then
f or each closed subspace X(0) of Fh(R0)
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Jim 5 g o ( f t ; X (0))= yo(X(0)) .
t ri;

2.6. We note that for 9(X(0)) and cp(f,; X(0)) the same inequalities as in The-
orem 2.3 do not hold generally.

In fact, when R 0=R t = {z; <1}  and f t (z )=ziz it (1> 0), it is known (cf. [11])
that

h(Ro))118= —  —7r
1 log (1 —r2 ), and

9(f; rh(R0))11?= — log (1 —r2 0 -")),

where po = 0 and q0 = r  (0 <r <1 ). Hence the simple calculation gives the fact
sup {119(Fh(Ro))llold9(ft; F h(Ro))Ie: 0  < r < 1 1= +c0, and we can obtain the desired
results.

2.7. As 2.3 Remark 2), we know that Theorem 2.7 implies the continuity of
Fr -reproducing differentials under quasiconformal deformations, where r x =
Fh . ,  hp, hse' o r  he . Furthermore, we can show the continuity of f'-reproducing
differentials by considering the orthogonal decompositions T h= hse + F L =  T he+
T to=  e =rho + Ft, and Theorem 2.7. More generally,

Theorem 2.7'. Let R „ f„ d, be the same as in  Theorem 2.7. For each closed
subspace X (0) of Fh (R 0 )  w e put go 1 (X (0))=p(X (0)±, do )  and 9-1.(f ; X (0))=9((f ,),;
(X (0))±, d,) respectively, where X -L is considered in T h. Then

(2.6) Jim 1140 ± (ft ; X(0 ))II t = 1149 1 (X(0 )) o.t—o

In [11], Minda studied the pseudo distance

df (a, b)= sup {I u(a)—  u(b)II D R (u); u e KD(R), DR (u)00.}

where a, b e R  and KD(R) is the space of u eHD(R) such that du*
hse(R) 

e F„ e ( R ) .  It is
easily seen that & (a, b) is the Dirichlet norm of f n Fh e (R) *-reproducing dif-
ferential for a Jordan arc from a to b.

Hence from Theorem 2.7' and the orthogonal decomposition T he =  F yi n + r /9 e  n
Ft s e , we have:

Corollary 2.14. L e t R , f „ d , be  the sam e as  in  Theorem 2.7 an d  p u t p t =

f i l (Po) , q i=f -t- 1 (Ro). Then
Jim (VA, qi)=-4 ° (Po, go)i-o
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