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A  Finsler space is sometimes adopted as a  basic concept in  the theoretical
physics. However, the fact that the fundamental tensor field of a Finsler space is
provided from a  positively homogeneous function is not always desirable for physi-
cists, as pointed out by several authors. In fact, recently Matsumoto [8] showed an
unexpected result (Corollary o f  Theorem 2) o n  four-dimensional Finsler spaces,
which may be a direct consequence of such an  origin of the fundamental tensor
field. It seems to the author that Kern's Lagrange geometry [6] is noteworthy in
this aspec t. A s to physical viewpoint, see Ingarden's lecture [5 ]  and Takano's
lecture [11]. Further it is suggestive that Horvdth and Moor [4] again developed
their theory based on a generalized metric in Moor's terminology, after their Finsler-
geometric treatment of the same subject [3].

In  th e  present paper we first define a  metrical structure on a differentiable
manifold as a Finsler tensor field g  of type (0, 2) in Matsumoto's terminology [7] and
establish the existence of a set of connections F  of Finsler type which are metrical
with respect to g. B a se d  on the notion of absolute energy associated to g, we
define regular Finsler structures. From a regular Finsler structure a metrical Finsler
connection, called canonical by us, is uniquely determined. This Finsler connection
is regarded as a generalization of the Cartan connection in case of Finsler geometry.

Almost all the theorems in this paper are proved applying the methods given by
the present author and Hashiguchi [9, 10]; so the proofs are omitted.

Throughout the present paper we suppose that the contents of Matsumoto's
monograph [7] are known.

§1 . The metrical Finsler structures and metrical Finsler connections

Let M  be an n-dimensional differentiable manifold, TM its tangent bundle and
7 I :  TM -+M  the natural projection . If U c M  is the coordinate neighborhood of a
coordinate system (xi), then n-  1  (U) c TM is a  coordinate neighborhood, too.  Let
(x i, y i) be the coordinate system of a point y E n - 1 (U), x = (x i) = n(y).
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Definition 1 . 1 .  A  Fins ler tensor field g  of type (0, 2) which is symmetric and
nondegenerate is called a metrical Fins ler structure on the differentiable manifold M.

If gi i (x, y) are local components of g  on 7t- 1 ( U), the above conditions for
are written as

(1.1) gii(x, y)=g ; i (x, y), det (g 11 ) 0 O.

Let gii(x, y) be the reciprocal tensor field of g: g i i gki =61t, and let

(1.2) Oisr; =(6165 — gsigir)/2, Egjr=(Sis öri +g s i gir)12

be the Obata operators of g.

Definition 1 .2 .  A  Finsler connection FF=(N , F , C ) is called m etrical i f  it
satisfies the conditions:

(1.3) g i i ik = 0 , g i11k=0•

Evidently we have S2Z ik =C2Pil k = 0  a n d  Q V  = 52' . 1k = 0 from  (1.3). Using
the Ricci identities we easily obtain

Theorem 1.1. The curvature tensor fields R k j , k 1
 an d  S ip ,' o f  a metrical

Finsler connection FF  have the property  that the  Finsler tensor f ields S2 s*.;r R1ki,
E2 Vi rn.kt, 52s*IrS:., / and  their h-and v-covariant derivatives of any order vanish.

On a similar way to the proof used in the papers [9, 10] we get

Theorem 1 .2 .  L e t F t  b e  a  f ix ed  Finsler connection. T hen any  m etrical
Finsler connection FF is given by

N i= R ik—  X i,

(1.4) Pik= e ih n X T  gim(gm i lk +g m i l,Xf)12+ Q X;s.k ,

C ijk = e iik + g i m g , n ilk12+01 ri r k ,

where and I denote the  h- and  v-covariant derivatives w ith respect to F t  and
X!ik, V», are arbitrary  Finsler tensor fields.

As a particular case:

Theorem 1 .3 .  L et F F  b e  a  giv en Finsler connection. T hen the following
Finsler connection FF is metrical:

(1.5) N I= Ar ik, Pik+ gimgmilk/2.

The last two theorems show the existence and arbitrariness o f the  metrical
Finsler connections.

Remark 1. Applying the method in the paper [9, 10] we can study the metrical
Finsler connections, the transformation group of metrical Finsler connections and
its invariants. The theory of semi-symmetric metrical Finsler connections is very
interesting, too. See [2].
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§ 2 .  Regular metrical Fins ler structures

To a metrical Finsler structure g  we associate the function

(2.1) 1-(x, Y)=goo=gu(x,

which is called the absolute energy.
Consider the Finsler tensor field

(2.2) if k = gi'n(agi n dayk +ag10yi —Og i k layn)12,

which is symmetric in the indices j  and k, and we put

(2.3) eijk = g jmen ,

(2.4) eioo = eukYl Yk =(agidaY t )Yi Yk /2 ,

(2.5) Ali =S i +gim(ag h ,„leyi)y".

Definition 2 . 1 .  The metrical Finsler structure g  is called regular if

(2.6) eioo = 0 , (23) det (02 LIOyjayk)0 0

are satisfied.

Proposition 2.1. The m etrical Finsler stru ctu re g is regular if and only  if

(a) giiyi =(01,14)12, (b) det (A )O 0

are satisfied.

Indeed, the condition (2.6) is equivalent to (a) and, because of (a 2 L/ayjOyk)/2=
gi k +(Og h i layk )y", we have (g"na2 LlaymOyi)12=Aii , so that (2.7) is equivalent to (b).

Remark 2. ( 1 )  If g  is a regular metrical Finsler structure, we get (agkdaYk )Yh =
(agnidaYOY".

( 2 )  I f  w e a re  concerned with th e  characteristic polynom ial of the matrix
(gimfOg/ayjIyh), the determinant of the matrix (Aii ) can be easily computed.

Let B  b e  the reciprocal tensor field of Ai

(2.8) / A A "  = S i p

and put

(2.9) ylik=gi'n(Ogi„,10xk +ag,„,10xi —Og i k laxm)12,

(2.10)

Then we have

Theorem 2 . 1 .  For any  regular m etrical Finsler stru ctu re g, 1■Iii (x, y) given by

(2.11) Y)= {a(Bilto)/4./}/2
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are coefficients of a non-linear connection X i determined by the structure g only.

Pro o f . A coordinate transformation on the tangent bundle TM, namely,

)Ti x . ) ,  y i = x ip y P ,  (Tcip =av/axo,

implies the transformation (0/0xP, OlayP)-4aia.v, lap) given by

= XV/OxP+(agr,10.V)rahayP, (Xf =OxPIOV), atop = XfOlOyP.

From these equations, direct computation leads to

kii =x- i„xlsi&+x- 1,,(anav).0,
which shows that P = {I } certainly is a non-linear connection.

The non-linear connection ST is considered as a distribution: yeTM1—*Ry c
TM y  having the property TMy = $1y() TM yv, and the vector fields

(2.12) 615xi=013xl —tralOym, i=1,..., n,

provide a local basis of the (horizontal) distribution Si.

§3 . Canonical Finsler connections

From the non-linear connection Si given by Theorem 2.1 we can introduce

(3.1) j k = gim(Sgi m lbxk +Sg16xi —Sg i ldbxm)/2.

Then we get

Theorem 3.1. L e t  g  b e  a  regular m etrical Finsler s tru c tu re . T he triad
Fi"=($.r, e), where iS7, and e are given by (2.11), (3.1) and (2.2) respectively,
is a metrical Finsler connection.

P ro o f . It is easy to see that F t  is a Finsler connection. A  straightforward
calculation shows that g u ll, = 0  and gu rk = O.

The above metrical Finsler connection F t  has the properties:
(a) It is determined by the regular metrical Finsler structure g only.
(b) Its torsion tensor fields 1" and vanish.
For these reasons Ft is called the canonical metrical Finsler connection of the

regular metrical Finsler structure g.
In the formulas (1.4), taking the canonical metrical Finsler connection of g  as

the fixed Finsler connection F t ,  we obtain

Theorem 3.2. L et g be a regular m etrical Finsler structure and let Ft be  its
canonical m etrical Finsler connection. T hen, the set o f  all the m etrical Finsler
connection FT is given by
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Ni =N I— X i,

(3.2) Fiik =frii k  +e ;, ,x ,„n+015x.;:,,

c;„=e;„+015r. k ,
where X 5, X 5, Y 5, are arbitrary  Finsler tensor f ields.

We denote by FF(N )=(N , F, C) any Finsler connection which has a  fixed non-
linear connection N .  Then the last theorem has the following consequence:

Theorem 3 .3 .  L e t  g  b e  a  re g u lar m e tric al Fin s le r s tru c tu re  an d  F t =
(N , F, 0) be its canonical m etrical Finsler connection. T hen the set of  a l l  the
m etrical Finsler connections Ft(1■1) is given by

F ijk =  k+
(3.3)

C ij k = e ; , +

where X ijk , Y ijk  are arbitrary  Finsler tensor f ields.

Now, applying the method used in the papers [9, 10], we obtain

Theorem 3 .4 .  L e t g  be a  regular m etrical Finsler s truc tu re  and  Ft be its
canonical m etrical Finsler connection. Further, let tw o alternate Finsler tensor
f ields T ,  S ijk  be giv en. T hen there ex ists an unique metrical Finsler connection
FF(g) hav ing torsion tensor fields T=(T5 k ) and S 1 =(S5 k ), which is given by

Fijk= gim(g,„„Tjk— gihnk+gkhrim)/2,

C ij k = e ; „ + g i m ( g m „ s ilk -  g jh nk +  gk hS lim )12 .

Consequently we get

Theorem 3 .5 .  L e t  g  b e  a  regu lar m e trical Fin sle r s tru c tu re  an d  F t =
(&, e) be its canonical metrical Finsler connection. Then there exists an unique
m etrical Finsler connection Fr(g) w ith T= S i = 0 .  This is the canonical metrical
Finsler connection Ft.

It is easy to particularise the above results to the Finsler sp aces . If F(x , y)
denotes the fundamental function of a Finsler space F„, the absolute energy L(x, y)
is F2 (x, y). W e have Om = 0  and =B ii .  Thus icy  4 .012  i s  a
regular metrical Finsler s tru c tu re . In  th is  case  the  canonical metrical Finsler
connection F t  is obviously nothing but Cartan's connection C r .  So we have

Theorem 3 .6 .  I f  g  i s  th e  m etrical Finsler structure g =(02F2 ay% ayi)12

obtained from a fundamental function F(x, y ) of  a Finsler space, it is regular and
its canonical m etrical Finsler connection Ft coincides with the Cartan connection
Cr.
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