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§ 1 .  Introduction

The purpose of this paper is to improve the second part of Theorem 1 of the
previous paper [2]. Namely, we like to give a more precise information on the
existence of the poles of the scattering matrix Y ( z ) .  The result we want to show in
this paper is

Theorem 1. Suppose that (9 satisfies the sam e conditions as in Theorem 1 of
[2]. Then there ex ists at least a pole of .96'(z ) in { z;lz—  z j i - 1 -  0 - ' 1 2 } f o r all
large

As remarked in [2 ], in order to show Theorem 1 it suffices to prove

Theorem 2. T he operator U(p) which is def ined in Theorem 2 of  [2 ] has at
least a pole in tp; 1,u-P1 l- c(1.i1+1) - 1 /2 1 f or all large

The plan of the proof of Theorem 2 is as follows. First we shall construct an
asymptotic solution u(x , t; k ) of the problem

Ou =0 in S2 x R

(1.1 ) u = m (x , t; k ) on F x R

supp u x {t;  t>0}

for an oscillatory boundary data

(1.2) m ( x ,  t ;  k )
= e ik( (x )-1 ) g (x )m (t )

following the process of [2 ], where p a phase function introduced in §3 of [2],
an d  g (x )e  C (F 1) , m (t)eC o ( R ) .  T h e n  the Laplace transform  û(x, p ;  k )  of
u (x , t ; k )  becomes an approximation of v1'0+ ik )U (4)(eik 9 -( - )g(• ))(x ), and we
estimate ti c i 4(A(10 ), it; k i ) for A(10 ) a point on the segment a i a2 , C i = {p; i t i l = r 1 }
(n >0) and k j = — pr/d, where JO denotes the variation of arg 4 along the contour
C.
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It should be remarked that z i =ic o +p rld , j=0 , +1 , +2 ,... are nothing but the
pseudo-poles oc,„ ,  ni =0 o f Bardos, Guillot and Ralston [1 ] (c.f. Definition 8).
O u r Theorem 1 shows th a t  th e  pseudo-poles 

m 0
 f o r  , i = 0  approximate the

actual poles.

§ 2. On the Laplace transform of asymptotic solutions

Let (p.(x ) be a phase function introduced in §3 of [2], and let m (x, t; k ) be an
oscillatory function on r ,  x R of the form

(2.1) m(x, t ;  k )  e= ik(9, -(x)-()f( x ,

where f e  CVS 1(62 ) x (0, d /2 ) ) . Denote by u(x , t; k ) an asymptotic solution for an
oscillatory data m (x, t; k ) which is constructed following the method of Proposition
7.2 of [2 ] .  Then its Laplace transform

(2.2) 0(x , p; k )=S e t u(x , t; k )dt

converges for Re p >  — co , and by virtue of Proposition 7.2, (i) and Proposition 8.3
of [2] have the following:

û(x, p ;  k )=, <9(p) -  F o (x, p ; ro,o(x, p ;

+ k - r{ ,Y1(p) - r- 1 r r (x, p ; k)+F,.. 0 (x , p ;r-i

+ t (Lie - 2 "d) ' ,9 ( p ) — {r —

J+ '
Pr,h,i, f (X ,  p ;

h=I 1=0 1=0

where

gr4 (p)= 1 _2. e _211

and Fr , and F,.,0 a re  C'(0)-valued holomorphic function in  9 ={p; Re p>
—c,— c 1}. Moreover they verify the following estimates for all p e 9,, = fp; Re p >
—co —e, + e l (E>0)

E  sup IDt. i
v i",.(x, p; k) l< C ron,R,ck m  B in  + 2(N + N ')

x en

E  sup rl —h An +
2(N  + N ')9

j=- 0  Ifil 5m x EDR

Bm =s u p  IM,,f(x, 01,
IfilS m  r i x R

which are derived from (7.12) and (7.13) of [2].
Let {(pq }ccq _o  be a sequence of phase functions defined for cp following the process

in §2 of [2 ] .  When p ( x ) =q ( x )  it follows from Remark 2 of §3 of [2] that

f  9 2q(x )=9 (x )+2 q d

1 9 2 0  .1( x ) =  rz (x)+(2q + 1)d
(2.3)
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for q = 0 , 1, 2,..., and if we use (2.3) in the definition o f  Ur , we see easily that the
second term appeared in the definition of U. is identically zero, that is,

=  {e ik (0 2 ,1 i )  Z r ,q ,  ei k ( 9 2 g+I - O 2 ,,q 1,7 =o•

In this case the estimate (7.14) can be replaced by

lij r11112r , m  Cm t rk in Bm+2r

which implies

E  sup  IDig,,o (x, p; /OIL< Cm,R,r,gkm Bm+ 2(N + N')
1fl x E an

Therefore if we set

for all p e g .

r
p ;  k )=  E  E  " P Y W e - 2 ")'Fr,h,t,i1=0 j=0

Fo (x, p; k)= F o (x, p; k )+,9(p)F 0 ,0 (x, p; k)

F,(x, p; k)=F„(x, p; k)+ F„,(x, p; k)
+ , 9 0 . 1 Y + 1

P„,o (x, p; k)
h=0

for r = 1 , N ,

F,(x, p; k), r=0, 1, N, are holomorphic in g  and satisfies an estimate

(2.4) E  sup IlgF r (x, p; _„,+ 2(N + for all p E 9
xE12

Evidently we have

(2.5)û ( x ,  p ; k )= Y(11) -  1  {F o(x , p ; k )+ (k g (P )) - 1 Fi(x, p ;  k)+ •••

•••+ (k g (p )) - N FN (x, k)} •

Concerning the boundary value of et it follows from (ii) of Proposition 7.2 and
Propostion 8.3 that

(2.6) û(x, p ; k )=
e " - (x)1 (x, p+ik)+k - N.56 (p) - N- 1 G,„. ,(x, p; k) on{ T,

k - N . (.P) - N - I GN,2(x, k) on r2,

where G =  1, 2, are C-7- (/"; ) valued holomorphic functions in g  satisfying

(2.7) I GN,;( • k)1,.(ri) CN kmBni +  2 (N  N ') for all p e .9„.

Thus we have

Lemma 2 .1 .  L et (p ,(x ) be a real .valued C function introduced in §3 of  [2],
and let f (x , C(71 GS1 (62) X (0, (112)). Then there ex ists a  C " (0 )  valued function
û(x, p; k) defined in = {p; Re p >  c o — c1 } which has the form (2.5) and satisfies
(2.4), (2.6) and (2.7), and

(2.8) (p 2 - 4)û(x, p ; k )= 0 i n  12

f or all pe g — {pi ; j= 0 ,  ±  1, ±2,...} and ke R.
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§ 3 .  An explicit representation of Fo (x , p ; k ) on the segment a 1 a 2

Denote by vo the solution of the transport equation

Tvo =0 in x R

Vo =J. o n  S(62 ) x R

in the sense of Definition 6.2 of [2] where f =  f fq , fo = f, J =  for all q> 1 and
f q =0 for all q> O. T h e n  Proposition 5.6 shows that vo is decomposed as

V o = w o + Z o ,  W o  E  K (0 ), z o e W O ).

Set

A(I)= a l  + 1 0 2 — a i M a 2 — a l l ,  0 5 / _ d .

About the functions and the constant appearing in Proposition 5.6 we have from (2.3)

a(A(I))=(det [1+ 1.1( (0)]) - 1 1 2 1).

ii(A(1))=(det [I + (d —1), Y (0)1) - 1 1 2 1;1

j „,(A(I))=- I, 1(A(1))= d — I,

A0 —a 1 , 1 ) 0 = 1 ,  d„, 0 =0.

Then we have for all q

I w g (A(1), t)=(,U)q(det [I + 1 t  (0)]) - ' 1 2f (a t —2qd — 1)
(3.1)

lXig(A(1), t)=()..1)(1.1(det [I + (d — 1)4 %( 0 )i) - 1 I 2 .f ( a l ,  t —(2q +2)d —

Substituting x=A(1) and (2.3) into (5.9) of [2] we have

(3.2) vq(A(I), t)= w q (A(1), t), i3  q (A(1), t)= fv-  q (A (1), t) for all q. 2 )

Recall that ,9(p) - 1 F 0 (x , p; k) is

E v  
,

(x t)—  e i w° 2 “ " ) - "i3 0 , q (x, t)} di,
— q= 0

where we set vo = 01,T=0. Then it follows from (3.1) and (3.2)

(3.3) Fo(A(/), p; k)=[ e - 1 " letk"P-(x) - 0  w 0 (x, t)

eik(o-.(x) -  t ) t).}dtl .x =  CO

Note that

0(A(1))= I, (,3 00 (A(1))=d —1.

I, 2 ) Since we adopt now Definition 6.2, w g , f q and vq , 13,  correspond to w2q , w2q +1 and v2 ,1, 02 , + , in
Proposition 5.6 of [2] respectively.
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Then we have from (3.1)

where we set

(3.4)

(3.5)

w JAW, t)= R(1)f (a 1, t —1)

00 ( 1), 0=11(1)f (a 1, t —(2d —

R(1)=(det [I + I X10 (0)]) -  '1 2

R(1) = (det [I + (d — 1).i(0 )]) -  ' /2 •

Substituting these relations into (3.3) we have

F0 (A(1), p; k)
I .

e- oi{eik( 1 - ) R(Of (a j , t — 1)— eik( d - l + d - t )  R(1)f (a 1 , t — (2d — 1))2}d t
-oe

=e - 0  R(1)1 (a i , 1u+ik)—e - ( 2 ‘ 1 - 1 ) 4  R(1).,(a
1
, p+ik)).,

where

f (x, 12)=1 e- i" f(x, t)dt.
-oe

Thus we have

Lemma 3 .1 .  For all p e C, k e R, l e (0 , d) it holds that

F0 (A(1), p; R(1){1—e-2(d-)li a ( 1 ) 1 R W I f ( a l ,  p+ ik ),

where R(1) and k(I) are given by (3.4) and (3.5) respectively.

§ 4. Existence of the poles of U(p)

Lemma 4.1. There exists 1 0 e (0, d), and positive constants so , no such that

(4.1) le-00 R(10)(1 — e- 2 0 - '0 A .R(10 )R(10 ) - ',1)1 2s,

for all p e {p; IRe —( — co)I

P r o o f  Since e4 (a - oco is a  holomorphic function of l e  C, and R(1)2 R(0 - 2 2 2

is rational bu t not holomorphic in the whole plane, they are not identical in  C.
Therefore it does not holds that

e4(d-oco=p(/)2R(/)-2,12 for all l e (0, d).

This assures that there exists 10  e (0, d) such that

4(a-/o)c, ?- (/0 )2R(/0 )-2,1,2 .

This implies that

1 — I e- 2 (d- ' 0 1 1 R(10 )R(10 ) -  1 .14 00
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holds for all Re p = —c.o . Set the absolute value of the left hand side =-4e,, c1>0.
Since

d  (0_2fi(a-10) pooRuo r 1 ,1)d p  "

is uniformly bounded in { p: Re p> — co —0 for g fixed, it holds that
_  e-2(d-1o)' 11 (10)R( 10) - '),11 2E1 if IRep—(—co )I Sti o

f o r  go suffic ien tly  sm all. N o te  th a t  R(10 )> R ( d ) > 0 .  S e t co = R(10
)e'occo - noc i .

Then we have for iRe p —(— co )i <

le —Pl °R(10)( 1— e- 2 ( " ° )P R(10)R(10) —

> elolco—no) R(/0)11 — I e- 2 °1" R(10)R(10) - 1 /11

which is the desired estimate. Q. E. D.

Let ni(t) be a function of C ( ) ,  d/2) such that

nt(t)>O, m (t)dt= 1.

Then, since »X —co ) = eco m(t)dt >1, we have for some q 1 >0

(4.2) 1 4 4 0 4  1f o r  a l l  F p — ( — c 0 )1 .

Let g(x ) be a function in C,T(S 1(6 2 )) verifying

(4.3) g(a1)=1.

Set

m(x, t; k)=eikvP-(x) - 0  g(x)m(t)

and denote by û(x, p ; k )  the one in Lemma 2.1 for this nt(x , t; k ). Set

= min {q0 , 11 1, it/4d} ,

D.= { p; C 1 = p ; lit —p./1=111 •

Recall that U(y) exists on C;  for large I i i  by virtue of Theorem 2 of [ 2 ] .  Then from
relations (2.6) and (2.8) it follows that

(4.4) U (p)(e"-(•)g  (•)th (p+ik ))(x )

=11(x, p; k)—  U(p)(k - N.9(p) - N- IGN ( • , p; k))(x) f o r  a l l  p e

where G, is a function on r  defined by

GN (x , p ; k )=G N ,j (x , p; k ) o n  I . »  J = 1, 2.

Suppose that U(p) is holomorphic in D .  Then U (p)(ei"- ( •)g (•))  is holomorphic
in D .  Therefore we have
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(4.5)   c i(U (I t ) (e " - (* )g ( • )(1 )(1 + ik ))(x )>0 for all x E) ir

Set
k

Then for p ;  we have

+ re i° , O • r < r i  a n d  0<0<2n.

Therefore (4.2) implies

(4.6) I ri)( p + c i )1 1 for all p e D,.

By using (2.7) and the estimate of U(p) of Theorem 2 of [2] we have

(4.7) I  U(p) (GN( • , p: k i ))(A(10))1 C1 /17 f o r  a l l  p E Ci .

Note that

(4.8) 1.9 (0 1  Œo >O for all p e Cf .

Since
F0 (A(10 ), p: k )=e - gi ° R(10 )(1—e - 2 " - '° )g R(10 )R(10 ) -  ' , 1)th(p + ik; )

follows from Lemma 3.1 and (4.3), the estimates (4.1) and (4.6) imply

(4.9) 1  Ac / o (A(10 ), k1)= 0.

On the other hand we have from (4.1), (4.6) and (4.8)

1.9 (11) - 1 F0(A( 10) , p; k ) )1 c.c 1 2E0 , for all p e C;

and by using (2.4), (4.7) and (4.8) we have for all p E C;

1•9 (11 ) - 1 ( k ; M i 0 ) - rFr(A( 10), p; k i )
,=1

— U(ii)(k7 9(1) - N - 1 GN( • , 11,; ki))(A( 10)1

_ Cogi l t i 1°10/( 11-  r l k  j I 7 1r=1

where C is a constant independent of/. Therefore for large I fi

I 10 - 1 F0(A( 10), p; k i)1>Ig(P)-1
r
 ( k i .9(P)) — rF,(A(10), 11 ; kj)I
=1

± I U (i)(k i - (P) - N - i GN( - , 11 ; kJ )) (A( 10))I

holds for all p E C j .  This shows that

1 
27r 4 c,{ 0 (A( 1o) , 11 ; ki) — U( 1)(k j i vg(1,1) -

N
-

1 GN(• 11 ; ki))(A( 10)}

1= - - - A  g(p) — 'F o (A (10), p; ki).
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Taking account of (4.9) we have

1 1 
27r c i

.9(p)- 'F o (A(/0), p; k  )= .9(p) - 1 + IF  ( A ( 1  )  p •  k .) = — 1 .J 2n c , 27T c ,  o o 5

Then it is proved that the variation of the argument along Ci  of the right hand side
of (4.4) at x =A(1 0 ) is equal to —2ir for large M .  This contradicts with (4.5). Thus
U(p) is not holomorphic in Di  for large LiI5 which prove Theorem 2.
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