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§1. Introduction

For a pointed space X, we define an infinite loop space Q(X) by Q(X)=
Colim Qxr X. If X is an infinite loop space, then there is an infinite loop map

é: Q(X )— X called the structure map.
The natural inclusion j: BU(1)= CP®—BU and the structure map ¢&: Q(BU)—>
BU of BU defined by the Bott periodicity theorem define an infinite loop map

J: Q(CP®) — BU.

Quite similarly we can define 1: Q(HP*)— BSp and Q(BO(2))-BO. In (7) Segal
showed that A has a splitting, that is there is a map ¢: BU—Q(CP®) such that Aog is
a homotopy equivalence. On the other hand in (2) Becker constructed a splitting
explicitly.

In this paper we give another construction of the splitting ¢, using the representa-
tion theory of compact Lie groups.

For the real and quaternionic cases, we can construct the splittings ¢g: BO—
Q(BO(2)) and &y;: BSp—Q(HP*) quite similarly.

The natural maps BU—BSp and CP*— HP” defined by the natural inclusion
CH are denoted by j and the natural maps BU—BO and BU(1)- BO(2) defined
by C=~ R? are denoted by r. Then the purpose of this paper is to show

Theorem. The diagrams

BU i, BSp

| Jom

Q(CP*) 577> Q(HP™)
BU —r 5 BO

e Jon

Q(CP*) —g Q(BO(2))
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are I’l()l"OtOpy commutative.

Let HP® and §()(2) be the mapping cones of j': CP®*—HP* and r: CP*—
BO(2). Then as a corollary of the above theorem we can easily show the following:

Corollary. There are spaces Fy and Fy such that
(1) mu(Fo) and n (Fg) are finite abelian groups for any *, and
(2) QO(HP®)=(Sp/U)x F, and QQ(BO(2))~(0/U) x Fj.

§2. Construction of the splittings

Let G be a compact Lie group, H its closed subgroup and E a compact free
G-space. A homomorphism o: R(H)—K(E/H) is defined by M—(E x ;M—E/H).
The following is Proposition 5.4 of (5):

Lemma 2.1. The following diagram is commutative:

R(H) —=» K(E/H)

llnd;f, lp*

R(G) = K(E/G),

where Ind§, is the induction homomorphism (cf. (6)) and p, is the Becker-Gottlieb
transfer.

Note that the Becker-Gottlieb transfer for the fibre bundle p: E— B is defined by
making use of a map #(p): B, —>Q(E,). Consider the following homogeneous spaces

B,=U@2n)/U(n) x U(n),
E,=UQn)/U(1)x U(n—1)x U(n).
E,=UQ2n)/U(1)x U(2n—1)= CP?"~1,
and
E,=vu@n){1} x Un).

The space E, is a compact free U(n)-space and there are natural projections p,: E,—
B,and q,: E,—~E,. Let¢,e R(U(n))be the identity representation and 8, e R(U(1) x
U(n—1)) be the representation defined by the first projection. The following is
Theorem 2.1 of (4):

Lemma 2.2. Ind §%cum-1,(B)) =¢,.
Consider the composition
8": Bn — Bn+ ’“,_")>Q(En+) "‘Q_(% Q(En+) — Q(En)’

where r is the canonical projection. Note that B=Colim B, is homotopy equivalent
to BU. Define an S*x U(n) action on CP**! by
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(2o} Z13--05 Zne 1) =(205 215003 0Z,41) (aeSY)
A(zo; 21305 Zur 1) =(A(Z0s-++5 2); Zus1) (A€ U(n)).

The fixed point of S!, (CP"*1)S'=CP" 1L (pt) is clearly an S!x U(n)-submanifold.
Using the above fact we can construct &.: B—>Q(CP®) by a similar method to that
of (2). Applying Lemma 2.1, Lemma 2.2 and the fact that A corresponds to the
canonical line bundle, we can easily show A4(E,)=p*(a(B,))=a(¢,) and so ¢, is a
splitting, where g, is the composition B,_%», Q(E, ) Q(CP%) (cf. (2), (4)).

Next consider the quaternionic case. Put

B, =Sp(2n)/Sp(n) x Sp(n),
=Sp(2n)/Sp(1) x Sp(n—1) x Sp(n),
and
E,=Sp(2n)/Sp(1)x Sp(2n—1)= HP2"~!,

Let p,: E,—B, and ¢,: E,—E, be natural projections. Consider the following
map

Q(p))
B ;)B;I"‘ _——> Q(En+) — Q(E1+) — Q(En)
Then we can define ¢, : BSp—Q(HP®) similarly. To prove that ¢ is a splitting, we
need the Bott periodicity theorem for KSps-theory (cf. §4 and §5 of (5)), which is
proved in section 4.
The real case is similar.

§3. Proof of the main theorem

First we prove the following:
Lemma 3.1. The diagram is homotopy commutative:

By, 22, O(E,)

i'l JQ(J")

L 2, O(E,).

Proof. Put L,=j'*(E;). Then the structure group of this bundle HP" '—
L,— B, can be reduced to U(n). Note that this U(n)-action on HP"! can be
extended to S! x U(n)-action, since the center of U(n) is S!. Moreover (HP* 1)5'=
CP"~! is an S* x U(n) submanifold and the associated CP"~! bundle is p,: E,—B,.
Therefore Lemma 3.1 follows from Lemma 1 of (2).

Let PH*( ) be the cohomology theory defined by the infinite loop space Q(HP®)
and g, be the composition B,,__.Q(E,',)C-»Q(HP”). By Lemma 3.1, Q(j')-&,=
g,0j’ in PHY(B,). Therefore to prove the main theorem we need only show the
following:
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Lemma 3.2. lim' PH !(B,)=0.

Proof. We need only show that PH~!(B,) is a finite abelian group for any n.
Since Ay: PH*(X)— KSp*(X) is split epic for any X, Ker A, defines a cohomology
theory F*( ). Note that F*(pr) is a finite abelian group for any * and PH*( )=
KS*( Y@F*( )asacohomology theory. On the other hand KSp~'(B,) and F~!(B,)
are finite abelian groups by the Atiyah-Hirzebruch spectral sequence and so Lemma
3.2 is proved.

The second case is proved similarly.

Proof of Corollary. First recall the fact that there are fiberings Q(F?P“’)L
Q(CP*)2Y), O(HP®) and Sp/U-£,BU-LLBSp. Using joi=~2Q(j’) and Q(j')°
£c~€yoj', we have two maps 4: Q(I-?f"”)—»Sp/U and §: Sp/U—»Q(I;(\I'”) satisfying
ged~Jof and esog=~fof. Then 1o& is a homotopy equivalence by the exact com-
mutative diagram

v —— TR(Sp/U) ~25s 14 (BU) %, 1 (BSp) — ...
1105)*1 (lwc)*l (AocH)*l

.. — 4 (Sp/U) -~ n(BU) 5 n4(BSp) — ....

Now the corollary is obtained by a standard argument (cf. (2)).

§4. The Bott periodicity theorem for K.Sp-theory

Let G be a compact Lie group, V a real Spin G-module of dimension 8n and
u e KO4(V) the Bott class. For a compact G-space X, the multiplication by u defines
a homomorphism

p': KSPg(X) — KSpg(Vx X).
On the other hand we can define a homomorphism
o' KSpg(Vx X) — KSps(X)
satisfying the following conditions by a similar method to that of (1):
(i) o is functorial in X,

(ii) o' is a KOg(X)-module homomorphism,
(iii) the diagram

KOG(V)®KSpo(X) —> KSpo(V x X)

la@l la’

KOg(*)® KSps(X) — KSpg(X)

is commutative, where a(u)=1.
Then we can show that a’of’=1 and f'oa’ =1 similarly (cf. (1)). Thus we have:
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Theorem 4.1. Let X be a compact G-space, V a real Spin G-module of dimen-

sion 8n and let u e KOg(V) be the Bott class of V. Then multiplication by u induces
an isomorphism

[1]
[2]
(3]

[4]
[5]

[6]

[7]

KSpe(X) — KSpa(Vx X).
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