On the cohomology mod 2 of E_8

By

Akira Kono

(Received 30 September, 1983)

§1. Introduction

Let E_8 be the compact, connected, simply connected, simple Lie group of type E_8 . As is well known that E_8 is a closed 248 dimensional manifold which is rational homotopy equivalent to

$$S^3 \times S^{15} \times S^{23} \times S^{27} \times S^{35} \times S^{39} \times S^{47} \times S^{59}.$$

The mod 2 cohomology ring of E_8 was determined by Araki and Shikata as follows: Theorem (Araki-Shikata [1]). As an algebra over the mod 2 Steenrod algebra

 $H^{*}(\boldsymbol{E}_{8}; \boldsymbol{F}_{2}) = \boldsymbol{F}_{2}[x_{3}, x_{5}, x_{9}, x_{15}]/(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}, x_{15}^{4})$

 $\otimes \Lambda(x_{17}, x_{23}, x_{27}, x_{29}),$

where deg $x_i = i$, $x_5 = Sq^2x_3$, $x_9 = Sq^4x_5$, $x_{17} = Sq^8x_9$, $x_{23} = Sq^8x_{15}$, $x_{27} = Sq^4x_{23}$ and $x_{29} = Sq^2x_{27}$.

They made elaborated calculations of the Bott Samelson K-cycles and so details of the proof is not published. The purpose of this paper is to give a simple proof of the above theorem.

First we determine $H^*(\tilde{E}_8; F_2)$ for $* \le 31$, where \tilde{E}_8 is the 3-connective fibre space of E_8 . Next we prove that dim $H^*(E_8; F_2) \ge 2^{15}$. Finally using the cohomology Serre spectral sequence for the fibering $\tilde{E}_8 \to E_8 \to K(\mathbb{Z}, 3)$, $H^*(E_8; F_2)$ is determined. To prove the above theorem, we use the following well known facts:

Theore 1.1 (Bott [5]). If G is a compact, connected, simply connected Lie group, then $H_*(\Omega G; Z)$ is torsion free.

Theorem 1.2 (Borel-Siebenthal [4]). The group E_8 contains a closed, connected subgroup U of local type A_8 .

Theorem 1.3 (Cartan [7]). The group E_8 contains a closed, connected subgroup V of local type D_8 satisfying

(1) the center of V is of order 2,

(2) E_8/V is the irreducible symmetric space EVIII.

§ 2. 3-connective fibre space of E_8

From now on the mod 2 cohomology and homology are simply denoted by $H^*(\)$ and $H_*(\)$. For a graded module $A = \sum A_i$ over F_2 , P. S. $(A) = \sum_{i\geq 0} (\dim A_i)t^i \in \mathbb{Z}[[t]]$ and for a graded algebra A over F_2 , $A = \Delta(x_1, x_2, ..., x_n)$ means $\{x_1^{\varepsilon_1} \cdots x_n^{\varepsilon_n}; \varepsilon_i = 0 \text{ or } 1\}$ is a basis of the vector space A. If $A = \Delta(x_1, ..., x_n)$, then $\{x_1, ..., x_n\}$ is called a simple system of generators of A. If G is a compact, connected Lie group, then $H^*(G)$ has a simple system of generators.

First recall the following fact: Since the universal covering of U is SU(9) and the center of SU(9) is of order 9, $H^*(U)$ is isomorphic to $H^*(SU(9))$ as an algebra over the mod 2 Steenrod algebra.

Lemma 2.1. If $i: U \to E_8$ is the inclusion, then the induced map $i^*: H^3(E_8) \to H^3(U)$ is an isomorphism.

Proof. Since U is a closed connected subgroup of maximal rank and $H^*(U; Z)$ is 2-torsion free, $H^*(E_8/U; Z)$ is 2-torsion free and $H^*(E_8/U)=0$ for $0 < * \le 5$ (cf. 13 of [3]). Since E_8/U is 1-connected, Lemma 2.1 follows from the Serre exact sequence for the fibering $U \rightarrow E_8 \rightarrow E_8/U$.

Lemma 2.2 If t_2 is a generator of $H^2(\Omega E_8) = \mathbb{Z}/2$, then $t_2^8 \neq 0$.

Proof. By Lemma 2.1, $t' = (\Omega i)^*(t_2)$ is a generator of $H^2((\Omega U)_0)$, where $(\Omega U)_0$ is the connected component of ΩU containing the constant loop. Moreover $H^*((\Omega U)_0)$ is isomorphic to $H^*(\Omega SU(9))$. Denote a generator of $H^2(\Omega SU(9))$ by t. Then we need only show $t^8 \neq 0$. Consider the fibering

$$\Omega SU(9) \longrightarrow \Omega SU(\infty) \longrightarrow \Omega(SU(\infty)/SU(9)),$$

where $SU(\infty) = \text{Colim } SU(n)$. The algebra $H^*(\Omega SU(\infty))$ is a polynomial algebra by the Bott periodicity theorem (cf. [6]) and the space $SU(\infty)/SU(9)$ is 18-connected. Therefore $t^8 \neq 0$.

As is proved in [5], E_8 is 2-connected and $\pi_3(E_8) = \mathbb{Z}$. These are easy consequences of Theorem 1.1. Let $j: BE_8 \to K(\mathbb{Z}, 4)$ be a map representing a generator of $H^4(BE_8; \mathbb{Z}) = \mathbb{Z}$. Then Ωj and $\Omega^2 j$ are generator of $H^3(E_8; \mathbb{Z})$ and $H^2(\Omega E_8; \mathbb{Z})$ respectively. There are fiberings

$$B\tilde{E_8} \longrightarrow BE_8 \longrightarrow K(Z, 4)$$

(2.4)
$$\tilde{E}_8 \xrightarrow{k} E_8 \longrightarrow K(Z, 3)$$

(2.5) $\Omega \tilde{E_8} \longrightarrow \Omega E_8 \longrightarrow K(Z, 2) \simeq CP^{\infty}$

(2.6)
$$K(\mathbf{Z}, 1) \simeq S^1 \longrightarrow \Omega \tilde{E}_8 \longrightarrow \Omega E_8,$$

where $B\tilde{E}_8$ is the homotopy fibre of *j*. Note that (2.4) (resp. (2.5)) is a loop (resp

276

a double loop) of (2.3) and so \tilde{E}_8 is the 3-connective fibre space of E_8 and $\Omega \tilde{E}_8$ is the 2-connective fibre space of ΩE_8 .

Lemma 2.7 P. S. $(H^*(\Omega \tilde{E}_8)) = (1 + t^{14} + t^{28})(1 + t^{22})(1 + t^{26}) \mod (t^{31}).$

Proof. Since $H^*(\Omega E_8)$ is a Hopf algebra, $t_2^8 \neq 0$ implies $t_2^{15} \neq 0$. Moreover there exists a graded algebra A over F_2 such that as an algebra

 $H^*(\Omega E_8) = F_2[t_2] \otimes A$

for $* \le 31$. Consider the cohomology Serre spectral sequence for the fibering (2.6). Then we can easily get $H^*(\Omega \tilde{E}_8) = A$ for $* \le 30$. On the other hand by Theorem 1.1 P. S. $(A) = (1 + t^{14} + t^{28})(1 + t^{22})(1 + t^{26}) \mod (t^{31})$ and so the lemma is proved.

If s_{14} is a generator of $H_{14}(\Omega \tilde{E}_8)$, then there are two positibilities:

(2.8)
$$s_{14}^2 = 0,$$

(2.9) $s_{14}^2 \neq 0.$

Lemma 2.10. (1) If $s_{14}^2 \neq 0$, then as an algebra

$$H^*(\vec{E}_8) = \Lambda(a_{15}, a_{23}, a_{27})$$

for $* \leq 31$, where deg $a_i = i$.

(2) If $s_{14}^2 = 0$, then as an algebra over the mod 2 Steenrod algebra,

 $H^*(\tilde{E_8}) = F_2[a_{15}] \otimes \Delta(a_{23}, a_{27}, a_{29})$

for $* \le 31$, where deg $a_i = i$, $a_{23} = Sq^8a_{15}$, $a_{27} = Sq^4a_{23}$ and $a_{29} = Sq^2a_{27}$.

Proof. (1) If $s_{14}^2 \neq 0$, then as an algebra

$$H^*(\Omega \vec{E}_8) = F_2[s_{14}] \otimes \Delta(s_{22}, s_{26})$$

for $* \le 30$, where deg $s_i = i$. Consider the Rothenberg-Steenrod spectral sequence (cf. [12])

$$E_2 = \operatorname{Ext}_{H*(\Omega \widetilde{E}_8)}(F_2, F_2) \Longrightarrow E_{\infty} = Gr(H^*(\widetilde{E}_8))$$

The E_2 -term is isomorphic to

$$A(a'_{15}, a'_{23}, a'_{27})$$

for deg ≤ 31 , where deg $a'_i = i$. This spectral sequence clearly collapses for deg ≤ 31 by the dimensional reasons. Thus (1) is proved.

(2) If $s_{14}^2 = 0$, then as an algebra

$$H_*(\Omega E_8) = \Lambda(s_{14}, s_{22}, s_{26}, s_{28})$$

for $* \le 30$, where deg $s_i = i$. Thus the E_2 -term of the Rothenberg-Steenrod spectral sequence is isomorphic to

$$F_2[a'_{15}] \otimes \Delta(a'_{23}, a'_{27}, a'_{29})$$

as an algebra for deg ≤ 31 , where deg $a'_i = i$. Since a'_{15} and a'_{29} are elements of $E_2^{1,*}$, this spectral sequence also collapses for deg ≤ 31 by the dimensional reasons. Therefore as an algebra

$$H^*(E_8) = F_2[a_{15}] \otimes \Delta(a_{23}, a_{27}, a_{29})$$

for $* \le 31$, where deg $a_i = i$. Note that

$$Sq^{1}Sq^{2}Sq^{4}Sq^{8}a_{15} = Sq^{15}a_{15} = a_{15}^{2} \neq 0$$

by the Adem relations and so $a_{23} = Sq^8a_{15}$, $a_{27} = Sq^4a_{23}$ and $a_{29} = Sq^2a_{27}$.

§3. Proof of Theorem

The following is easily proved:

Lemma 3.1. If G is a compact, connected Lie group and $\{x_1,...,x_n\}$ is a sample system of generators of $H^*(G)$, then

(1)
$$\dim \boldsymbol{G} = \sum_{i=1}^{n} \deg x_{i},$$

(2)
$$P. S. (H^*(G)) = \prod_{i=1}^n (1 + t^{\deg x_i})$$

and

$$\dim H^*(\boldsymbol{G}) = 2^n.$$

Now recall the following fact, which is a special case of Theorem 4.3 of [8]:

Lemma 3.2. Let X be a compact $\mathbb{Z}/2$ -space and $X^{\mathbb{Z}/2}$ be the fixed point set. Then dim $H^*(X) \ge \dim H^*(X^{\mathbb{Z}/2})$.

By Theorem 1.3, E_8 has an involution τ such that E_8^τ , the fixed point set of τ , is V. Since the local type of V is D_8 and the centor of V is of order 2, V is isomorphic to SO(16) or Ss(16). Moreover $H^*(SO(16))$ is isomorphic to $H^*(Ss(16))$ as an algebra and so dim $H^*(V) = 2^{15}$ (cf. [2]). Then using Lemma 3.2 we have the following:

Lemma 3.3. dim $H^*(E_8) \ge 2^{15}$

Lemma 3.4. If $s_{14}^2 \neq 0$, then dim $H^*(E_8) \le 2^{14}$.

Proof. Consider the cohomology Serre spectral sequence for the fibering (2.4). Since as an algebra

$$H^{*}(K(\mathbf{Z}, 3)) = F_{2}[u_{3}, u_{5}, u_{9}, u_{17}]$$

for $* \le 32$, where deg $u_i = i$, $u_5 = Sq^2u_3$, $u_9 = Sq^4u_5$ and $u_{17} = Sq^8u_9$ (cf. Serre [14]). the E_2 -term is isomorphic to

$$F_2[u_3, u_5, u_9, u_{17}] \otimes \Lambda(a_{15}, a_{23}, a_{27})$$

278

as an algebra for deg ≤ 31 . Since this spectral sequence is a Hopf algebra spectral sequence, $1 \otimes a_{15}$ and $1 \otimes a_{27}$ are permanent cycles and a_{23} is transgressive with $\tau(a_{23}) = au_3^8$ for some $a \in F_2$. Thus the E_{∞} -term is isomorphic to E_2 if a=0 or $E_2/(a_{23}, u_3^8)$ if a=1 for deg ≤ 31 . There is an element $x_i \in H^i(E_8)$ such that $k^*(x_i) = a_i$ for i=15, 23, and 27 if a=0 or i=15 and 27 if a=1. Put $x_3 = (\Omega j)*(u_3)$, $I_1 = \{3, 6, 12, 5, 10, 20, 9, 18, 17, 15, 27\}$ and $I_0 = I_1 \cup \{23, 24\}$. Then as an algebra $H^*(E_8)$ is isomorphic to $\Delta(x_i; i \in I_a)$ for $* \leq 31$, where $x_{2k_i} = (x_i)^{2^k}$ and a=0 or 1. Note that $248 - (\sum_{i \in I_0} i) = 59$ and $248 - (\sum_{i \in I_1} i) = 106$. Since the degrees of the other elements of the simple system are greater than 31, there is only one other element if a=0 or there are at most three other elements if a=1 in the simple system by (1) of Lemma 3.1. Therefore dim $H^*(E_8) \leq 2^{14}$.

Proof of Theorem. By Lemma 3.3 and Lemma 3.4, $s_{14}^2 = 0$. Using Lemma 2.10, we can easily show that the cohomology Serre spectral sequence collapses for deg ≤ 31 , since it is a Hopf algebra spectral sequence. Thus there is an element x_{15} such that $k^*(x_{15}) = a_{15}$. Put $x_3 = (\Omega j)*(u_3)$, $x_5 = Sq^2x_3$, $x_9 = Sq^4x_5$, $x_{17} = Sq^8x_9$, $x_{23} = Sq^8x_{15}$, $x_{27} = Sq^4x_{23}$, $x_{29} = Sq^2x_{27}$, $x_2^k = (x_i)_{2k_i}$ and $I_2 = I_0 \cup \{29, 30\}$. Then

$$H^*(\boldsymbol{E_8}) = \Delta(x_i; i \in I_2)$$

for $* \le 31$. Moreover since $(\sum_{i \in I_2} i) = 248$, $\{x_i; i \in I_2\}$ is a simple system of generators by (1) of Lemma 3.1. Using the fact that $H^*(E_8)$ is a Hopf algebra, we have the relations

$$x_{3}^{16} = x_{5}^{8} = x_{9}^{4} = x_{17}^{2} = x_{15}^{4} = x_{23}^{2} = x_{27}^{2} = x_{29}^{2} = 0$$

by the dimensional reasons.

DEPARTMENT OF MATHEMATICS Kyoto University

References

- [1] S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group E_8 , Proc. Japan Acad., 37 (1961), 619–622.
- [2] P. F. Baum and W. Browder, The cohomology of quotient of classical groups, Topology, 3 (1965), 305–336.
- [3] A. Borel, Topology of Lie groups and characteristic classes, Bull. A. M. S., 61 (1955).
- [4] A. Borel and J. De Siebenthal, Les sous-groupes fermés de drang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949–50), 200–221.
- [5] R. Bott, An application of Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251–281.
- [6] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
- [7] E. Cartan, Sur certaines formes riemanniennes remarquables des géométries a groupe fondamental simple, Ann. Sci. Ecole Norm. Sup., 44 (1927), 345–467.
- [8] E. E. Floyd, Periodic maps via Smith theory, Ann. Math. Studies, 46 (1960), 35-47.
- [9] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962.

Akira Kono

- [10] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric space of exceptional type, J. Math. Kyoto Univ., 17 (1977), 225-243.
- [11] A. Kono, A note on the Borel cohomology (to appear).
- [12] M. Rothenberg and N. E. Steenrod, The cohomology of classifying space of H-spaces, Bull. A. M. S., 71 (1965), 872-875.
- [13] J. P. Serre, Homologie singulière des espace fibrés, Ann. Math., 54 (1951), 425-505.
- [14] J. P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv., 27 (1953), 198-232.

280