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§1. Introduction.

In this work we shall deal with the Cauchy problem

w= 3 (ay (6D u),  on Rix[0, T]
L)

(1) u(0, x) = (x)
ut (0, x) :¢(x)

(a;;=a;)

under the weak hyperbolicity condition
1,n

(2) 2 aii(t, ) €620 VEER"
g

We shall say that problem (1) is well-posed in some space F of
functions or functionals on R" if for any ¢, ¢ in & it admits one and
only one solution u in C*([0, T], %).

It is known (see [2]) that the weakly hyperbolic equation u,=a(t)u,,
may be not well-posed in C=, even if a(t) €C~([0, T]); therefore, we
shall study problem (1) in the Gevrey classes 7.

We shall prove the following

Theorem 1. Let us consider problem (1) under the hypothesis (2).
Let us suppose that the coefficients a;;(t, x) fulfill the following conditions:
1) There exists a 61 such that, Y K&R", the mapping

3 ____>[:v_: a; (¢, x)§:6;1Y°

is a continuous mapping from the sphere S"={E=R":|&|=1} into the space

BV ([0, T]; L~ (K)).
11) VK&R? there exist some positive constants Ay, Ay such that
(3) [1Dga; (t, 2)], e, < Ax A (] 1)*

L% (K)
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L. e. coefficients a;(t, x) belong to y(2(R?), uniformly with respect to t.
Then, problem (1) is well-posed in &), provided that

locy

(4) l<s<l+%.

Let us briefly comment upon this theorem.

First of all, we observe that the hypothesis i) is equivalent to the
following one:

i’) There exists a sequence of matrices a® (¢, x) in C'(R:x[0, T1),
strictly positive defined and equibounded from above, such that a®®— a;
in L([0, T], L;,) as h — o and, VKeR?,

1.n
(5) sup 113, (3} af (t, %) £ o =7 ()
161=1 i,7 L™ (K)
with
(6) STvﬁ">(t)dt<Mk<+oo,
0

(This equivalence is a consequence of the fact that a function f(f,x) &
BV ([0, T]; L*(R?)) may be approximated by a sequence of functions
f®(t, x) belonging to C'([0, T]; L=(R?)) such that

(0SBt )l gt <M<+ 00 ).
0 L <Rx)

As far as we know, the hypothesis i) has not been considered up to
now in the theory of hyperbolic equations; therefore, we shall illustrate
it by means of some examples.

Example 1. If a;j(t, x) Zb(t) 'C;j(x), with
(7) b(#) >0, b(t)eC([0, TD

and 0< 1” ¢i;(x)£:6;< )&% then a,;; verify the hypothesis i) with ¢=k+
L
a.
This is an immediate consequence of the fact that, if 6(¢) verifies (7)),

then [b(t)]ﬁeBV([O, T1) (see Lemma 1 of [1]).

Example 2. If a;(¢, x) €C**([0, T]) uniformly with respect to x,
then a;;(¢, x) verify the hypothesis i) with ¢=1+4a.

This is a consequence of the following

Lemma 1. Let f(t) be a non-negative function belonging to C“=([0, T]).

Then [ f(t)]1+= is a Lipschitz continuous function; moreover

(8) IF(De|%2 < ClFO|

Ao, 7p claqo, )

where C is a constant depending only on a.
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Let us consider for the moment Lemma 1 as though it was proved;
we get that
KM+ 0

o pn
L™ (RY)

19,13 a1, ) 6.8, ¥l

so, a;; verify hypothesis i) (and, therefore, i)) with ¢=1+a.

We point out that, in general, if a;; (¢, x) belong to C*([0, T]), £>2,
uniformly with respect to x, then a;; verify the hypothesis i) with ¢=2,

For example, the function a(f, x) =(t—x)? is an holomorphic function,
but it verifies hypothesis i) only for o< 2.

On the other hand, there are coeflicients discontinuous in ¢ that verify
hypothesis i) for larger values of ¢; this means that, in general, there is
no connection between hypothesis i) and high order regularity in ¢ of the
coeflicients.

Now, for the sake of completeness, let us prove lemma 1; this proof
is an adaptation to our case of a technique due to G. Glaeser (see [3]).

Proof of lemma 1. Let us extend f(¢) to a function f(f): R——R*
such that f(t) =f(t) for t€[0, TT and ||/l nag =IF O gag py-

The mean value theorem gives us
fO=ft)+/ (O (-t) = )
=f(t) +f (ts) (t —to) + [ f' (&) —f () 1 (t —1,)

where § is a point between ¢ and ¢,.
Using the holder continuity of f* we get

(9) 0 () <f (ko) +F (8) (£ —ty) +k |t —t,| e

The function y(x) =k|x|***+f ({yx+f(t,) is a convex real function
whose minimum value is

. i
min y (%) =f(t) —ka [_lf (t) | ]”a
*€R

According to (9) we get

=, s 1 .

Now (8) is an immediate consequence of (10) M

Example 3. Let n=1; then problem (1) becomes

u(0, x) =p(x)

{ utt: (a(t, x) ux)x on R: X [0, T]
u, (0, x) = (x)

Let a(t, x) =[a(t, x)]°% o>1, where a(f, x) is a non-negative function
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in C*(R,x[0, T]). Then it is obvious that a(¢, x) fulfilles hypothesis i).

Let us return to problem (1). On the ground of theorem 1, we see
that problem (1) may be well-posed also in the Gevrey classes 7{) with
s>2, provided that the coefficients a,;(¢, x) fulfill hypothesis i) with ¢>2;
in order to obtain results of this kind, the absence in problem (1) of
lower order terms of the form b,(¢, x)u,, is essential, since, as it’s well
known, the very simple equation u, =u, is not well- posed in rf;) for s>2.

Theorem 1 may be also regarded as an extension of previous results,
proved in [1], concerning weakly hyperbolic equations of the form

Z i ()t

Moreover, a class of counterexamples in [1], §4, shows that, in general,
the results of theorem | cannot be improved, in the sense that there exist
a(t) in C**([0, T]) (and, therefore, fulfilling hypothesis i) with e=k+a;
see example 1 here above and lemma 1 of [1]) and ¢(x), ¢(x) belonging

to 7 for any s>1+ 5% for which the Cauchy problem

ult:a(t)uxx on RXX[O, T]
u(0, x) =¢(x)
ut(03 x) :gb(x)

is not solvable in the space of distributions.

We remark that the case s=1 (i. e. the well-posedness of problem (1)
in the space of the real analytic functions) has been treated by the author
in [4], where theorem 1 was proved under the sole hypothesis ii);
therefore, in the present work we shall always suppose that s>1.

Finally, we point out that remark 2 is devoted to a comparison among
our results and the results of 7. Nishitani, who recently has studied
problem (1) with the addition of lower order terms, obtaining certain
results of well-posedness in 7, both in the case of strict hyperbolicity
and weak hyperbolicity (see [6]).

In this remark we briefly show how, adopting our techniques, we are
able to re-obtain the results of T. Nishitani under less restrictive hypo-
theses.

Notations. — 7, for real s>1, is the ¢. ». 5. of Gevrey functions on
R" of order s, i.e. the C~ functions f(x) verifying

|D3f (%) | < AR (e ') VxeK, VaeN"

for any compact subset K& R"
When s=1, 7{ coincides with the space of the real analytic functions
on R '

— 719, for real s>1, is the . 0. s. of Gevrey functions on R* of order
s having compact support.
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— (78" is the dual space of 7{’, i.e. it is the ¢ v. s. of the Gevrey
ultradistributions of order s on R".

— L=([0, T], 7£) is the t. 0. s. of the measurable functions f(t, x), defined
on [0, T]1xR?, which, for any ¢, belong to 7{2(R?), uniformly with
respect to ¢; this simply means that

|Def(t, x) < Axdi (fa ) Vi[O, T], VxeK, VaeN"
for any compact subset K&R;.

—  C™ ([0, T, r2) is the space of the functions u:[0, T]— 7}, belonging
to CX([0, T, 75), whose second derivative belongs to L=([0, T, rf).

— For any multi-index aeN", we shall denote by D* the operator

<i>a1 < 9 >a". The symbol D= will not involve derivatives with
0x, ox,

respect to {.
We shall often use u, u, instead of du, 0, u.

§2. The energy inequalities.

Let us consider problem (1) with ¢, ¢7f), s>1 (see the Introduction
for the case s=1).

Owing to the finite speed of propagation of the solution, we can
suppose that ¢, ¢ 7§’ and that, consequently, the solution u will have
compact support too.

Therefore, from now on we shall suppose that

(11) |Dep (x) |+ | D= ¢ (x) | + [ D%a;(t, x) | <AA™ (|a|!)®
viel0, T], VxER", YaeN".

Moreover, in this section we shall suppose that
1,n

(12) a4y (L, x)EE 21617, 20, Vi, x5 VE;

ij

(13) a;(t, x) €C*(R:x [0, T]).

(These last two hypotheses will be removed in the next section).
The matrix a;(¢, x) fulfilles hypothesis i) of theorem 1; therefore,
taking into account (12) and (13), we get

3,(3 ayt, x)€&)
(14) sup Ld

e=1 || ps -1 <P
B [Z a;j(t, x) 5;5,-] g

L (RD

with

(15) (1) =S;p’(5)ds<M<+00 vielo, T1.
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We explicitly remark that the constant M in (15) depends neither
on the constant 4 in (12) nor on the hypothesis (13), but it depends
only on the hypothesis i) of theorem 1.

I’s a well known fact that problem (1), under the additional hypo-
theses (12) and (13), maintaining the hypothesis ii) of theorem 1, is
well-posed in 7{® (one can use, with slight modifications, the technique
exposed in [5]); now, the purpose of this section is to obtain a system
of energy inequalities for the solution u (¢, x) of (1) and its derivatives,
in such a way these inequalities does not depend on hypotheses (12) and
(13).

For this end, we define, for any heN, h>1,

(16) Ei) = ¥, {SR[IZ, (ais (L, %)+, (hy D) h8) Do, (4, %) Do (1, %) +

lal=h—

Fh(Du(t, x))2+ (Do, (L, x))2]dx}

where
) :/1 h=">2
<0 z;&] AR N0 A2
By derivation of problem (1), we get that Du solves the following
equation:
a7n Doy, = Z‘, (a;Du, ) -+
1'" a e;
+X X ; < )D" i * ku),j+
R P
l.n ate;
+Zkz (a-lic-e>Dka"(D+ B )i+
1,7 lh(]c:léei
Ln a+e,> A ate;— -k
+ g k<ate; ( k D l] (D ) i
|k 23

where a+e¢; is the multi-index (ay, ..., a;+1,..., a,).
Now, let’s derive (16) with respect to f. Taking into account (17) and
the fact that u has compact support, we obtain

la|=h— 23]

1,n
(18) 2E,WOE; )= X 1{Sm( " 9D, Du, ) dx +
* 1,n
+29,(h, z)/ﬂ& (3% Do, Du,, )dx+
R: T 4 4
+2h28 (D*u~ D) dx +
R}

L /o ate;—k
+28Rn[D“u,- 5 z( )Dka,.,.(D “hy, Jdx+

i<a Ti\k
|kl =1
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+2§ [ D%, (a+e>D’°a,,(D““_k) Jdx+
R: :z,fla-;e‘ i
+2§ [ D, <a+e>D”a,,(Da” ), ]dx}
R" k<
* |k|>

Let’s examine in detail every single addendum in this sum.
From the inequality

1,n
|S (% 9,0, Do, Do, Ydx | <
R 17 ! I

1,n 1,n
I Z ataijDauxiDaule * Z(aij+ﬂa(h3 z)h_aaij)DauxiDauxj
< S L2% ) ]
R"

dx

1,n T
x (Z aiiD“ux,«D“u,j)l-l/”- (h—v Z (Daux,-) 2) 1/0
1,7 7

it follows, taking into account (14), that

lal=h—1

1,n
a9 2 1| (5 desDu,Dow)dx | <he OB
i
Moreover, we easily obtain

@) = k| (3 Dw Do, )dx<

_0 1,n R
<2n,h DET 2 (i B 0w S8 (Do, ) ) Vo
la|=h-1 R;‘ i * R;‘ i :

<27, (hy AT B, (1) By (D) 5
@en ¥ 21128 (D Du)dx <
lal=h-1 R:

<2 ¥ (SRn(hD“u)zdx)l/z-(SR"(D“u,)de)1/2<2hE,2,(t).

laj=h—1

1,n
The term 28 [D*u,- ; < )D”a,J(DaH ku) ]a'x will be estimated
R: <a ij

using a lemma, concerning the non-negative defined matrices, due to O.
A. Oleinik ([7], [8]), according to which for any function »C?(R")

1,n 1,n
( Z axkauvx Xy ) < Cl Z: aiivxhzivxhz-
ij.h 4

the constant C, depending only on the second derivatives (with respect to
x) of the functions a;;.

Having this lemma in mind, we get

@) % 28 (D 3 f(i)pka;j(pa-ku),i,j]dm

k<a i,j
1k|=

<2 3 (S (D) ?%dx)\?nC,hE, (t) <2nChE2(2).
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Moreover, we easily obtain

L ‘o te; . ate;—k

@) 3 o\ [Dw. 3 (YY) Dlay (D7), Jdx <2CHE )
lal=h-1 JR? b<ate; Wi k i

the constant C, depending only on the second derivatives (with respect

to x) of the functions a;;;

ey 3 o [ue x5 (V) Dy 07, Jdvs

la|=h—1 k<a+te; i,j k
|kl=v
AA%v1s

<2h+2—v

(D) BB 3<o<h

where we used (11) and the inequality (g)<(}2ll>, a, B being two

multi-indexes of order z.
Taking into account the inequalities from (19) to (24), we get

(25) E;(t) << “’/2“) +1 +nCl-|-Cg) hE,(t) +

7,y DR By (t) +
h-3 h—j — 1) 1s

+4y, <h>A_’<”_J_)_ Ej(D)
j=0

J j+2
where the last term appears only if A>3.
If we define
(26) (0 =L 4 (140G, +Cy)e

we can write the system of differential inequalities (25) under the
following form:

27) E{(t) </ (O E\(8) + Ey(t)
E () <24 () Ey(1) +27 7 E5(1)

-9 3,65
Ei() <3¢ OB, +37F E,0) +4°

E, (&)

E;(£) <hpt (8) By (8) + 7, (hy DB T By (8) +

h-3 h Ah—j(h_j)!s ‘
+A,§o<j> Jj+2 Ea®)

ooooooo

So, we have obtained a system (of infinite dimension) of energy
inequalities, to manage which we need some very simple lemmas.

Lemma 2. For any h, jEN, j<h—2, and for any s>=1, the following
inequality is true:

A= UEGEDE _ s
e <j/ hEG+2) < (G+2) (&)
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Proof.
It’s trivial that
L (AN __GEDRL iy Y,
(29) 17 (G )=gah o<+ (o)
N I1S( 4 s i s(q 1s(h—17)% = j
Gy BDLGEDL (i D VGED IR (A ) (e

From (29) and (30) we obtain

NG EGAD i B N o o
(f/ hE(G+2) <(J“)(j+2) (<G +2) () W

Lemma 3. Let 60, p, g=R*, q=1. The function

y(x) =pxt~%—gqx xER*
satisfies the following estimation:
31) Y<CrpTog
where Cy is a positive constant depending only on 0.

Proof. The proof is trivial. We want only to point out that, obviously,
(31) is not the best estimation for y(x), but it is the most convenient for
our purposes. [l

Let us return to system (27). We want to obtain an a priori estimate
regarding the functions E, ().

First of all, we remark that, taking into account (l1) and (16), we
have

(32) E,(0)<A(ed)*h!®

where 4 is a constant depending only on 4 and on the measure of the
support of ¢ and ¢.
Now, let us define
_ O, (1)
(33) () =—prr—
where B is a positive constant that we’ll determine later.

We recall that, being l<s<l—|—i, we can write

(34) s=1+%—5

where ¢ >0.
Taking into account (27), (33) and (34), we easily obtain the following
system of integral inequalities:

(35) @, (1) <, (0) ~24{ 4 @)y ) o+
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+2:By,(h, 2) hl‘dg;e“(”’a,,ﬂ(v)dv—l—

h-3 h h_ !s . 2 !s h—j(t e
+AB? ,~§) <_] >( hjl)‘(](-{-_g) ) <%> Soe W0-i-Dug (0)dp
YheN

Lemma 2 allows us to transform the system (35) into the simpler
system

(36) o, (1) < a; (0) —QhS;,a’ () a, (2)do+
+2:By,(h, A) hl“’S‘eaf‘("’a,,H(v)dv—l-
h-3 Aes h—jo . t
+ABS, —> (J+2)Sa,.+2(v)dv vheN
j=o\ B 0

where the last expression appears (as well as in (35)) only if A>3.
Now, let us define

(37) B(t) = ihah(t)

This series is well defined, the functions «,(¢) being positive. Taking
into account (36), we obtain

(38  pWO<pO)+
+ u—}lz_/]:.] S;[ —hy' @) +2°Be*® (h—1) 4] a, (v)dv+
+ :§1 S;[ —hy (v) + AB%h §3 <%)P]ah (v)dv
(there is no problem in grouping the terms of (36) in this way, because

the first sum is extended only to a finite number of addenda).
Now we must estimate the expressions

(39) —hy' (0) +2°Be¥® (h—1) -9,
(40) —hp () + 4B Y, <ﬁ>”.
p>3\ B
By lemma 3 we get
(41) _hﬂ/(v)+28B33ﬂ(u)(h_l)(1_6)<
3

S % 06233"’7#(0)'%#' () =0;(v)

where 6;(v) is a positive function such that

t 0 3w
(42) 6,(1) :S 0,@)dv =3 C2BLe+*" 11,
0

As regards (40), we observe that g (v) >1, while

) Ae )P_ AA3%* <Aes )”,
(43) ABZ(B_B,,;DB’

>3
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therefore, as we can always suppose that 4>1 and 4>1, choosing

(44) B=24A4%*
we immediately obtain that AB? }, (%)%l. This means that
23
/ Aes \?
(45) —hy (0) +AB%h ¥ <~) <.
>3 B
Substituting (41) and (45) into (38), we get
(46) ORI ORAWAGKION
from which, using the Gronwall lemma, we obtain
(47) B(1)<B(0)-e"".
But
— - — - -h —s - Ae k 7.
(48) B0 = Tpa,(0) = T, By B =< T () <

therefore substituting (48) into (47) we have

0]

(49) a,)< e VheN

from which, taking into account (33), we finally derive the following energy
inequalities:

(50) E, (1) < A0 g ys

We observe that these inequalities are independent of 2 and of the
derivatives with respect to ¢ of the coefficients a;;; more precisely, the
estimations (50) depend only on the following elements:

—the constants 4 and 4 of (11);

—the measure of the support of the initial data ¢ and ¢;
—the constant M of (15);

—the constant 0 of (34);

—some universal constants.

§3. Proof of theorem 1.

Existence of the solution Let a®(f, x) be a sequence of strictly
positive defined matrices, equibounded from above, fulfilling conditions
(I1) and (15) uniformly with respect to v and such that a¥ (¢, x)—
ay(t, %) in LA([0, T1, L~(R2))

Such a sequence there always exists (see also the equivalence between
hypothesis i) and hypothesis i’) in the Introduction); one can choose,
for instance,
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(51) a® (1, x)=y8+“dij(t+s, o (5)ds+13,
0

where

(52) a1, x) =¢ % #) 0<t<T .

T Na;(T, %) t>T ’
(53) w(t) €C*(R,), @=0 on (—oo, 0] and on [1, + o), andg

+

“o(s)ds=1;

Let »® (¢, x) be the solutions of the problems

up=3 (@, )u®),, on R1x[0, T
ij
(55) u® (0, x) =p(x)

u (0, x)=¢(x)

where ¢, ¢ belong to 7{.

From the energy inequalities (50), we get that the sequence {u®} is
bounded in C'([0, T1, 7{); therefore, there exists a subsequence, that
we shall denote again by {u®}, such that

(56) uP——u in C([0, T1, &) when v —> 4 oo,

Now, being u® solutions of (55), it’s easy to see that the function
u(t, x), as a matter of fact, belongs to C“([0, T], 7{’) and solves
problem (1).

Uniqueness of the solution. We have found a solution u=C*!([0, T7],
76?) of problem (1) by means of an approximation scheme; now, we
must prove that this solution is indeed the only one.

In order to do this, let us define u as a solution of the problem

Uy = 12" (a;; (¢, %) u,j),i on R:x[0, T]
(57) u(0, x)=0
u, (0, x)=0

If we want that problem (57) makes sense, we must suppose at least
that ueC ([0, T1, (y§?)’): What we want to prove is that u is identically
zero.

Let us consider the ‘‘dual” problem

l,n

ve= 2 (a; (¢, x)U,j),‘, on R*x[0, T*]

¥

(58) o(T*, x) =0
v, (T*, x) =7(x)
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where T*<[0, T1, 7(x) €7 and v is a solution of (58) belonging to
C1([0, T, 7§*), the existence of a solution of this type being guaranteed
by the first part of this proof.

We can multiply, in the duality < , >> between 7 and (7§,
problem (57) by » and problem (58) by u.

Integrating on [0, 7*] we obtain

(59) S:*Kuu s 0> —<vy, U} dt=0
But gy 0> — Oy, U=
=0,({u,, v>—<u, v,»); therefore we have
(60) u(T*), 7>=0.

The equality (60) holds for any n€y§’ and for any T* &[0, T7; this
means that u, as an element of C([0, T], (7§’)"), is identically zero.

Initial data having no compact support. We have proved theorem 1
for ¢, ¢=7; the case of ¢, =yl may be treated, as usual, by means
of a partition of unity, the solution of problem (1) having finite speed of
propagation. This is a standard argument, and we’ll not repeat it here.

Summing up, we have proved that, for any ¢, ¢&rf;. problem D),
under the hypotheses of theorem 1, has a solution ueC"'([0, 1, 750

this solution is unique in C([0, T1, (7§")") [ |

Remark 1. Under the same assumptions of theorem 1, we can prove,
by means of a duality process, that problem (1) is well-posed in &,

the space of the Gevrey ultradistributions of order s<l+%.
This means, in particular, that if we choose the initial data ¢, ¢ in

some Sobolev space, the problem (1) admits one and only one solution
u(t, x) as a Gevrey ultradistribution.

Remark 2. (Equations with lower order terms) Recently, T. Nishitani
has studied in [6] the problem

U= g(aij(t, x) u,],) 5t IZ",I b; (8, X)u,, +c(t, x)u+d(2, xu
] B

(61) on R:x[0, T]
u(0, x)=p(x)
u, (0, x)=¢(x)

He supposes that all the coefficients belong to 7{ in x (uniformly
with respect to t), obtaining the following results:
Strictly hyperbolic case (lia,zj(t, x)E:6,=41€1% 2>0).
L

If the coefficients a;(¢,x) belong to C®*([0, T7]), uniformly with
respect to x, then problem (61) is well-posed in 7f, provided that
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(62) I<s<— L
|l —a

Weakly hyperbolic case (3" a;(t, ) ££,>0).
)
If the coefficients a;;(¢, x) belong to C**([0, T]) with £=0 or k=1,

uniformly with respect to x, then problem (61) is well-posed in 7{,

provided that

(63) 1<s<1+k;““ <2

Now, we want briefly to show how, adopting our techniques, we can
obtain these results under less restrictive hypotheses regarding the coeffi-
cients a; (¢, x).

More precisely, we state the following results:

Strictly hyperbolic case
If the coefficients a;;(¢, x) verify the following condition

T-t
(64) So lag (2, %) —ay (6, 2| o gt < Koo, 0Ll
then problem (61) is well-posed in ¥, provided that (62) holds, i.e.
1
I<s< l —a

Weakly hyperbolic case
If the coeflicients a;(t, x) verify (64), then problem (61) is well-
posed in 7{), provided that

(65) 1<8<1+%:

if the coeflicients a;;(¢, x) verify hypothesis i) of theorem 1 with 1<e<(2,
then problem (61) is well-posed in rf;), provided that

(66) 1<s<1+§<2.

It’s clear that (64) is weaker than the hypothesis of hglder-continuity
of order a with respect to ¢, while hypothesis i) of theorem 1 with
1<0<2 is weaker than the hypothesis of continuity of order C%* with
respect to ¢ (see example 2 of the Introduction).

In order to re-obtain the results of [6] under these hypotheses, we
can adopt our scheme of “approximated energies” that we have developed
through this work.

To do this, we shall define

_ s aii(t, x) 0<t<T

(67) dz](ts x) _\a"(T x) l>T
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(68) at, D= a4 ohs)ds

where w(¢) is defined in (53).
We point out that, when hypothesis (64) holds, the matrices a;;(t, x)
satisfy the following estimations:

T ~
(69) (112 (t, )11, g de < RR-e:

(70) STna,.(;r) %) —ay (6, | o dE< KR
0

o0 pn
L (Rx)

Now, in the strict hyperbolic case we’ll adopt the energies
1

an mo= 3 {{ (5@ 0
| R™ i,j

pl=h-1

» Dhu, (¢, x) D”u,j(t, x)+
+H(DAu(t, 1)+ (Dt %))7dx}
In the weak hyperbolic case we’ll adopt the energies
l,n
(72) BO= 3 ({ (5 @pa,n+irs -
(2%

pl=h-1

. D’uxi(t, x) D”u,j(t, x)+
+H(DAu(t, )+ (D, (1, %))}

if the coefficients a;(¢, x) verify (64), while we’ll adopt the energies
defined by (16) if the coefficients a;; (¢, x) verify hypothesis i) of theorem
1 with 1<o<{2"

Taking into account (69) and (70), we can perform a proof similar
to the one we’'ve given for theorem 1, obtaining the results exposed here
above.

We finally remark that, in the weak hyperbolic case, our method
works out also in presence of lower order terms, because we confine
ourselves to the Gevrey space of order s<(2 (see also the Introduction).
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