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§1. Introduction and statements of results.

This paper is concerned with boundary value problems for homogeneous
second order equations of the following type in a half space:

0*u | n-10%u o*u 21

lim u(x, y, H=g(y, ) and limu(x, y, /=0, (3, NER™IXR,

where n=1, 2, 3, ---. The coefficient ¢g(x) satisfies

(Co) q(x) is real valued bounded and piecewise continnuous in (0, o),
which we assume throughout this paper. Remark that ¢(x) may change its
sign. We assume one of the following conditions:

(Cy I%Q g(x)>0,

(C.) lim ¢(x)<0.

I —00

As for equations of mixed type, local boundary value problems such as
Tricomi problems and Frankl problems were investigated intensively (cf. [1], [4]
and [8]). Here we treat with global problems stated as (P) and obtain the
integral representation of solutions such as Poisson formula, (see Example 1).
This paper continues from [6] and [7]. Being different from problems for
elliptic or hyperbolic equations of definite type, the method of localized energy
estimates is not effective for our problem (P). Then what we can rely upon ?
Relating to this question we can clarify our purpose and method below. We
see that (P) has at least the linear property: Let u; be a solution of (P) for
g=ej, then Yg;u; is a solution of (P) for g=2g,e;, where g; is constant. Here

2 can be replaced by the integral symbol S with respect to some parameters.
For example suppose g(t):Sre(t, t)g(r)dr in the case n=1, where e(t, 7) is a
non vanishing function depending continuously on z. Then the solution is given
by u(x, t)=Sre(t, )E(x, t, t)g(r)dr, where e(t, T)E(x, t, ) is a solution of (P)

for g=e(t, 7). Here
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P) 3275+q<x>(§{‘(§f log e(t, )} E=0,  x£(0, o),

E©,t,7)=1 and lim E(x, t, 7)=0, t€R.

We can see that the solution E does not depend on ¢ if and only if —aa?log e(t, 7)

is independent of ¢. Then the equation in (P), becomes an ordinary differential
equation. Let us put e(t, 7)=exp{6(z)t+8,(r)}. We can make 6,(r)=0 by modi-
fying Z(r) suitably. Then after a change of variable we can suppose e(t, 7)
=¢* if we modify Z(r) again. Namely in order to reduce the equation in (P)
to an ordinary differential equation we need to consider essentially the decom-
position of Fourier-Laplace:

1 N
g)=-\ ea@dr,

where I” is a curve in complex plane C. Naturally we take [’ suitably so that
the Fourier-Laplace inversion formula holds for g(t), namely g(zr) is given by

gr(r)zgﬂe'”’g(t)dt. In general case of n=2 we suppose

L\ )
(L.1) 2, 0=(5-) Sre”’SRn_lei”g(n, D)dndr,
(L1y g0y, 0=] (e vrg(y, ndyar.
The solution of (P) will be given by
It ol )
(1.2 ux, 3, 0=(5-)"| | eV, 9. D80n, Ddnds.

In fact u(x, y, t) becomes a geuine solution of (P) by virtue of the Lebesque
theorem, if following conditions 1), 2) and 3) are fulfilled:
1) E(x, n, 7) satisfies
d2 — 2 - 2
(13) dsz—([n] +q(x)THE, xe(0, o)
EQ©, », )=1 and lim E(x, 5, 7)=0,

for almost everywhere (y, 7)€ R" ' X[
2) The following type of estimate holds for all xe(0, <o)

(E) |E(x, 9, DI=C(ipl+Icl+D* (9, D)eR* XTI,
for a certain real number k.

3) E(x, 5, ©)g(xn, t) is absolutely integrable in R™'x/". Later we state
Theorem 1, 2 and 3 relating to above requests.

Now let us look at some simple examples in order that we become familiar
to statements of Theorems 1 and 2.

Example 1. Let n=1 and ¢(x)=1. Then E(x, t)=e v2*, where v/?=+7
if Ret=0 respectively. Put E(x, 0)=1 and take /'=(—oo0, ). Then (1.2)
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equals Poisson formula in a half space. In fact, for x>0, we have

u(x, H= %S:ei”e“”’g(r)drz %S:(S:e”‘“”e‘""‘dz‘)g(s)ds

1

bl X
) e

Example 2. Let n=1 and g(x)=—1. Then E(x, t)=¢** if Im =0 respec-
tively. Put E(x, 0)=1 and take [.={r; r=0¢Fi7, 0 R}, where 7 is an arbitrary
positive number. Then the following solutions u.(x, f) correspond to the forward
and the backward waves respectively.

us(x, I)Z%Sr e e g(r)dr=g(tF x).

Example 3. Let n=1 and ¢(x)=1 in (1, 0) and ¢(x)=—1 for x<[0, 1].
Then E(x, t)=F.(x, r)/ﬁt(O, 7) if Re =0 respectively, where

e;T(I—l)’ ].éxy
Euax, D=y 1 ,
V_Z_{el(rx-fi(z/4))+e—l(tr—ri(ﬂ/4))}' 0§x<1.
Since Ei(O, 7)=0 at r=ir,,=i(%zr+k7r), k=0, 1, 2, 3, ---, for every x<(0, o0),

E(x, ) has a simple pole at r==+7,. For Rer=0, (ﬁ) has no solution. How-
ever, if we put E(x, 0)=1, E(x, 7) is continuous at 7=0. Now let us remark
that E(x, t) has the following properties:

(1) for each x&(0, ), E(x, 7) is analytic in 1€ 9=C—iRU\J {74,

(2) for each re 9U {0}, E(x, ) has a finite number of zeros in (0, o),
(3) E(x, t) is regarded as a function of 7% because it holds E(x, 7)=E(x, —1).

Taking account of above examples we put
{ p=Inl* a=t*
v(x, p, )=E(x, 9, 1),

(1.3)

and study the following auxilliary problem :

2
%vz(p%—q(x)a)v , x€(0, ),

~

(Po) lv(O, p, a)=1, Li{n v(x, p, @)=0 and for each (p, @),
v(x, p, @) has a finite number of zeros in (0, o).

Using the results on (f"o) we state Theorem 1 in terms of E(x, 7, 7).

Theorem 1. Suppose (C.). Then there exists uniquely the solution E(x, , T)
of (P) for all (y, t) belonging to R*'XD.(n), where D.(%)=D(y) is described as

magh

Dipy=C—J {2l (vl DU e: Ree=0, |z 2217}
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Here m(|n|) is a nonnegative integer or oo, and D(y) and E(x, 3, 7) have the
following properties :

(D-1) —%(n) and iv;(InD), (G=1,2, -, m(Inl)) are real valued decreasing
functions satisfying

—f§ium<[”|)<ivm(|,,|)-,< e <iU1<0, |7]]7':0, and %(0)—:0.
(D-2) wm(nl), (k=1,2,3, ---) are increasing functions satisfying 0<p.(|n])<
frn(ln), (0=1,2,3, ), lim p(lg))=c0, and lim p(Ipl)=co for all nE R

Especially we remark p,(0)>0.

(D-3) p and v; are real analytic in ne R™'— {0}.

(D-4) For (g, t)eR"X {r:Ret=0, |[z|>%(In])}, all the solutions of v"=(|n|*+
q(x)t*)v have infinite zeros in (0, o).

(E-1) E(x, 9, t) is analytic in (7, 7) at any point (7., 7,) belonging to R™X D(n,).

E(x, 9, 7) is continuous at (y, 7)=(0, 0), if (y, ) is restricted to {(1;, ), nER™,
larg(ri %)‘ >e>0} for any small €>0, where we define E(x, 0, 0)=1. E(x, 5, 7)

=E(x, 9, —1) holds if |yp|=I|7"l.

(E-2) For any (x, 9)€(0, o)X R*"!, E(x, 9, 7) has simple poles at r==p,(|n])
and t=+v,(|9]), (k=1,2,3, -, j=1,2, -, m(In|).

(E-3) For (n, )€R™'XD(y), E(x, 5, t) belongs to L*0, o).

Remark 1. Assume (C.). Then we have the same results as in Theorem 1
replacing 7 by 77.

Remark 2. From Examples 2 and 3 we see that the uniqueness does not
hold in general for problem (P), (see also example 4 below). However as we
saw in Example 2, meaningful solutions are given corresponding to the path I,
and ['.. We can say that the singularities of F in  make the non-uniqueness
and give informations on suitable function spaces, which we try to choose in
Theorem 3.

We take the path I satisfying

rcDp)U{0}.

In view of the analyticity of E(x, 5, 7) the integral (1.2) depends on the equiv-
alence class of paths in D(n)\U{0}. Now for convenience we fix a path I'=1",,
(y>0), which is independent of € R™"! as follows:

(1.4) P:,grf
I={r:t=t—iy, —co<t<—y}
I=A{r:r=s5+is, —y=<s=0}
Ii=A{r:r=s5—1is, 0=<s=7}
Ii={r:1=t—iy, y=<t<oo}.

We also consider the conjugate path I'={r:zel'}, (cf. Example 2).
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Theorem 2. Assume (C,) or (C.). Then there exists a positive constant C such
that the solution E(x, %, 7) of (P) satisfies the following (E.) in the case (C,) and
(E.) in the case (C.).

lzlUpl+1z[+1)

(E+) |E(xr 7 ‘L‘)|§C (TIReTI)l’Z So(x, (|7]|2+5 Re T2)1/2, Xo) ’
for all (y, )ER" XTI, where ¢(x)=0>0 in (x,, ) and
( ) { 1’ xe[ov xo],
o(x, ¥, Xo)=
@ 0 e_r(z—:co), XE(XO, OO)
1/2
(E-) [E(x, 7, r)|§C|T|(I"I+r|TI+D . for all (n, DER*XI.

Incidentally we have more general statements.

Theorem 2’. Suppose (C,). Then we have for all x>0,

IT|(| |+|T|+l)l/2 2 2\1/2
(IIn:]rIIReTI)”Z olx, (I I*+ORe T xo),

(* [E(x, 5, D= if |Imz|<|Rez|, peR™F,

1/2
c'levllgeI:lIH) if |lmt|=[Rec|, pe R

Remark. From (*) follows (E_) if we replace r by ir. By virtue of Theo-
rem 2 the following u, and u_ defined by

u(x, y, )= (21”)"& e”‘gkn_lei”’E(x, 7, 1)8(y, t)dydr,

u(x, y, )= (217r>ng et ‘SRn_lei”E(x, 7, 0&(n, t)dydr,

have definite meanings and become solutions of (P) if &(», r) has a suitable
decreasing order. To state it more exactly we introduce some spaces of locally
summable functions: L2, LF, and B,,, with following norms respectively :
r=0, p=1,2, -, k=0,1,2, -+,

nguLk,,=[ B e grac, oy artflgrec ol @]
B A s e T

where 102= 5 g 505 70| 3
ihlin,= 2 {;;Rym a5 A +,,:::p:‘e s a0 D}

Remark that we have L,,,o———L,,,o:L,, and for 0<7,<7,
LE,CLE, cLicl?, ci?,,.

Using above notations we state
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Theorem 3. wu.(x, v, t) defined by (1.5) satisfies the following estimates: For
r>0 and k=0, 1, 2, -+, there exist positive constants C(k, 1), Ci(k, 7) and C_(k, 1)
such that we have the following estimates (1), (2) and (3). (For k>2 we assume
the smoothness of q(x).)

@ sup fulx, - g, ,=Ck Dlglel, ..,
in the cases (Cy) and (C.),

@ sup lulx, - Iz, , =Culk, Mgl ,
in the cases (C,),

@) sup lluslx, - g =C-(k Dlgls,,,

in the cases (C.).

We have the same inequalities replacing u, and g by . and § respectively,
where w_(x, y, D=u_(x, y, —t) and (v, )=g(y, —t). Namely for k=2 u.(x, y, t)
is a genuine solution of (P) in the case (1) and u(x, y, t) is a strong solution in
local L? sense in the cases (2) and (3). Incidentally we remark that in the case
(Cy) uslx, v, t) is real analyticin y and t for any xE(x,, o) if q(x)>0>0 holds
in (x,, o) for some 6>0.

We use Plancherel’s theorem and Holmgren's kernel estimates to obtain
Theorem 3 from the estimates (E,) and (£.) in Theorem 2.

We state some results concerning the boundary value problems for equations
of definite type, which we can obtain in the course of the proof of above Theo-
rem. We suppose one of the following conditions:

(Cg) 0< inf g(x)= sup g(x)<co,
ZE(0, ) ZE(0, )
(Cm) —oo< inf ¢q(x)=< sup ¢(x)<0.
TE(0,00) ZE(0,0)

Theorem E. Assume (Cg). Then we have the following results.
1) The same results as in Theorem 1 hold with

D(r;):C—m:le”{iuj(lr;])}U{r:Rez':O, le| 229}

Namely we have ) {01501 =@. "\J {215} =@ if qtx) satisfies q(x)=

Izi%oq(x) for x&(0, o).
2) It holds

[E(x, 3, )| =Cexp{—x(|n|*+0 Re(=))'?}, (x, 5, 1)€(0, )X R*X T,
where C is independent of y=0 and 5=I(Eigfw)q(x).

3) If g and g belong to Liins1,y or L}, for a certain y=0 and non negative
integer k, then we have ui(x, y, )=u_(x, ¥, t) which we write u(x, y, t) and the
following estimates
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De Jsup flulx, - s, =CRgly, ., ,
@k luCe, <, Mez=Culx, R)liglez,  x€(0, ),

where we have
Cylx,, B)<Cy(x,, k)1, for 0<x,<x,.

Theorem H. Assume (Cy) and the smoothness of q(x). Then
1) The same results as in Theorem E hold if we replace t© by ir.
2) There exists positive constant C such that

I7]

|E(x, 7, r)léc—r- for (x, 7, ©)€(0, )X R* X T,

where F'=I'Uir:Imr=—7}.
3) For r>0, k=0,1,2, .-+, us(x, v, 1) satifies the followings,

0* o’
-t
D |a|§jsk Ig%l’)m) Ie ay° atju+(x’ Vs t)‘
(y,)ERT"1xR
< C L, 0% 0
T ¥ e+ iShenae ay al"
9« o’
-t ..
@ |m§jsk xesggo)”e dy* ot ualx, o )L2
C
=— 2 legle,
T lei+iskt
la'lsk
at o0« o
-1t R
@ LhlaiEysk ox' dy* ot | e rn- 1)
W) g
ST ek

In the above estimates we can replace u, and g by - and g respectively.

Finally we consider on the non-uniqueness of solutions.

Remark 2. In Theorem 1 {g,(|n])}i, appears if and only if ¢(x) changes
its sign really, and {v;(|p|)} 2" appears if sup g(x)>1im g(x). For each pole

the residue calculus gives null solutions of (P), i.e. non zero solutions satisfying
zero data. For example
uy(x, y, t; p)=e'¥ei#x'10t Res FE(x, 7, 7)
=g 1)

is a non zero solution of (P) with g=0. p, can be replaced by v;. Thus we see

SM_ um{ 2 _Ca(mlet#»>t Res E(x, 7, 7)

=gl
mnl)

+ X di(pler1 Res E(x, 7, r)}dr;

]-—m(l D) T=yviinh)

is a null solution of (P) for given functions C,(5) and d;(5), where p_,=—p, and
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V_j=—Vj

Example 4. Here let us point out a simple hyperbolic case. Put g(x)=—1
2
in (1, ) and ¢(x)=—2 on [0, 1]. Then vi(|5|) satisfies %<u§-(|77|)<|77|2

and tan(—2a;—p)=+2a;,—p /v/p—a;, where p=|y|*> and a;=v¥(|y|). Then
we have Res )E(x, n, T)=e;(|nE(x, 5, v;(In]), ei(In])#0, where E(x, 5, 7)

T=vjCigl
satisfies E”=(|9|*+q(x)t)E, E(l, », 1)=1 and E’(l, 9, 1)=—+/[p[*—7* for
Ip|*>7% For an elliptic case where ¢g(x) is replaced by —g(x), we have also
similar null solutions replacing v (|n]) by 2v;(|n]).

§2. Plan of the proof.

In this section we explain the outline of proofs of Theorems in several steps.
Detailed proofs are given in later sections.

(I) Construction of E(x, %, 7) and structure of D(z). In order to obtain
Theorem 1 we consider the problem (ﬁo). If (ﬁo) has a unique solution for
(p, @), then for sufficiently large number x(p, a) there exists a unique solution
of the following problem.

Vez=(p+ex)a)v,  x€(x(p, a), ),
2.1) ¥(x(p, @), p, a)=1, LII'E B(x, p, a)=0,

(x, p, a)#0, xe(x(p, a), ).
Conversely suppose that (2.1) has a unique solution for a certain x(p, ). Then
extending #(x, p, @) as a solution of the linear equation 7,,=(p+q(x)a)i we
obtain the unique solution v(x, p, a) of (Py) if 90, p, a)#0. In fact it suffices
to put

v(x, p, A)=08(x, p, @)/¥(0, p, a).

Suppose (C,). Then we need to show the following facts (1) and (2).

(1) For pe[0, o0), there exists a non-positive number &(p) satisfying the
following conditions: The problem (2.1) has the unique solution for sufficiently
large x(p, a) if a belongs to C—(—oo, @(p)], and (2.1) has no solution for any
x(p, a) if a belongs to (—oo, @(p)).

(2) For p=[0, oo) the set Z(p)={asC—(—o0, a(p)]; #(0, p, )=0} is a set of
real discrete points {a,(p)} iU {a-;(p)} P, where it holds @(p)Sa-mp(P)< -+
a_(p)<0<a,(p)<ay(p)< ---. For every (x, p)e[0, c0)X[0, o), v(x, p, @) has
simple poles at all a_;(p) and a,(p).

Put a(p)=—%(In1)? a.(p)=p:(In])* and a_;(p)=v,(In])’, and define D(n)

as in Theorem 1. In later steps we see more precise properties of D(») and
E(x, 9, ©)=v(x, [9]% °.

I #(x, p, a) for acC—(—oo, 0]. Suppose
2.2) g(x)>d>0  for x&[x,, o).
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For (p, @)=[0, c0)X {C—(—c0, 0]} we put x(p, a)=x, in the problem (2.1).
Then #(x, p, @) is the solution of (2.1) if and only if

2.3) w(x, p, A)=(x, p, @)/(x, p, @)

satisfies the following (2.4) and (2.5), where w’(x, p, a)=%w(x, b, a).
2.4) w'=(p+g(x)a)—w*,

(2.5) ReS:Ow(s, b, @)ds=—oco0 .

Using the solution of (2.4) and (2.5) we construct #(x, p, @) by

(2.6) (x, p, a):expS:Ow(s, p, a)ds.

Now remark that (2.4) is equivalent to
(2.4) W' =1—(p+q(x)a)yi? v=1/w,

if w#0. Since ¥ and ¥’ do not vanish simultaneously, (2.4) is regarded as an
ordinary differential equation with values on Riemann sphere with two local
coordinates w and 1/w. Moreover identifying C and R*® we can regard (2.4) as
a system of differential equations with values on a real compact manifold S2
Here in short we have an heuristic argument. To obtain (2.5), Re w<d<0 for
all x=(0, o) is a sufficient condition. For example, if ¢ is constant we may
take w(s, p, a)=—(p+qa)'’®* with negative real part. Now for trial take a
small circle C. with center at —(p+ga)’®. We can see that the vector field
(p+g(x)a)—w? faces the exterion at weC, i.e. Re{(p+ga)—w?}v>0 on weC,
where v stands for outer normal. Evidently this property holds even if ¢ is
replaced by a function ¢(x) which is sufficiently close to the constant ¢. From
this fact it is possible for us to imagine that there exists a solution w(x) of
w'=(p+qg(x)a)—w? staying in the interior of C. for all x€[0, o). This reasoning
guides us to a simple existence theorem stated later from a topological viewpoint.
Then this method becomes useful also in the case where the variation of g(x)
is not small, if we regard (2.4) as an equation in a compact manifold as we
explained above. This fact will be seen below.

Now let us consider a little more on the case where a belongs to C—(—co, 0].
(2.6) means that the intervals {x; Re w(x, p, @)<0} is more effective than

{x; Rew(x, p, @)>0} in the integral SI w(s, p, a)ds. The following lemma
To
assures later that w(x, p, a) has this property.
Lemma 2.1. Suppose that a piecewise continuous function g(x) satisfies
Im (G(x)@)<0 for all x[0, o), where a is a constant with positive imaginary

part. Then w’'=q§(x)—w* has a solution w(x) satisfying Im(wa@)>0 for all
x€[0, o).

We apply Lemma 2.1 with §(x)=p+qg(x)a replacing (0, o) by (x,, o). In
order to obtain other detailed properties of ¥ we need more precise lemmas in
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§.3. However the proofs of these lemmas rely upon the same principle stated
in Lemma A in §3.

(III) Definition of @(p) and its properties. Let us fix an arbitrary sequence
{xn} %=1 satisfying x,<x;<x,<---<x,<--, lim x,=oc0, where x, satisfies (2.2).
For p=0 and natural number n we define the set A,(p) of the real numbers «
satisfying the following properties: There exists a solution v(x) of v”=(p+g(x)a)v
in (x,, o) satisfying v(x,)=1, 0<wv(x) in (x,, o) and limv(x)=0. Moreover

v(x) is a unique bounded solution in (x,, o) satisfying v(x,)=1. Put B,(p)=
R—A,(p). Then A,(p) and B,(p) are upper and lower sets called by Dedekind
respectively. This follows from the next lemma.

Lemma 2.2. Assume §(x)>q,(x) for all x€[0, o). Let v(x) be the unique
bounded solution of v"=q,(x)v in (0, 00) and v(0)=1. Suppose 0<v(x) in (0, o).
Then uw”(x)=g(x)u has the unique bounded solution u(x) in (0, o) satisfying
u(0)=1. wu(x) satisfies also u’(0)<v’(0) and 0<u(x)<v(x) in (0, o).

Suppose (C,). Apply Lemma 2.2 with §(x)=p+q¢(x)a, ¢,(x)=0 and v=1 in
(0, 00). Then we have An(p)D(—p/(sup)q(x), co0). At the same time it follows
A (p)(— p/( inf)q(x), oo) if we use Lemma 2.2 by the method of contradiction.
A (P)T Arii(p)iby definition. Note a,(p)=inf A,(p) then it holds

I _p x . _p
o0 sensans i

(Zp 41,) (Zp, ]

0=p.

Let 0=p;<p and e>0. Then p,+q(x)(@n.(p)—e)>p+g(x)an(p)+e) and
pr+q(x)@n(p)+e)<p+g(x)an(p)—e) do not hold for all x(x,, o) in view of
Lemma 2.2. Therefore it holds

bi—p . o~ p1i—p
(2.8) Tt g SO BN gy 020t

Define a(p)=Ilim @,(p). From (2.7) a(p) is independent of the sequence

{x.} %=, satisfying lim x,=co. Then we have

n—oo

{ —p/lim g(x)<a(p)=<—p/limg(x), 0=p,
(2.9)

(p:—p)/lim g(x)La(p)—a(p)=(pr—p)/limg(x),  0=p,<p.
(IV) #(x, p, @) for acC—(—co, @(p)]. From the above step it follows
C—(—o0, a(p)]=\J {C—(—00, (P}
In the problem (2.1) we put

x(p, a)=x, for (p, a)[0, 00)X {C—(—00, @,(p)]}.

Using Lemmas 3.4 and 3.5 which are extensions of Lemmas 2.1 and 2.2 we can
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construct the unique solution #,(x, p, @) of (2.1). Extend #,(x, p, a) as a solution
of ¥=(p+qg(x)a)D, in (0, o). Then the uniqueness implies

Un(x, p, @)  ¥(x, p, a)

@10 5.0, 5 @ 90, b @)

for [p, a)€[0, )X {C—(—o0, 0]}

and

ﬁn(xy py a) . ﬁm(xy p, 0.’)
@10 50,5 @~ 5n0, b, @

where 7,(0, p, @)+0 is supposed and m is large than n.

for (p) a)E[O’ OO)X {C—(——OO, dn(p)]}:

i(x, p, @) o
Therefore we can extend S0 @) for (p, a)e[0, 00) X {C—(—o0, a@(p)l}.
Then we define v(x, p, a) by
_p Dalx, p, @)
(2.11) v(x, p, a)_l,lf?o 5.0, b, @

for (x, p, a)e[0, c0)X[0, 00)X {C—(—0c0, a(p)]} if 9,0, p, a)#0 for some n.

(V) The analyticity of v(x, p, @) in (p, @). At first we consider the con-
tinuity of v(x, p, @) in (p, @). To verify it, we use the continuous dependence
of w(x) on the initial data w(0) and Heine-Borel theorem on a compact set
of S?, (see §4). To prove the analyticity in aeC—(—oo, 0], we describe
(w(x, p, a+h)—w(x, p, a))/h making use of L* integrals of wv(x, p, @) and
v(x, p, a+h) in x. This L*integrability for a< {a@:Im a+#0} is assured by

@1 wlo) I =win) ) = [p)tds+| (p+a@alvs) s,

which follows from the integration by parts of Sv”z‘)dng(p—i—q(x)a)Ivlzdx. Tend

. .. ow
the complex number h to zero then we obtain the explicit form of —— for

da
Im a=+0. Thus w(x, p, @) and v(x, p, @) are verified to be analytic in {@: Im a=0}.
From the continuity of v(x, p, @) in a belonging to D(p), v(x, p, @) is analytic
with respect to a in 9(p) by virtue of Painlevé theorem. By (2.11) and Fatou

theorem we obtain the explicite form of %’5— for a€ {a:Im a=0} ND(p), which

show the L’-integrability in x for all (p, @)€[0, )X D(p). From this fact we
can prove the analyticity of v(x, p, @) in pe(0, o0).

The analyticity of a,(p) and a_;(p) follows from the implicit function theo-
rem applied to #(0, p, a,(p))=0 and (0, p, a-;(p))=0. Moreover the explicit

aak _ oD oV . ..
formula of -a;_%(o, b, ak(p))/;ﬁ— ©, p, ar(p)) gives not only the analyticity

but also some informations on the monotone properties stated in Theorem 1.

(VI) The method for the estimates in Theorem 2. The main idea is to
introduce the oblique coordinates depending on « as follows.

—a in the case (C,),
(2.12)1 alz{

«a in the case (C.),
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(2.12), B*=—a, and (Ima,;)(Im B)>0.

Remark Re 8>0. For any complex number w we can denote uniquely
(2.13) W=w, a;+wgf,

where w,, and wg are real numbers:

oy =Im(w B)/Im(e, B) .
@13y {u m(w B)/Im(a, B

wg=Im(wa,)/Im(Ba,) .

We say simply that ws is 8 component of w. Take the 8 component of (2.11),
then

(2.14) wa(x, p, lv(x, p, A)|*=wg(x,, p, @)|v(x,, p, a)|?

+16{{ 16, b @1ds4] 1ots, b, @1},

where 1,g=—L Im %1.£0. Put x,=0, then
la| Im B
(2.15) [v(x, p, )| =(wp0, p, a)/ws(x, p, @)™

Therefore for the estimate of v(x, p, @) it suffices to know the minimum and
the maximum of wg in (0, o). For x&[x,, o) the behavior of w; is evaluated
from Lemmas in §3. In (0, x,) we use the equation

(2.16) wp(x)={Im(pa,) —Im((wa, e, +wpp)’a,)} /Im(Ba,)

and estimate wg by a comparison method in Section 5.

(VII) Existence theorem for (P). Using Theorem 2 the integral form (1.2)
has an exact meaning in some function spaces. In order to obtain L? estimates
in Theorem 3 it is convenient to modify the path I" in a neighbourhood of r=0
in view of the analyticity of v(x, p, @). Remark that the modified paths are
taken differently in the cases (C;) and (C.). Taking the partition of unity of
I’ we use Plancherel’s identity or Holmgren’s kernel estimates in each parts.

§3. Some lemmas.

Here let us state some lemmas concerning w’'=g§(x)—w? and u”=¢(x)u,
where G(x) is complex valued and piecewise continuous. The proofs of these
lemmas result in the principle stated later in Lemma A.

Lemma 3.1. Suppose 0<m<ReG(x) and |G(x)| <M for all x&[0, o0). Then
there exists a solution w(x) of w’'={§(x)—w?*® satisfying Re w(x)<—m'? and
lw(x)| <2M? for all x<[0, o). Moreover any other solution of w’'=q¢(x)—w?
satisfies I%l Re w(x)>0.

Lemma 3.2. Suppose 0<argé<z. Assume Im(G(x)E)<0, and |G(x)| <M for
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all x€[0, o), §(x)£0. Then w’={§(x)—w? has a solution satisfying Im(w(x)&)>0
and W(x)=1/w(x)e D@, M) for all x[0, ), where § =r—arg & and D(f, M)
=D.(0, M)uD_(6, M). Here

e
D.(8, M):{ﬂ/ f<arg W<z, Im(@ 752> Mg sin%}» :

-1/2
D_(4, M):{w irZarg W<a+0, Im@i 792 < Mg cos%}.
: ,D+<0 M)
~- 2t 0\

™ \\\ ¢ \A\I A4

\
RN \f?é{’\@{x\

\

Lemma 3.3. Suppose that §(x) satisfies the same conditions as in Lemma 3.2.
Let x, be an arbitrary number in (0, o). Assume that 1/w, belongs to D(8, M)
defined in Lemma 3.2. Then the solution w(x) of w'=q(x)—w?® and w(x)=w,
stays in D(8, M) for all x<[0, x,].

Lemma 3.4. Let §(x) satisfy —n<—0=<argd(x)<0, |§(x)|<M and
Im G(x)e #"-2< —m for all x€[0, o). Then there exists a solution w(x) of
w'=q(x)—w?® satisfying w—@<argw(x)<wm, l/w(x)eD_(6, M) and wp(x)=
Im(w(x)&,)/Im(Ba,) = |,3|(m cos 6)l 2for all x€[0, ), where a, and B are com-
plex numbers satisfying arg a,=r—0 and (2.12),. Any other solution of w'=
q(x)—w? satisfies lim w(x)<0.

\_ o= T \‘\
,z’ ‘\‘ 7 ~
II \‘ al
/ S Al I/l u}\(\l\)\\ ””/’/’
=07 :
7 . —M, — ml
a(x) my=(m cos 7>1/2
0 -1
— 2 v
M,=3M" (cos 2)

M,=3M"*
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Remark 3.1. @'=¢(x)—@® holds if w'=g(x)—w> Hence if §(x) satisfies
the desired conditions in above Lemmas 3.2, 3.3 and 3.4 instead of §(x), we
have the same results replacing w(x) by w(x).

Lemma 3.5. Let g,(x) be a real valued function on [0, o). Suppose that a
real valued function w,(x) satisfies wi=q,(x)—w? on [0, c0). Assume that another
Sfunction §(x) satisfies Re G(x)=q,(x) for all x[0, o). {§(x)Fq(x). Then there
exists a solution w(x) of w'=q(x)—w? satisfying Re w(x)<w,(x) for all x [0, o).

Trying to prove above Lemmas we can arrive the following general state-
ments of Lemma A, which gives a common insight into these lemmas. We
need some definitions to clarify the terminology. Let M be a real n-dimensional
manifold.

Definition 1. Let £ be an open precompact set in M. £ is said to be
contractible if there exists a continuous function F(¢, u): [0, 1]XQ2— £ such that
FO, U)=U and FQ, U)=U, for all U Q.

Definition 2. Let {2(x)}osz<~ be a family of contractible set in M. We
say that {2(x)},sz<~ 1S @ homeomorph family of contractible sets if there exists
a smooth mapping H(x, U): [0, o)X M— M, such that for each x [0, o) H(x, U)
is a one to one onto mapping from 2(0) to 2(x) and H(, U)=U in M.

Definition 3. A family {Q(x)}<z<- Of Open sets in M is said to have a
piecewise smooth boundary if there exist real valued functions ¢,(x, U),
(j=1, 2, -+, k) defined on [0, 00) X M such that

Qx0)={U: ¢;(x, U)<0, j=1,2, -, k}
02(x)={U: ¢j(x, )<0, j=1,2, -, b} —R(x)

for all x[0, o), satisfying

(—g-g’l'-, ggfn)qto on 0Q(x), if ¢,x, U)y=0.
Definition 4. Let {Q(x)}osz<~ be a homeomorph family of contractible sets
in M with a piecewise smooth boundary. Suppose that Q(x, U)=(Q,(x, U),
Q.(x, U), -, Q(x, U)) is a smooth vector field on M depending smoothly on
x€[0, ) : If Q(x, U) and {Q(x)}sz<~ Satisfy
x, U) | 2 0¢i(x, U)

3.1) Do(x, U<x)>EaLl(a";—+i§ oU;

for all (x, U, )€[0, 00)xaR2(x)X {{: ¢i(x, U)=0}, then we say that Q(x, U)
directs 02(x) to the exterior.

Qix, U)=0,

Lemma A. Suppose that Q(x, U) and {2(x)} osz<w Satisfy the conditions stated
in Definition 4. Then there exists a solution U(x) of U'(x)=Q(x, U) satisfying
Ux)eQ(x) for all x<[0, o). Moreover we have the following alternative:
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Ux)eR(x) for all x<[0, o) or U(x)€02(x) for all x&[x,, ) for a certain
x,€(0, co).

Remark. In our problems the latter case of the above alternative does not
occur when we treat w'=g(x)—w? on Riemann sphere S%

First we prove Lemma 2.1 then proceed to verify Lemma A.

Proof of Lemma 2.1. We regard the solution w(x) of w’'=g(x)—w? as a
function with values on Riemann sphere with two local coordinates: {w:weC}
and {@: @w=1/weC}, since W(x) satisfies &’'=1—g(x)w2 Put Q= {w: Im(wa)>0}
={w: Im@a)<0}. Then £ is compact and contractible. Remark that Glx)—w?
and 1—g(x)w? direct 0£2 to the exterior. Suppose that the solution w(x) of
w =§(x)—w? satisfies w(x,)€02 for a certain x,=[0, o), then w(x) belongs to
CQ for xE(x,, ). We prove Lemma 2.1 by the method of contradiction as
follows. If for every w,=£ there exists a positive number x,=x,(w,) such that
the solution w(x) of w'=¢g(x)—w? and w(0)=w, satisfies w(x)eL2 for x(0, x,)
and w(x,)€dR. Put x,=0 for w,€0Q. Denote by f the mapping from 2 to
02 : wo—w(x,). Then f is continuous and f|z;p=identity. This is a contradic-
tion since 2 is contractible.

Proof of Lemma A. At first we restrict ourselves to the case where strict
inequality holds in (3.1). If we suppose that for every U,=£(0) the solution
U(x) of U'(x)=Q(x, U) and U(0)=U, satisfies U(x,)€02(x,), then we have a
contradiction as follows. Denote x,=x,(U,) since x, is uniquely determined by
U, Put x,=0 for U,=082(0). Note by H3' the homeomorph mapping from
2(x) to 2(0). Consider the mapping f: Uy— HzU(x4(U,). Then f is continuous
from 2(0) to 02(0) and f |0 =identity, which contradicts to the fact that Q(0)
is contractible. In the general case we use a smooth vector field Q(x, U)
ggl Qux, U)>0 for all (x, U, &[0, co)x2(x)X {l: ¢i(x, U)=0}.
U'=Q(x, U)+eQ(x, U) has a solution U,(x) satisfying U.(x)e2(x) for all
x€[0, oo) for £>0. Since £ is compact there exists a sequence ¢; tending to
zero such that U.(0) has a limit U,e2(0). The solution U(x) of U’'=Q(x, U)
with U0)=U, satisfies U(x)€Q(x) for all x&[0, o), because U(x):lji_rﬁ Ugj(x)

n
satisfying >}
1=1

holds from the continuity of solutions and the uniqueness. In the same way we
have the alternative in Lemma A.

Though Lemma 2.2 is found in [5] we give another proof applying Lemma A.

As for topological treatments for ordinary differential equations, we can
point out historically [3] and [9]. We can consult [2]. Here we are lead to
more general statements of Lemma A through the study on the problem (ﬁ) in
Section 2 and the following sections.

Proof of Lemma 2.2. Put w,(x)=v'(x)/v(x), then wi=g¢,(x)—wi Note M
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={w:weR}U{W: w=1/weR} and Qx)={w; —co<w<w,(x)}\J{W: 0=1/w,
—oco<w<wy(x), w#0}. Since w'=q§(x)—w? and W'=1—g§(x)®* hold, they are
regarded as an ordinary differential equation with values on M, which satisfies
all the conditions in Lemma A. Thus w’={(x)—w? has a solution w(x) satisfy-

ing —oco<w(x)<w,(x) for all x=[0, c0). Then u(x):expS:w(s)ds satisfies

0<u(x)<wv(x) in (0, o0) and u’(0)<v’(0). Suppose w;=(w)—w3, w,(0)=w,(0)+-e.
ws=¢,(x)—w} and ws0)=w,(0)+¢ for any ¢>0. Then wy(x)>w,(x) for all

x€[0, c0). Therefore the desired uniqueness holds since ug(x)zexpS:wz(s)ds>

x
va(x):expg wy(s)ds, which tends to co as x tends to oo,
0

Proof of Lemma 3.1. Let w=w,+iw, where w, and w, are real. Put
M= {(w,, wy); w=w,+iw,C}\J{(¥,, W,); ,+iw,=1/weC}. Let £ be the in-
terior domain surrounded by S, and S,, where S;={w; w=—m!?+is, s€ R} and

t 1—t
J— YA — " < < p— [ —-- - 2 M
Sz—{w JW=—t + o D O_I_I}. Then Q(x)=0 and w’=q(x)—w? satisfy

all the conditions in Lemma A. Therefore w’=§(x)—w? has a solution w(x)
staying in @ for all x&[0, ). Then it holds ,expS:w(s)dsige‘m””. It is
evident that if w,(0)e —0Q={(w, w,.); (—w, —w,)ER}. ul(x)zexpS:w,(s)ds

satisfies |u;(x)|=e™*s. Any other solution of w’=g(x)—w?® is described as
we(x)={u'(x)+Eui(x)} /(u(x)+Eu,(x)) for a certain £+0, which approximates to
wy(x) as x tends to oo, Thus we have Lemma 3.1.

Proof of Lemma 3.2. Let 2(x)=$£ be the domain surrounded by
Si={w; Im(wé)=0},

—Jm . ~__l -1/2 i0/2 < 2 -1/24% i
Sg—{w,w— 3M +te ,0=t§3M smz},

Ssz{u? ; 17/=——:I)TM'”ZH—%M“’ze"""“”(l—t), O§t§1}.

In order to apply Lemma A to w’={j(x)—w? and £ we verify the following
inequalities (1), (2) and (3).

() Im{@Gx)—w?E} =Im@G(x)d)—|w|*Im <0 for weS,,

2) Im{(1—g(x)w®e 9% <0, for WS,

3) Im{(1—g(x)w2)et =912} gcos%—l—l—({g(jf/f—)[]>0, for weS,,
Where ]:Im{t?ei(¢+(3/2>7"(3/2)0)+2t(1__t)ei(4p+(3/2)7!-(1/2)0)+(1_t)2ei((p+(812)z+(l/2)9)}
and —g(x)=|G(x)]e*"~ e, 0<p=¢(x)<m. The proof of (2) is quite similar to
that of (3). To prove (3) we substitute

sin <¢— % 0>=sin</) cos%(?—(l—i—sin%())cos ¢-+cos ¢

sin ((,b—T— %0)=sin¢ cos%ﬂi(l—sin %)cos ¢Fcos ¢
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with gb:go—l—%n' in J, then it holds

(3.2) ]=cos(<p+%n:> {261~ 1)+ (1— 1) + Blo, 6, t)cosg—,
where Blp, 6, )=B\(p, 0, )+ Bue, 0, 1),

By(p, 0, )=sin (go-i——;—n-){tz(cos §—2sin %)+2t<1—t)+(1—z)2},

B.(p, 8, )=B—B,= —2t2cos(<p+ %n)sin 0

—(2t— 1)2cos<go+ %n)/(tan% +(cos —g—)-l) .

We have | B(p, 6, t)| <8 for (¢, 8, 1)=(0, 7)x (0, )X [0, 1]. Since the first term
of (3.2) is non negative, (3) holds and Lemma 3.2 is proved.

Proof of Lemma 3.3 is quite similar to the above proof.

Proof of Lemma 3.4. Let Q(x)=£ be the domain surrounded by the follow-
ing curves S,, (k=1, 2, 3, 4):

Si={w:Imw=0},

L 0
Szz{w: w=mm,et ™0 _tgitx=0i2 0§t§mltan§},

-M—<m cosg—)m/lﬁl, r—f<arg wén—%},

Saz{w: wp 5

P ImBa)
S4={u7 : u7=—%M"”t—l—%M“”e'“‘”‘”(l——t), 0§t§1}.

Notice that S, is equal to S; in the proof of Lemma 3.2. In order to apply
Lemma A we verify the following inequalities :

(1) Im@G(x)—w?»=Im §(x)<0, for weS,,
6

2) Im{(G(x)—we -0 < —m4-m? cos% +2m;t sin% —1? cosE

§—m+m?(cos%)(1—l—tanzg):O, for weS,,

3) arg(@(x)—w*e(—80, n—80) holds for weS,, since arg §(x)e(—46, 0) and
arg(—w?e(x—20, n—0) for weS,,
@) Im{1—gx)0»e!=-9/2 >0 for weS,.
In view of Lemma A w’=g(x)—w? has a solution w(x) staying in £ for all
x€[0, ). Evidently the solution w,(x) of wj=¢(x)—w? with w,(0)e —2 satisfies

wy(x)e—0 for all xe[0, o). Put v(x):expS:w(s)ds and v,(x)=expS:w1(s)ds.

Then from (2.14) for v»(x) and v,(x), we see that |v(x)| stays bounded and

|vi(x)| tends to oo as x tends to oo. Therefore any other solution w,(x)=

w1 (x)vy(x) +cw(x)v(x)
vy(x)+cv(x)

approximates to w,(x) as x tends to co. Thus we have
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Lemma 3.4.

Proof of Lemma 3.5. Define 2(x) by {w: —co<Re w<w,(x)} in S%. Then
we can apply Lemma A to the equation w’=4(x)—w? to obtain Lemma 3.5. In
fact 0Q(x)={w:Rew=w,(x)} U{Ww: ®=1/w, Re (1/W)=1/w,(x)} satisfies the con-
ditions in Lemma A since Re(§(x)—w?®)=q,(x)—w,(x)* on {w:Rew=w,(x)} and
Re(1—§(x)W?)=1>0 at @w=0. Therefore we have Lemma 3.5.

§4. Proof of Theorem 1.

Here we complete the proof of Theorem 1. Remark that the reasoning in this
section is continued from that in Section 2.

4.1. ¥(x, p, a) for acC—(—oo, 0]. Consider the solution #(x, p, a) of (2.1)
with x(p, a)=x, for (p, @)[0, c0)X {C—(—c0, 0]}, where x, satisfies (2.2).
Put (soup)lq(x)|=Ma and G(x)=p-+qg(x)a. If Rea>0 we apply Lemma 3.1 replacing

(0, o0), m and M respectively by (x,, ), p+JdRea and p+M,|a|. Then the
solution w(x)=w(x, p, @) of w'=§(x)—w?* exists satisfying

{ [w(x)| <2(p+M,|al'?),
Re w(x)<—(p+0d Re a)!/?, X, Zx <0, Reaz=0.

“4.1)

For Ima+0 we apply Lemma 3.4 and Remark 3.1 replacing (0, o) by (x,, c0)
and putting 6= |arg a|, m=(p+5[al)cos—g— and M=p+M,la|. Then there ex-
ists a solution w(x)=w(x, p, @) of w’'=q§(x)—w? satisfying the following (4.2)
for x&[x,, ):
G\-1
o) |w(x>|§3M”2(cos—) . O=largal,
2
Im(w(x, p, &)d@)) o
Im(ﬁd'l) ’ T
(3) r—O0<*arguwx)<=z if O<Fargg(x)=0<r.
From (4.2) (1) we have

4.2) 1(2) I;Tl(m cos%)llzéwﬁ(x, P, a)=

(4.3) wa(x) < l—fﬂM”ﬂ(cos%)_l, x&[x,, 00).

Using above w(x)=w(x, p, a) we define
(x)=0v(x, p, a)=expv w(s, p, a)ds, for x,<x.
Jxy
Integrate ﬁ"(x)f;(x) by parts then for x,=x,<x

4.4 —w(xy) | 9(x ) [P=—w(x) [T(x)] "'-'rS: D' P+ (p+a(s)a) [(s) [P ds .

Put x,=x, and take the real part of (4.4) or § component of (4.4) in (a,, B)
coordinate, then
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0,  —Rew(x)=—Re w(x) |3+ | (179" +(p+eoRe @|i()|ds,

@0 wie)=w,) |3 +H=Ds] (TOI+pI0)ds,

Im .
where (—1),9:——1,;=mn% >0. We can verify from (4.2) (2), (4.4), (4.4), and
(4.4),
(4.5) Llfn ¥(x, p, a)=0 for (p, a)e[0, )X {C—(—o0, 0]},
(4.5)7 S: (19(s, p, &) |24+ 1D'(s, p, @)|DHds<co, for above (p, a).

Remark that #(x, p, @) is the unique solution of (2.1) with x(p, a)=x, for
(p, @)€[0, 00)X {C—(—c0, 0]}. In fact we can verify the uniqueness using
Lemmas 3.1 and 3.4, (4.4), and (4.4),.

Now we extend #(x)=#(x, p, @) as a solution of ?"=(p+q(x)a)? to the
¥(x, p, @)
¥(x, p, a)
D@9, M). Therefore #(x, p, a)#0 so we can define v(x, p, a)=(x, p, @)/T0, p, @)
for (p, a)e[0, o0) X {C—(—o0, 0]}.

region (0, c©)>x. Then by Lemma 3.3 w(x, p, a)= belongs to

4.2. The continuity of #(x, p, @) with respect to (p, a). Let us prove
that the above ¥(x, p, @) is continuous in (p, @) for fixed x<[x, o). Note
w(p, a)=w(x,e, p, ). It suffices to prove that w(p, a) is continuous at
each point (p,, ay)€[0, co)X {C—(—o0, 0]}. At first suppose Re a,>0. Then
Re w(p,, a)<0 from Lemma 3.1. Denote by w(x, p, a; w,) the solution of
w'=(p+gla)a)—w? with w(x,)=w, For given ¢>0 we put U.={w:|uw—
w(po, @) <&, Rew<0}. Note 2={w:Rew=0}. By virtue of Lemma 3.1, for
every w,eQ2—U. there exists a positive number x(w,) uniquely satisfying
w(x, po, a: wo)&ER for all x&(x(w,), ). From the continuity of solutions,
there exists a positive number d=0(w,) such that for (p, @, w,)EV(p,, 0)X
wlay: O)XU(w,y; 8), wix, p, a, w)&R for sufficiently large x, where V(p,; d)
={p:p=0, |p—pol <0}, w(ay;d)={a:Rea>0, |a—a,| <6} and U(w,;d)=
{we@—U, :min{|lw—w,|, |1/w—1/w,|} <6}. Remark that we can take &(w,)
as a lower semi-continuous and positive valued function on £—U.. Thus
0<8,=08(w,) for all woe 2—U.. For (p, @)V (py; )X w(a,; 8,) and all woe 2 —U,
we have w(x, p, a; wo) & for sufficiently large x. Hence by Lemma 3.1, w(p, a)
belongs to U, for (p, @)€V (p,; 01) X w(a,; d;). So we have the desired continuity
if Rea,>0. For Ima,<0 we can verify the same continuity if we replace
Lemma 3.1 and @ in the above proof by Lemma 3.4 and

.@aoz{wz 77:—2—0 <arg w:_<_7r}u{u7=1/w or w=0, —ﬂgo—éarg u'éﬂ},

where §=|arg a,|. If Ima,>0 we may replace w by @w. Thus we have the
continuity of w(x, p, a) and v(x, p, @) in (p, @).
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4.3. The continuity of 7,(x, p, @) in (p, @)€[0, o0)X {C—(—o0, a,(p)]}.

Let us prove the continuity of 9;,(x,, p, @)/U.(x4, p, @) at (p, @)=(po, ay)E
[0, c0) X (a,(po), ). From the continuity of a,(p) we fix (p,, @) satisfying
Pr=cho, (0<c<]) and a,>a;>a,(p,). Since a,>a,(p,) there exists uniquely
the solutions of (2.1) with x(p,, @))=x,. Then ¥,(x, p;, a;)#0 in (x,, o) and
lim ¥,(x, p1, @))=0. Put w,(x)=n(x, p1, @1)/Da(x, p:, @;) and

I—00

Qx)={w:Rew<w (x)}\U{d: W=1/w, Re w<w,(x)}.

Here we denote by w(x, p, a; w,) the solution of w’'=p+qg(x)a—w? with w(x,)
=w, By virtue of Lemma 3.5 there exists the unique initial data w(p, @) such
that Re w(x, p, a; w(p, a)<w,(x) i.e. w(x, p, a; w(p, a)e(x) for all xe
[xn, o) if p>p, and a>an(p). Put U.={wel(x,); |w—w(p, a)|<e} for
given ¢>0. For any w,&2(x,)—U., w(x, po, ao; w,)&2(x) for sufficiently large
x. As in the above step we can find a positive number 9,, (0<d,<min(po— p,
a,—ay), such that w(x, p, a; w,)&Q(x) for sufficiently large x if p, @ and w,
satisfy |p—po|<0;, |a—ae|<d, and |w,—w,|<d, respectively. Therefore
w(p, @)U, for |p—p,l <0, and |@—a,|<d,. This means the continuity of
w(p, a) at (p, a)=(po, a,). Here #,(x, p, @) is continuous at (p,, a,)<[0, 00)X
{C—(—o00, a,(po)]} for every fixed x<[0, o0). v(x, p, a)=0.(x, p, @)/U,(0, p, a)
has the same properties if §,(0, po, a,)#0.

4.4. The analyticity of #(x, p, @) in (p, a).
To verify analyticity of w(x, p, @) in «, we take the difference of
w(x, p, a+h)=p+qx)a+h)—wx, p, a+h)* and w'(x, p, a)=p+qlx)a—

w(x, p, @)’ Put wa(x, p, a)z%{w(x, p, a+h)—w(x, p, @)}. It follows

(4.6) %wm(x, b, a)=q(x)—(w(x, p, a+h)+uw(x, p, wm(x, p, ).

Since ¥,(x, p, a)zexpS:nw(s, b, @)ds holds for a€ {C—(—o0, a,(p))]}, the rela-
tion (4.6) yields
4.7 wm(x, p, a)

== @alx, p, 0alx, pat-) | als, . @5, p, athg()ds

for (x, p, @) € [x,, 00) X [0, )X {C—(—0o0, 0]} and a+heC—(—oo, 0], (n=

0,1,2, 3, ---, See (2.10);). Remark that (4.5)" assures the integrability of the
right hand side of (4.7). Making h tend to zero we have

9 B 1 - .
@8 7 W b == [T,y @g()ds,

for (p, a)e[0, 00) X {C—(—o0, 0]}. Since the right hand side of (4.8) is continu-
ous in a from Lebesque theorem, w(x, p, @) is analytic with respect to a in
C—(—o0, 0] for x&[x,, o). Extend #(x, p, @) as a solution of ¥,=(p+q(x)a)i,
to [0, o), then ¥,(x, p, a) is analytic with respect to @ in C—(—oo, 0] for every
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fixed x<[0, c0). Now the continuity of #,(x, p, a) in a yields the analyticity
with respect to a belonging to C—(—oo, a,(p)] if we use Painlevé theorem.

Now we prove (4.5)" replaced # by ¥, for (p, a)e[0, 00) X {C—(—o0, a,(p)]}.
From (4.4) and (4.5)’ we have for all x (0, o),

(4.9) w() 00 |7=— 190 [*ds— | p+ g vats) s,

where w(x)=w(x, p, @), D,(x)=0,(x, p, @) and Im a+#0. Take the imaginary
part of (4.9) and devide it by Im «, then

CImulx, p @) S:Iﬁn(s, p, a)|*q(s)ds
Im a N |Da(x, p, @)

(4.10) , Ima#0.

As Im a tends to zero, Cauchy-Riemann relation shows that the left hand side
0 . .
converges to —%(x, p, @) for a satisfying Im a=0 and ¥,(x, p, @)#0, since

Im w(x, p, @)=0 for Im a=0. Apply Fatou theorem, then

Swz’?n(s, b, a)?q(s)ds

I
Ualx, p, @)

4.11) —%U(x, P, @)= , a€(ay(p), ),

if ¥,(x, p, @)+0. Taking x=x, we have
@12) [T1n(s, p, @lids<eo,  for (p, WE[0, )X IC—(—00, an(P)),

since ¥, is a solution of the linear equation v”=(p+¢(x)a)v. From (4.11) and
(4.12) we can obtain (4.7) again even for aeC—(—oo, a,(p)]. Therefore
(4.11) holds with equality, i.e. (4.8) holds for (p, a) belonging to [0, o)X
{C—(—00, an(p)]}.

Finally we prove the analyticity in p. Here we remark that Lemma 3.5
permits us to consider w(x, p, @) for complex value p. w®(x, p, a)=

%{w(x, p+h, a)—w(x, p, @)} satisfies

—j—xw‘”’(x, p, a)=1—{w(x, p+h, a)+w(x, p, A} w™(x, p, a)

for all (x, p, @)E[x,, 00)X [0, 0)X {C—(—o00, a,(p)]}, then it follows similarly
to (4.8)

4 ) S’:lﬁn(s, p, a)|*ds
4.13) ap W B == T

which means w(x, p, @) is analytic in p for above (x, p, a).

In conclusion #,(x, p, @) is analytic in (p, a) if (x, p, a) belongs to [0, co)
X [0, c0) X {C—(—o0, @,(p)]}. Therefore wv(x, p, @) is analytic in (p, a) for
every (x, p, a)e[0, )X [0, c0)X {C—(—o0, @(p)]} if asZ(p)=UZ,.(p), where

Zu(p)={ac(as(p), ), (0, p, a)=0}.
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4.5. Properties of Z(p). Now we see the structure of Z,(p). Let a,e
Z2(po) i.e. 1,00, po, ag)=0. (4.8) and (4.13) make

a oo
.14 21200, Do, @W)=T40, Do, @0)”| als, o, ag(s)ds
2. L (% ;
(4.15) 35740, b0, @) =T0, po, @[5, 9o, a0ds,
. o N, 9 - —
respectively, because (a—aw>vn=—v"$vn holds if #,=0. Since ¥,(x, p, @)=

(p+q(x)a)d, is square integrable in (0, o), we have from the integration by
parts of ¥,

S:ﬁ;(s, Do, ao)zds+S:(i)o+q(3)ao)ﬁn(s, Do, @p)?ds=0.

We rewrite (4.14) as

0
(4.14)" a—aﬁn(O, Do, o)

—1~7

=—ai' (0, po, @) | Bh(s. po, @+ pidals, po @)ds.

From (4.14)" Z.(p) is a set of discrete points for every pe&[0, ). Since
Eiaz:; (0, po, ap)#0 from (4.14), #,(0, p, a)=0 is solved locally by a=a(p) satis-

fying a,=a(p,) and

da(p) _ 05,00, p, a(p)) /99,0, p, a(p))
4.16) = 5 =L .
From (4.15) and (4.14)" replaced (po, a,) by (p, a(p)) we have

[Tw6s. b, atpnr+piats, p, ap)?) ds
[Tous, b, atpnrds '

We can see that a(p) is increasing if @(p)>0 and decreasing if a(p)<0. Let us
consider the case where p is close to zero. Since §,=¢(x)<M in (x,, o) we
have from Lemma 3.1,

da(p) _
4.17) b =a(p)

—2(p+Ma)"2<w(x,, p, @) <—(p+0,)"* for a>0.

Since #(x, 0, 0)=1 is the solution of #”=0, #(x,)=1 and ¥'(x,)=0, the solution
#(x, p, @) of ¥"=(p+q(x)a), ¥(xs)=1 and ¥'(xo)=w(x,, p, a) is close to #(x, 0, 0)
=1 if p and « is sufficiently small and a>0. Therefore we can find a positive
constant «,(0) satisfying

7(0, 0, @)#0 for 0<a<a,(0).

On the other hand we can verify from Sturm’s separation theorem that for p=0
and a<0 all the solutions of v”=g(x)av oscillate infinite times in (x,, o0).
Therefore a(0)=a,(0)=0, n=1,2,3, ---. For p>0, a@,(p)<0 for n=1 and (2.8)
holds. Similarly to the continuity of #0, p, @) at (p, @)=(0, 0), #.(0, p, @) is
close to 1 if (p, @) is sufficiently small. Considering the case of n=1 for
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example we have
sup a_,(p)<0
>0

if we take care the monotone property of a.;(p). Thus for sufficiently small
>0, a_,(p) does not appear in (@(p), 0). From Sturm’s separation theorem we
see that a_,(p) appears in (@(p), 0) for sufficiently large p if

4.18) sup g(x)>1im g(x) .
More precisely {a-;(p)} 2" appear in (a,(p), 0) for large p if it holds (gup)q(x)

> sup g¢(x), where m(n, p) is a non negative integer tending oo as p tends to
(ZTp,)
oo, We note m(p)=Ilim m(n, p). Then m(p)<co or m(p)=oco, that depends on
N —oco

the given ¢(x). Thus we have

m(n, p)

Zup)=\J oV U (00

Jj=1
Here we remark that {a,(p)}s-, appears in (0, o) if and only if ¢(x) becomes
negative in (0, x,), which is verified by comparison theorem. From (2.9)

we have p—+(lim g(x))@(p)=0. Suppose that
(4.18) sup g(x)=lim ¢(x) (=lim g(x))

holds. Then (4.18)" implies p+q(x)a=0 for (x, a)e[0, oo)X(a(a), 0). Hence
m(p)

U {a_;(p) =@ if g(x) satisfies (4.18)".
j=1

4.6. Solutions of v”"=(p+q(x)a)y for as(—oo, a(p)).
Here we prove (D-4) using the following lemma.

Lemma 4.1. Suppose that p(x) and q(x) satisfy (C,). Let q(x) satisfy
0<d<q(x) in (0, o). Then there exists a real number a, satisfying the following
1) and 2).

1) For a>a, u"={px)+qgx)alu has a unique solution u(x) satisfying
u(0)=1, 11210 u(x)=0 and 0<u(x) in (0, oo).

2) For a<a, all the solutions of w”= {p(x)+q(x)a)u has at least one zero
in (0, o).

Proof of Lemma 4.1. Denote by A the set of real numbers satisfying the
%, %), CAD( oo, Lsnﬁfg%%))—) and a,=inf A. Then
A—{ao} =(ay, o) from Lemma 2.2. Since 1) holds we prove 2) by the method
of contradiction. Take a<a, and suppose that there exists a number a;<(a, a,)
such that u{=(p(x)+q(x)a)u, has a solution u,(x) satisfying u,(0)=1 and
0<u,(x) in (0, c0). (Otherwise 2) holds for a« by comparison theorem.) Denote
by u,(x;t) the solution of u{=(p(x)+g(x)a,)u, satisfying u,(0;{)=1and ui(0; 1)
=t. Put t;=inf{t:u,(x;#)>0 in (0, c0)}. Then we have

property 1). AD(
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(4.19) 0<lim u,(x ; t) <00

which we prove later. At first using (4.19) we prove that 2) holds for a. Put
w,(x):% then w{=(p(x)+g(x)a)—wi Now we can show

(4.20) —M=w,(x)<max{w,(0), M}, for x<[0, o0),

where M=sup| p(x)+q(x)a,| "2

The proof is given as follows. Suppose w,(x,)<—M—e for a certain positive
number x,, then wi{(x)<0 and w,(x)<—M—e follow as long as wi=
(p(x)+qg(x)a;)—w? holds for x>x,. Then Wi;=1—M?/(M+¢)*>0 since %, satisfies
Wi=1—(p(x)+q(x)a,)W? Therefore W,(x,)=0 for some x,>x, which means
u,(x,)=0. This is a contradiction, thus —M=w,(x) for all x&[0, oo0). If
wi(x)>M then wi(x)=(p(x)+q(x)a;)—wix)<0. Hence we have w,(x)=<
max {w,(0), M} and (4.20). Denote by w(x;t) and w,(x;{) the solutions of
w'=(p(x)+q(x)a)—w® and wi=(p(x)+q(x)a,)—wi with w(0; )=t and w,(0; t)=t
respectively. Remark w(x ;t)<w,(x ;) holds for x>0. Notice w,(x)=w(x ;).
From the definition of ¢,, for any t<!, there exists a positive number x,=ux,(t)
satisfying w,(x,; )=ul(x,; t)/u,(x,; )=—o0. This implies w(x,;f)=—o0 for a
certain x,=(0, x,), which equals u(x,;?)=0. Here u(x;?) is the solution of
u”=(p(x)+q(x)a)u satisfying u(0;#)=1 and u’(0;t)=¢t. Even for {=t,, we can
find positive numbers x; and e satisfying w(x,;t)<w,(x,;t,—e) as follows.
Note w(x)=w(x ;t) in short. Suppose w(x)=w,(x)=w(x ;t,) for all x>0. Then

we are led to the following contradiction: Note u(x)=u(x; t):expS:w(s)ds and

u(x)=u,(x; tl)zexpS:w,(s ;t)ds. We have

4.21) {u()u () (w(x)—w, ()} '=u(x)u(x)g(x)a—a).

(4.23) u(x)ul(x)(w(X)—wl(x))=(a—al)S:u(S)ul(S)q(S)ds-I-(t—t;)
follows. Since the left hand side of (4.22) is positive we have
(4.23) S:u(s)ul(s)q(s)dsg of__t‘ for all xe&(0, oo).

On the other hand, since u(x)=u,(x) holds in (0, o), (4.19) and (4.20) make
(4.24) limS:u(s)u,(s)dszoo ,

which contradicts to (4.23). Thus we have w(x,;t)<w,(x,;t) for a certain
x,>0, which implies w(x,; t)<w,(x ;t,—e¢) for small positive ¢ from the con-
tinuity of solutions on initial data. Therefore as we have considered in the
case t<t,, 2) holds for a also in the case t=t¢,. Finally we show (4.19). The
definition of ¢, gives wu,(x;¢,)>0 in (0, o). Suppose Liﬂ uy(x;t,)=0. Since

a,;<a, from the definition of a, there exists another solution wu,(x;t.), ({,>1)
satisfying lim u,(x ; £,)=0. Then we have {u,(x; t)u,(x; t)(w (x ; t,)—w(x; t.)}’
I



Second order equations of variable type 323

=0 similarly to (4.21), and u.(x ; t)u,(x ; to)(wy(x ; t)—w,(x ; t,))=t,—t,.  There-
fore it follows
lim(w,(x ; to)—wi(x ; t))=00.

Since we can verify that w,(x ; t;)=w,(x) satisfies (4.20), w,(x ; f,) must diverge
to co. However wi(x ;t,)=(p(x)+g(x)a;)—w,(x ; t,)* shows that w,(x;?,) must
decrease if w,(x;t)>M. This is a contradiction. Hence (4.19) holds. Thus
the proof of Lemma 4.1 is completed.

We use Lemma 4.1 replaced (0, co) and p(x) by (x,, c©) and p, then a,
corresponds to a,(p). Therefore for a<a,(p), the solution of v”"=(p+q(x)a)v
has zero in (x,, o). This implies (D-4) in Theorem 1 for a<a(p), since
E(x, n, ©)=v(x, 5| z®. The proof of Theorem 1 is finished.

§5. Proof of Theorem 2.

In order to estimate v(x, p, @) we use (2.15). Therefore it is important to
evaluate the maximum and the minimum of wg(x, p, @) in (0, ), where
wg(x, p, @) is the B component of w(x, p, @) in (a;, B) coordinate. It is con-
venient to devide the estimate for (p, a)[0, c0) X[ into local estimates in three
parts: a neighbourhood of origin, the region satisfying p=2M,|a|, where M,=
sotéglq(x)l, and other general region.

5.1. The case where (p, a) belongs to a neighbourhood of origin.
First we consider #(x, p, @) in (x,, o). From (4.2), (4.3) and

wp(xo, p, @) | V2

wg(x, p, @)

which follows from (4.4),, there exists a positive constant C; such that
[o(x, p, )| =C, for (x, p, @)€[x,, )X UOIN[O, o)) XUOINI?),

where U(0) is a neighbourhood of origin zero in complex plane and C, depends
on U(0). Then (4.2) (1) gives

6.1 [9'(x, p, )| =Cy(p+la])

for (x, p, @)€[x,, )X (U(O)N[0, 00))XUO)NI?),
where C, depends on U(0). From the continuity of the solutions of w’=
(p+qg(x)a)—w? with respect to initial data and coefficients, we see that the
solution #(x, p, @) is close to 1 for x<[0, x,]. Because v=1 satisfies v"=
(p+g(x)a)v with p=a=0, v(x,)=1 and v'(x,)=0. Hence if we refine U(0) it
holds with a certain positive constant C
(5.2) C=lo(x, p, )| =C,

for (x, p, @)€[0, o) X(UO)N[O, <)) X (UO)NT'?),

in both cases (Cy) and (C.). As for the case (C,) we also take account of

[o(x, p, )| = for xe[x, ),

[9(x, P, a)léexpsx Re w(s, p, a)ds for x&[x, o) and (4.1). Thus we have
Zo
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(E;) and (E.) for sufficiently small (3, z) belonging to R*'xI. We remark
that I” can be modified satisfying the condition concerning the continuity at
(0, 0) indicated in (E-1) of Theorem 1.

5.2. The case where p=2M,|a| holds. We apply Lemma 3.1 with §(x)=
p+ex)a, m=p—M,|la| and M=p+M,|a|. Then we have for x<[0, co) in
both cases (C,) and (C.)

lw| =2M"*(p+ |a|)V®

(5.3) 1
Re w<—5 My "*(p+]al)”

From (5.3) we have (E,) and (E.) for p=2M,|a|.

5.3. The general case involving p<2M,|a|. We take the 8 component of
(4.4) in (a;, B) coordinate, where a;=—a in (C;) and a;=a in (C.). Then we
have for 0<x,<x

.9 wg(x) [ 9(x,) *=wg(x) | 9(x) | *+(— l)ﬁg (D" ()[*+pl3(s)[Dds ,

where wg(x)=wg(x, p, @) and ¥(x)=0(x, p, @). Put x,=0 then we have
[9(x)/9(0) | = (wp(0)/wp(x))''* for all x>0 because (—1)5>0. Therefore we have
(2.15). The estimate of wg(x, p, @) for x&[x,, o) is given as follows, if we

apply Lemma 3.4 with §(x)=p+q(x)a, M=P+M,|a|, m=(p+5|a[)cos% and
=n—|arg a,| replacing (0, o) by (x,, c0): For both (C;) and (C.),

larg a; |

(5.5) walx, p, =% 5

(p+0lal)!*sin

xEExO) OO)

|/3|

b+ Molaly(sin EED) xepy, o).

(5.6) wslx, p, a)<— 5

I.BI

Now let us estimate wg(x, p, @) in (0, x,). Apply Lemma 3.3 with é=a if
Im a>0. Since 1/w(x,, p, @) belongs to D(@, M), it holds

5.7 1/w(x, p, @) D@, M) for x<[0, x,],

in both cases (C,) and (C.). We may replace w by @ if Ima<0. If |[Ima]|=+0,
from the figure in Lemmas 3.2 and 3.4 we have for x (0, o)

3(p+M,|a|)?

wa(x, p, )< Jar gall arg a;] in the case (C,),
I,BI(S )cos 5
(5.8)
1/2
we(x, p, a)<——1iM—°|gl—— in the case (C.).
larg a; |
181(sin—57)
N t to estimate 1/w s( ) for x< [0, xoJ. Since —— —(iw)
Now we want to estimate 1/wgs(x, p, a) for x , XoJ. DIn dx wp= dx 5

we have
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d
(5.9) —w,e(’c P, )=(p+g(x)a—w?)s=(p—wh ai—2w. wpa,B)p
. ., —Ima o Im a _
using (pg)—plﬂ—p—|a|lmﬂ, (@Dp=la| =—% Imﬁ (a:B)p=|al and
, d P Ima Img , Im a, Im B 2
6.9) Wwﬁ(x)— lal Im B +lal Im a, wh—lal Im S (w“1+ Im a, w,g),
we have the differential inequality concerning wg(x):
d p Ima Im j
— <,
(5.10) Ix we(x)= la] Im B +la Im a, wh,
which does not contain ¢(x). We compare (5.9)’ and
d la|lm B\ , B e Iarga,l
I =) fw=grp+alaly e sin I8 2
Here the nonlinearity concerns and from f(x,)<ws(x,) we have
6.11) f(O):l/(%——I—axo>§f(x)§wﬁ(x, p,a) for xe[0, x,],

where a=|a|lm B/Im @, and b= f(x,). From (2.15), (5.8) and (5.11) we have

3(p+M,|al)? )(l | Im 8 !ﬁl(p+5|al>“”)
|Blsin(larg a,|/2 Im a, sin(|arg a,|/2)

612 |ulx, p, @)|*<(4 %ot

where A=2 for (C.) and 1/cos(|arg a,|/2) for (C,). Since it holds

Li{%—a-l: IRez| in the case (C,)
. arga, ||
sin —5— = larg al
sin g = in the case (C.)
G.13), ||
l 0S larg2a1| =sin Iar§a| :T:—l in the case (C+)
1/2Re ) in the case (C,)
(5.13), =R :{ +
Im a, 2Ref | 1727 in the case (C.),

from p=[y|’ a=7* and y=|Im<z|, E(x, 9, ©)=uv(x, |9% % is estimated as
follows. There exists a positive numbers depending on M,, § and x, such that
we have for y=|Imz|#0 and x [0, «)

[ [E(x, 9, DI=Cr2|[((In]+|z|+1)/IRez])'*  in the case (C,),
(5.14)

[E(x, 7, ‘r)léc%(|77|~l-|1'|+l)”2 in the case (C.).

Finally remark that in the case (C,) we can use also (4.1) in (x,, ). In both
cases (C,) and (C.) the estimate (5.3) is better than (5.14) if |7|*=2M,|z|%
Thus we have Theorem 2. Using these results we have Theorem 3 in next
section.
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§6. Proof of Theorem 3.

In order to obtain the estimates in Theorem 3, we modify slightly the path
I'" according to the cases (C.) and (C.). For this purpose we consider at first
the properties of £(», 7).

6.1. Function spaces. For y>0 we note

(e, =0
6.1) e(t, r>=1 1

I, t<0

e 1t t=0.

é(t, r)={
>0

Then we have for all teR
(1) ét, nN=El=et, ), et nN=se=elt, 1),
6.1) 2) elt, )'=e(—t, 1)

@ &t N=le ™| =et, ), if —r=Imz=0,

and the norms in § 1 are written as follows

0% o’ p\Up
Iglz,={,, 2., |t Dgyr . O]t
. oc o » \Up
||vl|L,§{,={j+|§sk e(t, T>5}TWUU' t) Lp} ;
N 0 o’
wia,={, B, s |ot D550 ol

IIERn 1

Suppose that g(y, t) belongs to L},, (£=0), then from (6.1)" (3)

£(n, T)ZSRSR"'I e ttemitng(y, d ydt

is continuous on (7, t)eR"X {r: —y=Im r=0}, where Upl+lzcl+D*k &0, o)l is
bounded uniformly. g(y, z) is analytic with respect to 7 in {r: —y<Imz<0}.
Therefore (1.1) holds if #=n+1 and I'C{r; —y=<Im=0}. Suppose that g(y, ?)
belongs to L3, i.e. e(t, r)g(y, HEL®: Since L§,;NLi.y is dense in L§,, we
have
6.2) g(y, H=Lim. (L)S o e, Ddnds,

joo \2m/ Jr gr-1
where g;(v, )€ L%, converges to g(y, {) in L§ ..

6.2. The case where g(y, t) belongs to L}iz.z,. Then from Theorem 2
we have in both cases (C,) and (C.)
CClglthnss,
(Ipl+lz[+Drrere’
where ¢=1 in case (C,) and €=1/2 in case (C_). Therefore from (6.1)’ we have
in both case

(6.3) |E(x, 9, D)8(n, D=

le, Nulx, y, H1=Ck, Nlgley, .y, -
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This means (1) in Theorem 3.

6.3. The case (C,) for gL}, ;. In view of (D-1), (D-2) and (E-1) in
Theorem 1 we modify I” as follows.

FZ‘;F,“

i=lc;ceR, — 5 mOSt= 4 mO),

(1.4), I=(z;t=s—iy, —0<s=—pm(O)}, 7>0.
Ii={c; r=s—iy, —s—ireli},
n:{z';‘[:f(t), 0=t=1, 7(0)2_%/11(0), T(l)z—#l(O)—ir},
Ii={c; —Rec+ilmcel},

where Iy is a smooth curve which is situated away from (—oo, —p;(0)] and the
]

imaginary axis. Now we take smooth functions on I” as follows. > X;(zr)=1 on
=

I, X;(z)=0, supp X,Clj j=1, 2, 3 and supp X, and supp ¥; are contained respec-
tively in neighbourhoods of I and I3 which have positive distances from
(=00, —p,(0)\Up,(0), 00) and the imaginary axis. Decompose u(x, y,t)=
u(x, v, t) as

53
u(x) yy t):jgl uj(xy y; t)

u(x, y, Z)=(%)"Srei”gm V() E(x, 1, ©)4(y, T)dydT

for g(y, )€ Li+1, ;N\ Lhsses,y. If the estimate (E,) is proved, then from (6.2) we
obtain the strong solution u(x, v, t) for g€ L}linss,,- (E4) is proved as follows.
By virtue of Plancherel’s theorem we have

(6.4) laes(x, -, ')”H’?(Rn—lxR)éck”g||Hk(Rn“xR)r x€[0, o0),
since (5.3) makes
(6.6) (Ie| +D* L E(x, 9, )| =Cy,  j=1,4,5.

For j=2 and 3, Plancherel’s theorem gives
8" a" 2 1 \2n

where the right hand side is L*® norm in (y, Rez)eR* X R. From (6.1)’ (1)
we have

el (D)E(x, -, 280, ||

et —
L2’

(6.6) lusx, -, iz ,=Cik, Plgles,,,» 7=23.

Ry —

For j=4 and 5 we rewrite u;(x, v, t) as

1 \» (=
uix, y, 0=(5= LM Ki(x, p, 8, s)(F,g)(n, s)dsdy,
2/ Jrn -
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where K;(x, 9, t, S)=Sre“‘“”xj(r)E(x, 7, 7)dt

1 D \*
T gpeir(t—s)<zE> W@Ex, 5, o)de,

k=01, 2, ---.
It holds

. 0 9
e(l: r)a—yawuj(x; Y, t)
1 \n N .
=(—2;) SR,L_,e’“’S_mK,‘-“(x, 7, 1, s)e(s, NEn)*(F,8)(n, s)dsdy,

~ L
where K{"(x, 9, t, s)=2&(, r)g—llKj(x, 7, t, s)e(s, 1)
_ G
[t—s|*+1"

holds for some constants C, if we take £=0 and 2 in above formula. Apply
Plancherel’s theorem then

®.7) Ko, p, 8, 8)| < j=4,5, 1=0,1,2, -,

0« o'
e, T)gy—agt‘fuj(x, ¥, 1)

Z(%yzﬂ/z

Then the square of the right hand side is estimated by

L2(y,0)

|" B, .4, s1e6s, pany(@,8)(a, 9)ds

L2(n 1’

iR e n b el | 1RO, 7, 91 ets, nEp«(a,g), 5)1*ds)dtdy

=Cir)lgliz,,
if we use Schwarz inequality, (6.7) and Fubini theorem. Thus we have
(6.8) lustx, -, iz SCik, Dligheg,,  7=4,5.

The estimate (2) in Theorem 3 follows from (6.4), (6.6) and (6.8).

6.4. The case (C.) for g Li,,. Remark that in the case (C.) we have
the results in Theorem 1 replacing ¢ by /z. Here we modify the path I” such
that [ is situated away from the real axis and (7¢;(0), 7o0)\U(—io0, —ip(0)) on
the imaginary axis. For example we take I'=I}+13+1;, where

E:{z‘;z':z-(t), —1=t=1, «(F)=Fr—77, T(O)zﬁlz(—O)‘i}‘,
I={r;r=0—1y, —0<a=—7},
I,={r; —Rect—irel’},

where () is a smooth curve in {r;Im <0} which does not pass (—oo, o),
(—ioo, —p,(0)7] and [p,(0)z, 700). Decompose u(x, y, t) as before u(x, y, )=
S u(x, 9, 1) for g€ Lirs N Lhssss, using smooth functions X,(c), (F=1, 2, 3),
j=1

where supp Z,(z)C I, j=1, 2 and supp X,(z) is involved in a small neighborhood
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of I'y. wuy(x, v, t) is estimated similarly to u,(x, y, t) in the case (C,). As for
ui(x, y, 1), (=2, 3) we have similarly

lui(x, v, Dlliz =Cik, Nliglez,, ,-

ky—
Thus by completion we have the estimate (3) in Theorem 3.

§7. Some comments to Theorems E and H.

Theorem E and H are proved in the same way of proofs of Theorems 1, 2
and 3. Namely it suffices to regard x,=0 in previous sections. Especially the
estimates in Theorems E and H follow from (5.5), (5.6) and (5.13);. We can
prove estimate (3)y from (4.4),, (5.6), (5.13); and (5.13),. In fact we have

1 o aj |T[2
1-7 ‘ 2 <
E,Som ger B0 7, Dtdxs

which yields (3)y.
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