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Introduction.

In this article we study the structure of varieties w hich have  two bundle
structures whose fibers are projective spaces. Well-known examples are PrX 13 s,
P ( T )  and  fiber product R i  X yR2 o f  R , and R 2 over Y  where R , and R , are
ruled varieties over Y . The aim of this work is to classify such varieties under
some additional conditions.

Let M  and M t (i --=-1, 2) be varieties over an algebraically closed field k  and
let p  and q be proper surjective morphisms M—>M, a n d  M—>M2 ,  respectively,
w here every closed fiber o f  p  and q  is isomorphic to P r an d  P 8 respectively.
To fix the idea let us introduce the following notion :

( P )  W e say that M  has two projective space bundle structures (M ,, Pr, p ;

M 2 y  P", q) if  there are two varieties M ,, M , and two morphisms p ,  q  a s  above
and if dim 0(M)> max {dim Mi., dim M2 },  where 0  is th e  morphism M—>Mi  x /112
induced by p  and q  (see Remark 1.6 about the second condition).

Under this notation, w e have

Theorem A .  L et M  be a non-singular projective variety over an algebraically
closed f ield k . A ssum e M  has two projective space bundle structures (P I , P r , p ;
Pm, P', q).

1) If  the  characteristic of  k  is zero, then M is isomorphic to either a) P'X Pm
( p  and q are the f irs t  and the second projections, respectively), o r,  b ) P(Tpt),
w here  T pl is the tangent bundle of 13 '.  (See Lemma 1 .15 ). In the case of  (b),
/= m = r+ 1 = s + 1 .

2) If  the  characteristic o f  k  is positive, additionally, assume that p  (or, q) is
Pr-bundle on 13 '(or, 13 8 -bundle on Pm , resp.) in  the Z arisk i topology . Then w e
have the same conclusion as in 1).

Theorem B .  L et M  be a non-singular projective 3-fold over an algebraical:y
closed f ield of  characteristic O. A ssume that M  has tw o projective space bundle
structures (S1, P 1, p ;  S 2 /  P 1 , q) with non-singular surfaces S l , S 2 .  Then M  is one
of  the following

1) S i X cS 2 ,  where S t i s  a 13 '-bundle over a non-singular complete curve C.
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2) P(T p2), w here T 2 is the tangent bundle of  P 2 and

In order to  show Theorem A , we shall compute th e  C how  r in g  o f  M  and
study the property of the tangent bundle T M  o f  M  and tw o vector bundles E 1 ,
E ,  w hich  determ ine M .  A s for Theorem  B, w e shall use the properties of a
ruled surface especially, a  rational ruled surface.

Notation and conventions.
W e w ork over an algebraically closed fie ld  k  o f  any characteristic unless

stated. A  v arie ty  m ean s a n  irreducible and reduced algebraic k-scheme. Pn
denotes an n-dimensional projective space  and O ( l )  i s  th e  line bundle cor-
responding to the divisor class of hyperplanes in P .  W e  use the terms vector
bundle  a n d  locally f re e  sheaf in te rchangeab ly . F o r  a  vector bundle E  on a
variety X , Op ( E ) (1) denotes the tautological line bundle of E .  Ê  denotes the dual
vector bundle of E .  Moreover, when Y  is  a subvariety of X , El y  deno tes i*E
w ith  i  the natural immersion of Y to  X.

§ 1 .  Preliminaries.

Let M , S  be non-singular projective varieties and p : m-6' b e  a surjective
morphism su c h  th a t fo r  e v e ry  c lo se d  point s  in  S, 1) - '(s)  is isomorphic to P .
A t first let us study the conditions under which p is a  Pr-bundle in the Zariski
topology.

Let us consider the exact sequence of algebraic groups as follows :

(1.1) 0 ---> --> G L (u)---> PG L (u) — >  .

T hen  w e have an exact sequence of étale cohomologies ;

(1.2) 1-11(Sét, G L(u)) --> 1-1 1 (Sét , PG L(u)) Hz(Sét, Gm ).

Under the above notation w e have

Lemma 1 . 3 .  Let p :b e  a s  a b o v e .  T h e n  p is  a Pr-bundle in the étale
topology. Moreover assume that f  is surjec tiv e . T hen p i s  a  Pr-bundle in the
Z arisk i topology and there exists a vector bundle E  of  rank  r+ 1  on S  such that
M  is isomorphic to P(E )  and p corresponds to the canonical projection P(E)--.3.

For a proof, see Theorem 0.1. in  [5] and Lemma 1.2. in [6].

Corollary 1.4. Under the same conditions as above assum e S  i s  one of  the
following:

1) curve,
2) rational surface, and
3 )  projective space.
Then f  in  (1.2) is  surjective.
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Pro o f . In the case of 1) and 2), it  is  k n o w n  th a t 1-12 (Sét, G .)=0([3], DJ).
Therefore assume th a t S  is  a projective sp ace . N o w  le t us consider tw o exact
sequences :

0 - - >  - - > Gm —> Gm  —> 0

0 —> p u  -->  SL(u ) ---> PG L(u ) —> O.

Then w e obtain exact sequences of étale cohomologies as follows :

h
-->  1 -P(Pnét, p u ) -->11 2 (Pnét, G .) - - >

Hi(Pné t , PG L (u ))  - ->  I-12 (Pnét, pu) -->  •

Then g  in  (1.2) is  the composition of k  and h (see IV of [7]).
surjective, it suffices to  check th a t  h  is  a  zero  m ap . Since it
is  surjective (9 of VI [7 ]) , we complete the proof.

T o  p ro v e  f  is
is know n that k

q. e. d.
In the nex t place  le t us s tu d y  the second condition appearing i n  (P )  of

Introduction. Let h and k be very ample line bundles on M , and M , respectively
and let us consider the following conditions :

1) dim 0(M)=max {dim M i , dim M2}
1') dim 0(M)=dim M i =dim M2.

2) For a  closed point x  in  M1 , q* k p-1 ( x )  i s  a trivial line bundle, o r fo r a
closed point y  in  M2, is  so. Consequently both hold.

3 )  T h ere  is  an isomorphism o : M , /14.,  such  that ap=q.
T hen  w e have

Lemma 1.5. Under the above notations, assum e that both M ,  an d  M ,  are
normal varieties and that both r  and s are positiv e. Then we have the following :

A) Conditions 1 ),  1 ) ' and  2 )  are  equivalent to each other and condition 3)
implies the other conditions.

B) If  the  characteristic o f  k is zero, all the conditions are equivalent to each
other.

Pro o f . It is  c lea r tha t 3) implies 1)' and 1)' implies 1). Therefore we show
th a t 1) implies 2). Note that a representation of the morphism b :  M — *M 1 x AI,
is given by the m orph ism  : M—>P d 'in'P*h®ok 1,  which the  line bundle p*h0q*k
yields, w here I*1 is  the  complete linear system of a  line bundle *. A s p * h  is
generated by its global sections, w e  se e  th a t, for a  point y  in  Al2 ,  p * h l , , , , ; -_---
o p s ( a )  a n d  a  is  n o n -n e g a tiv e . N o w  suppose th a t  a  is  positive . Then since
p*h0q*k1 2 -1 ( 2 ) =Op3(a), the  restricted m ap o f 0  to  q- 1 (y ) is finite, which implies
that O is finite. Consequently we see that dim M = dim 0 (M )>  max {dim M i , dim M21
because of positive integers r , s. This result contradicts condition 1 ) . Therefore,
w e  c o u ld  p ro v e  th a t 1) means 2). In the nex t place, w e show th a t 2) implies
1)'. Noting the above proof and the f a c t  th a t  a  morphism f ro m  a projective
space to another projective space is constant or finite, we see that the morphism
p r , (m) : 0(M)—qU i i s  bijective fo r  i =1, 2, w here p r, is  the projection :  Af,x
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M,—>Mi . Hence 2) m eans 1)'. T herefore  w e com ple te  A). Moreover if  the
characteristic o f  k  i s  zero, bijective morphism Prd (m) is  biregular by  Zariski
Main Theorem, which implies B). q .  e .  d.

Remark 1 .6 .  B y the above lemma, if r=/=s, the condition that dim  0(M )>
max {dim M 1 , dim M2} automatically holds.

Hereafter in  th is  section w e shall study the  fundamental properties of M  in
order to  show Theorem A.

Let E , (or E 2 )  b e  a  vector bundle of rank  r+ 1  (or, s+1, re sp .)  o n  P ,  (or,
Pm , re sp .) . p  (or, q )  denotes th e  canonical projection P(E 1) - 4 3 '  (or, P(E2) — )
Pm , resp.).

(1 .7 ) Assume that P (E 1 )  is isomorphic to P(E 2 )("=- M ) and dim 0(M)>
max (/, n i) w here the morphism M ---> P i x P m ( - 0 )  is  the one
induced by p  and q.

Note th a t the assumption of M  in  (1.7) is equivalent to the one in Theorem A.
Furthermore put e=ep(E 1)(1), 7)=Op(E0 (1), h=P*Opt(1) and k=q*Opn,(1).

Now since we know that Pic M --- -Z ed -Z h -_ 'Z vd -Z k , we obtain two equalities :

(1.8) 72= a e± bh , k=-de-kbh

w here  a, (t, b  and b are integers.
Moreover, we have

Lemma 1.9. d > 0  and db— ab=1.

Pro o f . Let f 2,  b e  a  fiber of T h e n  w e  s e e  th a t  the intersection
(k. f p . e r - 1 )=- a(er . fp)+Rh. f  e r - 1 )= d(er. 

f 2 9 ) .
T h i s  y ie ld s  a > 0  b e c a u se  the

assumption (1.7) and Lemma 1.5 im ply that (k . f p . e r - 1 ) > 0 .  On the other hand,
i f  w e  e= -o2 d -d k  a n d  h = 4 H -d k  w ith  in te g e rs  c ,  d, J ,  and d, w e  o b ta in
( ca7 bbxce cli)= C.0 01 ) and e > 0 sim ila rly . T h ese  show our lemma. q. e. d.

W e denote by i t ( S )  the group of cycles of codim r on a non-singular variety

S  modulo rational equivalence and b y  A(S)= Ar(S) with dim S = n .  Now let Er=0
be  a  vector bundle of rank  r  on a non-singular variety Z  and a the tautological
line bundle of E .  The i-th Chern class c ( E )  of E  is  an element of i l i (S). The
following is well-known.

Theorem 1 . 1 0 .  Under the above notation let f :  P (E ) -+Z  b e  the canonical
projection. T hen f *  makes A(P(E)) into a free A (Z)-module generated by 1, a,

Moreover the following equality holds:

(-1 ) 'f  *c i (E)crr - i = 0  i n  Ar(P(E)).i=0
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For a proof, see [2].
Now for the variety M  in  (1.7), le t u s  s tu d y  th e  C how  r in g  A (M ) using

th e  Chern classes of E l ,  E2 and e, 72. c(E 1)  (or, c,(E 2 ) )  is  w ritten  in the form
c,le(or, d ,k j,  resp.), w h e r e  1 i  m in(/, r+1) (=r) (or, 1 m in (m , s + 1 ) (= 5 ),
resp.), c i  a n d  cl ;  a re  in teg e rs . B y  v irtue  o f  Theorem  1.10, w e co n sid e r  a  Z-
isomorphism of finite Z-algebra as follows :

(1.11) Z [X , Y]/(Y 1+1, Xr+ 1-- c i XrY±c 2Xr - 1 Y 2 + ••• +(-1) 7 cr Xr ." - TYT)

V]/(Vm+ 1, U" - 1 —d 1 U3 V+d 1 U8 - 1 V2 + ••• ±(-1)'clb-IP+ 1 - B V')

under the additional condition th a t U = aX ± bY ,V = dX + 6Y ,  a >0  and ab— al=
1  w h e re  X, Y , U  a n d  V  a r e  indeterminates. W e  d e n o te  b y  I  t h e  ideal

c , X '  - '( —Y)i) of Z [X , Y ] and by J  the idea l (1/73 +1, d,U 8 +1 - i ( - 1 7 )i)i=0 3=0
of Z [U , V ] w ith  c 0 = d 0 = 1  and put

a
f (X , Y ) =  c i Xr+ 1 - i( —Y) 0 a n d  g(U , V )=  E  d i Us (— V P.

i=0 i=0

From now on we shall investigate equalities about /, m, r and s.

(1.12) Assume th a t 1_>_m.

Firstly we know that dim M = l-k r= m + s, since M has two fiber bundle structures.
Secondly, noting the degrees of generators in tw o ideals, I, J  it is easy to check
that

(1.13) min fl+1, r-1-11 = min im+1, s+11.

by the isomorphism in  (1.11).
Therefore as for /, m, r and s ,  we obtain four cases as follows :

(1.14) a )  1< r ,  l= m  a n d  r-= s,

b) 1=7"=771=S ,

c) 1> r ,  1 = s  a n d  m=r, ,

d )  />r, l = m  and r =  s .

Finally in this section we shall show a key lemma for the proof of Theorem A.

Lemma 1.15. Under the same notations as above and the assumption (1.7) we
suppose that a= 1 in (1.8). Then in the cases b), c), the morphism  0: M — >PixPm
is  an isomorphism, where 0  is  the m orph ism  induced by the fiber product of maps
p  and q. In the case d ), assum e additionally  that 1=r -- 1 .  Then 0  is a closed
immersion and 0 (M ) is isomorphic to P ( T ) .

Pro o f . In the cases b), c), w e see  easily  tha t 0  is  a  fin ite  birational mor-
phism and therefore, an isomorphism by Zariski Main Theorem.

In  th e  c a se  d )  w e  s e e  s im ila r ly  th a t  2 : M--4(M )(_ç Pi x P I )  is  a  finite
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birational morphism. O n the other h a n d , s in c e  0 (M )  i s  a  C a r t ie r  d iv isor in
P 'x P ' ,  we can put the defining equation o f  0 (M ) a s  F(X,„ ••• , X i ; 17

0 , ••• , Y 1)
(= F ) ,  w h ere  F  i s  a  homogeneous polynomial of degree d,(or, d2)  w ith  respect
to  X o , •••, Xi(or, Yo, •• • , Y/, resp.). T h e  assumption implies that cl1 =d 2 = 1  and
every fiber of one projection is  tran sfo rm ed  to  a  hyperplane i n  another base
sp ace  b y  an o th e r projection. T herefo re  it is  easy  to  see  tha t F  is  w ritten  in

th e  form  E X i Y i  after suitable linear transformations of X 0, ••• , X I and  Y o,

Y / ,  respectively . H ence w e see that 0 (M ) is isom orphic to P(Tp/) an d  0  is  a
closed immersion. q. e. d.

§ 2. P ro o f  o f  Theorem A.

C a s e  a )  Using a  well-known fact that if  r> m, every  morphism P r- 4 ' 1n  is
a constant m ap, w e see easily  that such a n  M  does not exist.

In view  o f Lemma 1.15, we devote ourselves to showing d=1.
Case b )  T h e  isomorphism (1.11) provides u s  w ith  th e  following :

(eiX+6Y)`+ 1 = A f(X , Y)+BY`+' w ith  A , B  integers.

T h e re fo re  w e  o b ta in  A =ã' 1 a n d  B=-P+ 1 , nam ely , f(X, Y)-=(X+6Y1d)'+'—
(bY le1) 1 +1 . Since th e  coefficient o f X 'Y  is (id-1)6 1/ d '  and ab—ab=1 says that a
is  prime to  6, w e see  th a t a ' devides 1+1, which m eans d=1. q. e. d.

Case c) It suffices to prove (7= 1 .  Comparing th e  degree  o f  generators of
ideals I  and J, w e obtain the  following :

(dX±E, Y)'"+'(- Y r+ ')=A f(X , Y ) w ith  an  integer A .

Since (X+ bY /e i)'' is  an  elements of Z [X , Y ], w e  g e t d = 1 , fo r  a is  prim e to
E. q. e. d.

In  the  last case d), w e  have to  show  the following facts.
1) a=1,
2) There  exists no  M  satisfying / > r +1.

Then by Lem m a 1.15, th e  proof o f Theorem A  will be completed.
F irs t le t u s  begin  w ith  1), for w hich th e  following is essential.

Theorem 2 .1 .  L e t a be a prim itiv e n-th ro o t o f  u n ity  an d  Q (a ) the field
generated by  the  rational num ber f ield Q  and a .  L et A  be the ring of  integers

51. n
of  Q(o- ). T hen A = ED Zo-', where 0(n) denotes Euler's num ber of  n.i=o

F o r a  proof, see Theorem 4  in  [4].
T h e  above theorem yields th e  following

Proposition 2 .2 .  L et Ø „(X ) be a cyclotonzic polynomial of n-th root of  unity
(n 3) and a, 13 in te g e rs . Assume that a0 ( 7 1 )  d iv ides 0.(aX+13) in Z [ X ] .  Then
a=+1.
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Pro o f . P u t 0 7,(aX-1-43)=a 0 ( n'h(X) where h (X ) i s  a  monic polynomial in
Z [ X ] .  F or an  n-th root o f unity (=19), a - 1 (0— i(3) is a  root o f  h (X ).  Therefore
by Theorem 2.1, we have a= +1. q .  e .  d .

Since l=m , we have the  following equalities :

(2.3) V '+1=A Y  " 1 + f(X , Y )f(X , Y ),

(2.4) Ym+1=BV7n+1+g(U, v)g(u, V),

where f(X , Y )EZ[X , Y ], g(U, V)EZ[X , Y ]  a n d  A , B E Z  a n d  deg f(X , Y)=
deg (U, V ) . 1 .  Then we have

Lemma 2.5. A = B = 1  o r  —1.

Pro o f . Computing (2.3)x B+(2.4), we get

(2.6) Ym+'=-ABYnt+1+Bf(X, Y)f(X, Y)+g(U, V)g(U, V ).

O n the other hand, taking th e  degree o f  f(X , Y ), g(U, V )  a n d  Z-isomorphism
o f (1.11) into account, we see that g(U, V)=a f(X, Y ) with a  a n  integer. Hence
we obtain

Y " 1 (1—AB)= f(X, Y)(Bf(X, Y)+ag(-5X+bY, c7X— aY)).

It follows that AB=1, which is th e  desired result. q. e. d.

In  the  next place, we divide d) into two cases :
(2 .7) m  is odd and  r=1,
(2.8) otherwise.

We shall treat the  case  o f (2.8) first and  show  that (2.7) does not occur at
last in  this section.

Lemma 2 .9 .  Assume that M  satisfies (1.7) and the condition in d ) and that
1) m is odd and or
2) m is even.
Then, ci=1.

Pro o f . Assume that A = 1 .  Substituting dX-1-5Y f o r  V  a n d  1  fo r  Y  in
(2.3), we obtain th e  equality :

(2.10) (aX+5)7"1-1=f(X, 1)f(X, 1).

T he  left hand side in  (2.10) is written as the product of o,(ax+b), where 0,(X)
i s  a  cyclotomic polynomial. N o t e  that 0,(dX-1-6) is irreducible in  Q [X ] .  On
th e  other hand, factorize f(X , 1) into the  product o f  p r im e  elements f ( X )  in
Z [ X ] .  Since Z [X ]  is UFD, there exist u and y  such that f u(X ) a n d  0 0 (c7X+5)
are factors of f(X , 1) an d  th e  left hand side of (2.10) respectively and, moreover,
deg .f.(X) 2 a n d

 0 „ ( 5 X - 1 - 5 ) / f . ( X )  i s  an  integer (= i -ZO( v) ). Therefore, Proposi-
tion 2 .2  a n d  C t> 0  im ply that (7= 1 .  I n  th e  next place, assume that A = —1.
We can prove a = 1  in  th e  same way as in  the  case  o f A=1. q .  e .  d .
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Rem ark 2 .1 1 . After determining the structure of M , w e  se e  th a t the case
of A = -1  d o e s  n o t occur.

It is enough for the proof of Theorem A  in  the case of (2.8) t o  show the
following

(2.12) There exists no M  satisfying the conditions th a t  ei = 1  and i>r+1.
(See Lemma 1.15 for /-=r+1.)

To prove (2.12), w e need som e results about the tangent bundle on
etc. B y  the assumption (1.7), w e  have  the  follow ing exac t sequences
tangent bundles :

(2.13), 0 T pT M P *  T  p 17}, 0,

(2.13), 0 T T M q * T p m 0 ,

of the

w here T ,  and T g  are the relative tangent bundle with respect to the projections
p and q. Restricting the  above exact sequences on a  fiber of

 p ( p r )
 w e  have

the following :

Lemma 2.14.

(2.14.1) 0 T  p r m  Pr 0 ,7  - - > 0
13

(2.14.2) 0 T g l pr — > T  m  Pr T Pr ED O p r ( l )r n - r  - > "  O.

M oreover, by  (2.14.1) w e have T m ipr- 07,7' EDT pr.

P ro o f .  For a  linear subspace P u  i n  Pv (u <v ) , w e  c a n  e a s ily  check that
T  p u = T  p .  0 )  0  p . ( 1 ) ' .  O n the  other hand, :4= 1 im plies that for every fiber
f ,  of p, q(f  p )  is  a  linear subspace of P m .  This yields (2.14.1). T h e  la s t  part
is obvious because III (Pr ,  T ) = 0 .  q. e. d.

By the above lemma, we immediately have

Lemma 2 .1 5 . i p i p  i s  injective. T herefore i n  (2 .13), an d  (2.13)„, Tp—>
q*T pni i s  a n  injective hom om orphism  of  v ector bundles. S im ilarly  so is 1 : T g —>
p*T p..

P ro o f .  The following are well known :

(2.15.1) H ° (Pr , o (T ,  T  p r ) ) -  k  a n d  H  ( P r .4C 0 (T  pr, 0 pr(1)))=0

Assume th a t  i p .i p  i s  a zero map. Then we have TpreOpr(1) 9 m- r - OPP which
is  absurd . H ence w e see that i 2 1 ,  is  no t a  ze ro  m ap . Therefore (2.15.1) com-
pletes the proof.

The above argument provides us w ith  the exact sequence :
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(ti i)
0 T peIT M (Coker (i, O.

(2.15.2) Remark that A  is  a  vector bundle isomorphic to the quotient
bundle q*T p.lil(T  p) and to P*T pmlij(TO in  Lemma 2.14.

As for the bundle A , we obtain more detailed results.

Corollary 2 .1 6 .  F o r ev ery  f iber o f  p(=f„), Ai f  p :—zopro.r. - r. Fo r every
f iber of  q(=f ,), Ai f q •_-- '0p ,(1 )" - r. T h ere f o re  A  is isomorphic to q*Op.(1)®p*A ,
and also to p*Op.(1)0q*A g , w here A p  and A q are  vector bundles o f  rank m— r
on Pn'.

Pro o f . The first part is obvious by virtue o f  Lemma 2.14. Therefore the
restriction of A 0q*Opm(-1) on f p  is a trivial vector bundle on P n ' of rank m—r.
U sing  th e  b a s e  c h a n g e  th e o re m  b y  Grothendieck we immediately obtain
A 0q*Op.(-1)-:-,:p*p* A 0q*O pm (-1). H ence  w e  ge t th e  desired vector bundle
A

P
=  P*(A0q*°Pin(-1))•  q. e. d.

Now we divides the case (2.8) into two cases as follows:

(2.8.1) m>2r,

(2.8.2) .

Let us show first that

(2.17) there is no M  satisfying Ci= 1  and m >2r .

Pro o f . We have to compute the first Chern class of E1 . By the assumption
(1.7) we obtain the following exact sequences:

(2.18) p

(2.19),

(2.18),

(2.19),

0 T p M p*TpmO ,

0 Tq — > T  --> q*T  pm, - - >  0,

0 -->  720T, -->  q*E z -->ij ---> 0

(2.19) p  a n d  (2.19), yield

c1 (Tp)=c 1 ll— (r+1 ); a n d  ci (TO=d i k— (r+1),

Moreover, by virtue of (2.18) p  a n d  (2.18), we obtain

(2.18) ci(Tm)=c1(Tp)d-ci(P*Tp.)=(7)1+1—c1)h-1-(r-1-1)e

=ci(TO-Eci(q*Tp.)=(m+1— di)k±(r+1)72.

Now by the assumption a = 1 ,  w e  c a n  ta k e  E l  (o r , E2) a s  p * q*k  (or, q* p*h,
re sp .) . Therefore since h =ri  a n d  k =e  (namely, ã= b= 1, a=5 = 0 ), we obtain
m+1—c 1 = r+ 1 and m-1-1—d 1 = r+ 1, tha t is,
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(2.20)c 1 = d i = m — r .

O n  th e  o th e r  hand , (2.10) s a y s  th a t  f (X ,1 ) (=x ,--1- i+c i x r+
- F c r + 1 )  d i v i d e s

X ' — 1  or Xm+1 + 1 .  Now let f 1 (X ) be a prim e div isor o f  f  (X , 1) in  Z [X ].
T h e n  th e re  e x is ts  a positive  in teger n o su c h  th a t f ,( X )  is  a  cyclotomic poly-
nomial 0 7 1 0 (X )= V (72 °) ±e1X° ( " ) - 1 + , +co (n o) (see proposition 2.2). Moreover,
it is w ell-know n that E. ,=— p(n o ), w h e re  p ( n )  i s  th e  Meibius function. S in c e
p (n ) ta k e s  o n ly  0  a n d  ± 1  a s  its  values, deg f (X , 1)=r-F1( m—r) and since
X 171 + '- 1  and Xm+1 + 1 are not products of linear functions o f  X  for m 2 ,  w e
g e t c i r ,  which contradicts (2.20). q .  e .  d.

In the next place, let us consider the  case  (2.8.2). In  th is  case w e shall
s tu d y  th e  Chern classes of two vector bundles A ,  and A , of rank m — r. Put
the Chern polynomial of A p  a s  1-Ec 1 (A 9 )t + ••• -Fc m _r (Ap)tm - r  a n d  p u t c,(A ,)=
u i h i  a n d  c,(240 )=- vi k i  w ith  u i ,  v ;  in te g e rs . N o w  w e  use a well-known result
about the Chern class :

(2.21) For a vector bundle E  of rank  r(n i_ r)  on an m-fold X
and a  line bundle L  on X,

••• ,

Let us return to M  in  question. Since m . 2r, hi, hi - 1 k, •••
are a free basis of A ( M ) .  Now applying 2.21 to the vector bundle A  in Corollary
2.16 and noting 2.22, w e have

Proposition 2.23. u i = v i = ._,C i  (1 r).

Under the above preparations we can show

Lemma 2 .2 4 . T here is no M  satisf y ing the condition that C t=1  and m_•ç_2r
(m >r+1).

P ro o f .  B y (2.15.2) and Corollary 2.16, w e have

- - - >  T p0q*Opm (-1) —> q*Tpnt(-1) —> p*A p  -->  0.

Since w e know  that T p .( - 1) is generated by its m+1 global sections, we obtain
1,1+1

0 —> (subbundle= B) e om p*A , 0.

Moreover, taking the direct image p * o f  th e  above sequence, we get
171, +1

0 p * B e opm A p 0 .

mgSince c( Opm)=c(p * B)c(A p )  and c(A 70)=(1±t)m - r  b y  Proposition 2.23. we
have m —r=1. q. e. d.

Thus Theorem  A  has been proved in the case (2.8) a n d  th e  rem ainder of
the proof is to  show th a t (2.7) does not occur.
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Lemma 2.25. There is no M  such that m is odd and r=1.

Pro o f . Recall the proof of Lemma 2.9. We could not show ii =1 in the case
where f(X , Y ) is  a  product of linear form s X  and Y . S tu d y in g  the divisors of

1 t h e  le f t  h a n d  s id e  i n  (2 .6 ), h o w e v e r ,  w e  s e e  th a t  f(X, 1)= (dX-1-1-) -1 )

(ax+6+1) in  Z [X ]  and, therefore, d= 1 or 2. U nder the condition th a t  a=- 1
w e have shown non-existence of M  w ith  m—r>_2. T h ere fo re  w e  can  assume
th a t d = 2 . Namely we have

(2.26) ri-=ae+bh, k=2e-1-6h.

Since f(X ,1 )= X 2—c,X+c,-=X 2+6X+(b 2-1)/4, w e have

(2.27) c, and 5 are odd, for d(=2) is  prime to  5.
On the one hand, b y  (2.18) w e have

ci (T m )=(m+1—c i )h±2e

=(m+1—cl 1)k+27)

=(2b±(m+1—d 1)E)h±(2a+2(m+1—d 1))e (see (2.26)).

On the other hand, since we know that Pic M..-_-Ze-HZ/i, we obtain

(2.28) 2 = 2 a + 2 ( m + 1 — c / 1 )

(2.29) m+1—c1=2b+(m+1—

Then (2.28)x/2— (2.29) gives u s  c1 +5 =m . Since c,, 5 a n d  m  a r e  o d d , the
equality is absurd. q. e. d.

Combining Lemma 1.15, Corollary 2.17, Lemma 2.24 a n d  Lemma 2.25, we
complete proof of Theorem A.

§ 3 .  Proof of Theorem B.

Throughout this section w e assume th a t char k = 0 .  L e t  u s  b e g in  w ith  a
simple lemma.

Lemma 3 . 1 .  L et Y  and Z  be non-singular projective surfaces. A ssum e that
Y  is a geometrically ruled surface and f :  Y --Z  is surjectiv e. Then Z is a geome-
trically  ruled surface or P 2 .

Pro o f . It is  ob v iou s th a t f*K z = K y —Oy (D ) w h e re  D  i s  the ramification
divisor of f. Since Y is ruled, w e know  that H°(Y, mKy )= 0 for every positive
integer in. Therefore w e have

h°(Z, mKz )._ 11° (Y, f*mKz)=h ° (Y, mKy—Oy(n1D))
- h°(Y , inKy )(dim1/°( , )=h°( , )).
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Moreover, since f  i s  surjective, w e  se e  2=b 2 (Y) b2 (Z). Hence we get the
desired result. q. e. d.

This lemma yields the next.

Corollary 3 .2 .  S , and S , are geometrically ruled surface or P 2 .

P ro o f . Let C be a  general non-singular curve on S , w ith  th e  genus of C
( _1). Then we see that p: q- iC—>S, is surjective. q. e. d.

(B, 1) Now assume that S , is geometrically ruled. Then let 7 : be the
canonical projection where C is the non-singular base c u rv e . Put (7- 1 (2)=1 2 fo r
a point 2 of C.

Lemma 3.3. Under the above notation, let us assum e that there is a point 2
of  C  such that p : q- 1 (l2)—>S, is surjectiv e. Then f o r every Point 2in C, p : q - 1 (12 )
—+S, is surjective.

Pro o f . It is obvious.

Therefore we shall consider the structure of M  in  two cases as follows :

(3 .4 ) for every point 2 in C, dimp(q - '(/ 2 ))=1 ,

(3 .5 ) for every point 2 in C, dimp(q - '(12 ))=2 .

First le t us t re a t  th e  c a se  (3 .4 ) . T h e  n e x t proposition is  important for
this case.

Proposition 3.6. L e t 0 : F—>P 1 b e  a rational ru led  su rf ace  w ith
P(OplED0p,(n)). Assume that C is an irreducible curve o f  F„, 0 : C -43 '  is finite
and  th at the self-intersection number C 2 o f  C  is  zero. Then n = 0  and C is a
section o f  0.

Pro o f . Assume that Let Co b e  the m inim al section of F T,  and f  a
fiber. T h e n  C  is linearly equivalent to aC ,± bf  w ith a, b in tegers. Then the
surjectivity of 0 : C-411 1  im plies a>0 and 2b=na is obtained by the computation
of a  On the other hand (C. Co )=b— an= — b<0, w hich is a contradiction by
virtue of C#C o . Hence we see n=0 and, therefore, the last part is obvious.

q. e. d.

Proposition 3.7. In the case (3.4) M  is isomorphic to S i X c S2 , where both S,
and S , are ruled surfaces over a non-singular curve C.

Pro o f . Take a  general fiber / 2 i n  S2 and put p(q - 1 (/ 2 ))=D,1. T hen  by  the
assumption, DA i s  a  curve. Choose a  general point A  on D A. Since q- J(l,z) is
a  rational ruled surface and the self-intersection number o f  p- 1(A) in  0 (1 2 )  is
0 , w e  s e e  th a t  q '(l 2) is isom orphic to P i x P ' and p i(A ) is a section of q :
g - 1 (12 )-42 by Proposition 3.6. Moreover, note that two projections of P'><P 1--.
P ' are equal to the restriction of p and q to  q- V ,z ) , respectively and D2nDp=
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0 (2# 72), which implies that S i  is geom etrically ruled. Take a  general section
Co o f  q :  S 2 —>C. T hen  w e  see  p: q 1(C0 )—>S 1 i s  a  bira tional m orph ism . As
q- 1 (C0)  and S, are geometrically ruled, it is isomorphism. Therefore since S i  is
a  ruled surface over C, w e get M-L2..S1 X cS2. q. e. d.

In the next place, let us consider the case (3.5). Then we have

Proposition 3 .8 .  In the case (3.5). M  is isomorphic to Si xC  where S, is a
rational ruled surface and C(—P 1)  is  a base curve of a ruled surface S2 .

Pro o f . A s q- 1 (l 2 )  is rational, and p :  q ( l 2 )—>S 1 i s  surjective, w e see S, is
ra tional. Similarly taking a  general rational curve on Si , we can check that S,
is also ra tiona l. By virtue of Lemma 1.3, there  a re  vector bundles E l ,  E , of
rank 2  on S i  an d  S2 ,  respectively such that P(E 1): -- - P(E 2 ): -- 'M .  Hence b4(M)=3
m eans tha t S , is geometrically ruled. Therefore let f, :  S1 —>P1 b e  the natural
projection and let us take a  very ample divisor C o which yields a section of
Then we see that q: p - 1 (C0 )—S2 is  surjective and LI = q - 1 (C0)ng. - 1 (/2) is an irredu-
cible curve in q 1 ( I A )  b y  B ertin i's  Theorem . A pplying Proposition 3 .6 , to  p :
1, - '(C0)— >C0 and 11 w e  see  tha t ia  is  a section of p  and  therefore p: q - 1 (12)- - +Si
is  isom ophism . Now since C is a base curve of S2 , we get the morphism g :  M

qq) S
i xC  by the fiber p roduct. Then it is easy to see that g  is  f in ite  bira-

tional morphism and therefore a  biregular morphism. q. e. d.

Looking into the proof (B.1), carefully, in  the  rest of the proof of Theorem
B ,  w e  m a y  assume th a t  S , a n d  S, are P 2 . But w e have already shown the
more generalized Theorem A .  Therefore we complete the proof of Theorem B.
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