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Introduction.

In this article we study the structure of varieties which have two bundle
structures whose fibers are projective spaces. Well-known examples are P"XP?,
P(Tp») and fiber product R,XyR, of R, and R, over Y where R, and R, are
ruled varieties over Y. The aim of this work is to classify such varieties under
some additional conditions.

Let M and M;(G=1, 2) be varieties over an algebraically closed field &2 and
let p and ¢ be proper surjective morphisms M—M; and M—M,, respectively,
where every closed fiber of p and ¢ is isomorphic to P™ and P° respectively.
To fix the idea let us introduce the following notion:

(P) We say that M has two projective space bundle structures (M,, P7, p;
M,, P¢, g) if there are two varieties M,;, M, and two morphisms p, ¢ as above
and if dim @(M)>max {dim M,, dim M,}, where @ is the morphism M—M, XM,
induced by p and ¢ (see Remark 1.6 about the second condition).

Under this notation, we have

Theorem A. Let M be a non-singular projective variety over an algebraically
closed field k. Assume M has two projective space bundle structures (P, PT, p;
P™, P¢, q).

1) If the characteristic of kis zero, then M is isomorphic to either a) P'XP™
(p and q are the first and the second projections, respectively), or, b) P(Tp),
where Tpi is the tangent bundle of P'. (See Lemma 1.15). In the case of (b),
l=m=r+1=s+1.

2) If the characteristic of k is positive, additionally, assume that p (or, q) is
P7-bundle on PYor, Ps-bundle on P™, resp.) in the Zariski topology. Then we
have the same conclusion as in 1).

Theorem B. Let M be a non-singular projective 3-fold over an algebraically
closed field of characteristic 0. Assume that M has two projective space bundle
structures (S;, P, p; S,, P, q) with non-singular surfaces S;, S,. Then M is one
of the following

1) S:X¢S,, where S; is a P*-bundle over a non-singular complete curve C.
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2) P(Tp2), where Tp: is the tangent bundle of P* and S;= P>

In order to show Theorem A, we shall compute the Chow ring of M and
study the property of the tangent bundle T, of M and two vector bundles E,,
FE, which determine M. As for Theorem B, we shall use the properties of a
ruled surface especially, a rational ruled surface.

Notation and conventions.

We work over an algebraically closed field %2 of any characteristic unless
stated. A variety means an irreducible and reduced algebraic k-scheme. P™
denotes an n-dimensional projective space and Opa(l) is the line bundle cor-
responding to the divisor class of hyperplanes in P®. We use the terms vector
bundle and locally free sheaf interchangeably. For a vector bundle E on a
variety X, Op /(1) denotes the tautological line bundle of E. E denotes the dual
vector bundle of E. Moreover, when Y is a subvariety of X, E|y denotes /*E
with 7 the natural immersion of ¥ to X.

§1. Preliminaries.

Let M, S be non-singular projective varieties and p: M—S be a surjective
morphism such that for every closed point s in S, p~!(s) is isomorphic to Pj.
At first let us study the conditions under which p isa P7-bundle in the Zariski
topology.

Let us consider the exact sequence of algebraic groups as follows:

(L.1) 0—>Gn—> GL(u) —> PGL(u) —> 0.

Then we have an exact sequence of étale cohomologies;

(1.2) H'(S¢, GL(u) —f—> H'(S¢, PGL(u)) 2, H*Ss, Gn).

Under the above notation we have

Lemma 1.3. Let p: M—S be as above. Then p is a P™-bundle in the étale
topology. Moreover assume that f is surjective. Then p is a PT-bundle in the
Zariski topology and there exists a vector bundle E of rank r-+1 on S such that
M is isomorphic to P(E) and p corresponds to the canonical projection P(E)—S.

For a proof, see Theorem 0.1. in [5] and Lemma 1.2. in [6].

Corollary 1.4. Under the same conditions as above assume S is one of the
following :

1) curve,

2) rational surface, and

3) projective space.

Then f in (1.2) is surjective.
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Proof. In the case of 1) and 2), it is known that H*Se&, Gr)=0([3], [1]).
Therefore assume that S is a projective space. Now let us consider two exact
sequences :

0—py—>GCpn—>Gr—>0
0 —> py —> SL(u) —> PGL(u) —> 0.
Then we obtain exact sequences of étale cohomologies as follows :

h
—> H¥ P&, po) —>H* P, Gp) —>

k
—> H'(P"4, PGL(u)) — H*(P"&, ) — .

Then g in (1.2) is the composition of % and i (see IV of [7]). To prove f is
surjective, it suffices to check that h is a zero map. Since it is known that %
is surjective (9 of VI [7]), we complete the proof. q.e.d.

In the next place let us study the second condition appearing in (P) of
Introduction. Let A and % be very ample line bundles on M, and M, respectively
and let us consider the following conditions:

1) dim @(M)=max {dim M,, dim M,}.

1) dim @(M)=dim M,=dim M,.

2) For a closed point x in M,, ¢*k| -1z is a trivial line bundle, or for a
closed point y in M, p*hlgs-1¢, is so. Consequently both hold.

3) There is an isomorphism ¢: M,=M, such that ¢p=q.

Then we have

Lemma 1.5. Under the above notations, assume that both M, and M, are
normal varieties and that both r and s are positive. Then we have the following :

A) Conditions 1), 1)’ and 2) are equivalent to each other and condition 3)
implies the other conditions.

B) If the characteristic of k is zero, all the conditions are equivalent to each
other.

Proof. 1t is clear that 3) implies 1)’ and 1)’ implies 1). Therefore we show
that 1) implies 2). Note that a representation of the morphism @: M—M,xXM,
is given by the morphism ¢: M—Pdimph® ki which the line bundle p*A®q*k
yields, where |*| is the complete linear system of a line bundle *. As p*h is
generated by its global sections, we see that, for a point y in M, p*h|g-1) =
Ops(a) and a is non-negative. Now suppose that a is positive. Then since
P*h@q*k|4-1¢,) =Ops(a), the restricted map of @ to ¢g~!(y) is finite, which implies
that @ is finite. Consequently we see that dim M=dim @(M)>max {dim M, dim M,}
because of positive integers », s. This result contradicts condition 1). Therefore,
we could prove that 1) means 2). In the next place, we show that 2) implies
1)’. Noting the above proof and the fact that a morphism from a projective
space to another projective space is constant or finite, we see that the morphism
priloun : O(M)—M; is bijective for /=1, 2, where pr; is the projection: M,;x
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M,—M,. Hence 2) means 1)’. Therefore we complete A). Moreover if the
characteristic of £ is zero, bijective morphism pr;|¢wur is biregular by Zariski
Main Theorem, which implies B). q.e.d.

Remark 1.6. By the above lemma, if r+s, the condition that dim @(M)>
max {dim M,, dim M,} automatically holds.

Hereafter in this section we shall study the fundamental properties of M in
order to show Theorem A.

Let E, (or E,) be a vector bundle of rank r+1 (or, s+1, resp.) on P! (or,
P™, resp.). p (or, g) denotes the canonical projection P(E,)—P! (or, P(E,)—
P™, resp.).

(1.7) Assume that P(E,) is isomorphic to P(E,)(=M) and dim ®(M)>
max (/, m) where the morphism M — P'XP™(=@) is the one
induced by p and gq.

Note that the assumption of M in (1.7) is equivalent to the one in Theorem A.
Furthermore put §=0p, (1), 7=0pE,(1), h=p*Cpi(1) and k=g*Opn(l).
Now since we know that Pic M=Z§+Zh=Zn+Zk, we obtain two equalities :

(1.8) n=aé+bh,  k=aé+bh
where a, @, b and b are integers.
Moreover, we have

Lemma 1.9. >0 and @b—ab=1.

Proof. Let f, be a fiber of p(=P"). Then we see that the intersection
(b fp. & )=a(E". fp)+b(h.fp. E)=a(E".f,). This yields @>0 because the
assumption (1.7) and Lemma 1.5 imply that (k.f,.£77%)>0. On the other hand,
if we é=cy+dk and h=¢n+dk with integers ¢, d, ¢, and d, we obtain

(Z ;)(i_ g)——-((l) (1)> and ¢>0 similarly. These show our lemma. q.e.d.
We denote by A™(S) the group of cycles of codim » on a non-singular variety
S modulo rational equivalence and by A(S)= TEE A7(S) with dimS=n. Now let E

be a vector bundle of rank » on a non-singular variety Z and ¢ the tautological
line bundle of E. The i-th Chern class ¢;(E) of E is an element of A%S). The
following is well-known.

Theorém 1.10. Under the above notation let f: P(E)—Z be the canonical
projection. Then f* makes A(P(E)) into a free A(Z)-module generated by 1, a,
, 7Y Moreover the following equality holds:

g(——l)if*ci(E)a"i=0 in A"P(E)).
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For a proof, see [2].

Now for the variety M in (1.7), let us study the Chow ring A(M) using
the Chern classes of E,, E, and &, %. c¢i(E,) (or, ¢{E,)) is written in the form
cihi(or, d;k?, resp.), where 1=</<min(, r+1)(=y)(or, 1=;<min(m, s+1)(=0),
resp.), ¢; and d; are integers. By virtue of Theorem 1.10, we consider a Z-
isomorphism of finite Z-algebra as follows:

(L.11)  Z[X, Y]/ XH— XY 40, XYV 2 oo (= 1), XTHTYT)
'EZ[U, V:I/(Vm-)-l, U"H—dlU"V-l—dzUs’le-}- +(_1)5d5Us+1-6Vz$)

under the additional condition that U=aX+bY, V=aX+bY, a>0 and ab—ab=
1 where X, Y, U and V are indeterminates. We denote by I the ideal

T )

Y+, ¥ e, X1 4=Y)") of Z[X, Y] and by J the ideal (V™*, Zode‘“‘f(—V)f)
i=0 =

of Z[U, V] with ¢,=d,=1 and put

7 ) o ) .
f(X, V)= ¢ X %=Y) and g, V)=j2 d;Ust-I(=V).
=0 =0
From now on we shall investigate equalities about /, m, » and s.

(1.12) Assume that [=m.

Firstly we know that dim M=/+r=m+s, since M has two fiber bundle structures.
Secondly, noting the degrees of generators in two ideals, I, J it is easy to check
that

(1.13) min {{+1, r+1} =min {m+1, s+1}.

by the isomorphism in (1.11).
Therefore as for [, m, » and s, we obtain four cases as follows:

(1.14) a) [<r,l{=m and r=s,
b) I=r=m=s,
c¢) (>r,l=s and m=r,
d) [>r,l=m and r=s.

Finally in this section we shall show a key lemma for the proof of Theorem A.

Lemma 1.15. Under the same notations as above and the assumption (1.7) we
suppose that a=11in (1.8). Then in the cases b), ¢), the morphism @ : M—P'xXP™
is an isomorphism, where @ is the morphism induced by the fiber product of maps
p and q. In the case d), assume additionally that |=r+1. Then @ is a closed
immersion and O(M) is isomorphic to P(T p).

Proof. In the cases b), ¢), we see easily that @ is a finite birational mor-
phism and therefore, an isomorphism by Zariski Main Theorem.
In the case d) we see similarly that @: M—-@(MYSP'XP!) is a finite
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birational morphism. On the other hand, since @(M) is a Cartier divisor in
P!'x P!, we can put the defining equation of @(M) as F(X,, -+, X;; Yo, -+, Y1)
(=F), where F is a homogeneous polynomial of degree d,(or, d,) with respect
to X,, -+, X,(or, Yy, +-+, Y, resp.). The assumption implies that d,=d,=1 and
every fiber of one projection is transformed to a hyperplane in another base
space by another projection. Therefore it is easy to see that F is written in

L
the form X X,Y; after suitable linear transformations of X,, ---, X; and Y, ---,
1=0

Y., respectively. Hence we see that @(M) is isomorphic to P(Tp:) and @ is a
closed immersion. g.e.d.

§2. Proof of Theorem A.

Case a) Using a well-known fact that if »>m, every morphism P"™—P™ is
a constant map, we see easily that such an M does not exist.

In view of Lemma 1.15, we devote ourselves to showing d=1.

Case b) The isomorphism (1.11) provides us with the following:

(@X+BY) = Af(X, Y)+BY' with A, B integers.

Therefore we obtain A=a'*! and B=5'"*"!, namely, f(X, YV)=(X+bY/a)*'—
(bY/@)**1. Since the coefficient of X'V is ((+1)b'/a* and ab—ab=1 says that a
is prime to b, we see that @' devides /+1, which means a=1. q.e.d.

Case ¢) It suffices to prove ¢=1. Comparing the degree of generators of
ideals I and J, we obtain the following:

(@X+bY)* (=Y *)=Af(X, Y) with an integer A.

Since (X+bY/a)*' is an elements of Z[X, Y], we get a=1, for a is prime to
b. q.e.d.
In the last case d), we have to show the following facts.
1) a=l1,
2) There exists no M satisfying />r+1.
Then by Lemma 1.15, the proof of Theorem A will be completed.
First let us begin with 1), for which the following is essential.

Theorem 2.1. Let o be a primitive n-th root of unity and Q(a) the field
generated by the rational number field Q and 6. Let A be the ring of integers
é(n)
of Q(a). Then A= EPO Zo', where ¢(n) denotes Euler’s number of n.

For a proof, see Theorem 4 in [4].
The above theorem yields the following

Proposition 2.2. Let @,(X) be a cyclotomic polynomial of n-th root of unity
(n=23) and a, B integers. Assume that a®™ divides @,(aX+B) in Z[X]. Then
a==+1.
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Proof. Put @,(aX+p)=a?™h(X) where A(X) is a monic polynomial in
Z[X]. For an n-th root of unity (=6), a *(6—p) is a root of A(X). Therefore
by Theorem 2.1, we have a==+1. q.e.d.

Since /=m, we have the following equalities:
(2.3) VmH=AY ™4 f(X, Y)f(X, V),
(2.4) ymti=BVmt'+gU, V)gU, V),

where f(X, Y)eZ[X, Y], gU, V)EZ[X, Y] and A, Be€Z and deg f(X, YV)=
deg g(U, V)=1. Then we have

Lemma 2.5. A=B=1 or —1.
Proof. Computing (2.3) X B+(2.4), we get

(2.6) Ym=ABY™'+Bf(X, Y)f(X, Y)+gWU, V)gU, V).

On the other hand, taking the degree of f(X,Y), g(U, V) and Z-isomorphism
of (1.11) into account, we see that g(U, V)=af(X, V) with a an integer. Hence
we obtain

Y™ (1—AB)=f(X, Y)BF(X, Y)+ag(—bX+bY, aX—aY)).

It follows that AB=1, which is the desired result. q.e.d.

In the next place, we divide d) into two cases:
2.7 m is odd and r=1,
(2.8) otherwise.

We shall treat the case of (2.8) first and show that (2.7) does not occur at
last in this section.

Lemma 2.9. Assume that M satisfies (1.7) and the condition in d) and that
1) m is odd and r=2, or

2) m s even.

Then, a=1.

Proof. Assume that A=1. Substituting @¢X+5bY for V and 1 for Y in
(2.3), we obtain the equality :

(2.10) (@X+b)m—1=f(X, DF(X, 1).

The left hand side in (2.10) is written as the product of @;(aX-+b), where @,(X)
is a cyclotomic polynomial. Note that @;(@X-+b) is irreducible in Q[X]. On
the other hand, factorize f(X, 1) into the product of prime elements f;(X) in
Z[X]. Since Z[X] is UFD, there exist u and v such that f,(X) and @,(aX+b)
are factors of f(X, 1) and the left hand side of (2.10) respectively and, moreover,
deg fu(X)=2 and @, (GX+b)/f.(X) is an integer (=a#®). Therefore, Proposi-
tion 2.2 and @>0 imply that g=1. In the next place, assume that A=—1.
We can prove @=1 in the same way as in the case of A=1. q.e.d.
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Remark 2.11. After determining the structure of M, we see that the case
of A=—1 does not occur.

It is enough for the proof of Theorem A in the case of (2.8) to show the
following

(2.12)  There exists no M satisfying the conditions that é¢=1 and [>r-+1.
(See Lemma 1.15 for [=r-+1.)

To prove (2.12), we need some results about the tangent bundle on P*, M,
etc. By the assumption (1.7), we have the following exact sequences of the
tangent bundles:

7 7

(2.13)p 0——)Tp—)TM——)p*Tpm—>0,
' j

(2.13)q 0—‘—>Tq—>TM——)q*TPm——)0,

where T, and T, are the relative tangent bundle with respect to the projections
p and g. Restricting the above exact sequences on a fiber of p(=P7) we have
the following:

Lemma 2.14.

i
(2.14.1) 0 —> Tpr —2> Ty pr —> OBF —> 0
J
(2.14.2) 0_—>quPf_>TM|Pr‘-i>Tpr®Opr(l)9’"'r > 0.

Moreover, by (2.14.1) we have T y|pr=0%" D T pr.

Proof. For a linear subspace P* in P®(u<wv), we can easily check that
Tpolpu=Tpu@®Opu(1)**. On the other hand, =1 implies that for every fiber
f» of p, g(f,) is a linear subspace of P™. This yields (2.14.1). The last part
is obvious because H'(PT, T pr)=0. q.e.d.

By the above lemma, we immediately have

Lemma 2.15. i,j, is injective. Therefore in (2.13), and (2.13), ij: Tp—
¢*Tpm is an injective homomorphism of vector bundles. Similarly so is ij: T;—
p*Tpm.

Proof. The following are well known:

(2.15. 1) HO(Pr, S om (Tpr, Tpr))g k and HO(PT, Hom (Tpr, Opr(l)))zo.

Assume that i,j, is a zero map. Then we have T prPOp(1)2™"=0O2" which
is absurd. Hence we see that 7,7, is not a zero map. Therefore (2.15.1) com-
pletes the proof.

The above argument provides us with the exact sequence:
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@1 .
0 —> T BT, —> Ty —> (Coker (i, i)=A) —> 0.

(2.15.2) Remark that A is a vector bundle isomorphic to the quotient
bundle ¢*T pm/ij(T,) and to p*Tpn/ij(T,) in Lemma 2.14.

As for the bundle A, we obtain more detailed results.

Corollary 2.16. For every fiber of p(=f5,), A[prOPT(l)@"‘". For every
Siber of q(=fy), Al,q'sOpr(l)‘”‘". Therefore A is isomorphic to ¢*Opn(1)Qp*A,
and also to p*Opm()Qq*A, where A, and A, are vector bundles of rank m—r
on P™,

Proof. The first part is obvious by virtue of Lemma 2.14. Therefore the
restriction of AQg*@pm(—1) on f, is a trivial vector bundle on P™ of rank m—r.
Using the base change theorem by Grothendieck we immediately obtain
AQRq*Opm(—1)=2p*px AQq*Opm(—1). Hence we get the desired vector bundle
Ap=px(AQq*Opm(—1)). q.e.d.

Now we divides the case (2.8) into two cases as follows:

(2.8.1) m>2r,
(2.8.2) m<2r.

Let us show first that

(2.17)  there is no M satisfying a=1 and m>2r.

Proof. We have to compute the first Chern class of E;. By the assumption
(1.7) we obtain the following exact sequences:

2.18), 0—> T, —> Ty —> p*Tpn —> 0,
(2.19), 0—E6QT, —> p*E, —> & —> 0,
(2.18), 0—T,— Ty —> ¢*Tpn —> 0,
(2.19), 0— QT —> ¢*E; —> 5 —>0

(2.19), and (2.19), yield
c(Tp)=cih—(@r+1)§ and ¢ (Ty)=d.k—F+1)7y.
Moreover, by virtue of (2.18), and (2.18), we obtain
(2.18) (Tw=cTp)+c(p*Tpm)=(m+1—c)h+(r+1)§
=0T+ e1(@*Tpn)=m+1—d)k++1)y.

Now by the assumption a=1, we can take E, (or, E,) as pxq*k (or, gxp*h,
resp.). Therefore since h=% and k=& (namely, a=b=1, a=b=0), we obtain
m+1—c,=r+1 and m+1—d,=r+1, that is,
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(2.20) a=d,=m—r.

On the other hand, (2.10) says that f(X, I(=X"*'4¢, X"+ -+ +¢,4y) divides
X™1—1 or X™*+1. Now let f;(X) be a prime divisor of f(X, 1) in Z[X].
Then there exists a positive integer n, such that f;(X) is a cyclotomic poly-
nomial @, (X)=X?¢"04¢ X014 | 4c40,, (see proposition 2.2). Moreover,
it is well-known that é,=—p(n,), where p(n) is the Mobius function. Since
p(n) takes only 0 and =1 as its values, deg f(X, 1)=r+1(=m—r) and since
X™*1—1 and X™+'+1 are not products of linear functions of X for m=2, we
get ¢,=r, which contradicts (2.20). g.e.d.

In the next place, let us consider the case (2.8.2). In this case we shall
study the Chern classes of two vector bundles A, and A, of rank m—r. Put
the Chern polynomial of A, as 1+ci(Ap)t+ -+ +cm-r(Ap)t™ ™ and put c¢;(Ap)=
uht and c¢j(A)=v;k? with u; v; integers. Now we use a well-known result
about the Chern class:

(2.21) For a vector bundle E of rank r(m=r) on an m-fold X
and a line bundle L on X,

Ci(E®L)=rCiLi+r-1Ci-1Li_lc1(E)+y oy oG Lo (E)+ci(E).

Let us return to M in question. Since m=2r, h?, ht-k, -« Rk, R (1ZiSm—r)
are a free basis of A*(M). Now applying 2.21 to the vector bundle A in Corollary
2.16 and noting 2.22, we have

Proposition 2.23. u;=v,=,_.C;(1=Zi=<m—r).
Under the above preparations we can show

Lemma 2.24. There is no M satisfying the condition that a=1 and m=2r
(m>r—+1).

Proof. By (2.15.2) and Corollary 2.16, we have
0 —> T,Q¢*0pn(—1) —> ¢*T pn(—1) —> p*4, —> 0.
Since we know that Tpem(—1) is generated by its m+1 global sections, we obtain
0 —> (subbundle=B) —> b Oy —> p*A, —> 0.
Moreover, taking the direct image ps of the above sequence, we get
0—>p*B——>@l0pm——>Ap—>0.

Since c(mélapm)zc(p*B)c(Ap) and ¢(A,)=1+t)™" by Proposition 2.23. we
have m—r=1. q.e.d.

Thus Theorem A has been proved in the case (2.8) and the remainder of
the proof is to show that (2.7) does not occur.
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Lemma 2.25. There is no M such that m is odd and r=1.

Proof. Recall the proof of Lemma 2.9. We could not show @=1 in the case
where f(X, Y) is a product of linear forms X and Y. Studying the divisors of

the left hand side in (2.6), however, we see that f(X, 1):%(dX+5—1)

(GX+b+1) in Z[X] and, therefore, a=1 or 2. Under the condition that g=1
we have shown non-existence of M with m—»=2. Therefore we can assume
that ¢=2. Namely we have

(2.26) n=ab+bh, k=2E+bh.
Since f(X, )=X’—c, X+c,=X*+bX+(b*—1)/4, we have
(2.27) ¢; and b are odd, for @(=2) is prime to b.
On the one hand, by (2.18) we have
c(Ty)=(m+1—c,)h+2&
=(m+1—d,)k+2y
=(2b+(n+1—d,)b)h+(2a+2(m+1—d)))E (see (2.26)).
On the other hand, since we know that Pic M=Z&+Zh, we obtain
(2.28) 2=2a+2(m+1—-d,)
(2.29) m—+1—c,;=2b+(m+1—d,)b.

Then (2.28) xb/2—(2.29) gives us ¢,+b=m. Since ¢,, b and m are odd, the
equality is absurd. q.e.d.

Combining Lemma 1.15, Corollary 2.17, Lemma 2.24 and Lemma 2.25, we
complete proof of Theorem A.

§3. Proof of Theorem B.
Throughout this section we assume that char £#=0. Let us begin with a

simple lemma.

Lemma 3.1. Let Y and Z be non-singular projective surfaces. Assume that
Y is a geometrically ruled surface and f:Y—Z is surjective. Then Z is a geome-
trically ruled surface or P2

Proof. 1t is obvious that f*Kz=Ky—Oy(D) where D is the ramification
divisor of f. Since Y is ruled, we know that H°(Y, mKy)=0 for every positive
integer m. Therefore we have

ho(Z, mK))Zh(Y, f*mKz)=h"(Y, mKy—Oy(mD))
=h"Y, mKy)(dimH(, )=h"(, ).
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Moreover, since f is surjective, we see 2=b,(Y)=b,(Z). Hence we get the
desired result. qg.e.d.

This lemma yields the next.
Corollary 3.2. S, and S, are geometrically ruled surface or P:.

Proof. Let C be a general non-singular curve on S, with the genus of C
(=1). Then we see that p: ¢7'C—S, is surjective. q.e.d.

(B, 1) Now assume that S, is geometrically ruled. Then let §: S;—C be the
canonical projection where C is the non-singular base curve. Put ¢ *(1)={; for
a point A of C.

Lemma 3.3. Under the above notation, let us assume that there is a point 2
of C such that p: q '([:)—S: is surjective. Then for every point 2in C, p: q *([3)
—S, is surjective.

Proof. It is obvious.

Therefore we shall consider the structure of M in two cases as follows:
(3.4) for every point A in C, dimp(g~'(/:))=1,
(3.5) for every point A in C, dimp(g~*(/2))=2.

First let us treat the case (3.4). The next proposition is important for
this case.

Proposition 3.6. Let ¢: F,—P' be a rational ruled surface with F,=
P(Op1@BOpi(n)). Assume that C is an irreducible curve of F,, ¢: C—P* is finite
and that the self-intersection number C* of C is zero. Then n=0 and C is a
section of ¢.

Proof. Assume that n=1. Let C, be the minimal section of F, and f a
fiber. Then C is linearly equivalent to aCy+bf with a, b integers. Then the
surjectivity of ¢: C—P* implies a>0 and 2b=na is obtained by the computation
of C2. On the other hand (C.Cy)=b—an=—b<0, which is a contradiction by
virtue of C+C,. Hence we see n=0 and, therefore, the last part is obvious.

q.e.d.

Proposition 3.7. [n the case (3.4) M is isomorphic to S;X¢S., where both S,
and S, are ruled surfaces over a non-singular curve C.

Proof. Take a general fiber [; in S, and put p(¢~'(/2))=D;. Then by the
assumption, D, is a curve. Choose a general point A on D;. Since ¢7'({3) is
a rational ruled surface and the self-intersection number of p~'(A) in ¢~!(/;) is
0, we see that ¢!(/;) is isomorphic to P!XP! and p~'(A4) is a section of g:
¢~'(1,)—1; by Proposition 3.6. Moreover, note that two projections of P*XP!'—
P! are equal to the restriction of p and ¢ to ¢ '(/;), respectively and D;N\D,=
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@(A+#7), which implies that S, is geometrically ruled. Take a general section
Co of g: S,—»C. Then we see p: ¢~ (C,)—S; is a birational morphism. As
¢ (C,) and S, are geometrically ruled, it is isomorphism. Therefore since S, is
a ruled surface over C, we get M=5,X¢S,. q.e.d.

In the next place, let us consider the case (3.5). Then we have

Proposition 3.8. In the case (3.5). M is isomorphic to S;XC where S, is a
rational ruled surface and C(=P?) is a base curve of a ruled surface S,.

Proof. As ¢ %(l;) is rational, and p: ¢ '(/;)—S, is surjective, we see S; is
rational. Similarly taking a general rational curve on S;, we can check that S,
is also rational. By virtue of Lemma 1.3, there are vector bundles E;, E, of
rank 2 on S; and S,, respectively such that P(E,)=P(E;)=M. Hence b,(M)=3
means that S; is geometrically ruled. Therefore let p: S,—P* be the natural
projection and let us take a very ample divisor C, which yields a section of p.
Then we see that g: p~'(Cy)—S, is surjective and [;=¢ *(Co)N\g~*((;) is an irredu-
cible curve in ¢-(/;) by Bertini’s Theorem. Applying Proposition 3.6, to p:
»~1(Co)—C, and [; we see that [; is a section of p and therefore p: ¢~(/;)—S;
is isomophism. Now since C is a base curve of S,, we get the morphism g: M

(», 39
—> S5, XC by the fiber product. Then it is easy to see that g is finite bira-

tional morphism and therefore a biregular morphism. q.e.d.

Looking into the proof (B.1), carefully, in the rest of the proof of Theorem
B, we may assume that S; and S, are P2 But we have already shown the
more generalized Theorem A. Therefore we complete the proof of Theorem B.
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