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1 . Introduction and preliminaries.

L e t {B(t), (). .t <co} be the two-dimensional standard Brownian motion process
with continuous paths on  a  probability space (Q, g, Px, xER 2 ), P.(B(0)=x)=1.
W e also  w rite  Po b y  P .  A  most significant property of the Brownian paths is
known as the w inding property : Let T  b e  a f in ite  Markov tim e o f th e  two-
dimensional Brownian motion process, then with probability one {B (t), T  t< T ±s }
winds about B (T ) and cuts itself  f o r  every s> 0  (Ito and McKean [9 ], 7 .1 1 ) . In
th is paper w e  w ill consider th e  contrary. N am ely, w hen does occur a  non-
winding in  the two-dimensional Brownian paths? We also determine the law  of
a non-winding part by giving th e  corresponding conditioned limit theorem for
the Brownian motion.

L e t  u (0 ) b e  a  u n i t  vector (cos 0, sin 0 )  i n  IV . F o r  0 Ga <27r w e set a
circular cone

F=F (a ), {x= ru (0 ): (21. 0 .

In the remainder of this section we consider an F such that the vertical angle
is 0 <a_7z. unless anything other is stated. Then F has the following property :

(1.1) xE F , then F+xCF.

Noting the continuity of the Brownian paths, we have from (1 .1) th e  following
lemma.

Lemma 1. Let 0 < a 7 c .  Then fo r  every O s<00 there exists the largest
interval among all of the closed ones [r, u] satisfying

0 < r < s < u 0 0  and  B(t)EF+B(r) for
(1.2)

(or fo r  r._- _t<00 i f  o=00).

L et [r(s), u(s)] denote the largest interval, and call it an F-excursion interval
(straddling s) if  it does not degenerate to a single point {s}. We note that the
largest interval does not exist in general, when (1.1) does not hold for 77 <a <277.
Let 6 F (B) be the random set of all F-excursion intervals. Clearly IB(t),
does not wind about B(r), i f  [r , u] Ee r (B). First w e consider th e  following
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theorem.

Theorem 1. A ccording as a 7 / 2  or 7/2<a(7t), we have

P(e ,(B )4 0 )=0  o r  1.

In connection with Theorem 1 w e recall G reenw ood a n d  P erk in s  [7 ] and
D avis [3 ], in  w hich  they  considered  the excursions in or above square root
boundaries for the one-dimensional Brownian m otion. If we restate their problem
in  term s of the space-time Brownian motion, we see a connection between theirs
and  ours. In  [14] w e d iscussed  a  m anner o f  non-winding fo r the  halfplane
(i. e. F(7))-excursions.

In § 2 w e prove Theorem  1.
Let aF be the boundary of F and set P = F \ a F . Let

o'F(B)=inf It>0 : B(t)Er PI (inf çb=00).

In § 3 we consider a  limit theorem o f  the  B rownian m otion conditioned to stay
in  P ;

P.,(B( . W '10"F (B )>1), xEP, a s  x -->

w hen the vertical angle is  0<a<27 (Theorem 2 ). Especially, if 7r12<a7r, we
identify the lim it process w ith the scaled Brownian F-meander defined by

(1.3) (t)= (1 —r(1)) - '" I/3 er(1) +(1—r(1))t) — B(z(1))1

(note th a t r(1)<1 almost surely from (2.2) in  § 2). See Theorem  3 . In  § 4 we
show an asymptotic formula for the transition probability of the Brownian motion
on P  w ith  an absorbing boundary aF, which is an extension of a formula given
in Spitzer [15] and plays a basic role in  §§ 2 and 3.

2 .  Proof o f Theorem 1.

W e prove Theorem  1 in  a  similar way as [7 ],  But proof given here becomes
simpler, because we have Lemma 1, and because we do not use the random walk
approximation. W e sta rt on defining sequences of renewal epochs of the Brow-
nian m otion. Let x  i t ( a  1 2 ) ,  n=1, 2, •-• . For every  n we define

(2.1) a Pn ) = 0  a n d  cqn) =inf {t> aV1 : B(t)EEF+B(aN)— x } ,  k = 1 ,  2,

C learly  akn ) < c o  f o r  e v e ry  k  a n d  a Jr  —> c o  a s  12-400 w ith  probability  one.
Moreover, as in  Lemma 1, w e get from  (1.1) a n d  f ro m  th e  sam ple path con-
tinuity the following :

Lemma 2 .  For a fixed [r, v]-=Er(s), u(s)], <co, let j n =max {k :
Then we have o rt.)_- _o_rn. )+ , f o r every n, a —>r and a —>u as n-->00.

F o r  0<1., <1, p,(x, y )  i s  a  probability density o n  112 w i t h  respect to  the
Lebesgue measure :



M x , y)=
0 for remaining x and y.

7- '1., sin(rv)(1—x)' - '(x+y) - ' - 1  f o r  0<x<1 and y>0{
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W e show the following:

I f  a>r/2, the random vector (1—z-(1), u(1)-1) has the
(2.2)

probability density y).

(2.3) I f  a7r/2, Per(1)=u(1)=1)=1.

Clearly Theorem 1 follows from (2.2) and (2.3). T o  p rov e  th em  w e  w rite
a-= -7 (1 ) (1) and a; 7' )

+1 =u (n) (1), w here [r, u]=[r(1), u(1)]. Then by Lem m a 2

(2.4) r(n)(1) --> r (1 ) a n d  u( n) (1) - -  u (1 )  a s  n —> 00.

Moreover, by the scaling property of the Brownian motion,

(2.5) (1—rm(1), t) ( n ) (1) - 1)=d  (1—  n 'a ff7,2), 77- 2 aM2) + 1 -1 ),

w h ere  r(a)=max{k : o.P) a } .  N o t i n g  (4.3) i n  §4 , w e apply  som e renew al
theorem on the right-hand side of (2.5): For a>7r/2 (2.2) follows from Dynkin
[4], theorems 3 and 4 (see also Feller [6], XIV 3). We have (2.3) from Rogozin
[12], theorem  2  when a= ir/2 , and  from , e .g . ,  [6 ] XI, (4.16) w hen a<7/2.
This completes the proof.

3 . Conditioned limit theorem related to an F-excursion.

L e t IP(s, • ; t, *), 0 < s t . ._11 be  a  fam ily  of transition  probabilities on
defined by

(3.1) P(s, x; t, dz)=P„(B(t— s)edz; CF(B)>t s) P ' ( a F ( B ) > 1 — t )

Pr(aF(B)> 1 — s)

for x  and z in  P . L e t  . denote the Euclidian norm in R 2 . W e se t p=r/a.
L et {p(t, *), 0<t- 1} be a  family of measures on R 2 defined by

I xV p(t, dx)=
( 1 1 1 2 ) 0 1 2 + P  

exp (— x i  2120 sin (0 )

(3.2)
x P x (o-

F (B)>1—t)dx, x-=1x1u(0)E P.
T h e n  {p(t, *), 0<t . 1} is a probability entrance law fo r  IP(s, • ;t, *),
that is, a fam ily  of probability measures on P satisfying

(3.3) p(t, *) 4p (s , dx )P (s , x ; t, * ) fo r  ev ery  0<s

By (4.1) and (4.2) in  §4 w e have
d

P.,(B(s)e*la F (B)>1) --> p(s, *) in  P  a s  Ppx -->  O.

Let f  be  a  bounded continuous function on P . Then
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1,Px(B(t)Gdzio•F(B)>1)f(z)
(3.4)

= .- i ,,P.(B(s)Edillo - F(B)>1) P(s, y; t, dz)f(z)

for every x  in  fr, and . „P (s, • ; t, dz)f(z ) is  e a s ily  sh o w n  to  b e  a  bounded

continuous function on É  to o . T h e n  (3.3) follows by letting x-40 in  (3.4).
On the space o f  continuous functions G ig, b ]=C ([a , b ]-41 2 ),

w e define th e  topology o f  th e  uniform convergence, and give the Borel field
C [a , b ]. The main result of this section is the following theorems.

Theorem 2. L e t  0<a<27 -.. A  f am ily  o f  conditional probabilities on
(CEO, 11 C[0, 1])

(3.5) P r (B (.) aF(B)> 1), x E P  w ith  lx1 .1

converges weakly in  C [0 ,1 ] as x--41. The f inite dimensional distribution of  the
lim it law  W  is given as follows:

W(wEC[0, 1] : w(t i ) Edx i ; w(t2)Edx2; ; w (t.)Edx.)
(3.6)

dz i )P(t i , x 1 ; t 2 , d x 2 ) • • •  P ( tn _ i ,  x n - 1 ;  t., dx.),

f o r every 0<t 1 <t 2 < ••• <t 1 and x l , x 2 , «, x „  in  P.

Combining Theorems 1 and 2, w e get the following theorem.

Theorem 3. I f  7r/2<a:‹7r, we have W(A)=P(b( A ) f o r all A in C[0,1].

Proof  o f  Theorem 2. Firstly we consider the convergence of f.d.d's with
(3.6), that is, as x—*0

d

Px (B (ti)E  d  ; B ( t2 )E  d x 2  ; • • • ; B ( t . ) E  dXn aF(B)> 1) - ->

p(t„ dx,)P(t i , x 1 ; t 2 , dx2)••• x .-1 ; t., d x ) in É .

This can be proved in  a  same way as (3.3) given above. H ence the remaining
task  is to  show  the tightness of (3.5) in  C[0, 1 ] .

 T o  do this we introduce the
modulus of continuity of wEC[a, b]

(0 .(ô ; a, b)=sup w(t)—w(s)I : t—s<31,

and it is enough to show the following two conditions : Fo r each positive 72,
there ex ists a A such that

(3.7) Px(IB(C)I>21aF(B)>1)72 f o r a l l  x E fr  with

For each positive s,

(3.8) lirn limsup Px(a)B(5 ; 0, 1)> e  aF(B)> 1)=0
6 - ' "  P3 X' -.0
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(Billingsley [1 ], theorem 8.2).
Clearly we have (3.7). L et us consider (3.8). L et D , be the closed disc of

radius e with the centre O. S in c e

w (ô ; 0, 1) 2 + w (3  ; min ferD (w), 11, 1) f o r  w GC[0, 11 ,

Px(0.43(3 ; 0, 1)>3slo' F (B)>1), x E P n D „  is bounded by

(3.9) P x(co ;  min io'D (B), 11, 1)> a F (B) > 1) .

By the strong Markov property, (3.9) is equal to

(3.10)
E.,[1(o.

D (B )< 1 ;  F (B )>  7D,(B))Pe(o. D .)( 7 F(B)> 1 —  s)18=c; (e)

x PB(an s )(cos(3 ; 0, 1— s)> s aF (B)> 1— s)12=ap  (s)]/Px(o'F(B)> 1) ,

where 1(A) is  a  indicator function on a  set A g S 2 . If w e have

(3.11) Ks(6)=sup{Px(wB(5; 0, i)>s I aF(B)>t): 0 < t 1 ,  xG PnaD s } 0

as 3-40 for every s>0, then (3.8) follows from (3.9) and (3.10).
For (3.11) it is enough to prove the tightness, and hence the re la tive com-

pactness o f a  family of probability measures

,= 1W x ,t (*)=17.„(B ( . )E * I  F (B )> t ) :  < t - 1, xE na D sl

on C[0, 11  O a  theo rem  6.2). Clearly W., t- - '147 xo , to in C[0, 1] if x--+x,,Et and
t.--■t0 . -0. Therefore, if  w e have

(3.12) If x ,t converges weakly in  C[0, 1] as x  .x ,E a F  \ If» and t

the relative compactness of 2 ,  follows.

Now we formulate (3.12) in  a  following slightly general form.

Lemma 3 .  L et S  be a closed domain in  R 2 which has the  piecewise smooth
boundary aS and satisfies

(3.13) SrlDa=F(x)nDc,

f o r some a > 0 .  Then conditional probability Px (B (.)G *Ius (B )> t)
converges weakly in  C[0, 1] as x—>0 and t--*c.O.

Here we only m ention an  outline o f  th e  proof. W e  f i r s t  r e m a r k  o n  S-
excursion intervals. N ote th a t w e  do not assume (1.1) but (3.13) for S. Then
for every Brownian path, we can determine a sequence of S-excursion intervals
by modifying the F(10-excursion intervals in an obvious w a y . L e t Es (B) denote
the random set of all S-excursion intervals.

Let c > 0 . L et [f-c , ûc ]  b e  th e  first elem ent o f  e s (B )  satisfying u—r>c,
and set

Pc(s)-=B(fc-i-s)— B ( ) ,

Then, in a similar way as Bolthausen [2] or Shimura [13], we get
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P.,(B( .)E*1a- s (B )> — > P(13 r ( .) *) as x  — > 0 and t - - -  c

weakly in  C[0, 1].
Let c = 0 . Noting r c—>0 as c—>0+, w e have

P.(B( •) E * 10. 8 (B )> t) P(B ( . )E*) as x - 0  a n d  t — > 0

weakly in  C[0, 1 1  Hence we conclude the lemma.
Proof  o f  Theorem 3. Let y (1 2 ) (1) be those defined in  §2 , and set

(n)(0=(1-1-m(1)) - '12{Ber(n)(1)+(1—rm)(1))t)— B(rn)(1))} .

By Lemma 2 and Theorem  1 w e have

lim E[1(a< r ( n) (1)<b)g(fl ( n) ( .))]=E[1(a<r(1)<b)g(13( .))]

for every 0< a <b <1 and bounded continuous function g  o n  C [0 , 1 ] . B y  the
sca ling  p roperty  o f  th e  Brownian m otion, w e  show  t h a t  E[1(a <r ( n)  (1) <b)
g(14 ( n) ( .))] is equal to

.çbaP(7 ( n ) (1)E dS)En- 1 (1-.3) -1/2. ( a/ 2)1g(B( ))1 F (B)>

Hence by Theorem 2 w e have

(3.14) E[1(a <T(1) <b)g(f3' ( .))]=-)) P (a <7(1)<b) .Ç g(w)W 1(dw).c[0,13
Letting a  0 and b 1 1 i n  (3.14), we conclude the theorem.

4 .  Extension of Spitzer's formula.

In the previous sections 2 and 3 we used the following asymptotic formulas
for the  transition  probability o f  a n  absorbing Brow nian motion on P=P(a),
0< a< 22r. For every bounded continuous function f on  P and  s>0 , we have

lim  su p  1 {rP sin (p0)} - 1 Er. (o)E f (B(s))1(a F(B)> s)]
r-.0+ 43.(6 < a

(4.1) D-P
F(p)s112 f(z)exp(-1z12/2s)1z1Psin (4)dz1=0 ,+P

w here tt= I a and z= 1 zi u(C). Especially, if  w e set f=-1, w e have

(4.2) lim  sup  1 {rP sin (p8)} - 1 P,“ (8)(0'F(B)> s)
0.<0<a

2 2 - 3p/2
1 =0 .

2rii 2 T(1/2+///2).sP 1 2

Combining the  scaling property of the Brownian motion w ith (4.5) below, we get

fo r  every  x =1x 1u(0) in  P.
I n  [1 5 ] Spitzer obtained a n  e x p lic it  fo rm  o f  a n  in teg ra l tran sfo rm  of

u(r, O, t) ---, P,u(o)(aF(B)>t) (form ula (2.6) i n  [1511). Formula (4.3) will be given
from  it through som e Tauberian argum ent. B ut it seems difficult to extend his
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form ula t o  g e t  (4.1). H ere  w e  w ill p rov e  (4.1), applying the Hilbert-Schmidt
expansion for transition probabilities.

Consider the  two-dimensional Ornstein-Uhlenbeck process

(4.4) U(t)=e-`12B(er-1), t 0

on the  probability space (f 2, g, P,,, x 112 ), w hich is a  d iffusion  process o n  R 2

w ith  the  generator

L'u=(1/2)[aV ax 2 +.32/63,2 — xa/ax — ya/53)]

(re fe r , e. g . ,  K n ig h t [10 ], p p  97-98). Instead  o f  show ing (4.1) directly, we
derive a  corresponding fo rm u la  fo r the  tran sition  probability o f  a n  absorbing
Ornstein-Uhlenbeck process

x, dz)=- Px(aF(U)>t ; U(t)Edz), .r, zE P ,

noting the relation (4.4) and  the  following property o n  F:

(4.5) cF= { ex : x E FI =F fo r  e v e ry  c>0.

Such the translation will simplify th e  derivation, because the absorbing Ornstein-
Uhlenbeck process has only th e  discrete spectrum a s  given below.

For every 2,. 0 let L 3 (x ) be the generalized Laguerre polynomials defined by

' / i+v  \ k
1 4 ' ) ( x ) =

j=0 , 1, 2, ••• .

W e set

204= j+v/2, C ( ) = j! p2' - '/ In-F(j+v-1-1)}
and

i (x ; v)=7- '14')(7-2 /2) sin (09), x -=ru(0).

T hen  w e ge t th e  following lemma.

Lemma 4. W ith respect to  the m easure N(dz)-=exp(-1z1 2 12)dz, 0(t ; x,dz)
fo r  t>0 has a density  0(1- ; x, z) w hich is given by  a series convegring uniformly
on every bounded set in È :

(4.6) (t ; x, z)= P(7,, D C i (n p)exp {— 2; (np )t} i (x ; n p)0 i (z ; n p),

where the summation f ' ( i )  is tak en ov er all pairs (n, j), n=1, 2, • , j=0, 1, 2, •••
such the order that 2; (np) is  nondecreasing.

A s a  consequence o f Lemma 4 w e have the following :

Corollary to Lemma 4 .  Let f  be a bounded measurable function on P. Then
fo r  every  r> 0  w e  have
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(4.7)
lirn  sup3-0 0<e<a

esxipn((plite/2) ) j(*F. ;  ru(0), dz)f(z)

2' - PrP
r(p) 31-1

exP (-1z 1 2 /2) z1P sin (pC)dz

where z= I z I u(C).

B y  (4 .4), (4 .5) a n d  b y  t h e  sca lin g  p ro p e rty  o f  t h e  B row nian motion,
r - PErx[f(B(s))1(o- F (B )> s )] is equal to

(e t - 1)P" (t ; .s - 1 /2x , d z )f (( l
s

e - , ) 1 / 2 z),.rF
w here r=(et —1) - " 2 . T hen  (4.1) is  an  easy consequence o f  (4.7).

Proof of  Lemma 4. Note th a t  th e  tra n s itio n  probability o f  t h e  Ornstein
Uhlenbeck process

Q(t; x, dz)=P x (U(t)Edz), x, z R 2

has the  jointly continuous and  symmetric density

(4.8) Q(t; x, z)= {2r(1—e-t)}-'exp
el- 3 ( 1  jc.12+ 1z , 2)_I 2e - " 2 (x, z )} .

2(1 —e - t)

w ith  respect to  N(dz) fo r every t> 0, w here (x , z) denotes th e  inner product.
F irstly  w e show  the following assertion : With respect to N(dz), C2(t; x,dz)

f o r t>0 has a density 0(t; x, z) which is jointly continuous and symmetric in  x
and z in  P .  For every x o eaF and zE P

(4.9) ()(t; x , z)---->  0  a s  x x0.

To prove this w e introduce a  two-dimensional pinned Brownian motion start-
in g  a t x  and ending at tim e t a t  z;

(4.10) /A.z(s)=x+(s/t)(z—x)±(s—t).°(u—t)-1dB(u), 05s <t

on  the  probability space (Q, g, P) (Ikeda and W atanabe [ 8 ], p  2 2 9 ) . Set

111(t; x, z)=P(a F (B - 1 , e" 2 ') >e t —1).

B y (4.4) and  (4.5) th e  desired transition density is given by

(4.11) 0 (t; x , z )=M (t; x , z )Q (t; x , z ) for t> 0 a n d  x , z in  P.
Indeed, the  jo in t continuity o f 0(t; . )  and  (4 .9) follow s from  the expression
(4.10). T h e  symmetry o f  e)(t; . )  is show n by  a m odification of Dynkin [5 ],
lemma 14.1 (see also footnote in  subsection 4.20).

Let

e2t f (x )= (t; x , d z )f(z ) fo r f OE L2 (t , N ), t 0 and x E P .

Secondly we show that t maps L 2 (P, N) into L 2 (P, N)n ff f(x)—,0
as x -- x 0 f o r every x o in  an.

= 0 ,
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By the  symmetry of 0(t; . )  and by (4.11)

;  x , z) 2N(dz)=0(2t; x, x)<Q(2t; x, x).

Therefore by (4.8)

4, (t; x, z) 2 N(dz)N(dx):ç j o Q(2t; x, x)N(dx)<co .
F  F

Then we conclude the second assertion from  the first one.
Thirdly we consider the eigenvalue problem

0 20(x)= exp  (-200(x), 0 1 , 2 (P, N )

for t > 0 .  The eigenvalues and the corresponding eigenfunctions are given by

exp {- 2 ( n ) t }  a n d  0 .1 (x ;  nit), n=1, 2, ••• , 1=0, 1, 2, ••• .

Since {sin (np0), n=1, 2, •••1 forms a complete orthogonal system for L 2 ((0, a), dû),
a n d  since so  does Irn t'L riP ) (r 2 /2), j=0, 1, 2, •••} for L 2 ((0, co), rexp  (-r 2 /2)dr)
fo r  every n=1, 2, ••• (Szeg6 [16], 5.7), 10,(x; np), n=1, 2, •-•, j=0, 1, 2, is
shown to be a  com plete orthogonal system  f o r  L 2 (P, N). T h e n  b y  a  small
modification of M arcer's theorem  (Riesz and Sz.-Nagy [11], § 98), we conclude
the lemma.

Proof  o f Corollary to Lemma 4. W e  set

K (t; x , z)=exp {20(p)t} Q(t x , z )-0 0 (p)0 0 (x ;  p)00(z ;  p)

In  a  sim ilar way as in  Uchiyam a [17], p 80, w e  have from Lemma 4

K(t; x, ; x, x) 1 1 2 0(3t; z, 2) 1 /2f o r  a l l  t> 0 ,  x ,  zE P ,

where 4= m in {2/(p+2), 1/2}. M oreover we have from Lemma 4

C2(t ;  x, x) exp { - 2 0 ( p ) ( t - 1 ) }  (1 ;  x, x)
and

z, z) 1 1 2 N(dz)=0(exp (-pt12)) a s  t co.

Therefore we conclude (4.7), if, in addition t o  th e  above three estim ates, w e
have the following

(4.12) 0 (1 ; x , x)5c r sin 2 (0 ) f o r  x=ru (0 ) in P .

w here cr  i s  a constant which depends only on r.
For i. 0  let

q"' (t ; r, s)= E (4( ) exp 2) ( )0 r' 14° (r 2 /2 )s 'L j' ) (s 2 /2)
i=0

for positive t, r  and s, w here  d.,(1))=-(a12)C5 (1)). Note th a t  th is  formula defines
the transition density w ith respect to  th e  measure sexp(-s 2 12)ds of the diffu-
sion process on (0, 00) whose generator is given by
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(1/2){  dd
r
2, ± (r -1  r ) d

d
r ( v r -1 )2}-.

Since th e  series (4.6) also converges absolutely, we can rew rite  it  as follows:

(4.13) 0 (t; x , z )=  E q (n P ) ( t  ; r, s)sin(npO)sin(ng)
rt =1

for x = ru (0 ) and z=su(C) in  P .  B y  S chw arz ' inequality a n d  b y  a n  obvious
inequality qm (t; r, r)..q ( "(t; r , r ),

q(nP)(1; r, r)<exp(—np/4)q ("(1/2; r, r).

Hence by (4.13)
.

C2(1; x, x)_q ( ° ) (1/2; r, r) E exp(—nte14)sin2(np0),
n = 1

from which we get (4.12) e a s ily . T h is  completes the  proof.
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N ote  added in  proof. A fter subm itting th e  paper th e  author learned that
Krzysztof Burdzy proved in  a  different way a  sim ilar result to Theorem 1  for
d( 2)-dimensional Brownian motion in his paper :

Brownian paths and  cones, to appear in  Ann. Probab.
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