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1. Introduction and preliminaries.

Let {B(f), 0=t<co} be the two-dimensional standard Brownian motion process
with continuous paths on a probability space (2, F, P,, x€R?), P.(B(0)=x)=1.
We also write P, by P. A most significant property of the Brownian paths is
known as the winding property: Let T be a finite Markov time of the two-
dimensional Brownian motion process, then with probability one {B(t), T<t<T e}
winds about B(T) and cuts itself for every ¢>0 (Ito and McKean [9], 7.11). In
this paper we will consider the contrary. Namely, when does occur a non-
winding in the two-dimensional Brownian paths? We also determine the law of
a non-winding part by giving the corresponding conditioned limit theorem for
the Brownian motion.

Let u(f) be a unit vector (cos#, sinf) in R:. For 0<a<2r we set a
circular cone

F=Fla)={x=ru(@): r=0, 0=0=a}.

In the remainder of this section we consider an F such that the vertical angle
is 0<a=r unless anything other is stated. Then F has the following property :

(1.1) If x€F, then F+xCF.

Noting the continuity of the Brownian paths, we have from (1.1) the following
lemma.

Lemma 1. Let 0<a=<r. Then for every 0=s<co there exists the largest
interval among all of the closed ones [z, v] satisfying

) 0=r<s=v=<cc and B@l)eF+B(z) for =t=v
(1.2)
(or for t=t<co if v=00).

Let [z(s), u(s)] denote the largest interval, and call it an F-excursion interval
(straddling s) if it does not degenerate to a single point {s}. We note that the
largest interval does not exist in general, when (1.1) does not hold for =z <a<2r.
Let €7(B) be the random set of all F-excursion intervals. Clearly {B(t), t<t<v}
does not wind about B(z), if [r, v]J€&x(B). First we consider the following
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theorem.

Theorem 1. According as a<n/2 or n/2<a(Zr), we have
PEr(B)x¢)=0 or 1.

In connection with Theorem 1 we recall Greenwood and Perkins [7] and
Davis [3], in which they considered the excursions in or above square root
boundaries for the one-dimensional Brownian motion. If we restate their problem
in terms of the space-time Brownian motion, we see a connection between theirs
and ours. In [14] we discussed a manner of non-winding for the halfplane
(i.e. F(r))-excursions.

In §2 we prove Theorem 1.

Let 0F be the boundary of F and set F=F\dF. Let

ox(B)=inf{t>0: B(t)& F}(inf g=00).
In §3 we consider a limit theorem of the Brownian motion canditioned to stay
n 13’;
P.(B(.)e*|ax(B)>1), xeF, as x—>0

when the vertical angle is 0<a<2r (Theorem 2). Especially, if n/2<a=r, we
identify the limit process with the scaled Brownian F-meander defined by

(L.3) B(ty=(1—r(1))"*{B(z(1)+(1—(1))t)— B(z(1))}

(note that 7(1)<1 almost surely from (2.2) in §2). See Theorem 3. In §4 we
show an asymptotic formula for the transition probability of the Brownian motion
on F with an absorbing boundary 9F, which is an extension of a formula given
in Spitzer [15] and plays a basic role in §§2 and 3.

2. Proof of Theorem 1.

We prove Theorem 1 in a similar way as [7]. But proof given here becomes
simpler, because we have Lemma 1, and because we do not use the random walk
approximation. We start on defining sequences of renewal epochs of the Brow-
nian motion. Let x,=n"‘'u(a/2), n=1, 2, ---. For every n we define

2.1) ¢f=0 and ofP=inf{t>a): B)&F+B(oi®)—x,}, k=12, ..

Clearly o <co for every k and of¥—oo as k—oo with probability one.
Moreover, as in Lemma 1, we get from (1.1) and from the sample path con-
tinuity the following :

Lemma 2. For a fixed [z, v]=[7(s), v(s)], 0=<s< 0, let j,=max{k: c{" <7}.

Then we have o7 <t=v=0{,, for every n, o{¥—t and ¢, —v as n—oo.

For 0<v<1, p.(x, y) is a probability density on R? with respect to the
Lebesgue measure :
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7 wsin(my)(1—x)""Yx+y)* ! for 0<x<1 and y>0
pulx, y)=

0 for remaining x and y.
We show the following:

@2 If a>mn/2, the random vector (1—z(1), v(1)—1) has the
.2)
probability density prisa(x, ).

(2.3) If a==n/2, Pr(D)=uv(l)=1)=1.

Clearly Theorem 1 follows from (2.2) and (2.3). To prove them we write
oiP=r™(1) and ¢§?,=v™ (1), where [z, v]=[z(1), v(1)]. Then by Lemma 2

(2.4) t™(1)—> (1) and v™(1)—>v(l) as n—> oo,
Moreover, by the scaling property of the Brownian motion,

d
(2.5) (1=z™(1), v (D)—=D=1—n"20{%2, n"?0ihn+—1),

where y(a)=max{k: ¢’ =<a}. Noting (4.3) in §4, we apply some renewal
theorem on the right-hand side of (2.5): For a>=/2 (2.2) follows from Dynkin
[4], theorems 3 and 4 (see also Feller [6], XIV 3). We have (2.3) from Rogozin
[12], theorem 2 when a=n=/2, and from, e.g., [6] XI, (4.16) when a<=z/2.
This completes the proof.

3. Conditioned limit theorem related to an F-excursion.
Let {P(s, +; ¢, %), 0<s<tZ1} be a family of transition probabilities on F
defined by

P(cp(B)>1-1)
P.(ap(B)>1—5)

3.1 P(s, x; t, d2)=P.(B(t—s)edz; ap(B)>t—s)
for x and z in F. Let | .| denote the Euclidian norm in R®. We set p=r/a.
Let {p(t, *), 0<¢t=1} be a family of measures on R* defined by

|x|*#

o(t, dx)= ouiE] (n/2)1172+k

exp (—|x|?/2t)sin (10)

(3.2) N
XP.(er(B)>1—1)dx, x=|x|u(@)eF.

Then {p(t, %), 0<t=1} is a probability entrance law for {P(s, -;t, %), 0<s=t<1},
that is, a family of probability measures on ja satisfying

(3.3) o, *)=S;p(s, dx)P(s, x; t, %) for every 0<s=t=l.
By (4.1) and (4.2) in §4 we have

PuB(s)Ex|0p(B)>1) —> o(s, ¥) in F as F5x—>0.

Let f be a bounded continuous function on F. Then
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|,PuBOEdzl0x(B)> ()
(3.4)
=S%PX(B(s)edy|oF(B)>1)S%P(s, vt d2)f(2)

for every x in F‘, and S%P(s, -3 t,dz)f(2) is easily shown to be a bounded

continuous function on F too. Then (3.3) follows by letting x—0 in (3.4).

On the space of continuous functions C[a, b]=C([a, b]—R?), 0<a=<b< oo,
we define the topology of the uniform convergence, and give the Borel field
Cla, b]. The main result of this section is the following theorems.

Theorem 2. Let 0<a<2z. A family of conditional probabilities on
(€ro, 11, ¢1o, 11

(3.5) P.(B(.)ex|as(B)>1), x€F with |x|<1

converges weakly in C[0, 1] as x—0. The finite dimensional distribution of the
limit law W is given as follows:

WweC[0, 17: wit)edx,; wit)Edx,; ~; wlt,)Edx,)
=P(t1» dx)P(t;, xy; ts, dxs) - P(taoy, Xnoys ta, dXy),

(3.6)

for every 0<t,<t,< -+ <t,=1 and x,, X;, =+, X in F.
Combining Theorems 1 and 2, we get the following theorem.
Theorem 3. If n/2<a=rm, we have W(A)=P(§( e A) for all Ain cl0, 1].

Proof of Theorem 2. Firstly we consider the convergence of f.d.d’s with
(3.6), that is, as x—0

Pu(Bt)Edx,; Bt)Eduy; - ; Blta)Edx,|ap(B)>1) —>
oy, dx)P(ty, x1; ty, dx;) -~ P(ty_y, Xnoy; tn, dx) in F,

This can be proved in a same way as (3.3) given above. Hence the remaining
task is to show the tightness of (3.5) in C[0, 1]. To do this we introduce the
modulus of continuity of weC[a, b]

0,(0; a, b)=sup{|lw@®)—w(s)|: a<s<t<h, t—s<0}, 0<d0=Zb—a,

and it is enough to show the following two conditions: For each positive 7,
there exists a A such that

3.7 P.(|BO)|>2les(B)>1)<y  for all x€F with |x|<L1.
For each positive e,

(3.8) ‘l;i_.r(l"ilimsup Pe(wp(0; 0, 1)>e|op(B)>1)=0

F3x-0
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(Billingsley [1], theorem 8.2).
Clearly we have (3.7). Let us consider (3.8). Let D. be the closed disc of
radius ¢ with the centre 0. Since

©,@; 0, )2+ w,(0; min {op,(w), 1}, 1) for weC[0, 1],
P.(w5(3; 0, 1)>3¢|ar(B)>1), x€ FND,, is bounded by
(3.9) P (@5 ; min{op(B), 1}, N>elor(B)>1).
By the strong Markov property, (3.9) is equal to
E.[1(00,(B)<1; 05(B)>00,(B)Psis,p(0s(BY>1=$)ismop, co
X Ppop (@505 0, 1=5)>e[0p(B)>1=$)s-0, &1/ Pe(ap(B)>1),

(3.10)

where 1(A) is a indicator function on a set ASf. If we have
(3.11) K.(0)=sup{P.(wp(0; 0, )>e|ox(B)>1t): 0<t<], xeFNoD.}— 0

as 0—0 for every ¢>0, then (3.8) follows from (3.9) and (3.10).
For (3.11) it is enough to prove the tightness, and hence the relative com-
pactness of a family of probability measures

Po={W . (x)=Pu(B(.)E*|ax(B)>1t): 0<t<1, xeFNaD.}

on C[0, 1] ([1], theorem 6.2). Clearly I’Vx,tino, t, in C[0, 17 if x—x,eF and
t—t,=0. Therefore, if we have

(3.12) Wy, converges weakly in C[0, 1] as x — x,€0F\{0} and t— t,=0,
the relative compactness of 2. follows.

Now we formulate (3.12) in a following slightly general form.

Lemma 3. Let S be a closed domain in R® which has the piecewise smooth
boundary 0S and satisfies

(3.13) SND,=F(zx)N\D,

for some a>0. Then conditional probability Po(B(.)ex|os(B)>1) 0<i<1, x&§,
converges weakly in C[0, 1] as x—0 and t—c=0.

Here we only mention an outline of the proof. We first remark on S-
excursion intervals. Note that we do not assume (1.1) but (3.13) for S. Then
for every Brownian path, we can determine a sequence of S-excursion intervals
by modifying the F(z)-excursion intervals in an obvious way. Let &£s(B) denote
the random set of all S-excursion intervals.

Let ¢>0. Let [#, D.] be the first element of &s(B) satisfying v—7>¢,
and set

B.(s)=B(#,+s)— B(%.), 0=s=1.

Then, in a similar way as Bolthausen [2] or Shimura [13], we get
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P.(B(.)e*|as(B)>t) —> P(B.(.)€*) as x —> 0 and t —> ¢
weakly in C[0, 1].
Let ¢=0. Noting 7,—0 as ¢—0+4, we have
P.(B(.)e*|as(B)>t) —> P(B(.)e*) as x —>0 and t —> 0
weakly in C[0, 1]. Hence we conclude the lemma.
Proof of Theorem 3. Let t™(1) be those defined in §2, and set
ﬁ‘"’(t)=(1—f‘")(1))'”2{B(z“"’(l)+(l—f‘"’(D)t)—B(T")(l))}-

By Lemma 2 and Theorem 1 we have
Li{r;E[l(a <t™(1)<b)g(B™( .))]=E[1(a<z-(1)<b)g(1§( )]

for every 0<a<b<1 and bounded continuous function g on C[0, 1]. By the
sca~ling property of the Brownian motion, we show that E[1(a<z™(1)<b)
g(B™(.)] is equal to

[/ PE® ) d)Eriap-vauern[8B(. ) ox(B)>1]

Hence by Theorem 2 we have
(3.14) El1(a <t(1)<b)g(§( .))]=P(a<z‘(1)<b)gc[0 1]g(w)l/'f/(dw).

Letting ¢ |0 and 571 in (3.14), we conclude the theorem.

4. Extension of Spitzer’s formula.

In the previous sections 2 and 3 we used the following asymptotic formulas
for the transition probability of an absorbing Brownian motion on F =F (a),
0<a<2r. For every bounded continuous function f on F and s>0, we have

lim sugal {r#sin(u0)} "Eru o) Lf(B(s)L(a p(B)>5)]

70+ 0<0
4.1 1-p

T g DD 121%/29) 2| #sin (u)dz] =0,

where p=r/a and z=|z|u(l). Especially, if we set f=1, we have

22-3p/2

2T (1)2+ p2/2)sF

4.2) lim gggJ {resin(p8)} "' Pru oy (0 p(B)>$)— | =0.

=0+ 0

Combining the scaling property of the Brownian motion with (4.5) below, we get

22-3#/2

4.3) lim 2P0 B> 0= S P o /2y

|x]#sin(p8)

for every x=|x|u(@) in F.

In [15] Spitzer obtained an explicit form of an integral transform of
u(r, 0, )=P,, @, (cr(B)>1)(formula (2.6) in [15]). Formula (4.3) will be given
from it through some Tauberian argument. But it seems difficult to extend his
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formula to get (4.1). Here we will prove (4.1), applying the Hilbert-Schmidt
expansion for transition probabilities.
Consider the two-dimensional Ornstein-Uhlenbeck process

4.4) U(t)=e **B(e'—1), t=0

on the probability space (2, &, P,, x&R?), which is a diffusion process on R?
with the generator

Gy=(1/2)[0%/0x%+0%/0y*—x0/dx— yd/dy]
(refer, e. g., Knight [10], pp 97-98). Instead of showing (4.1) directly, we

derive a corresponding formula for the transition probability of an absorbing
Ornstein-Uhlenbeck process

Qt; x, dz)=P.(ax(U)>t; U@)edz), x, ze F,
noting the relation (4.4) and the following property on F:
(4.5) cF={cx: xeF}=F  for every c¢>0.

Such the translation will simplify the derivation, because the absorbing Ornstein-
Uhlenbeck process has only the discrete spectrum as given below.
For every v=0 let L{(x) be the generalized Laguerre polynomials defined by

Dy S (ST -
Lpw=Z ((7)0h =012
We set

LW=5+v/2,  Ciw)y=j!p2'/{xl"(j+v+1)}

D(x; v)=rL§’(r*/2)sin (v0), x=ru(@).

and

Then we get the following lemma.

Lemma 4. With respect to the measure N(dz)=exp(—|z|2/2)dz, Q(t; x, dz)
for t>0 has a density Q(t; x, z) which is given by a series convegring uniformly
on every bounded set in F:

(4.6) Qt; x, 2)=2's ,Ci(np)exp{—A(nu)t) D;(x; np)dy(z; np),

where the summation X, j, is taken over all pairs (n, j), n=1, 2, -, j=0, 1, 2, -
such the order that A;(np) is nondecreasing.

As a consequence of Lemma 4 we have the following:

Corollary to Lemma 4. Let f be a bounded measurable function on E. Then
for every >0 we have
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exp (ut/2)
sin(u@)

sup S;Q(‘; ru(8), dz)f(z)

(4. 7) lt —~ 0<0<a

2!t 2/9 "ol —
Ty @R (|2l 2| sin (uD)dz| =0,

where z=|z|u(l).

By (4.4), 4.5) and by the scaling property of the Brownian motion,
r *E. [ f(B(s)1(as(B)>s)] is equal to

. S | S 1/2
s s an((2)"),
where r=(e*—1)""2%. Then (4.1) is an easy consequence of (4.7).

Proof of Lemma 4. Note that the transition probability of the Ornstein
Uhlenbeck process

Q(t; x, d2)=P,(Ut)edz), x, z€R*

has the jointly continuous and symmetric density
i e !(lx[*+|z]")—2e " 3(x, 2)
. 3o — a-t 1 p—
4.8) Q; x, )= {2n(1—e~)} exp] e }
with respect to N(dz) for every t>0, where (x, z) denotes the inner product.
Firstly we show the following assertion: With respect to N(dz), Q: x,dz)

for >0 has a density Q(t; x, z) which is jointly continuous and symmetric in x
and z in F. For every x,€0F and zeF

4.9) Ql;: x,2)—> 0 as x —> x,.

To prove this we introduce a two-dimensional pinned Brownian motion start-
ing at x and ending at time ¢ at z;

(4.10) Bi"(s)zx-i—(s/t)(z—x)—l—(s—t)SZ(u—t)“dB(u), 0=s<t

on the probability space (2, &, P)(Ikeda and Watanabe [8], p 229). Set
M(t; x, 2)=P(ap(BS1e"*)>el—1).

By (4.4) and (4.5) the desired transition density is given by

(4.11) Q(t; x, 2)=M({; x, 2Q(t; x, z) for >0 and x, z in F.

Indeed, the joint continuity of Q(: ., .) and (4.9) follows from the expression
(4.10). The symmetry of Q(t: ., .) is shown by a modification of Dynkin [5],
lemma 14.1 (see also footnote in subsection 4.20).

Let

0, f(x)zg}Q.(t; x, d2)f(z) for feL¥F, N), t=0 and x&F.

Secondly we show that Q, maps L(F, N) into L*(F, N)N{f€C(F—R): f(x)—0
as x—x, for every x, in 0F}.
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By the symmetry of Q(; ., .) and by (4.11)
S}Q(z‘; x, 2’N(d2)=Q2t; x, x)<Q2t; x, x).
Therefore by (4.8)

H,Q(z; x, z)2N(dz)N(dx)§S,Q(2t; x, X)N(dx)<oo.
FJP F

Then we conclude the second assertion from the first one.
Thirdly we consider the eigenvalue problem

Q.9(x)=exp(—)D(x), DeL¥F, N)
for t>0. The eigenvalues and the corresponding eigenfunctions are given by
exp{—2A;(npw)t} and @ x; np), n=1,2, -, j=0,1,2, - .

Since {sin(ngf), n=1, 2, ---} forms a complete orthogonal system for L2((0, ), d @),
and since so does {r"#L{*®(+%/2), j=0, 1, 2, ---} for LZ2((0, o), rexp(—r%/2)dr)
for every n=l, 2, --- (Szeg6 [16], 5.7), {Dj(x; ny), n=1, 2, -+, j=0, 1, 2, ---} is
shown to be a complete orthogonal system for L%E, N). Then by a small

modification of Marcer’s theorem (Riesz and Sz.-Nagy [11], § 98), we conclude
the lemma.

Proof of Corollary to Lemma 4. We set
K(t; x, 2)=exp{A(pt} Q5 x, 2)—Co()Do(x; p)Po(z; p1).
In a similar way as in Uchiyama [17], p 80, we have from Lemma 4
K(t; x, 2)ZQ0t; x, x)'*Q(t; z, z)*  for all 1>0, x, zeF,
where 0=min {2/(¢+2), 1/2}. Moreover we have from Lemma 4 -

Qt; x, x)<exp{—,(W)(t—1}Q; x, x)
and

[;0¢; 2 2y NW@a=0txp(—pt/2) as 1 —> co.

Therefore we conclude (4.7), if, in addition to the above three estimates, we
have the following

4.12) Q; x, x)<c,sin*(pf) for x=ru(d) in F.
where ¢, is a constant which depends only on 7.
For v=0 let

g¥(t; 7, 5)= ji d;(v) exp {—A,0)t} r* LY (r2/2)s" L (s2/2)

for positive ¢, » and s, where d;(v)=(a/2)C;(v). Note that this formula defines
the transition density with respect to the measure sexp(—s?/2)ds of the diffu-
sion process on (0, o) whose generator is given by
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a: -1 _d___ -1\2
W2+ ==
Since the series (4.6) also converges absolutely, we can rewrite it as follows:

(4.13) Ot; x, 2)= i;qmwa; 7, s)sin (npd)sin (npl)

for x=ru(#) and z=su(l) in F. By Schwarz’ inequality and by an obvious
inequality ¢®(t; r, N)=q®@; 7, 1),

g (1; v, N=Zexp(—np/4)qg " 1/2; 7, 7).
Hence by (4.13)

QU; x, x)=q¢(1/2; 7, 1) {;exp(—ny/ﬁi)sin%np&),
from which we get (4.12) easily. This completes the proof.

Acknowledgement. The author is grateful to professor Minoru Motoo who
suggested the problem to him.

Note added in proof. After submitting the paper the author learned that
Krzysztof Burdzy proved in a different way a similar result to Theorem 1 for
d(=2)-dimensional Brownian motion in his paper:

Brownian paths and cones, to appear in Ann. Probab.
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