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Introduction.

The apprximation theorem about Fuchsian groups or about the geodesic flow
on surfaces of constant negative curvature, obtained by P. J. M yrberg, is based
only on some topological and (hyperbolic) geometrical facts. So its proof may
be considered elementary.

If we try to extend M yrberg's result to a Kleinian group, we find his method
works also efficient for purely loxodromic groups, but we shall face some diffi-
culties for groups which contain parabolic transformations. Such difficulties can
be overcome actually by ergodic method.

We shall give in  this paper, however, an  elementary proof, independent of
ergodic theorems, of the approximation theorem fo r  Kleinian groups which are
geometrically finite and of the first kind. Moreover, by replacing the  terms in
our proof, we obtain another proof of the original theorem for Fuchian groups.
It seems to the author interesting to find in  this paper that parabolic elements,
which a r e  generally considered a s  troublesome existence, turn out to play an
important role in  the proof.

Further we shall show an analogy to the approximation theorem for classical
Schottky groups.

The author wishes to thank Prof. Y. Kusunoki and Prof. M . Taniguchi for
their kind suggestions and encouragements.

§ 1. Preliminaires.

1 .1 .  A n  isometry o n  t h e  hyperbolic o r  non-euclidean 3-space B 3 =--
fx=. (x i , x 2 , x 2 ) .li 3 ; ixiG 11 ,  with the  Poincaré metric ds=2Idx1/(1—!xi 2 ), is
called a  hyperbolic motion.

It is well known that a  hyperbolic motion extends to a  Möbius transforma-
tion on f e =m u  , which has at least one fixed point in fig. For simplicity
we consider here only orientation preserving m otions. Then they are classified
into three types :
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A  motion, whose Möbius extension has fixed points only on the unit sphere
S=  f l  x I =-11, is called to be parabolic or loxodromic according as the number of
its fixed points is  one or tw o respectively . A nother type of the motion, which
is  a  conjugation of som e k S0(3), the  group of special orthogonal matrices, is
called to be elliptic.

1 .2 . A  Kleinian g ro u p  T  is  a  group of the  hyperbolic motions which acts
discontinuously on B 3 . T he lim it se t A  of is  the set of points of accumula-
tion  of F-equivalents o f  x G B ', w hich is independent of the choice of x .  The
lim it se t A  is necessarily on S. P  is called to be th e  f irs t  k in d  i f  A  coincide
w ith  S ; of the second kind, otherwise.

If, especially, a  Kleinian group has a  fundamental polygon (for the definition
S e e  2 .1 .) w ith  fin ite ly  m an y  faces, then it is called to be geometrically finite.
For further details, See [A h], [G ] etc.

1 .3 . A  non-euclidean line (simply we denote as n. e. line) is a circular arc in
IP  w hich is orthogonal to  S.

Definition 1 . 1 .  Let A  be  the lim it  s e t  o f  a  Kleinian group  T .  Suppose
x  A  and  R  is  an  n. e. half line ended at x, then  x  is sa id  to  be  transitive if,
f o r  a n y  n. e. l in e  L  connecting tw o p o in ts  in  A , w e can find a  sequence of
elements r, in I" such that

L ( i )  0 0 )  (1.1)

H ow ever it is not difficult to see that, if  (1.1) holds for one half line ended
a t  x, then it holds for all such half lines.

One of our main results is :

Theorem 1.1. (P. J. Myrberg's approximation th eo rem ) I f  T  is a geometri-
cally  f inite Kleinian groups of the f irst k ind  then  all points in A=S, except a
subset of the Lebesgue measure zero, are transitive.

For the cases tha t T  consists of only loxodromic and  elliptic elements, the
method in Myrberg's paper, w here he treats Fuchsian groups, leads to the result.
So:we give the  proof of the theorem for I" with parabolic elements.

F rom  th is theorem  w e can  derive  im m edia te ly  tha t, fo r  a lm o st a ll x E S,
the projection of the n. e. half line ended at x on the quotient manifold M=.133 11"
draw s a  everywhere dense orbit.

§ 2 .  A  decomposition o f S into two sets.

2 . 1 .  Let T  be geom etrically finite, of the first kind with parabolic elements.
We may assume without loss of generality that no nontrivial element of T  fixes
the origin 0 , for otherw ise w e can take a  conjugation of T  b y  a  proper hyper-
bolic  m otion to  satisfy th is condition. F o r  convenience we write F *= - F -
{identity}. T h e n  w e  c a n  c o n s tru c t the D irichlet fundam ental polygon of
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centered at 0  as

Po-=- ix E B3 ; d(x , 0)<d(x , r(0)) for all r ['*}

w here d( , )  is  the  n. e. distance . By our assumption P, has finitely many faces.

2.2. Let p  be  a  parabolic fixed point w hich is on the boundary of Po ([
Theorem 2.6.1.), a n d  M9 -= frEF ; r(p)=p} b e  th e  stabilizer o f  p . For the
representatives { T } o  of a ll  r ig h t  cosets T IM , w e put Br,=rB ,r) ,  w here B ; is
the horoball of euclidean radius r based at p , w hich w e call here an  r-horoball.
We consider only sufficient small r for w hich the B r ' s  a re  mutually disjoint.

The "shadow" on S o f B1,- under the central projection is denoted by E. P u t

Qr =  B f ,  then obviously Q. is monotonously decreasing with decreasing r .  We
v= 0

define the following sets :

S20= lim S2r= n Q,
r>0 (2.1)

Fr =-S—  U  Q (r .())
peaPo

Q 0 =0  provided that I"  is purely  loxodromic, but in our case i t  i s  nonvoid
because it contains r-equivalents of p .  On the other hand Fo is  a lw ays nonvoid
since it contains all loxodromic fixed points.

2.3. F ir s t  w e  show t h a t  Fo h a s  th e  Lebesgue m easure  zero. F o r  this
p u rp o se  w e  f ix  a n  r and denote by PT, the re s t of Po from which removed all
r-horoballs intersecting it. L e t  Bo , B , be closed balls centered at 0  such that

B o c i l c B , (cW ) (2.2)

and let ro b e  the euclidean radius of B o .

Lemma 2 . 1 .  Let çb b e  the spherical radius of the shadow on S  o f  rB o fo r
7 E 1 " .  I f  fo r  a n  r-horoball B r the n. e. distance between rP o a n d  Bt" holds
d(rPor, B ,7:) - 3, then there is a constant p3(>0) depends only on 3  such that

p3A(0,-)<m(ar)

where A (0) is the area of the cap of sphereical radius 0  and m(13. ',,) is that of Er.
Proof. L e t r ,  b e  th e  euclidean radius of rB o. Suppose Br--=)213; and put

C = r .  T h e n  r i translates rP o , 131,- t o  Po , E B  resp. and it holds

d(Po", eB )-3 (2.3)

There are only finitely many elements e of I"  w hich satisfy the  inequality (2.3).
L e t el, ••• , en b e  t h o s e  solutions. T h e n  e = r 1v= e ; for some j. Let R „, R.;

be the radius of )71370', e ; B ; resp.. Then

(1— WO) 2 )th(p12) R;(1-17(0)12) 
r

1-- r(0)1 2th2 (p/2) (1—RJ)17-1(0)—ei(P)12-1-R 2(1-17(0)12)
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where p =log (1 +r)/(1— r) is the n. e. radius of B o a n d  w e denote tanh simply
by th. Hence

> R,(1—th 2 (p12)) >C 5 = min
r,- 4-3R1 n

R ; (1—th 2 (p12)) 
4-3R 1

Clearly R,,< -=the spherical radius of 1-37:. O n the o ther hand  i f  we denote
th e  euclidean center of r./31; by b , then b sing5,-. Therefore for rBr, apart
far away from 0, So that we have Or

. C'r 1 for some constant C '.  Since
for 95<r/2 it holds

/ 2 \ (02

where o 2 =47r, the full measure of S , we obatin except the case r= id . that

A ()1A (0
1
) (20,/ 7r01)2 >__(2C0 irC ') 2 >0.

Furthemore A(C)/A(0 1)>  min 2w2R,/r 2 >0, for y= id . so  th a t w e  c a n  f in d  a

desired constant pa. Q. E. D.

A  similar consideration leads to

Lemma 2 .2 . Let Or , O r be  the spherical radius of the shadow of 1130 ,
resp . for rE T •  I f  d(1P1,*, nPT,)=0 then there is a constant Co (>0) independent of
r, n such that Co A(0,)<A(95 1).

We denote by V a  the  n. e. cone with the vertex a  which inscribes B o and
V : the unbounded component of Va —B0 w ith  respect t o  th e  Poincaré metric.
Then we can find a  finite number of r-horoballs

••• , Brg( 2 . 4 )

such that for a ll a E.I33 —Bo there exists a  ball B (2 .4) which is contained
in V .

Lemma 2.3. W e fix  a number s(0 < s< 1 ). Let C be any s p h e r i c o  on S  and
15 be its radius. If the cap C' of radius sØ concentric w ith C  contains a point
belongs to Fr , then there is a subcap e of C such that

(1) ecS2r, (2) pm(C)<m(e)

where p  is a positive constant independent of C.

Pro o f . We take some bEC'nF,- and denote by R  the radius Ob and by V
the cone with the vertex 0  and the base C .  By definition R  meets infinitely
m any copies nP .1; of P .  Suppose 72P 7

0'  i s  the first of them contained totally
in  V and e/3 '0" i s  th e  o n e  intersects R  just before  77.1",  when we enumerate
these copies from O .  Then since th e  shadow of eB , is not wholly covered by
C, for its spherical radius holds (1—s)95<20. Therefore if  Oe <27.12, then

A(0 ; )/A(0)>(20 $ /r0) 2 >i3=((l.—s)17) 2( 2 . 5 ) .
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Otherwise (i.e. for the case e=id.) A ()/A (Ø )^ _1>p. B e c a u se  o f  d(en 72P )
=0 previous lemma yields A(95)1A(Oe)>C 0 . Hence with (2.5) it leads

A(0)>Pc.A (0)=K om (c) (2.6).

We put V '=)1 1 (V), 0 '=7 1 1 (0) and denote by Vo
, t h e  n .e . cone with the vertex

0 ' which inscribes Bo . Since 72B0C V , we have Vo c V ' .  A s we remarked, we
can find one BI,' among (2.4) which is contained in  V ` , .  Then it holds

d(7211, 77Br,p )-=d(P0
- , B;)<3-= gmiax , d(P'0', 13,).

Hence by lemma 2.1 and (2.6)

m(nAr,p )>pail(0,2)>C4p3m(C).

Now put d= the shadow of and p=C4pd, then these satisfy the statement
of the lemma. Q. E. D.

By this lemma we can verify that the measure of Fr  i s  zero after a routine
consideration. Since Fo=UFvn, thus we know at last the measure of Fo is zero.

§ 3. Transitive points in Q0 .

3 . 1 .  We fix a  sufficiently small r o. M p  a c ts  o n  th e  horosphere fr,0=a1370
.0

([G] 2.6.2.) and Er,o/Mp i s  com pact. We can construct a  fundamental region Q
o f  M , o n  21*0 a s  follows ( [G ] 2.6.3.) : L e t ro(P)=P, î1(P), • • •  ,  TN(P) be the
equivalents of p  on the boundary of Po. If we put 17i= n,(I 0 )nP0(i=0, ••• , N)

then Q= U 77 1 (11 i).

3 .2 .  Definition 3 . 1 .  For r(0 <r<r 0 )  and a subset U of Q , we define E r [U]
as a  set of all x E Qo satisfy the following property ;  There is an  r-horoball BT,
which meets the radius O x  such that, the radius toward x  intersects r,,(20) on
the set r,(Mp(U)) after passing through Bt.  (See Figure 3.1.).
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Lemma 3.1. We denote the radius of Br, BI,0 by r( M ), r(B P)resp. then there
is a constant Cr independent of v  such that

(1) r(B r)Ir(B P)— r

(2) min e r , 0
r_.0

P roo f. Let w be the base  y (p) o f Br, Bp a n d  x 1, x 2 b e  t h e  intersecting
point of Ow and aBto, re sp .. Then d=d(x i , x 2 ) , th e  n. e. distance between
x , and x 2 ,  is independent o f v. W e  p u t pi= 1-1 x 1 , p 2 =1 - lx 2 1  the  diameter
o f Br°, BI,' resp., then

d=.(.1-e2 2dt =log 2  P 2  l o g 2  P 2

p i  1- t29 2
T h is  leads to

Hence

2p2

p1= p2+(2-p2)e-
2p2 

92+ 2 e - d

r(BDIr(BP)=p21,01<(p212) - Fe - d

We may assume that BI; has the  largest radius among its F-equivalents, so that
r(B 7,;)1r(BI;0)<b%=r — e ' .  I f  r -40 , then d—>oo. Therefore lim0 r = 0 . Q. E. D.

By this lemma and  an  elementary geometrical consideration, we obtain

Lemma 3 .2 .  For two r-horoballs 131", B rp  satisfying

(1) r ( B r ) < r( B )  and (2) f3V1Prp # 0 ,

(Figure 3.2)

(3.1)
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there is a constant Cr  independent o f 72, v such that, if  we denote by 0 the spherical
radius of A rp, then P1,- is contained in the concentric cap o f flr, of radius Cr 0.
Moreover limCr =1. (See Figure 3.2. In fact C T - 1  i s  of the order ()cep.)

3 .3 .  Let r o (=id .) , r i , ••• , T N  b e  th e  elements o f  F  referred in  3 .1 .  We

define P = U -V P , a n d  denote by D the union of B p and the interior domainsi=0
to all spheres each o f  them  is th e  ex tension  o f a  face  o f P with p on its
boundary. We can choose beforehand th e  representatives { r,} o f  th e  cosets
FIMp so that a 0 = r 1(0) are outside of D.

L e t 170 b e  th e  n . e . cone with the vertex a, (where we agree that a0 =0)
inscribes 13; and denote by C„ th e  component o f  (Ip n V ,,) which contains p .
C, is  a  spherical cap of / 7

0'0.
It makes us easier to approach our problem if  we consider it occasionary on

th e  upper half space H 3 = {(x 3, x2, x3); x 3 >0} o f  M .  For if we map B 3 onto
H 3 b y  the conformal mapping h such that h(0)=- j=(0, 0, 1) and h(p )= 00 , then
the image of 1 0  is a  parallel plane to (x 1 , x 2)-plane, which we identify with the
complex plane C = {z=xi-Fix 2 } ,  a n d  M p  acts o n  Eric, a s  a  group of euclidean
motions. ( [G ] 2 .6 .2 ) . For economy of notations we give the same letters f p ,  Mp
etc. to the h-images of those. Suppose

x70
-0= lz+s o j; zŒ CI

T = { z -k s j; zEC} (s>s0).

We denote the compliment of D by K, then each generating line on the surface
of V , corresponds to a  circular arc orthogonal to C  and  o f the  hight s from a
point in K .  Since K  is a compact set in IPU C , we have easily

Lemma 3 .3 .  W e identify X0= {z+s 0 j}  with the complex plane tzECI . Then
there is a constant d depends only on K  such that when we put

A 1 ={1z1>R 0 —d}, A2= { 1Z1 >R o -Fdi

where R, is  the radius of the disk C o ,

A 2 c C ,c A 1( v =0 , 1 , •  •  • ) (3.2).

We define 1V1 , N ,cM p as

N1 = M ;  72(0)nA 1# 01 N2= {72E Mp; 72(Q)CA2} •

Then by the previous lemma,

U 72(Q)EC,C U 72(Q) (v =0,1, (3.3).i2EN27 2 E N i
We return to the consideration on B 3 , also in  this case (3 .3 ) holds. I f  w e put
l'7 , =- 7,(V 0 )  th en  it is  the  n. e. cone with the vertex 0  inscribes B . L e t  e
r,(C„), which is the component of (I7d1aBto) which contains 7„(p). The area of
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e, is estimated as
v

m( )---L  7
( i _  a  1 2) 2

(x)12dw(x)..<  E m(7)(0).in f [x ,  a d l v e N i
xeu v ( 2)
vENI

where do) i s  th e  area element o n  E P  o f to ta l area 47rrZ a n d  [x  a J 2 =14-
x 12 1 a,1 2 - 2 x  • a , (x • a , is the  scalar product of x  and a y .).

If we denote by eff the all ['-equivalents o f  U contained in Ô, then its area,
provided U  is measurable, is estimated as

 

E I T(x) 12d(-0(x),EN2 77 (U)
(1— I c41 2 )2  

sup_ [x,
xEuv(2)77EN2

E  m(7)(U))
nEN2

Hence

 

(1— I 2 ) 2 

sup_ Ex, a,j 4

XEUVQ)
,dEN1

72 ; 2 m(7)(U))

i n ( e
)

i n f  (x E1..) :)(C)))[x, a l] 4 E  m(r)(U))
7,EN 2  

m ( ) suP (x G '( -0))[x, a j 4 E  m(72(Q))
veN, v eN i

Since av EE D  uniformly [x, I a —p (r—*()). Hence

. .m (a) m('2(U))
'2 N 2 ( 3 . 5 )

in(c,) E  m(y)(Q))
veN,

T he shadow of Ô, is just Ê .  We denote by 131,1U] the shadow o f  Ô'„' o n  S,
then by definition fP„T U10Er[U]. By letting r-4,0 with the fixed ro, it holds

. m ( k [ U ] )  .  m(Ô u ) lim m(fIr)r o  m(C1)
(3.6)

Keeping the notations in lemma 3.3 b u t we denote again max (d, diamQ) b y  d
w e have

E  m(7)(Q)) .. I W(x)Idx
AEN 1 - N 2  <

E  m ( 2 ( 0 )  —,,,./v21  h'(x)1 dx
A2

0((R0 - 2 d) - 2 — (R0+ 2 d) - 2 ) 
- - >  o.

0((R 0 +2d) - 2 )

when r.--K), where A = {I? 0 -2d  <z <  0 -1-2d}
Therefore we can modify (3.5) to have with (3.6)

E  m(72(U))
iim  m > iim  

 12

E N 2
—0 mub Z 2  m (7 )(0 ) •

The right hand side of (3.7) is estimated from below as

(3.4)

(3.7)
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(An/02(U))
72
;2  _(1--!7)-1(0)12),

z 2 m 0 7 (0 )
rnx g  [X ,  y ) - 1 ( 0 ) ] 4 )M (U)

L min
i(1  1 ) 1(0)12)2

2  [x , 72 -1(0)]4 r ( Q );  

If r  is sufficiently small, then for ri M ,  such that )7(Q)CA2 72- 1 (0 ) must be
quite near to p .  So that for x -0 ,  where C2 is a compact set in B 3 , [x, - 1 (0 )]

I x -pi, when r—>0.
Hence the right hand side of (3.8) tends to in(U)/m(Q) when r  tends to O.

Therefore we obtain finally

l i m   m(Bf[U]) m(U) 
r-o m ( P r , ) m(Q)

and we can conclude

Lemma 3 .4 .  L et U(CQ ) be a  measurable se t, th en  th e re  is  a constant br
depends only on r  and U  such that

(1) m(igr[U]) br in(B- 7,"), w here k [U ]c  E T [U ]

and

(2) lim br =m(U)Im(Q).

3 .4 .  Theorem 3 .5 .  For a set U(CQ) of  positive m easure, all points in Q0,
except a subset o f  null measure, are contained in  E r[U ] for sufficiently small r.

Pro o f . We denote by br, the concentric cap of 147,- whose radius is Cr  times
the  length of that of .60, where Cr is the constant appeared in  lemma 3 .2 .  Then
for sufficiently small r , m (k )/m (k )=- C,7 2  and this tends to  1  with r  tends to O.
On the other hand by lemma 3.4, lim ni(f3r[U ])1m (B)rn(U )Im (Q )>0. Hence

r-0

lim (m(131,-)—m(k[U1))<(1— m(U)Im(Q))m(k) .
r-0

Therefore there is a  number r(U )(>0) such that for r<r(U )

m (k) — m (k [U ])<cirm (k ) (3.9)

where dr <1.
Suppose r < r (U ) .  F o r  any sufficient small z(> 0) w e  ta k e  an  open  se t

G3(DS20)  o n  S  such that m(G 1 —Q0 ) < s .  Here we may neglect for our purpose
the set of all r-equivalent points of p, so that we can assum e for a ll points x
in  Q0,  the  rad ius O x meets infinitely many r-horoballs. Since the shadows of
these balls are contained in  G, with finitely many exceptions, there is a plentiful
supply of r-horoballs whose shadows a re  contained i n  G,. Among Br's such
that E tc  G, we choose one of the largest radius and denote it by Bf i . Next
we choose one of the largest radius, which we denote by Bry  among B t 's  such
that kcGi-C1(B r i )(C1(B) means the closure o f  B) a n d  repeat this procedure,
that i s ,  we choose a n  r-horoball o f  th e  largest radius which is denoted by

(3.8)
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Bra , a m o n g  B t's such that L',:cG i - 7
kUi C/(k k )(n=1, 2, •••).

Then k n 's are disjoint caps in G , .  We don't know if  f3t.'s cover .Q0 ,  but
we can say about Bt.'s that

Lemma 3.6. i k n ic,7-.1 is a covering of Qo•

P ro o f . For any x ES2o ,  le t 13;; be th e  o n e  o f  th e  largest radius among r-
horoballs intersect Ox. I f  B t =  B r  for some n  then x  f 3 r . c b r .  Otherwise,
by the choice o f Bt.'s, there exists a  13% such that r ( B ) < r( B r)  and k n ,r3 t .

0 .  Hence by lemma 3.2, x G ÉtElgt.. Q. E. D.

Note that AtEU10E,EU]. If we set Q1=Q 0 — cu], then by (3.9) andn

the above lemma,

in(Q1)-5, {m(ik ) — m(f3r n [U ])}  d r m ( 1 3 7,- )n=1 n n=1 n
. clriii(G1) dr(iii(S20)+6) (3.10)

Again we take an open set G2 ( Q1)  o n  S  such that m(G2 —S21)< 6 .  Similarly
we choose an r-horoball of the largest radius, which we denote by Bry  among
B t's such that f3;:c G 2 ,  and inductively we choose o n e  o f  th e  largest radius,

which is denoted by 13%, among Bt's such that k c G 2 - 7 t - 'kYi "

)  

f o r  n = 1 ,  2 ,  • - • .

B y  th e  same consideration in  lemma 3.6 we know Q I C U Bt. .n
Put Q2 =12 1 —  UPt [In, thenn

m(Q2)< ni i i)n(& ) — in(k ,„[U ])}  _dm (G 2 )

<c4m (f20)±(dr+dF)s.

We repeat this procedure to obtain

in(Q k)<clf!in(Q0)+(dr+d+ ••• - FcMs •
Hence

limin(S2 k)<drs1(1 — dr)•

Since s  is an arbitrary small number, we conclude

in(Q0— E, [U1)=0. Q. E. D.

3 .5 .  L et fa„17;=1 be the countable dense set in Q .  W e denote by U  the
intersection of Q  and the spherical cap on Er,i) centered at a n  of radius l l s ( s =
N , N +1, ••• , where N  is sufficiently large.). W e p u t  E i l „,ELI;,]=E(in, n, s)
for integer m ranges >1/r(Uf2). By theorem 3.5 almost all x  in 90 is contained
i n  (-)  E (m , n , s ) . Let's see what we can say about this p o in ts  se t . First we

on, n, $

fix n  and s  and make in tend to œ .  Then the radius R -= 0 x (x  U  E(m ,n, s))
n, $
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meets a  horoshere arlt. 0 at a point, say y , equivalent to a  po in t in  t g ,  after it
passed through 1/m-horoball BF 7 2 . We take 7)(EP) so that yi(y)E U ,  then R '=
77(R) intersects E p  on U after it passed through B 16/71'. Since 22(0) converge
to p when m—*00, there is a  sequence in  [-equivalents of R  which converge to
a  n. e. line initiated at p  which intersects 2'110 on U .

Next, we fix n and make s  tend to 00, then, for the n. e. line initiated at
p which intersects 2'110 a t a n (n =1, 2, •••) there is a convergent sequence of L '-
equivalents of R  to this line. Since a 7, are dense in Q, for any n. e. line initiated
at p which intersects 2"70'0 on  Q, there is a convergent sequence of [-equivalents
o f  R  to  the line. Since E P  is the tesselation of the copies of Q  under /1/p,
which keeps p  invariant, finally we know : F o r any n. e. line in itiated  at p,
there is a  sequence of elements r,  in [  such that r R  converges to it.

[ (p )=  {T(p) ; T E T } is everywhere dense on S , so that for any n. e. line L,
we can choose a convergent sequence to L  in the set of all n. e. line initiated
in [ ( p ) .  Hence we have the final result :

Theorem 3 .7 .  A ll points in Q 0 ,  except a  subset o f  null measure, are tran-
sitive.

So with the result in  sec. 2, we complete the proof of Theorem 1.1.

§ 4. An analoguous theorem to the approximation theorem for classical
Schottky groups.

4 . 1 .  Let S 1 , S 2 , ••• , S 2 ,  be 2g orthogonal sheres to  S ( g 2 )  whose interior
balls are pairwise disjoint. Suppose for each k(1- k  g )  we are given a  Möbius
transformation r k which keeps B 8 invariant (So it is a  hyperbolic motion on B 3 )
a n d  maps th e  domain exterior to S k + g  onto the  interior ball to S 0 . T h e n  a
Kleinian group [  freely generated by the r k 's is called a classical Schottky group.

The domain P in  138 =B 2 U S  bounded by S k 's  is  a  fundamental domain F.
[  acts discontinuously on Q = U  r(P) and the quotient space s2 /r is a compact

r er
3-manifold homeomorphic to a  ball with g  handlebodies a n d  its interior has a
hyperbolic structure induced by that o f  W .  The complement A  of Q  is the
limit set of F.

4 .2 .  The set of all nontrivial elements of is denoted by F * .  Then each
element of T *  is expressed uniquely a s  a  word in  generators I= • • •  ,  r g ,
7 8 + 1 7  • • •  r 2 g }  where we put r z +k =7; 1 ,

1 - 1p112— l in ( r j k rik r j k + 1 #
1

)

viz. r(x)---2, ,,,cr,2(--(7,n(x)...)•
Here we make an  agreem ent on  a  nota tion  about the  composition : We

write the composition of r = r i ,  • • •  rJ .  and 72 = r , i  l i n  a s  r•y)  w ith  a dot (•) only
when 1 , .* 1 .7,i. To express the ordinary composition, we write as 772.
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We denote the ball interior to S k  by B r k (k =1, •••, 2g) and put r(B rk )=B r .rk

when the composition is defined in  the above se n se . Then 13,2 c13 7. if and only
if  72—r•e for some e  e r .  Note that r(P)c.B r .

Our second purpose in  this paper is to prove

Theorem 4 . 1 .  If  the  lim it set A  of  a Schottky  group r  has the Hausdorff
dim ension p, th en  all points in  A , except a subset of the p-Hausdorff meassure
zero, are transitive.

4 .3 .  To begin with, we give a  characterization of the transitive point which
i s  due  to  the observation by Myrberg [M ] .  We may assume that the funda-
mental domain P contains the origin O .  L et L  be any n. e. line with end points
a ,  b a A .  If  we run along L  toward a or b, we meet infinitely many copies of
P .  So we can choose two sequences .72„ e, of elements in  F  so that

lim 77,,(P)= a  and lim e(P)=- b. ( 4 . 1 )

If  x  belongs to B 1 ; 1  to  B4 .61  with some 1 P then the radius R =O x
meets P and 7,•72,71$„(P) or 1,•e,71 77„(P) respectively. Now translate R  by 77,7,7'
or e,7 1 to see the image passes through both 72„(P) and e,(p). Therefore if  x
belongs to B 1, ;1  to  B4 .c1,2, for all o and some 7,ET we can find r-images
of R  passing through i2 (P)  and e,(P) which converge to L . (See Figure 4.1)

(Figure 4.1)

Especially if, for all TEP, x  belongs to 13. 1 o r  to  Bv .r _i ( v  F ) ,  then r-orbits
of R =O x  contain a convergent sequence to L .  So that we have

Proposition 4.2. A  point x  in A  is transitiv e if , f or all rEF, x  belongs to
13,2 .1 o r to  B . 7-1 f o r some 2,2Er.

But we can modify this slightly as follows :
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Proposition 4 .3 .  A  point x  in  A  is transitive if , all r E r  such that ri,#r,7,1
when we express it by  w ord as r i , ••• T i n ,  x  belongs to .6,2.1 o r to  B,. 7-1 f o r some

E F.

Pro o f . Express, say, 72v- 1 ., as 7,, • • r,„ where 7»,, e, are those appeared in
above consideration, and suppose r i i = 7 ,  then we replace C. b y  e,• E
7.*7711). Then the  polygon e,,•?,(P) is adjacent to  $,,(P) and even in  this case
lim e, • f„(P)=b. Q. E. D.

We define a  subset [7 ] of A  for 7E T * as the set of points x  which belong
to B i2 .7 o r  to /3. 1_1 for some 12 ET.

Since is countable, for the proof of the theorem we are sufficient to show.

Theorem CI Mp(A — [1])=0  f or all 7 such that rii#ri -,1 i f  r= rii.••rin (rik  E 2"),
where we denote by 114 (E )  the p-Hausdorff measure o f  E.

§ 5. The proof o f theorem 4.2.

Our proof of the theorem much owe to A kaza's results i n  [A k -1 ] and
[Ak -2 ] .

5 . 1 .  Since we assume that for r-=ri, ••• T i n ,  at least one of n•r or
is defined for any 77 F  in  the sense mentioned in 4.2.

Lemma 5.1. There is a positive constant p  independent o f  )7G T  such that

pM,(B,7 r1A )_M i,(B i2 .1 ( 'A )  o r  Mp (B,. r -inA ).

Pro o f . Let B  be a  closed ball of radius r  contained in  B,7. Put 13=6 - 1 (B)
where 72=e - 1 -r

0
(r

0
E T ). Then 13c Br,  and

1 . ç r(f3) 2 = 4
1
7  . fa B  ($ - 1 )/(x ) 2 dco(x) -=  4 7 c as Ix — e(00)1 4  d w ( x )

where r(B), R e a re  the  rad ii o f  B  and  the  isometric sphere of e  respectively.
Therefore

R r Rir (5.1)max l x —C(09)1 2m i n  x — C( ) I 2
For simplicity, we set A, =maxlx —e(00) 2 , = min I x —e(00)1 2 . F o r  a  subset

.DEB y, xEB,7

E  of /V, we use the notation C(E; r) to denote the family of the  coverings of
E  by closed balls of radii smaller than r.

For sufficiently small r, we may assume that B,c 13 72 for all {B,} CC(B ,,nA ;r).
Then by (5.1) if  we se t k =e'(B .), { B ,IC C (B r o n A ; R k /m ,) .  Conversely for
sufficient small r ,  i f  {P„} CC(B r o n A ; r), we may assume that f3,CB r0 ,  and by
setting B ,=e(k ) we have {B,} cC(B,2(- )A ;  111,r14 .

The results in  [A k-2] (Lemma 5  a n d  Theorem 4 )  show  O<M(B 1nA)<00
for all r E r . .  Therefore
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k
i

m n  Mp(B 11 . 1,n4) 
 M p (B r i rv I)

is  a  finite positive num ber. From  these w e obtain

21//,(B72 .,,n A ) (2 n 12/R)P114(B r 0 .1,r1A ) k (m /R D I'M p (B 1 0 nA ). (5.2)

A gain w e recall th e  following Akaza's re s u lt  [A k -2 ] : G enera lly  w e se t fo r
F(n, r)= { B 1 .$ ; l(r•Ç)>=.121 where l(re) is  th e  w o rd  len g th  o f  r•e

in  E .  Clearly F(n; r) is  a  covering o f  Br nA a n d  th e  r a d iu s  o f  a n y  b a ll in
F ( n ;r )  i s  le s s  th a n  g iv e n  5(> 0) f o r  a  sufficiently la r g e  in te g e r  n. Let
Fai k o(n; 7) be  a  covering o f  Br nA  b y  b a lls  i n  F(n; r) w h o se  rad ii a r e  not
g re a te r  th a n  312k 0 ( k o i s  a positive constant depending only on  r . ) .  Then it
holds

L12(B1nA )=1im inf E  (2r(B))PiF 1174k;07 ) } B E p l ink;00

- C(120 /2) - P/V/(B7r1A). (5.3)

w here r(B ) is  the  rad ius o f B  and C is  an  absolute c o n s ta n t . W e apply these
results to prove th e  le m m a . B y  (5.1)

{ B =e(-13); PEF"°(n ; ro)} E F 3 '1 ,21 k 01(n+n 0 ; 77)

w here n 0 -=1(e) is th e  w ord length of e .  T hen it ho lds by  (5.2)

NI,(B10 nA)_>_(1412)PC- 'Lp(B10nA)

. (k 0 12)PC- 1 (M IM 12)P lirn inf E (2r(B)) 1'

{FgV,12%
( k o /2)PC - 1 (Rg/./I/OPM (B ,nA ). (5.4)

From  (5.2) and  (5.4)

IVI,(B 12.1 .(1A) k(k 012)PC- 0 (m 12111/10P11/1,(B12nA ) (5.5)

Then to prove th e  lemma, it suffices to replace nr,2 / M 12 i n  (5.5) b y  a constant
independent o f  77.

smEin) x — e(00) 2

B I  e(x 1 )--e(00) 1 2
(5.6)

M12m a x I x  — $(0 0 )12l e ( x 2 ) — e( 0 0 )12

xEB72

fo r some .7c1, x 2 E Bro . Since th e  right hand side in  (5.6) holds

I e(x1)--$ (00) 12

e(x2)-e( )1 >= (1+  1 e ( X 1 ) — e ( X 2 )  I  -2

\ e(X1)— $(09) )

and

1 e(x0— e(x2)1  _ 1 x 1 — x21 <  d i a m  B r° 
e(X1) — e (œ ) X 2 —  -1 (°° )1 = Ix — e- 1 (00)1.z.EBro

therefore 7n,/M 12 > const. >0. Q. E. D.



P.J. M yrberg's approximation theorem 419

5 .2 .  Since A is  the union of the disjoint com pact sets 137 ,nA (i=1, ••• , 2g),

w h e re  7g = 71, AzIp (A)=- 11/1,(Br i n A ) .  Put A— D(Br i .,,nA), where

ar)i (Br i .„nA)c [T] cs= ± 1 ). Since E , a n d  ( g)(B r i .T rv i)  are disjoint compact sets,

.11p (E 1)-= (111,(B r i nA)—.111,(B r i .,EnA ))

(1— p) 11/1,(Br i nA )=(1—  p)11(A )

by the  previous lemma.
W e p u t inductively 1"'= {72 • ; E r' 1(e)-1(r)— no, e#7± 1 } fo r  integer v(>0)

and F 0 =- F .  T hen  fo r E,+,=-E,— U  (B,2.7, nA) w here  Bv .rsn A C [ r ] ,  similarly

w e have
11,(E,+0= E (Mp(B„nA )-11,(B, 7.r .nA ))

77er ,

So that Aip (E,)-->0(v-0), and th is leads to  the  result.
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