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Introduction.

The apprximation theorem about Fuchsian groups or about the geodesic flow
on surfaces of constant negative curvature, obtained by P.J. Myrberg, is based
only on some topological and (hyperbolic) geometrical facts. So its proof may
be considered elementary.

If we try to extend Myrberg’s result to a Kleinian group, we find his method
works also efficient for purely loxodromic groups, but we shall face some diffi-
culties for groups which contain parabolic transformations. Such difficulties can
be overcome actually by ergodic method.

We shall give in this paper, however, an elementary proof, independent of
ergodic theorems, of the approximation theorem for Kleinian groups which are
geometrically finite and of the first kind. Moreover, by replacing the terms in
our proof, we obtain another proof of the original theorem for Fuchian groups.
It seems to the author interesting to find in this paper that parabolic elements,
which are generally considered as troublesome existence, turn out to play an
important role in the proof.

Further we shall show an analogy to the approximation theorem for classical
Schottky groups.

The author wishes to thank Prof. Y. Kusunoki and Prof. M. Taniguchi for
their kind suggestions and encouragements.

§1. Preliminaires.

1.1. An isometry on the hyperbolic or non-euclidean 3-space B®=
{x=(xy, xs, xs)ER®; |x| <1}, with the Poincaré metric ds=2|dx|/(1—|x|?), is
called a hyperbolic motion.

It is well known that a hyperbolic motion extends to a Mobius transforma-
tion on R*=R*U {co}, which has at least one fixed point in R%. For simplicity
we consider here only orientation preserving motions. Then they are classified
into three types:
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A motion, whose Mobius extension has fixed points only on the unit sphere
S={|x|=1}, is called to be parabolic or loxodromic according as the number of
its fixed points is one or two respectively. Another type of the motion, which

is a conjugation of some 2=S0O(3), the group of special orthogonal matrices, is
called to be elliptic.

1.2. A Kleinian group I" is a group of the hyperbolic motions which acts
discontinuously on B®. The limit set 4 of I" is the set of points of accumula-
tion of ['-equivalents of x& B3, which is independent of the choice of x. The
limit set A4 is necessarily on S. I is called to be the first kind if A coincide
with S; of the second kind, otherwise.

If, especially, a Kleinian group has a fundamental polygon (for the definition
See 2.1.) with finitely many faces, then it is called to be geometrically finite.
For further details, See [Ah], [G] etc.

1.3. A non-euclidean line (simply we denote as n.e. line) is a circular arc in
B?® which is orthogonal to S.

Definition 1.1. Let 4 be the limit set of a Kleinian group I'. Suppose
x4 and R is an n.e. half line ended at x, then x is said to be transitive if,

for any n.e. line L connecting two points in /4, we can find a sequence of
elements 7, in I" such that

TWR)—L (v—>00) (L.1)

However it is not difficult to see that, if (1.1) holds for one half line ended
at x, then it holds for all such half lines.
One of our main results is:

Theorem 1.1. (P.]. Myrberg’s approximation theorem) If I is a geometri-
cally finite Kleinian groups of the first kind then all points in A=S, except a
subset of the Lebesgue measure zero, are transitive.

For the cases that I" consists of only loxodromic and elliptic elements, the
method in Myrberg’s paper, where he treats Fuchsian groups, leads to the result.
SoXwe give the proof of the theorem for I" with parabolic elements.

From this theorem we can derive immediately that, for almost all xS,

the projection of the n.e. half line ended at x on the quotient manifold M=B*/I"
draws a everywhere dense orbit.

§2. A decomposition of S into two sets.

2.1. Let I" be geometrically finite, of the first kind with parabolic elements.
We may assume without loss of generality that no nontrivial element of I” fixes
the origin O, for otherwise we can take a conjugation of I" by a proper hyper-
bolic motion to satisfy this condition. For convenience we write I'*=1I" —
{identity}. Then we can construct the Dirichlet fundamental polygon of I’
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centered at O as
P={xeB?; d(x, 0)<d(x, y(0)) for all yel*}
where d(, ) is the n.e. distance. By our assumption P, has finitely many faces.

2.2. Let p be a parabolic fixed point which is on the boundary of P, ([G]
Theorem 2.6.1.), and M,={rel’; y(p)=p} be the stabilizer of p. For the
representatives {7,}, of all right cosets I'/M, we put Bi=y, B}, where Bj is
the horoball of euclidean radius » based at p, which we call here an #-horoball.
We consider only sufficient small » for which the B7’s are mutually disjoint.

The “shadow” on S of BT under the central projection is denoted by BT. Put

2,= OB:, then obviously £, is monotonously decreasing with decreasing r. We
v=0
define the following sets:

2,=limQ2,= N2,
70 >0 (21)
F=S—\URQR., (@¢=0

PEIP
2,=¢@ provided that I" is purely loxodromic, but in our case it is nonvoid
because it contains I'-equivalents of p. On the other hand F, is always nonvoid
since it contains all loxodromic fixed points.

2.3. First we show that F, has the Lebesgue measure zero. For this
purpose we fix an r and denote by Pj the rest of P, from which removed all
r-horoballs intersecting it. Let B,, B; be closed balls centered at O such that

B,CcPyCB, (CB? (2.2)
and let », be the euclidean radius of B,.
Lemma 2.1. Let ¢, be the spherical radius of the shadow on S of yB, for

rel. If for an r-horoball B the n.e. distance between yP, and B7 holds
d(y Py, B1)<0, then there is a constant ps(>0) depends only on & such that

03 A($,) <m(BY)

where A(@) is the area of the cap of sphereical radius ¢ and m(BY) is that of B
Proof. Let r, be the euclidean radius of yB,. Suppose BI=yBj and put
&=y 'yp. Then y~! translates yP,, B} to P, £Bj resp. and it holds

d(P;, §Bp=0 2.3)

There are only finitely many elements & of I” which satisfy the inequality (2.3).
Let &, -+, &, be those solutions. Then &=y 'p=¢; for some ;. Let R,, R;
be the radius of B}, &;B; resp.. Then

— A= 7 O)1th(p/2)
T 1= 170)[*th¥(p/2)

P Ry(1=7(0)[)
T AR O R0 [10))
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where p=log(1+7)/(1—7) is the n.e. radius of B, and we denote tanh simply
by th. Hence

R, R(1—th*(p/2)) -~ _ . R(1—th*p/2)

;o C T 4—3R,  =CoT,Min g,
Clearly R,<®,=the spherical radius of Br. On the other hand if we denote
the euclidean center of yBj by b, then »,=|b|sin¢g,. Therefore for yB} apart
far away from O, »,=¢,. So that we have ¢,=C’r, for some constant C’. Since
for ¢<m/2 it holds

[}

o ()pzaps s
where w,=4r, the full measure of S, we obatin except the case y=id. that
AD.)] Alg) =z (2. /rn$,)*=(2C;/mC')*>0.
Furthemore A((I)»)/A(qfo,.)>j=rlr'\.i3'1n2w2Rj/7r2>0, for y=id. so that we can find a
desired constant p,. Q.E.D.

A similar consideration leads to

Lemma 2.2. Let ¢,, D, be the spherical radius of the shadow of yB,, 7B,
resp. for yel'. If d(yP;, nP5=0 then there is a constant Co(>0) independent of
7, n such that CoA(D,) < A(,).

We denote by V, the n.e. cone with the vertex a which inscribes B, and
V* the unbounded component of V,—B, with respect to the Poincaré metric.
Then we can find a finite number of »-horoballs

B, B, -, B, 2.4)

such that for all a= B*— B, there exists a ball B P in (2.4) which is contained
in V¥

Lemma 2.3. We fix a number s(0<s<l). Let C be any sphericap on S and
@ be its radius. If the cap C’ of radius s¢ concentric with C contains a point
belongs to F,, then there is a subcap ¢ of C such that

1 Cco,, 2) pm(C)<m(é)

where p is a positive constant independent of C.

Proof. We take some beC’'NF, and denote by R the radius Ob and by V
the cone with the vertex O and the base C. By definition R meets infinitely
many copies nPj of Pj. Suppose 7nPj is the first of them contained totally
in V and éPj is the one intersects R just before 7nPj when we enumerate
these copies from O. Then since the shadow of £B, is not wholly covered by
C, for its spherical radius holds (1—s)¢<2@,. Therefore if @.<x/2, then

A9/ Alg)>2Pe/ng)*> p=((1—s)/7) (2.5).
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Otherwise (i.e. for the case £=id.) A(D:)/A($)=1>p. Because of d(&PY, nPj)
=0 previous lemma yields A(¢,)/A(®y)>C,. Hence with (2.5) it leads

Alg,)> 6CoA($)=$Cam(C) (2.6).

We put V/'=9" V), O’=%"%(0) and denote by V, the n.e. cone with the vertex
O’ which inscribes B,. Since »B,CV, we have V,CV’. As we remarked, we
can find one B:ﬂ among (2.4) which is contained in V¥. Then it holds

d(p Py, YIBC#)—_—d(PS, BC#)<5=#2112,1.§qd(P5, Biﬂ)-
Hence by lemma 2.1 and (2.6)

m(nB1,)> ps Al$,)>Cop psm(C).
Now put C=the shadow of 7B . and p=C,3p;, then these satisfy the statement
of the lemma. Q.E.D.

By this lemma we can verify that the measure of F, is zero after a routine
consideration. Since Fy=\JF),,, thus we know at last the measure of Fj is zero.
n

§3. Transitive points in Q,.

3.1. We fix a sufficiently small »,, M, acts on the horosphere X7°=aBjo
([G] 2.6.2.) and 2%°/M, is compact. We can construct a fundamental region Q
of M, on X7 as follows ([G] 2.6.3.): Let rip)=p, 7:(p), :++, rn(p) be the
equivalents of p on the boundary of P,. If we put I1,=7,(31)NP,(i=0, ---, N)

then Q= Q)ﬁl(ﬂi).

3.2. Definition 3.1. For »(0<r<r,) and a subset U of Q, we define E,[U]
as a set of all xe£, satisfy the following property; There is an r-horoball B?
which meets the radius ax such that, the radius toward x intersects 7.(2%) on
the set 7.(Mp(U)) after passing through B? (See Figure 3.1.).

0

B}
S
/

equivalents of U

(Figure 3.1.)
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Lemma 3.1. We denote the radius of BI, Bl by r(BT), r(B7) resp. then there
is a constant C, independent of v such that

~

1) r(B)/r(B=C,
A 3.1)
(2) mlonC,=0
Proof. Let w be the base 7.(p) of BI, Bl® and x,, x, be the intersecting
point of Ow and dB7, 9B7 resp.. Then d=d(x,, x,), the n.e. distance between
x; and x,, is independent of v. We put p,=1—|x,|, p.=1—]x,| the diameter
of B7°, BT resp., then

=log 2 —log 2=p .

d=
1-py 127 14 01

Sl-pz 2dt 2—p

This leads to

202 20;
= -> s
O ot @—pe T pit2et

Hence
r(BY)/r(B?)=p./ 0. <(p:/2)+e %

We may assume that Bj has the largest radius among its /-equivalents, so that
r(BZ)/r(Bz°)<5r=r—e"’. If »—0, then d—co. Therefore 1ir515,=0. Q.E.D.

By this lemma and an elementary geometrical consideration, we obtain

Lemma 3.2. For two r-horoballs B}, B}, satisfying
(1) r(B)<r(By) and (2) BINBL+@,

—B,
(Figure 3.2)
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there is a constant C, independent of 7, v such that, if we denote by ¢ the spherical
radius of B, then BT is contained in the concentric cap of By, of radius C.¢.
Moreover imC,=1. (See Figure 3.2. In fact C.,—1 is of the order O(C?).)

3.3. Let yo(=id.), 71, =+, v~ be the elements of I' referred in 3.1. We

N
define P=\_J77'P, and denote by D the union of Bj® and the interior domains
i=0

to all spheres each of them is the extension of a face of P with p on its
boundary. We can choose beforehand the representatives {r,} of the cosets
I'/Mp so that a,=y;*(0) are outside of D.

Let V, be the n.e. cone with the vertex a, (where we agree that a,=0)
inscribes By and denote by C, the component of (27°N\V,) which contains p.
C, is a spherical cap of X%

It makes us easier to approach our problem if we consider it occasionary on
the upper half space H®*={(x;, x, x3); x3>0} of R®. For if we map B? onto
H?® by the conformal mapping A such that A(0)=7=(0, 0, 1) and h(p)=co, then
the image of X7¢ is a parallel plane to (x,, x,)-plane, which we identify with the
complex plane C={z=x;+ix,}, and Mp acts on X} as a group of euclidean
motions. ([G] 2.6.2). For economy of notations we give the same letters 27, Mp
etc. to the h-images of those. Suppose

Y= {z+4s.; z€C}
t={z+sj; zeC} (s>s0).

We denote the compliment of D by K, then each generating line on the surface
of V, corresponds to a circular arc orthogonal to C and of the hight s from a
point in K. Since K is a compact set in H*UC, we have easily

Lemma 3.3. We identify 2t0={z+s,5} with the complex plane {z=C}. Then
there is a constant d depends only on K such that when we put

Ai={lz| >R,—d}, A= {|z| > R,+d}
where R, is the radius of the disk C,,
A,cC.cA, (v=01, -) (3.2).
We define N;,, N,CMp as
Ni={neMp; QNA*B},  Ne={neMp; n(Q)CA}.
Then by the previous lemma,
ﬂgzn(Q)CC»Cﬂgvlri(Q) (=0, 1, --) 3.3).

We return to the consideration on B? also in this case (3.3) holds. If we put
17»=7p(Vv) then it is the n.e. cone with the vertex O inscribes BI. Let 5,=
7.(C,), which is the component of (V¥,NdB) which contains 7.(p). The area of
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C, is estimated as

(1—la.|??

inf [x, a,]* nezz:vlm(v(Q))'
Xeun(@)
7EN]

m@)=|_ 171w "dot=

where dw is the area element on X% of total area 4zxr} and [x, a,]*=1+
|x|%la,|*—2x-a, (x-a, is the scalar product of x and a,.).

If we denote by CV the all I-equivalents of U contained in C, then its area,
provided U is measurable, is estimated as

w0z 3 jpwitdez—S—E 5 gy
Y= &Ry = sup_ [x, a,]* »&W, K
A”E%pz@)
(1—]a,|??
>
= _sup_[x, a,]* nezwzm(”w))
0@
AL

Hence
m(y _ o (xe \) 7@)x, .]* 5 mzU)

> - 3.4
(&) = swpe 7@, aT 3 mir@) 4
Since a,& D, uniformly [x, a,]—|a,—p|(r—0). Hence
X > m(pU))
lim 2XCE) 5 iy 1< 3.5

o m(C,) >1r195>l ’)EZN)!m(vy(Q))

The shadow of C, is just B. We denote by BI[U] the shadow of CV on S,
then by definition BI[U]JCE,[U]. By letting r—0 with the fixed 7,, it holds

. mBiun .. m(lY
]fl-l:rol m(BY) —lrlgﬂl m(C,)
Keeping the notations in lemma 3.3 but we denote again max(d, diamQ) by d
we have

3.6)

S @) )Wl
7EN1—-Ng <

> mn@)
7EN2

| 1nodx
A2

O((Ro—2d)*—(Ry+2d)7*)
- O((Ro+2d)™)

when r—0, where A= {R,—2d<z<R,+2d}.
Therefore we can modify (3.5) to have with (3.6)

o UBILUD) 2 @)

= = . 3.7
By e 3 mOy@) &7

The right hand side of (3.7) is estimated from below as
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(1—=1p"20)|»? U

> m(pl)) (’76”2 max [x, p~'(0)]* )m( )
NENg > XeUu - ~

ﬂ(;vzm(ﬂ(Q)) ( > A—=15""0)[?) )m(Q)

7EN, ml[l [x, 7‘]—](0)]4
XeQ

(3.8)

If » is sufficiently small, then for y& M, such that n(Q)C A, 5 *(0) must be
quite near to p. So that for x=Q, where Q is a compact set in B?, [x, *(0)]
—|x—p|, when r—0.

Hence the right hand side of (3.8) tends to m(U)/m(Q) when r tends to 0.
Therefore we obtain finally

. m(BILUD) _ mU)
im m(BT) = m(Q)

and we can conclude

Lemma 3.4. Let U(CQ) be a measurable set, then there is a constant b,
depends only on r and U such that

() m(BI[U)=bm(BL),  where BI[UJCE,[U]
and

2) limb,=mU)/m(Q).

3.4. Theorem 3.5. For a set U(CQ) of positive measure, all points in £,
except a subset of null measure, are contained in E.[U] for sufficiently small r.

Proof. We denote by BT the concentric cap of B7 whose radius is C, times
the length of that of B, where C, is the constant appeared in lemma 3.2. Then
for sufficiently small 7, m(BI)/m(B7)=C;* and this tends to 1 with 7 tends to O.
On the other hand by lemma 3.4, lim m(BI[UT)/m(BD)=mU)/m(Q)>0. Hence

lim (m(BT)—m(BILUD) < (1—mU)/m(Q))m(BY).

Therefore there is a number »(U)(>0) such that for »<r(U)
m(BT)—m(BI[U])< d,m(Br) (3.9)

where d.<1.

Suppose *<r(U). For any sufficient small ¢(>0) we take an open set
G,(D8,) on S such that m(G,—2,)<e. Here we may neglect for our purpose
the set of all I"-equivalent points of p, so that we can assume for all points x
in 2, the radius Ox meets infinitely many 7-horoballs. Since the shadows of
these balls are contained in G, with finitely many exceptions, there is a plentiful
supply of r-horoballs whose shadows are contained in G,. Among BI’s such
that BICG, we choose one of the largest radius and denote it by Bj,. Next
we choose one of the largest radius, which we denote by BJ,, among BI’s such
that BSCGI—CI(BL)(CZ(B) means the closure of B) and repeat this procedure,
that is, we choose an 7-horoball of the largest radius which is denoted by
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BT

v

Py -1 -
among BI's such that BICG,—{JCUBL,)(n=1,2, ).
=1
Then B7,’s are disjoint caps in G,. We don’t know if BI,’s cover 2, but
we can say about B ’s that

Lemma 3.6. {E:n}:::l is a covering of 8,.

Proof. For any x=£,, let BT be the one of the largest radius among 7-
horoballs intersect Ox. If B;=Bi, for some n then xB] CB],. Otherwise,
by the choice of BI,’s, there exists a B, such that »(B})<#(BJ,) and BINB],
#@. Hence by lemma 3.2, xEBCCﬁIn. Q.E.D.

Note that BI[UJCE.[U]. If we set leQo—Qﬁin[U], then by (3.9) and

the above lemma,
m(Q,)< :; {m(Br,)—m(Br,[UD} <d, 21 m(Br,)
<dm(GHEd (m(2y)+¢) (3.10)

Again we take an open set Gyo(D8;,) on S such that m(G,—8,)<e. Similarly
we choose an r-horoball of the largest radius, which we denote by Bj,, among
BT’s such that BICG,, and inductively we choose one of the largest radius,
which is denoted by B7,, among BI’s such that B:CGz—;QCl(B:k) for n=1, 2, ---.

By the same consideration in lemma 3.6 we know QICUEIn.
n=1

Put 2,=0,— B, [U], then

m(f2,) < g}l {m(ﬁ:n) —m(By, (U} £d:m(Gy)
<dim(Qo)+(d-+de.

We repeat this procedure to obtain

m(R2,) <dim(Q0)+(d,+d24 - +dbe.
Hence
£i£n m@)<d.e/(1—d,).

Since ¢ is an arbitrary small number, we conclude
m(Q,—E.[U])=0. Q.E.D.

3.5. Let {a,}%-, be the countable dense set in . We denote by U$ the
intersection of Q and the spherical cap on X centered at a, of radius 1/s(s=
N, N+1, ---, where N is sufficiently large.). We put E,,[US]=E(m, n, s)
for integer m ranges >1/r(U%). By theorem 3.5 almost all x in £, is contained
in szE(m’ n, s). Let’s see what we can say about this points set. First we

fix n and s and make m tend to oo. Then the radius R::OHx(xe UsE(m, n,s))
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meets a horoshere dB7° at a point, say y, equivalent to a point in U$ after it
passed through 1/m-horoball Bl'™. We take n(<I") so that p(y)€Us3, then R'=
»(R) intersects 37 on U$ after it passed through B{'™. Since 7(0) converge
to p when m—oo, there is a sequence in I-equivalents of R which converge to
a n.e. line initiated at p which intersects X on US.

Next, we fix n and make s tend to oo, then, for the n.e. line initiated at
p which intersects 2% at a,(n=1, 2, ---) there is a convergent sequence of /-
equivalents of R to this line. Since a, are dense in Q, for any n.e. line initiated
at p which intersects 27 on @, there is a convergent sequence of [-equivalents
of R to the line. Since 2% is the tesselation of the copies of Q under Mp,
which keeps p invariant, finally we know: For any n.e. line initiated at p,
there is a sequence of elements 7, in I” such that y,R converges to it.

I'(p)y={r(p); rerl'} is everywhere dense on S, so that for any n.e. line L,
we can choose a convergent sequence to L in the set of all n.e. line initiated
in I'(p). Hence we have the final result:

Theorem 3.7. All points in £2,, except a subset of null measure, are tran-
sitive.

So with the result in sec. 2, we complete the proof of Theorem 1.1.

§4. An analoguous theorem to the approximation theorem for classical
Schottky groups.

4.1. Let S, S, -+, S,z be 2g orthogonal sheres to S(g=2) whose interior
balls are pairwise disjoint. Suppose for each k(1=<k=g) we are given a Mébius
transformation 7y, which keeps B® invariant (So it is a hyperbolic motion on B?)
and maps the domain exterior to S,., onto the interior ball to S,. Then a
Kleinian group I freely generated by the y,’s is called a classical Schottky group.

The domain P in B*=B*US bounded by S,’s is a fundamental domain /.
I acts discontinuously on erg 7(P) and the quotient space /I is a compact

3-manifold homeomorphic to a ball with g handlebodies and its interior has a
hyperbolic structure induced by that of B2 The complement 4 of Q is the
limit set of I

4.2, The set of all nontrivial elements of I" is denoted by I'*. Then each
element of /'* is expressed uniquely as a word in generators X={y,, -, 74,
Ta+1, **, Tegh, Where we put 754, =7%",

T=Tilie " Tin  Gi€2 Vi Tienn®1)

viz.  7(x)=75( s2((Fjn(x)+0).

Here we make an agreement on a notation about the composition: We
write the composition of y=y;, - 7jm and 9=y, - 7;» as y-n with a dot () only
when 7:»#77!. To express the ordinary composition, we write as y.
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We denote the ball interior to S, by B, (k=1, ---, 2g) and put y(B;z)=B;.;,
when the composition is defined in the above sense. Then B,CB, if and only
if p=y-& for some £é€/". Note that y(P)CB,;.

Our second purpose in this paper is to prove

Theorem 4.1. [f the limit set A of a Schottky group I' has the Hausdorff
dimension p, then all points in A, except a subset of the p-Hausdorff meassure
zero, are transitive,

4.3. To begin with, we give a characterization of the transitive point which
is due to the observation by Myrberg [M]. We may assume that the funda-
mental domain P contains the origin O. Let L be any n.e. line with end points
a, beA. If we run along L toward a or b, we meet infinitely many copies of
P. So we can choose two sequences 7, &, of elements in /" so that

1i_rp 7. (P)=a and 1im E.(P)=b. 4.1)

If x belongs to B;,.,;%, or to B, !, with some y,€[" then the radius R=0x
meets P and 7,-9;%.(P) or 7,-§;'7.(P) respectively. Now translate R by #,7;*
or &7;' to see the image passes through both #,(P) and §,(P). Therefore if x
belongs to B,,.,;1, or to By 1, for all v and some y,€/" we can find /-images
of R passing through %,(P) and &.(P) which converge to L. (See Figure 4.1)

(Figure 4.1)

Especially if, for all ye[l’, x belongs to B,., or to B,.,-i(p€l"), then [-orbits
of R=0x contain a convergent sequence to L. So that we have

Proposition 4.2. A point x in A is transitive if, for all yeI', x belongs to
B,.; or to B,.,-1 for some nel.

But we can modify this slightly as follows:
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Proposition 4.3. A point x in A is transitive if, all yI' such that yu#7n
when we express it by word as yi - Yin, x belongs to B,., or to B,.,-1 for some
pel.

Proof. Express, say, ;6. as 7 -+ 7in Where 7, § are those appeared in
above consideration, and suppose 7;;=ris, then we replace &, by &,-7.(f.€2,
#.#77t). Then the polygon &,-7.(P) is adjacent to &.(P) and even in this case
lim§,-7.(P)=b. Q.E.D.

We define a subset [y] of 4 for yel'* asthe set of points x which belong
to B,., or to B,.,-. for some nel.
Since I is countable, for the proof of the theorem we are sufficient to show.

Theorem 4.2. M, (A—[7])=0 for all y such that yu:#7in if Y=V Tin(yis €2),
where we denote by M,(E) the p-Hausdorff measure of E.

§5. The proof of theorem 4.2.

Our proof of the theorem much owe to Akaza’s results in [Ak—1] and
[AR—2].

5.1. Since we assume that y;,#77 for y=yi - yin, at least one of 5.y or
n-77! is defined for any n</" in the sense mentioned in 4.2.

Lemma 5.1. There is a positive constant p independent of nel” such that
oM (B,NDEM(ByuNA) or Mu(B,.,-iN\A).

Proof. Let B be a closed ball of radius » contained in B,. Put B=¢"Y(B)
where p=&61-74(y,€2). Then BCB,, and

rBr= (1€ @ = | R datn)

B o8 | x—E&(c0)|*
where »(B), R, are the radii of B and the isometric sphere of & respectively.
Therefore

g
min | x —§(o0)[*

2
Rer <n(B)<

max|x—&(c0)|* = ©-1)

For simplicity, we set M,=max|x—&(c0)|? m,=min|x—&(c0)|% For a subset
xqu xEBv

E of R®, we use the notation C(E; r) to denote the family of the coverings of
E by closed balls of radii smaller than .

For sufficiently small », we may assume that B,C B, for all {B,} CC(B,N4 ;7).
Then by (5.1) if we set B,=£(B.), {B.} CC(B,,N\A; Rir/m,). Conversely for
sufficient small 7, if {B,} CC(B,,N\/4; r), we may assume that B,CB,,, and by
setting B,=&(B,) we have {B.}CC(B,N\4; M,r/R3).

The results in [Ak-2] (Lemma 5 and Theorem 4) show 0<M(B,NA)<co
for all yeI'*, Therefore
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= min M(ByeN\d)

. - _
My (By,NA) s riedl=is2g)e i‘l}

is a finite positive number. From these we obtain

M (B NA)Z (g RO M (Byyye N A) 2 E(my/ RDEM By N A).  (5.2)

Again we recall the following Akaza’s result [Ak-2]: Generally we set for
yel'*, F(n, 1)={By.¢; éI, [(y-&)=n} where [(y-&) is the word length of 7-&
in 2. Clearly F(n;7) is a covering of B,NA and the radius of any ball in
F(n;y) is less than given 4(>0) for a sufficiently large integer n. Let
Fil*o(n; ¥) be a covering of B,N\/A by balls in F(n;7y) whose radii are not
greater than d/2k, (k, is a positive constant depending only on I".). Then it
holds
L(B,NA)=lim inf > (2r(B)

00 [R0/k, 0/ k,
(PRt} BP0,

=C(ko/2) M (BrNA). (6.3)

where »(B) is the radius of B and C is an absolute constant. We apply these
results to prove the lemma. By (5.1)

{B=&(B); BEF*(n; 1)} CF™ 1'% (ntn,; 7)
where n,=/((£) is the word length of & Then it holds by (5.2)
M (BN A) = (ko/2)C' L ,( By, A)
= (ko/2)C™H(RE/ M)* {sim inf 3 @r(B)*

~0 {r oM n/kong}

(n+ng; %)
= (ko/2)*CY(RY/ M)* M, (B,NA). (5.4)
From (5.2) and (5.4)
My(B . eNA)Z k(ko/2)*C*(m,/ My)* M (B,NA) (5.5)

Then to prove the lemma, it suffices to replace m,/M, in (5.5) by a constant
independent of 7.

my BRI jer)—geo)1? .6
M, " maxla—Eo* | [&r)—E@)

for some x,, x,€ B, Since the right hand side in (5.6) holds
[E(x)—&(e0)|* [E(x)—E(x5)] -2
o=t 2 (e
and

6D —E(xa)| _ xi—xe| . diam By,
1€(x)—€(e)]  x,—E7X(e0)| T min |x—E(c0)| *
€510

therefore m,/M,>const.>0. Q.E.D.



P.J. Myrberg’'s approximation theorem 419

5.2. Since A is the union of the disjoint compact sets B, NAG=1, -+, 2g),
where 7gv=77 Mu)= £ Mu(Byn ). Put Ey= A~ (Bype\A), where
@(Bn.,sf\A)C[r](e=il). Since E, and Q(Bri.,sf\/l) are disjoint compact sets,

=1

MuE= 35 (My(Byy N\ )= My By e\ )

<(1-p) f?jl M (B, N A)y=(1—p)M,(A)

by the previous lemma.
We put inductively I'*={5-§; " I)=I(1)=n, &+7*'} for integer v(>0)
and I'°=I". Then for E,,,=E,— k% (B,.y:NA) where B,.,.N\AC[y], similarly
nery

we have
ME, .1)= EZ} (My(B,NA)—=My(B,..:NA))
77 v

<(1— o) M(A).

So that M,(E,)—0(v—0), and this leads to the result.
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