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On some limit theorems for occupation times
of one dimensional Brownian motion and

its continuous additive functionals
locally of zero energy

By

Toshio YAMADA

Introduction.

L et B , b e  a  o n e  dimensional Brownian motion and f  b e  a  continuous
function with compact support. T h e n  the fo llow ing  lim it theorem s a re  well
known (see e. g. (4), (8), (12) or (14)).

Theorem  I (F irs t  o rd e r  lim it  th e o re m ) . I f f (x )d x * 0  the f am ily  of

stochastic Processes t ,-->- 1H . 2 t  f(B s )ds, 2 > 0  converges in the sense o f law  on the../.1 0
space of continuous functions to the process t ,—>(  f (x )d x )I ,2 ,  a s  2—co where

1.L2 is the local tim e o f B, at 0 defined by Tanaka formula —

2
I , =(B,) + — (B0)+ —

ÇoH(131 )dB„ where

x
H (x)={ 1 ,

0,x < 0

Theorem I I  (Second o rd e r  lim it th e o re m ). I f  E f (x )d x = 0  but f  is not
At

identically  zero, the f am ily  o f  stochastic process 1
21/4 f ( B s )ds, 2 > 0 , con-

0

verges in the sens of law  on the space o f  continuous functions to the process
f>h(L2) as 2—>00, where 13(t) is another B row nian motion independent

o f  B , w ith  'AM= 0  and .L2 i s  the local tim e o f  B ,  a t  0, and <f, f>=

f(u)du) 2 dx.

In the last ten years, many studies have been produced by Kasahara, Kotani
and other authors to generalize these limit theorems for more general processes
than  one dimensional Brownian motion. (see e. g. (6), (7), (8), (9) and (10)).

In the present paper, w e  a re  in terested  in  th e  problem  o f finding some
new limit theorems concerning one dim ensional Brownian motion in the case
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w here  f  does no t be long  to  1)(R 1), or in  the  case  where f (x )d x = 0  but

<f, f>  diverges. In our study some examples in the class of continuous additive
functionals locally of zero energy will play important roles.

1. Continuous additive f unctionals locally of zero energy.

In  th is  section we shall introduce som e continuous additive functionals
locally of zero energy and will explain quickly their properties. Some of them
has been proved elsew here. For m ore  precise inform ations of the c lass of
these additive functionals, one  can  get them  consulting  (1 ) and (11) on the
general theory or consulting (16), (17) and (18) for concrete examples.

Let (Q, g , P ; g t ) b e  a  complete probability space with right continuous
increasing family ( gt)t>0 of 6-fie ld  g .  Let B t  b e  a  continuous if-martingale
such that

(i) E [(B t —B 3 )21g 8 ]= 1 — s  for
(ii) Bo=0.

That is to  say, B , is  a one dimensional Brownian motion.
Let Lct be local times of the Brownian motion B t ,  characterized by Tanaka

formula

1
—
2

L7=(Bt—a)+—(B0 — a) + —  H(B 8 —a)dB 3 .
Jo

Hereafter we mean by (t, a) ,—*L f  a  jointly continuous version of Brownian
local times.

A .  First, we shall introduce continuous additive functionals which cor-
respond to Cauchy's principal value.

Consider th e  function F a (x )= (x— a)log x — al—(x— a ) ,  a E R 1. T h e n  the
derivative of the function

dFa (x) = Pa (x)=logl x—al
dx

belongs to L L (R ').
The second derivative of F a (x ) in  the sense of Schwartz's distribution is

d'Fa(x ) 1=F',/,(x)=-- v. p.
d x2( x — a )

where v. p. stands for Cauchy's principal value.

Definition 1.1  (Continuous additive f unctionals corresponding to Cauchy's
principal value). Put

(1.2) C1a=Fa(Bt)— Fa(Bo)-1 rtt(Bt)dBt,0
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where the stochastic integral is understood in  the sense of Ito integral.
T h e  r ig h t h a n d  s id e  o f  (1.2) is well defined, because P a (x )  belongs to

Lioc(R 1 ). We call CT continuous additive functional o f B t defined by Cauchy's

principal value v. p. 
 (

(cf. (5), (16) and (18)).x

1

—a)

The following lemma is proved in  (16) and (18).

Lemma 1.1. One can choose a version of  (t, a) ,-- C2̀  such that the following
( i ) ,  (ii) and (iii) hold.

(i) L e t g  belong to L 2 (R 1 ).

Then

(1.3) ,,tg (B s )d s= -
1

C7(SC - 1 g)(a)da,

1 1
where SC stands f or H ilbert transf orm ; cgCf= —

i c
v.p. .7 4,f  and means its

inverse transform JC - 1 = —SC (cf. (15)).
(ii)

(1.4) C7=7,4C-'(L;)(a).

(iii) Fo r a n y  T > 0 , M > 0  an d  sE (O , 
1
t h e r e  e x i s t  f i n i t e - v a l u e d  variables

HT, 3. r,,(0 ,  KT, m (w) such that

(1.5) sup I Ci(u) - 0(0)) 15_11T , M , E(w) I Va, b [ — M ,  M ] ,  a. s.,
t T

and

(1.6) sup I Cti (w) — Ci(w) I K T , M,E(w) I t  Si " 2 — s V t ,  S E [O, T ] ,  a. s.
laIgm

Remark 1.1. I t  is  k n o w n  th a t  th e  following formula holds. (cf. (16) and
(18)).

rt d s  (1.7) {/1-0,a-o(Bs)-Fi(a+,-)(Bs)}
0 B0 s — ae4 

a. s.

B .  Second, we shall introduce continuous additive functionals which cor-
respond to Hadamard's finite part.

Consider the function
0

G a (x).= (—a)(1—a) = 1  (x — a) l - a

(—a)(1 —a)

1where 0<a< —
2

. Then the  derivative of the function G a (x)

dG a (x)( x — a)T_a-=G'a (x) —

dx (—a)

x<a

x a
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belongs to LL(.121 ).
The second derivative of the function Ga (x ) in  the sense of Distribution is

d 2 Ga(x) =G'/,(x)=p. f.(x— a)V - adx 2

where p. f. stands for Hadamard's finite part.

Definition 1.2 (Continuous additive functionals corresponding to p.f.(x — a)V -- ").
1Let 0 < a < -
2

. Put

1 rt
(1.8) —

2  
Ha(-1—a, t)=Ga(Bt)—G.(130)— .) G'.(B8)dB3

0

where the stochastic integral is understood in  the  sense of Ito integral.
Since G (x )  belongs to L 0 (R 1 ), the right hand side of (1.8) is well defined.

W e ca ll H a ( - 1— a , t) continuous additive functional defined by Hadamard's
finite part p. f.(x— a ) ' - a (cf. (16) and (17)).

To state some properties of the continuous additive functionals H a ( - 1— a, t)
ael? ', we need to introduce following definition.

Definition 1.3  (fractional derivative) (cf. (2) and (13)). L et g  b e  a  locally
integrable function with a  left compact support ; i. e. there exists a  number L
such that g  vanishes on ( -00, L).

We put

D g = p ) p.f.(xV -i9)* g , 18e R.'

where F  stands for the Gamma function and * means the convolution operator
in  the sense of Schwartz's distribution. We call D g  t h e  fractional derivative
of order 13 of the function g.

The following lemma is due to  Hardy and Littlewood ((3)).

Lemma 1 .2 .  Suppose that 0<a<1(31.
L e t  g  be a continuous function w ith compact support and satisfy Holder's

condition of order g ; i.e. there ex ists a constant K,>0 such that Ig(x+h)—g(x)I
Vx,

Then,

(i) (Dag)(x)EL 2 (R!)r1L 1 (R 1 ) holds,

and

(ii) there  ex ists  a constant K ,> 0  such that ID a g(x+h) — D a g(x)1 1(2 h1 1 3 - a ,
i.e . D a g  satisf ies HOlder's condition of order A—a.

We now come back to the additive functionals 11"(-1--a, t),
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1
Lemma 1 .3 .  L et 0 < a < -  and a< iS..1.

One can choose a version of (t, t) such that the following (i),
(ii) and (iii) hold.

(i) If  the function g  satisfies the same condition as in Lemma 1.2, then

1
(1.9) Ç(Dag)(B,)ds=  Ha(-1—a, t)g(a)da , holds.

0 r (— a )R i

(ii) The formula

(1.10) Ha(-1—a, t) =—cos(r(1+a))(Da L;)(a)—sin(7r(1+a))JC((Da L)(.))(a),

holds.

(iii) For any T>0, M >0 and sŒ(0, —a) there exist finite-valued variables

D T ,m ,,(w) and E T ,m ,,(0)) such that

(1.11) sup H a ( - 1— a, t)I 5_,Dr,m,(0))1a—b1112-a-s

Va, b [—M, M ], a . s .,
and

(1.12) sup I H ° ( - 1—a, t) —H ° (- 1—a, s)I—E s(w)It—s1" 2 - a- '
I a i  / 1 ,/

Vs, tE [0, T ], a . s.,
hold.

P r o o f .  ( i )  and (ii) are  proved in  (17), so  w e  w ill g iv e  o n ly  th e  p roo f of
(iii).

The proof of the inequality (1.11) w ill  b e  devided i n  se v e ra l s te p s . (1 0 )

First w e shall show th a t  for a n y  T >0 and s E(0 —
1

' — s) th e re  e x is ts  a  finite-2
valued variable D ( w )  such that

(1.13) suPI (Da L't)(a) — (13'Li)(b)1 513P,(w)1 a —1)1" 2 - ' s Va, bER 1 , a. s.
t 2"

W e owe the  proof of (1.13) m uch to the method employed in  t h e  proof of
theorem  2 0  in  (3). It is  w ell know n tha t there  ex ists a  finite-valued variable
HT ,,(w) such that

(1.14) sup  L L21 —_ 1-15(0))1 a — bi 1/2sV a ,  b E  R t, a. s.,
t a r

holds (cf. e. g. (5) and (18)).
1 1Since a ,--*14. sa tisfies the  Holder's condition of order
2

and

w e have
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F( —(Da L;)(x— h)}

t̀‘î v   LT—  Lrtt LT-h— L
( x d a 0.0d a(x— h— a)'+a

Ç o o  L f — L T - u  d u  f - L "  du
.lo u 1 +" (u—h)1+"

= J- { Lf - 4  — Li - u } {(u — h) - ( 1 +"'—u - "+" ) } dut,

± r:  Lf — Lf - 
h

l- du+ .
Ch 

 fL — .I.,f - u
Jh u la o u dui+a

= 1 1+ 1 2+ 1,3 s a y .

Here by (1.14),

II 11 h)-(1+")— u-"+")}  du

= HT , J2. 1 1 2 - s- a.D s - 1 ) " 2 - s {(s —1) - ' —  s - ' - al ds .

1 1Since 1+ a—  + 6< 1  and a+ 2—  + 6> 1 hold , we can see that

0<PS- - - 1)1 1 2 - T S - 1)- 1 - a — S- 1 - a }dS<+°° •
1

For / 2 ,  we observe that

h"2-' HT
1121-, HT , du=  

 a

-  h 1 1 2 - °- "
' u 1 +"

Also,
hU l l 2113 =  i  IT ,d u —  H T h112-E-a

0
u l+ a 1/2-6—a

put

T , 0 (
(
-
0

)   { /2- 1-a 1 -1), , (a))= 1)1 {(s 1 ) - s -  ' 1  d  s +  
1

 +  1
R—  a) i a  1/2-6— a f .

Then the inequality (1.13) holds.

(2 ° )  For any T>0, M >0 and E E ( 0 , e ) there exists a finite-valued variable

D M such that

(1.15) sup X((-Da Li)(.))(a) — JC((poL i)( • ))(b) I DP.'y ((t)) I a — b1" 2 - '
t‘T

Va, b [ — M ,  M ] ,  a.s.

As we know the inequality (1.13), we can show (1.15) b y  th e  same argu-
ment employed by Yor in the proof of Theorem 2.1 in (18).
(3 ° )  Put
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DT, M Icos(r(1+ a))I DP,)31, (0))+  I sin(r (1+ a)) I DA ) m, s(a )

Note that the inequalities (1.13) and (1.15) ho ld . Then by the formula (1.10),
we can prove the  inequality (1.11).

Finally we shall give the  proof of the inequality (1.12).
It is known that for any T > 0 there exists a  finite-valued variable KT, s(w)

such that

(1.16) sup L 5 K T „ I t— s I" ' Vs, te [0 , T ] ,  a. s.,a

holds (cf. e .g . (18)).
Note that

R—a){Da(L;)(a)—Da(L;)(a)}

1, — L r
u  d u

L '— L -u
d uui+a jO u'+"

(L t t _ L v t ,)
d u

+
(141— L':)—(Lctt-u—Lru) 

d uIt-sl

=- K i + K , ,  say.

Here by (1.14) we have

2HT,,u 112 ' 1 
11(115_ It 51 112 ' •ul+a0

d u = 2 H T

's 1/2—e--a

Also by (1.16),

2KT,Elt— s1"2 - e 11K21 u2+a du=2Kr,.—
a

It—s 11 1 2 - s - a  •I t - s i

Thus we have

(1.17) sup I (Da L;)(a) — (Da L;)(a)I .-- 
1 f  2 1 1 r , +  2K r,  1.1 t _ s !

a —  f ' (— a )  1 / 2 - -a a  1

Vt, s e [ 0 ,  T ] ,  a .s .

Then by the same argument employed in  the  proof of Theorem 2.1 in  (18),

th e  inequality (1.17) implies that for any T > 0 , M > 0  and E E O  1,  — a )  there

exists a  finite-valued variable EP,) ,,,,(w) such that

(1.18)s u p  I  SC((paLi)(.))(a) — SCŒDaL;)(.))(a)I -5.EP2m(w)It — s1" 2 - s- a

V t, s e [0 , T ],  a. s.
Put

1 2 H T .,(W ) 2KT.E(CO) ET,m,,((.0)= f ( -Fa)) 1{112—e—a a 1

±  I sin(2r(1+ a))1EP?m,,( (0) •
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T h e n  b y  the  form ula  (1.10), th e  inequalities (1.17) a n d  (1.18) imply the
desired result (1.12). Q. E. D.

Remark 1 .2 .  It is  know n  tha t the following formula holds ((16)).

s- a
(1.19) Ha(-1— a, t)=-1i4m0 { (

— a )
 L7-FLIE.+,-)(B ,)(B , — a) - ' - ads} -, a. s.

C .  A t the end of th is section we shall treat continuous additive functionals
w hich correspond to  the  function ( x — a) ',  aE w here 0< 13<1.

Definition 1.4 (Continuous additive functional corresponding to the functions
(x— a)! - 1 , a.1 2 1 ,  0<13<l). Put

1 (Bt— (B 0—  a)-4 .15( B , — a ) P ,  d B s .(1.20) Ha(-1±13, t)= 13(j3+1) p(3+1)J o p
Since the function (x— a)i! belongs to L 00(121 ), the right hand side of (1.20)

is w ell defined. W e call H a (- 1- 1- 13, t) continuous additive functional defined by
the function (x—a)!9, - '.

By the sim ilar w ay as in  Theorem 1 in  (17), w e have the following.

Lemma 1.4. Suppose that 0< d3 < 1 . L e t  g  be  a  continuous function with
1com pact support. L et (IA g)(x)-=( r ( p ) x ÷19 - '* g )(x )  b e  the 13-th integral of  the

function g . (cf . (2) and (13)).
Then

1 (1.21) 1 (I fi
1

g)(B ,)ds= H a(-1- t)g(a)daro) R

holds.

Concerning the  problem of continuity of additive functionals H a ( - 1 + ,  t)
w e  c a n  o b ta in  s im ila r  re su lts  a s  in  Lemma 1.3 for functionals H a (- 1—  a, t),
but here w e only note that w e can choose a version of H a ( - 1 +  t ) ,  such that
(t, a) , - +Il a (- 1+18, t) is jointly continuous, a. s.

Remark 1 .3 .  Since the function (x—a) ,! - ° belongs to L L (R '), we get

(1.22) Ha(-1413, t) q(B ,—  a) 1 d s

Remark 1 .4 .  The continuous additive functionals introduced in this section,
C7, H a ( _  1 a, t )  a n d  H a ( - 1±15, t) belong to the class o f  continuous additive
functionals o f B , locally of zero energy. (cf. (1) and (11)).



On some limit theorems 317

2 .  Limit theorems.

T h e  first top ic  o f  th is  section i s  th e  lim it theorem  w here the additive
functional C2 and Hilbert transform play a role.

Theorem 2 . 1 .  L e t  f  be a function w hich belongs to L 2 (12'). Suppose that
1the Hilbert transform  of  the function f, (.4Cf)(x)=—r (v. p. —

1

*f )(x ) vanishes out-

side a compact set in 12'.
Then the fam ily  o f  continuous stochastic processes

(2.1) t
1t

,v71 0  f(13 3)ds, 2>0,

converges in the sense of  law on the space of continuous functions to the continuous
process

1(2.2) t f )(x)d x) •

as 2-co  where SC - ' m eans the inverse transform  o f  SC ;

P ro o f . L et z. ) m ean  the equivalence i n  la w  o n  th e  space o f  continuous
functions.

1B y th e  scaling property o f  Brownian motion {B(t)} (2-.) { , v -2-B (20)- for each
12>0, it is know n that IL fIc z t v --2-L2t t  fo r  each  2>0 (cf. (4)). Then w e

have

(2.3)
1 I t 1
/—  f (B s )d S

=  f (a)L c itda— f (a)da.2 0 A /2  R i (s)

On the other hand we will show that

(2.4) 1 4 0 "f (a)d a=1 1 . C V "(S C - if )(a)dar

holds.
Indeed, by Lemma 1.1

•
R i L,(11"  f (a)da=-V  21 27,L ti(A/ b)db='■/ 2 P(-V 138)ds0

= .s/
7
7j R 1 0(3C - i f (A / -))(b)db-= A/

7V
2 R I C2Gg.0 - i f)(1/ 2 b)db

= -
1  

.Ç  C r/ (sC  - 1  f )(a)d a .r

Combine (2.3) and  (2.4). Then we have
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(2.5) ,v1-2 Yof (B 3)ds (a-.
)
t ,—* CV "(SC-1f)(a)da)

for each 2>0.
Note tha t JC- 4  f  belongs to L2(R1) and vanishes outside of a  com pact set.

T h e n  SC- ' f  b e lo n g s  to  L i(R i) . On the other hand w e know  by Lem m a 1.1
tha t (t, a)— C' is jointly continuous (a. s.).

Then .Ç C P ( JC -- if )(a)da converges to  O R I (.4c- 'f )(a)da)C2 a s  2.--*co, uni-

formly in  t  on each bounded interval (a. s.). Thus the  Theorem 2.1 is proved.
Q. E. D.

Remark 2.1. If  there exists a  function f  which satisfies both the following
conditions;

(i) f . I . , 2(R 1)n .L '(R ') and f ( x ) d x 0 ,

(ii) The Hilbert transform of the function f  vanishes outside of a compact set,

then the family of processes t ,—>  1

2
 f ( B  8)d s , 2>0 converges as 2—>00 to  the 0

process t ,— >( f (x )dx )L 2 (by Theorem I in the introduction) and on the other

hand converges to  the process t,—, 1 (5  (3C- 1 f ) (x )d x )•e l as 2-->00 (by Theoremr
2.1). But there exists no such a  function.

Here we give a direct proof of non-existence of such a  function.
Let f  satisfy both the conditions ( i )  and (ii). Since the H ilbert transform

JC maps an L 2 -function to a n  P-function, the  function ..gf - if =— X f  belongs to
L 2(R 1). Moreover th e  function N - l f  vanishes outside an  interval [— M, M].
Then JC- I f  belongs to 1, 2(R 1)n L 1(R 1).

1 n—xNote th a t  9 CU E - . , . ] ( • ) ) ( x ) = . 7 c  log n+x
Then we have

f(x).I E_ : (x )dx=- -1  (M f ) ( x ) lo g  n—x
n ' n 7 C n-Fx

=-1.çm  

(.4(f)(x)log 
- M n +x

n—xNote that the family of functions log  , n>.M+1 is uniformly boundedn +x
and converges to  zero on the interval [— M , M ] a s  n—>co.

Then

0# . f (x )dx =lim  f (x )IL -n,n2(x )dx.
R 1n - , ,

. 
E l

n—x= l i m l  (SCf)(x)log  dx =0 .
n- , o  r  R 1 n-Fx

dx

dx .

Thus we obtain a contradiction. Q. E. D.
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The second lim it theorem  is related to th e  continuous additive functional
H°(-1— a, t) and the fractional derivative of order a.

1Theorem 2 .2 .  Suppose that 0 < a < -
2 '  

a<d3.1.

L et g  be a function with compact support satisfying the  following condition
(H, A). (Holder's condition of order 18).
(H, p) there exists a constant K>0 such that

g(x) — V x ,  y E R 1 .

Put (Da g)(x) -= f (x)
Then the family of  continuous stochastic processes

(2.6)
1

 f (B 3 )d s,2 1 / 2 -a / 2  0
2>0

converges in the sense of  law on the space of continuous functions to the continuous
Process

(2.7) t (L i g(x)d x)H°(-1—a, t) a s  2--K>o .

P ro o f. A s in the proof of Theorem 2.1, w e note that

L t v1_, L1,1

for any 2>0.
Then w e have

1-(2.8) 21/2-a/22:f (Bs)ds= 2 ,,L , 2 0
2 t (Dag)(B s )ds

1
—  2 1 1 2 -a / 2

L i (Dag)(a)LIda (-1) 2' 1 1 R ,(D"g)(a)LV'''' da

.= _ 2 1 / 2 + c r i2 •  (D a g)(1/T  74)LM U

•= 21/2-Fai2 t
0 (Da g)( ,./71 B s )ds

By the definition of the fractional derivative, we have

1 fs/ 2 s {g (A rlx ) — g(a)} d a(2.9) (Dag)(V  x)-= IV  x— all±"
1 (*x  fg(A / x )—  g(-V  u)}  A  'Y UR -a ) J (x -

=--- LP(2 - ' 1 2 g(A / .))(x).

Combine (2.8) and (2.9). Then we get
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(2.10)
r

 f ( 1 3 s ) d s
(T,621/2-1a/2 Da(2-al2g ( 71-. ))(a)L(tida2 1 / 2 - a / 2  0 RI

D'(g('N/, -))(a)Lfda=2" Da(g(A/ 2 -))(13 s )ds .
J R 'J O

On the other hand by Lem m a 1.3, w e have

(2.11) 2“2.ç Da(g(A/ .))(13,)ds=2 112 H a (  —1—a, t)g(A/ a)da0

Hut"-(-1— a, t)g(u)du .

The relations (2.10) and (2.11) imply that

(2.12) t 1 f (B,)ds H 1l"(-1— a, t)g (u )du holds.2 1 / 2 - a / 2  0( - ■-)

By Lemmal 1.3 it is  know n  tha t (t, a)=*11 a ( - 1— a ,t )  is jointly continuous,
a. s. Note th a t the  function g  is continuous with compact support. Then

R1

converges as ;—>00 t o  th e  process 1g(a)da)112(-1—a, t) uniformly in  t  on
R

each bounded interval a. s. T hus the Theorem 2.2 is proved. Q. E. D.

Remark 2.2 . Let f  and g  satisfy the sam e condition as in Theorem 2.2.
Then,

(A) R if(x )d x -= i(D a  g)(x)dx = 0  holds,

(B) If g (x )d x # 0 , t h e n  <f, f>=<D ag, D 'g>=+09  holds

Proof  o f  ( A ) .  L e t M  b e  a  positive  n u m b e r  su c h  th a t  th e  function  g

vanishes outside o f  th e  in te rva l [—M, M ] .  L et P g (x )= (   1   x ! - 1 * g ) (x )  be

the fractional integral of order )(3 of the function g (x ) .  It is  w e ll k n o w n  th a t
[ 1(Dag)(x)=P - "g (x ) (cf. e .g .  (2)).

Here

1 g(a)1 1  g ( x )  F ( 1 — a ) -  (x — da .

Note th a t I 1 g (x )= 0  for x< —M, and

1   g(a) d a  •  0 (x - a).' g ( x )  P ( 1 — a) -  (x — a)"

Then, we get

H ( -1—a, t)g(u)du
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.fR i f(x)dx= .ÇR , (Da g)(x)dx=0. Q. E. D.

Proof o f (B ) . Let g + (x )=g(x )V 0 and g_(x)=- (—g(x))VO.
We consider the case where

g(x )dx =-1 g + (x)dx j  g _ ( x ) d x > 0  .

Choose a  number M  such that the function g vanishes outside of the interval
[—M, M ].

Note that, for x >M

(Dag)(u)du -=(.1-1 - ag)(x)—(Il - ag)(-00)=(P - "g)(x)

1g ( a )  d a—  1  .
g ( a )  d ar (1 — a ) -m (x—a)" F(1—a) -TM- (x — a)"

1 ( .VI   g + ( a )   da
g ( a )  d a )T (1— a) -m  (x— a)" -m (x—a)"

1 ( 1  .r 1 çif
g(a)da).-  P(1 - a) (x + M )"  -m (x—M)

g + ( a ) d a

" -m

These inequalities imply

1(Dag)(u)du , , ,  0 (x " ) 0 < a < -2-

Thus we get

<Dag, Dag>= C O s
 . (D ag)(u)durdx )=± 00.

In the case where g(x )dx <0, we can also see by th e  sim ilar w ay that

<Dag, Dag>=+00 holds. Q. E. D.

The th ird  lim it theorem  is re la ted  to  th e  continuous additive functional
H°(-1— a, t), 0<13<1 and the fractional integral of order p.

The proof of the theorem can be done following a  sim ila r w ay  a s  in  th e
proof of preceding theorems, so we will omit it.

Theorem 2.3. Suppose that 0< p < 1 .  Let g be a  continuous function with
compact support.

Put f(x)-=.113g(x)-=(
T (

1

P )
xP,-1*g )(x) ; the fractional integral o f  order 13 of

the function g.
Then the family o f continuous stochastic processes

(2.13) t A i ,2
1
4.4s ,2

: t f(Bs)ds ,A > 0 ,
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converges in the sense of law on the space of  continuous functions to the continuous
process

(2.14) t,—) 0R 1g(x )dx )•H°(-14-p, t) a s  2--*oo

Remark 2 .3 .  Let g  b e  a  continuous function w ith  compact support.

If 1  g (x )d x # 0  holds, then  f ( x ) =1 g ( x )  d oes n o t b e lo ng  to  L 1 (121 ).
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