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Introduction.

In  th e  prev ious paper [20], w e investigated  t h e  problem  concerning the
uniqueness o f  th e  factorization (under com position) of certain entire functions,
a s  w ell a s  th e  prim eness e tc . A nd  in  [22], we introduced the notion of prime-
ness in  divisor sense (for entire functions) and studied about it.

In  th is paper, using results obtained in  [2 0 ] an d  [2 2 ], w e  sh a ll d e a l w ith
some related problems o n  factorization of certain en tire  and meromorphic func-
tio n s (w h ich  a re  closely related to periodic functions). A m ong others, w e are
m ainly concerned about entire functions which belong to J(b) o r  L (b ) (cf. § 1).
For instance , an  en tire  fu n c tio n  f  (z ) be longs to  J(b) (b 0 ), i f  f (z ) can be
expressed a s  f (z)= c z H(z), w h ere  c  is  a non-zero constant and H(z -  H ( z )
is , periodic, entire.

In § 1, we recall some definitions, term inologies and several know n facts,
needed la te r . In  §  2 , w e w ill generalize and complement th e  fo rm er results on
J (b ) a n d  L (b ) .  §  3  con ta ins a  re s u lt  o n  t h e  deficiency and factorizability,
re la t in g  to  t h e  w o rk  d u e  to  Gross-Osgood-Yang [9] (originally Goldstein [4]).
In  §  4 , w e  sh a ll c o n s id e r  a  factorization problem  concerning t h e  (iterative)
functional equation : fo f-= gog , and  prove that certain entire functions f  and g
satisfying this equation a re  identical (see Theorem  6). In § 5, applying a  result
on primeness in  divisor sense, w e  sh a ll ex h ib it certain  m erom orphic functions
which are prime.

§ 1. Preliminaries.

1 . 1 .  Definitions and terminologies. For a meromorphic function F(z), the
factorization under composition operation such as

F(z)= f g(z)= f (g(z)) (1 )

has been  considered , w here  f  a n d  g  are meromorphic fu n c tio n s . Of course,
when f  is transcendental, then g  shou ld  be  en tire . T h e n , by definition ([5]),
F  is  c a l le d  to  b e  p rim e  (pseude-prime ; right-prim e ;  lef t-prim e), if , fo r  every
factorization a s  above, we can always deduce th e  following assertion : f  o r  g

C om m unicated  by  P rof. Kusunoki, Nov. 2, 1984.



178 Hironobu Urabe

is  l in e a r  ( f  o r  g  is  ra tiona l ; g  is linear w henever f  is transcendental ; f  is
linear whenever g  is transcendental, respectively).

When F  is en tire  and  both factors f  (left-factor) and  g  (right-factor) o f  F
u n d e r (1 )  a r e  restric ted  to  en tire  func tions, then  it is  ca lled  tha t th e  factori-
zation is to  be in  entire  sen se . T hus, w e  m ay  use the phrase  "p r im e  in  entire
sense" instead of " prim e " e tc . It is w ell-know n that any non-periodic  entire
function is prim e if i t  is  prim e in entire sense (cf. [6]).

Typically, th e  functions z•e' and z-kez a re  p r im e . A n d  it m ig h t b e  n o te -
worthy that, especially, the  la tte r function has occupied th e  significant position
in  factorization theory (see [20] etc.).

Suppose th a t a non-constant entire function F (z) has two factorizations :

F(z) - -- f i o f e  • - •  o f . ( z ) = g io g e  • - •  o g n ( z )

into non-linear entire factors f ,  and g k . I f  m = n  a n d  i f  w ith  suitable  linear
polynomials T, (1 j ;  n - 1 )  the relations

f i ( z ) = g i o T i i ( z ) ,  h ( z ) = T 1 o g e T 1 ( z ) ,  ••• , f n ( z ) = T n - i . g ( z )

hold identically, then the two factorizations a re  called to be equivalent (in entire
se n se ) . I f  every factorization o f  F(z) into non-linear, p rim e , e n tire  fa c to rs  is
equivalent, then w e say that F(z) is  uniquely factorizable.

Of course, prime functions a re  considered  to  be  un iquely  fac to rizab le . In
[20], it is proved, for example, that the function F(z)=(z±ez)0(z+ez) is uniquely
factorizable.

N ow , an entire function F(z) const.), w ith  zeros, is  ca lled  to  be  prime
in  divisor sense (pseudo-Prime in  divisor sense; right-prime in  divisor sense; left-
prim e in  divisor sense), if , fo r  every identical relation such as

F(z)=f(g (z))•e A ( , ( 2 )

where f ,  g const.) and A  are  entire functions, w e can deduce the  following
assertion : f  has just one simple zero or g  is  a  linear polynomial ( f  has only  a
finite number o f zeros o r  g  is  a polynomial ; g  is  a  linear polynomial whenever
f  has a n  infinite number o f zeros ; f  has ju st one sim ple  zero  w henever g  is
transcendental, respectively). A s  is  s h o w n  in  [2 2 ] , th e  function z ± e ' is also
prim e in divisor sense.

1.2 . Two fundamental Theorems on J(b) and L (b ).  Following Koont [13],
w e  have considered (in  [20]) the tw o classes of entire functions, defined by

J (b )= {cz+H (z ); H  is entire, periodic, w ith period b (11(z+b)-H(z))
and  c  is a non-zero constant. }

and

L(b )=- {z•e' 1 " ) +112 (z); e l l 1 and  H, a re  entire, periodic, with period b.}

Evidently, J(b) L (b ) .  For example, z-Fee z a n d  (z±e 2 )0 (z + e ) belong to J(27i),
and  (z • 0).(z+ez) belongs to L(27ri). Concerning th e  r ig h t and  left factors into
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which the functions in J(b) or L(b ) are factorized, the following theorems will
be used later.

Theorem A .  Let F(z)EL(b) (b=0) and F(z)= f(g(z)) with non-linear entire
functions f and g, then we have f EL(6') for some b'=0 and geJ(b).

Theorem B .  Let F(z) J(b) (b=0) and F(z)= f(g(z)) with non-linear entire
functions f and g , then we have f EJ(11) fo r  some b'=0 and gEJ(b).

Remark. In  the above  T heorem s, i f  g E J (b ) h a s  the expression g(z)=
cz+H (z ) w ith  H(z+b) - H (z ), th e n  w e  k n o w  th a t  b '= b c  (cf. p roo f in  [20],
around p. 102).

1.3. Concerning th e  prim eness in  divisor sense, we obtained in  [22] the
following results, which are used in § 5.

Theorem C .  Let F (z) be one of the following three types of functions; (1)
z+P(ez), where P is a polynomial, (2) P(z)+Q(ez), where P and Q are two non-
constant polynomials such that, f o r  any natural number k and constant c, the
function e -  e z •[Q(ez)-kc] is non-constant, (3) P(z)•Q(ez), where P and Q  are two
non-constant polynomials such that [P(z+c)] 2 is  n o t  an even function fo r  any
constant c and Q(z), with Q(0)=0, has only simple zeros. Then  F (z ) is  p rim e in
divisor sense.

§ 2. Supplement of former results.

2 . 1 .  At first, w e recall the following fact.

Theorem D  (cf. [20] Cor. 8). The function z±e n i (z) is prime, where e m (z)
is the m-th iterate o f e  (e n i (z )=exp[e-,(z)], e0 (z)=2).

A s  a  generalization o f t h is  fac t, w e sha ll show the following result, by
using Theorem B.

Theorem 1. L e t F (z )= z+ h (e ), where h is an entire function. Assume that
exp[h(z)] is periodic, with some period b (# 0 ) .  Then F(z) is prime.

Indeed , th is T heorem  is a direct consequence of the Propositions 1 and 2,
be low . W e w ish  to  note here  tha t w e  can  show a ls o  th a t ,  i f  h  i s  an  entire
function with the order p (h )<1 , then the function z+ h(ez ) is  prime.

Proposition 1. Let h be an entire function. Then the function F(z)=z+h(e)
is prime if and only if G(z)=z•eh ( z) is  so.

Proof. L e t  F (z )=  f g (z ), with non-linear entire functions f  and g .  Then,
by Theorem  B in § 1, setting b-=.22ri, w e have
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and
f (z) .= cz +111(z) , J(b ') ( 3 )

g(z)-=c'(z±H,(z)) j(b) ( 4 )

w ith  b'=bc' . By th e  assumption, we have

f  g (z )= cc' z+ cc'112(z)+ HiCc i (z+112(z))]

=z + h(e 2 ) . ( 5 )

Here we can write

H2(z)=h9(e) ( 6 )

w h e re  h ,  a n d  h ,  a re  h o lo m o rp h ic  in  th e  punctured p la n e  0 <  z l<  co (since
b' =bc' w ith  b =27 ri) . In  th e  iden tity  (5 ), w e  see  a t first c c '= 1 .  Hence, under
(5), cancelling z a n d  then , in  view of (6), replacing the variable (e 2  b y  z ), we
obtain th e  identical relation

h,(z)+11,(z • e h2m)— h(z) , (7 )

fo r  z # 0 . N o w , noting Lemma 6 in [20], w e know  from  (7) th a t  h , a n d  h , are
entire  functions. H ence th e  equation (7) m u st b e  sa tisfied  f o r  a n y  z. Then,
b y  (7 ), w e  h a v e  th e  follow ing factorization o f  t h e  function z • ehm

z • eh" ) =z • e 4 2(2 ' • exp[h i (z • eh2 )]

=(z • ehl ( z)).(z • eh2 ( ' ) ) , ( 8 )

w here h , (.7 = 1 , 2 ) a re  entire, a s  shown above. Hence, i f  G(z)=z • eh ( ')  is  prime,
th en  h , o r  h , is  constant, so  th a t f  o r  g  is  linea r, th a t i s ,  F  i s  prim e. N ote
that, since F  and  G  a re  non-periodic, we need only consider th e  en tire  factors
w . r. t. the primeness.

Conversely, i f  G(z) is  no t prime, then, under (8), w e m ay assume that both
h , (j=1, 2) are non-constant and e n t i r e .  In  this case, using the relations (3)-(8),
w e  see  a t once, under F = f  g ,  th a t f  and  g  a r e  both  transcendenta l, so  tha t
F  is not (pseudo-)prime.

2 .2 .  Relating to th e  uniqueness o f th e  factorization, we note  the following
tw o  fa c ts . A s  a  supplement o f  Theorem 3 in  [2 0 ], w e  have

T h e o re m  2 . Let

F(z )=(z +e - " • P(e)). (z+ Q(ez)) ,

w here P and  Q  are  polynomials w ith P(0) 0 an d  k  is  a n atu ral nu m ber. T hen
F(z) is uniquely  factorizable.

T h e  proof o f this result can be done quite sim ilarly a s  th a t  o f  Theorem 3
in  [20 ] (even som ewhat sim pler), hence om itted. A s  a  generalization o f  Theo-
rem  7  in  [20], we obtain



Entire and meromorphic functions 181

Theorem 3. Let

F(z)=(z+111(z))•exP[ -12(z)] ,

where H , and exp[H 2 ]  are periodic entire functions w ith the sam e period b (*0)
(hence FE L (b )). A nd assume that F(z)= f (g(z)), w ith non-linear entire functions
f  and  g . T hen , tw o functions z+ H 1 (z) and H 2 (z ) m ust hav e g(z ) as the common
right-f actor, that is,

z+111(z)-=K1(g(z)) and H,(z).= K,(g(z))

for som e entire functions K . ; (j =1, 2).

R em ark . In  the  above Theorem, F  is  prim e, if tw o functions z+ H i (z) and
H3 (z) have no common, non-linear, entire function a s  th e  right-factor. Further,
if  z +Hi(z ) is  prime, then  F(z ) is uniquely factorizable such as

F(z)=(z • exp[K,(KT 1(z))]° (z+ Hi(z)) •

H ere  n o te  th a t ,  i n  t h i s  c a se , K , i s  a  linear polynomial and so  th e  function
z • exp[K,(K ,-1 (z))]E L(b) (in  the  above expression) is  prime.

A s noted above, in  particular, w e  have

Proposition 2  (c f. [20 ] Cor. 3). The function z • eg (z), w hich is contained in
L (b) (b#0), is prime.

Proof  o f  Theorem 3. Since F L (b ) , by Theorem A  an d  Remark there, we
may write

f  (z )=H,(z )+ z  en * 4(' ) , g(z )= z+ H,(z ) , ( 9 )

w here H ,, exp[114 ]  and  H , a re  periodic, entire, w ith period b. Hence

f (g(z))=H,(z)+ z • exp[H4 (z+115 (z))] (10)

with H2(z)=H3(z+H5(z))+1-15(z)•exliCH4(z+1 1 5(z))]. Clearly H 6 (z+ b)=-- H,(z ). Now,
F= f  g  and

F (z)= 111 (z) • exp[H2(z)]+z•exP1112(z)1 (11)

By considering F(z+b)— F(z) and  cancelling t h e  periodic p a r ts  f ro m  (10) and
(11), w e have exp[H2(z)]=exPEN4(z+.1/5(z))1=exP[114(g(z))]. Hence

z+ H,(z)= f (g(z))• exp[—H2 (z)]

=( f (z)-exp[— H,(z)]).(g(z)) ,

and H2 (z )=H 4 (g(z))+2m7ri fo r som e integer in. T h u s , i n  o rd e r  to  o b ta in  the
assertion, we m ay take

K i (z)-= f (z)-exp[— H4(z)] , K2(z)=114(z)+ 2 m7ci

Clearly, these K , (j=1, 2) a re  entire functions.
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2 .3 .  H ere w e show  the following result, which is needed in  § 3.

Theorem 4. Let

F(z)=z•exp[2.e m (h (z))]+H (z),

where 2 is  a non-zero constant, em (w) is  th e  m-th iterate  o f  e t°  and  both  h(z)
( const.) and  H (z) are  entire, periodic, functions w ith the same period (b, *0,
say ) . Further assume that h(z) is prim e. T hen F(z) is prime.

Remark. W e know  that there exist p rim e, period ic , en tire  functions (cf.
[2 ], [ 10], [17], [21 ]) .

Proof  o f  Theorem 4. L et F(z)=  f(g (z )), w ith non-linear entire functions f
and  g .  Since FG L(b ), a s  before, we may write

f (z)=H,(z)- z • 0 . 2 )  a n d  g(z)=z+ H,(z) ,

w here H ,(z+b)=H ,(z) (j=1, 3) and exp[H2(z+b)]=exP[H2(z)] a r e  entire func-
t io n s .  Note th a t H2 (z) const., since FEJ(b), and also 1/2 (z) const., since g  is
non-linear by  assum ption . U nder F = fo g ,  by  considering  F(z+b)— F(z) and
cancelling the periodic parts, we have exp[H2(z+1-12(z))1=exPP.e.(h(z))]. Hence

H2(z+H3(z))=2.e(h(z))+2k17ri , (12)

fo r som e integer k1. Because zd-H,(z) takes every values (cf. [20], footnote at
p. 102), from  (12), it follows that

112 (z)=2k 1 iri +2.exp[U I (z )], (13)

fo r some entire function  U 1(z) ( const., since H , i s  so). I n  v iew  o f  (12) and
(13), w e have e x p [ U 1 ( z + H 3 ( z ) ) 1 - - - e m ( h ( z ) ) ,  a n d  so

U,(z+113(z ) )= e , i (h(z))+2k 27ri ,

fo r some integer k 2 . T hen , U 1 (z)=2k 2 7ri-Hexp[U2 (z )] f o r  som e entire function
U 2(z ) .  Hence exp[U 2 (z+H3(z))1=e,i(h(z)) so  tha t • • • . Repeating this argument,
w e  have that

Uni-i(z+H3(z))=exP[h(z)]+2kntri ,

Un2_i(z)=2km7rid-exp[Um(z)]
and

U H3(z))=2k h(z) , (14)

for some entire functions U , ( const.) and integers 12,.
N ow , h(z) is  prime by assum ption. Since g (z )=z+H ,(z ) is non-linear, then

by  (14), U m (z) m ust be linear ;=az±b  ( sa y ) . In  th is  case , the  identity (14) can
be rew ritten as

a • H,(z)—h(z)=—az—b+21z,,,ri (15)

By th e  w ay , th e  left hand side o f  (15) is periodic w ith period b. W hile  a *0,
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since U,,(z ) is  non-constan t. Under (15), these clearly  lead u s  t o  a  contradic-
tio n . T hu s, u n de r F =f o g ,  f  o r g  is  linear. H ence  F is  prim e, w hich is to be
proved.

Rem ark. Also, a s  a  generalization o f Theorem  12 in  [20], w e can  p rove
th e  following result :  T h e  func tion  p(e)H-z •ex p[z ±q(e)] i s  prim e, w here p
and q a re  tw o entire functions w ith th e  order p(p), p(q)<1 (both).

§ 3. Deficiency and factorizability.

H e re , in  connection with th e  w ork due to  Gross-Osgood-Yang [9], we will
exhibit prime entire functions o f  in fin ite  o rder (a rb itra ry  rap id  g row th ) w ith
prescribed Nevanlinna deficiency. F o r this purpose, using their line of argument
in  [9], w e note the following

Proposition 3. For constant 2; >0 (j=1 , 2 ) and an entire function g(z)
( const.), we consider the function F(z ) defined by

F (z)=exP[A ig(z)] • {exP[22g(z)]+ z c}

where c  is a constant. Then, for a suitable value of c  (precisely, i f  ceC— E,
where E  is a set with inner Cap E =0), we have

3(0, F)=2 1 /(21+22 )

where 6(*, *) denotes the Nevanlinna deficiency.

P ro o f. W e w ish to  show , firstly, that

T(r, F) , --, (21-1-22)-T(r, e ).( 1 6 )

T o  do so, w e shall take  certain  n E N  and 2 > 0  s u c h  t h a t  2+2 1 =n2 2 a n d  we
consider th e  function

G(z)=e2g")-F(z), (17)

w hich is rew ritten as

G(z)=exp[n22g(z)]• lexP[22g(z)]+z+cl

=h(z)n-{h(z)-Ez-l-c} , (18)

w h e re  h(z)=exp[2 2 g (z ) ] .  H e re  w e  n o te  th e  following fact :  F o r a  po sitiv e
constant p t  an d  an  en tire  function  g(z), T(r, eP " ) = ,u T ( r ,  e " ) ,  where
denotes th e  Nevanlinna characteristic function. T hen , u s in g  th is  f a c t , we
obtain that

T(r, (n+1)T(r, h)=(n+1)2 2 T(r, eg ( 4 ) ),

by  (18). Note a lso  tha t th e  first assertion above can be show n by considering
m (r, G ), i n  w h ich  th e  s e t  where I h(rei 6 )I  is  large should only be considered.
Hence, using (17), w e have
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T (r, F)=- T (r, e - À g" ) •G(z))

_ T (r,G )— T (r, e 2 g" ) )

{(n+1)2 2 - 2 1 .7 a(r, eg"))

=- (21+22)•T (r, e g " ) ) .

While,

T (r, F) T (r, e 2 1g" ) )+T (r, e '2 g " ) .-1-z +c )

e21g"))+T(r, e'2g(z ))

=-(21+22)•T (r, eg")).

From  above, w e know  that the assertion (16) is  valid.
By the  w ay , noting a  well-known fact ([15], p. 276), fo r  c e C — E  w here E

is  a  se t  w ith inner C ap E=0, w e have

N (r, 0, F)=N (r, — c, e 2 2g" ) +z )

e'2g" ) +z ) ,-, , T (r, e 22g(z))

=22 .T (r,

Hence 5(0, F)=1 — lim sup AT(r, 0, F) /T (r, F)=21/(21+22) ( f o r  a  suitable value of
r—•co

c ), which is to be shown.

T h e o re m  5 . L e t a be a given constant w ith 0 < a < 1 .  Suppose th at h ( z )  is
a prim e, periodic, entire function and 2; ( j= 1 , 2 )  are positive constants such that
211(21+22)=a. W e consider the function F(z ) given by

F(z)=exp[21eni(h(z))] • exP[ 2 2e.( h(z ))]+ z+ c} ,

where c e C — E  f o r a suitable subset o f  C  w ith inner Cap E = 0 .  Then F ( z )  is  a
prim e entire function w ith N ev anlinna deficiency 3(0, F)=a.

T his is valid by Theorem  4 and Proposition 3.

R e m a r k .  1 )  P rim e  en tire  func tions (o f  infinite order) w ith N evanlinna
deficiency 0 o r  1  can easily be given by using Theorem  1 or Theorem  4 in § 2,
respectively. 2 ) .  A s  a  p r im e  entire  function  w ith  prescribed  N evanlinna
deficiency, by the  results due to Y . N oda ([16], Theorem  3, etc.), w e m ay also
take  th e  function o f th e  form : (z +c)• f  (z ), where f  is  a  suitable transcendental
entire function an d  c  is  a certain constant.

§ 4 . E q u a t io n  f . f = g o g .

Relating to th e  problem on  the  uniqueness o f  th e  factorization, o r  special-
izing this, we shall consider th e  following problem : W hen f  a n d  g  a re  entire
and they satisfy th e  identity f ( f (z ) )=g (g (z )) , th e n  w h a t  c a n  b e  s a id  ab o u t f
and g ?  G e n e ra lly , it  se e m s v e ry  d iff ic u lt to  g e t a  p o s itiv e  answ er for the
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above q u e s tio n . However, if  w e  p u t  a  c e r ta in  specific condition on f (z ) ,  we
can prove th e  following result.

Theorem 6. L e t f be an entire function of the form :

f (z)=z+ p(ez) ,

where p (z ) is  a  non-constant entire function such that exp[k • Non – 1  fo r  any
natural num ber k. Suppose that g  is entire and satisf ies the following identical
relation

g (g (z ))= f(f (z )). (19)

Then we have necessarily g(z) f(z).

Corollary. L e t f(z )= z+ e n ,(z), w here in is a  natural num ber (e n ,(z) denotes
the m-th iterate o f  e z ).  A n d , if  g  is  en tire  and satisfies the identity  g(g(z))=
f ( f (z ) ) ,  then we have necessarily g(z )=z+e r,t (z).

Remark. In  the  case  w here m =1 (for the above f ) ,  w e know  further that
the composite function (z±ez).(z+ez) is uniquely factorizable. B u t, s o  fa r , we
h a v e  n o t b e e n  ab le  to  prove that th e  function (z±e k (z)).(z+e„,(z)) is uniquely
factorizable (or not), in  the  case w here one of (na tu ra l num bers) k  a n d  in  is
larger than  one.

Also, note th a t , if  f (z)= z —sin z and g(z)= —(z —sin z)+2k7r w ith an integer
k, then  w e have f (f (z )) -_- g (g (z )) (cf. [8], p. 242).

F o r th e  proof o f  Theorem 6, w e shall need th e  following fact.

Lemma A .  Let G (z) be entire and q(z) be holomorphic in 0<  z  < o 0 .  Sup-
pose that they  satisfy  the equation

1
q (z )— q (•e )= G (z )

fo r  any  z # 0 .  Then q(z) must be entire.

T h is  is  p ro v ed  s im ila rly  a s  L em m a 6  i n  [2 0 ].  Indeed, if  th e  L au ren t
expansion of q(z) a t  z=0  contains terms o f negative  pow ers o f  z ,  then  there
exists a  sequence {z 5 } (z i t-0 ), z,—>0 (j--co) such that

1
— • e - q(Y
Z j

=1, (21)

because th e  function e - g( ' ) /z has th e  origin (z=0 ) a s  t h e  essential singularity.
T hen , fo r the  sequence {z .,} satisfying (21), we have Re q(z,)—>00 (j—>00). Hence,
putting z= z , in  (20), w e know  tha t th e  rea l p a rt o f  th e  le f t h a n d  s id e  o f  (20)

te n d s  to  in fin ity , w h ile  th e  right hand side remains bounded, a s  j - - o o .  This
is  a  con trad ic tion . Thus q(z) has no terms o f negative powers o f z ,  so  that q
is to be entire.

(20)
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Proof  o f  Theorem 6. Since  f(f(z ))=z+p (ez )d -p (exp [z+p (e ')])E J (2z i), by
Theorem B , it  fo llo w s  th a t , u n d e r  (19), g  J (2 z i ) .  W riting g(z)=- c(z+ H(z)),
w ith  H(z +27ri)E: H(z), entire , w e see firstly  c = ± 1 . Now, w e  have H(z)=q(ez),
for some holomorphic function q(w) in 0< w <oo.

Then, from the  identity (19), cancelling z  and replacing the variable (from
to  z, as before), we have two identical relation for z# 0 , according a s  c=1

o r c= — 1. In both cases, w e see  tha t q is  en tire . Indeed , w hen  c=1, then we
know it by Lemma 6 in  [20], and w hen c= —1, then  w e know  it by  the above
Lemma A.

B y the way, w e can  ru le  out the case w here c= — 1. In fact, in th is  case,
the identical relation (valid for z#0) mentioned above can be written as

1
q(z)—q( • e - q"))= p(z)d p(z eP ( z)) .

H ere, w e  k n o w  th a t  q  is  en tire , as noted above, by Lemma A .  Further, by
considering the behavior o f  th e  ab o v e  id en tity  n ea r  z = 0 , w e  have t h a t  the
r ig h t  h a n d  s id e  is  n a tu ra lly  holomorphic a t  the origin, but the left hand side
has singularity there (cannot be extended holomorphically). T h u s , w e  have a
contradiction.

Hence, in the following, we need only consider the  equation

q(z)+ 9(z • e' )= P(z)+ P(2 • e''' ) ) , (22)

w hich is valid for any  z  in  C . In th is  case, note th a t g(z)=z+q(ez), since c=1.
Under (22), setting z= 0, it follow s that q(0)= p(0). H ere  w e p u t s = 0 " .=

eP ( ' )  (sa y ) . T hen it is assum ed that 1+ sni 0 for any natural num ber m.
In the follow ing, w e w ish to show that

q ( m) (0)=p ( m) (0) (m eN ), (23)

by  induction. W e note that, differentiating the  both sides o f  (22) a n d  setting
z= 0, w e have (1+s)•q'(0)=-(1-1-s).p/(0) so  th a t q '(0)= p '(0). Assume now  tha t
w e  have

q(0)=p(0), ••• , q ( m- 1 ) (0)=p ( m- 1 ) (0). (24)

Then by differentiating (22) m-times, w e have

d '
q( m) (z )+ fq(z e q " ) )1 =P ( m) (z)+ {P(z • e )} .

Now, for instance,

d ' ip( z .e p(z)))._= pc.)( z .e p(0),{( z ,e pcoyr

+  E  P ( k ) ( z • e 2 ) ) • D , , , [ z . e P ( ') ] ,k=i

dz"

(25)

(26)

w here D„,,,[***] is  a  homogeneous differential polynomial of degree k (cf. [19]).
In particular,
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dm - 1 d 'D m i [z•e 1—m leP(z1 H -z   {eP(''}d z m l dzm

Here note that the second term of the above equation is zero a t  z = 0 ,  a n d  so
that we have D m i [z-eq ( z) ]=D n i i [z•eP ( ' ) ]  at th e  o rig in . Also we obtain

D i n k rz • eg "'11 z=0=Dmk[z • e P "']Iz=0

for k=1,•-• , m -1 under (2 4 ) . Hence, in view of (24) and (26), by setting z= 0
in the identity (25), we see that (1+sm)-q ( m) (0)=(1+sm)•p<m ) (0) so  th at q ( 7 "(0 )
-p (-)(0 ) , since 1 d -sm *0  by assumption. Therefore the assertion (23) is checked.

Hence, by the unicity theorem, we conclude that q  a n d  p  a r e  identical.
T h is  means that two functions f  and g  are identical ;  g(z) —= f (z ) ,  which is to
be proved.

§ 5. Certain prime meromorphic functions.

In this section, by using the results on primeness in divisor sense shown in
[22] (cf. Theorem C, § 1), we shall exhibit certain prime meromorphic functions.
For instance, we can prove the following results.

5 . 1 .  Theorem 7. Let

P(z )+Q (e )  F (z )=
S (z )+ R (z )H (z )'

where P  ( const.), Q ( const.), R ( 0) and S are polynom ials such that, for
any  kE N  and cEC , the function e- kz•[Q(ez)d-c] is non-constant, and H(z) is  an
entire function which is periodic w ith the period 27ri such  that the  order and
low er order o f  H  satisf y  1 < p (H )p (H )< 2 .  Assume th at  the numerator and
denominator have no com m on zeros. Then F(z) is prime.

Theorem 8. Let

P(z)+Q(e z ) F (z )=
S(z)+R(z)•a(ez)'

where P  ( const.), Q ( const.), R (V )) and S are poly nom ials such that, for
an y  k E N  and cEC , the f unction e- kz-[Q (ez)±c] is non-constant, and a  is an
entire function such that the order of a(ez) is f inite and not integer and the lower
order of it is larger than one. Assume that the numerator and denominator have
no common zeros. Then F (z ) is prime.

The proof of Theorem 7  is quite similar to that of Theorem 8  (even some-
what simpler). Hence, we shall only prove Theorem 8.

Proof  o f  Theorem 8. Suppose that

F (z)=- f (g(z)) , (27)
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where f  a n d  g  a re  non-linear meromorphic fu n c tio n s . H ere, g  c a n n o t b e  a
polynomial, as easily  seen by noting the distribution of the zeros of F (z ) (they
are distributed mainly in  the  righ t ha lf plane). In the following, we'll consider
the tw o cases separately.

( I ) The case where f  is transcendental meromorphic (not entire) and g  is
transcendental entire . I n  th is  case , b y  a  Theorem  of Edrei-Fuchs ([3], Cor.
1.2), w e have p (f )= 0  and p (g )< oo , so  that w e can w rite

f (z)- (z)/r(z) ,

w here /3 and r ( const.) are entire functions, w ithout com m on zeros, both of
o rd e r  z e ro . Then, b y  (27) and (28), w e have the identities

P (z )±  Q (ez ) 13(g(z))• eA(z) (29)
and

S(z)± R(z) - a(ez)=7 . (g(z)) • eA ( ')  (30)

fo r  som e en tire  func tion  A (z ),  s in c e  b y  th e  assum ption th e  num erator and
denominator of F (z ) have no common zeros. By Theorem C , the left hand side
of (29) is  prime in divisor sense (by the assumption in  Theorem 8). Hence, by
definition, 13(z) m ust b e  l in e a r .  H ere, w ith o u t lo ss  o f  genera lity , w e m ay
assume that /3(z) z. Then, from  (29), it follows that

g ( z )  ( p ( z ) +  Q(e z)), e-A (31)

Since the order p (g )< o o , w e know  that A (z ) i s  a polynomial. Now, from  (30)
and (31), w e have the following identical relation

{S(z)+ R(z) • a(ez)) • 
e - A ( z ) _ 7 ( 1 1 3 ( z ) + Q ( e z ) 1 . e - A ( z ) ) .  

(32)

Here, when deg A=0 o r 1, then  w e compare the grow th  o f  th e  b o th  s id e s  of
th e  above  iden tity  (32) a lo n g  th e  u p per o r  low er half of the imaginary axis
(If eA( z) is periodically bounded on the imaginary axis, then  any  se lec tion  w ill
d o .  I f  i t  i s  n o t  the case, then the selection must be made so  as to  e -  - - o o
as z—>oo on the considered p a r t .) . When deg A there  ex ists a  straight half
line L  issued from the origin and contained in  the le ft h a lf  plane such  tha t, if
z-- co o n  L , e -  — > 0 0 . T hen w e compare the grow th of the both sides of (32)
a lo n g  th is  h a lf  l in e  L. I n  e ith e r  case , b y  ap p ly in g  the m inim um  modulus
theorem (if necessary), we have a contradiction (cf. argument around p. 108 in
[2 0 ] ) .  Note th a t r is transcendental entire  w ith p (r)= 0 , a n d  th a t  b o th  a(ez)
and Q (e ) are bounded on the considered half line.

(1 1 ) The case w here f  is  ra tio n a l a n d  g  is  transcenden ta l meromorphic
(not entire). W rite

f (z)=U(z)1V(z) , (33)

w here U  and V  a r e  polynom ials w ithout com m on zeros. N ote that, because
the order p (F ) is finite and not integer, in th is  case, the sam e is true for p(g).
Further note th a t the lower order p (g )> 1  (since F  is  so). If deg U = 0, deg V 2
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a s  f  is  n o n -lin ea r . N ow , in  th is  case , the  poles o f  g  are  the  m ultip le  zeros of
F .  A nd they  a re  infinite in  n u m b e r . B ut the  zeros o f  F  a re  a l l  simple except
a t m ost a  finite number o f  them  (as easily  seen ). T h is  is  a contradiction.
I f  (1 ) deg U<deg V  under (33), th en , le ttin g  b  b e  a  z e ro -p o in t  o f  U(z), we
have

N (r, 00, g)+N (r, b, g) N (r, 0, F) . (34)

H ere , N (r, 0, F )  is  c le a r ly  o f  o rd e r  1 (cf. [11], a round  p. 16), and  hence the
left hand side o f  (34) is  a lso . B ut th is  is  n o t valid, w hen p(g) is finite  and  not
in teger w ith  p(g)>1, b y  a  Theorem due to  Nevanlinna ([14], p. 51 ). T his is  a
contradiction.
If  deg U d e g  V, then deg ( f  is non-linear). S ince t h e  z e ro s  o f  F(z )  are
almost simple, U(z) m ust have a t least tw o  distinct zero-points. Hence, letting
b  and  c  (b * c )  be tw o zeros o f  U(z), w e have

N (r, b , g)+N (r, c , 0, F) .

Using this inequality, we obtain a contradiction similarly a s  above.
Thus, under th e  factorization such a s  (27), f  o r  g  m u s t  be  linear. H ence

F  is  p r im e . T h is  completes th e  proof o f  Theorem 8.

5.2. R e m a rk . F o r th e  functions o f  th e  form :

Pi(44 - Qi(e) Pi(z)-1-Qi(e) F(z )= or
F2(z)+Q2(ez) P2(z)±(12(e-2)

w here 13
;  a n d  Q. ;  a r e  some non-constant polynom ials, generally , w e can only

prove that they a re  right-prime.
N o te , fo r  ex am p le , th a t th e  function (P(z )1

k ± e z ) 1 ( E p ( z ) i k  e z )= ( { w k  + 1 }

I i w k _1 1 ).(p (z ).e -z1 k ) is  n o t prim e for any  polynomial P(z ) ( 0) if
By th e  w ay , concretely speaking, we d o  n o t k n o w  w h e th e r  t h e  functions

such a s  [z + 2e z] /Ez +  zne j  a n d  [z ± e ']/ [z +e - z ] are  p rim e o r no t, though we have
th e  following assertion.

Proposition 4 .  F o r a  meromorPhic function h (z ) , the function [h(z )±ez]
l[h(z)— e2 ] is  prim e if  and only i f  h(z)-e - z  is so.

I n  f a c t ,  th is  is  t r iv ia lly  v a lid  i n  v iew  of the  re la tion  such a s  [h(z)--Fez]
l[h(z)—  es] —1 =2/[h(z ) e - z —1]. H ence, in particular, the function E z +  I Ez —
is  prime, b y  Proposition 4, because z•e - z  is  prime (cf. Proposition 2).
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