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On certain d-sequence on Rees algebra

By

Yasuhiro SHIMODA

Introduction.

In this paper we study the d-sequences on the associated graded ring of an
ideal in a Noetherian local ring.

Let A be a Noetherian local ring with maximal ideal m and g=(ay,..., a,) an
ideal of A. We define the Rees algebra of g as the subalgebra

AlaX,..., a,X]

of the polynomial ring A[X] in the indeterminate X over the local ring 4, and
denote it by

R=R(9).

A sequence of elements x,,..., x, of a commutative ring R is called a d-sequence
if for all i=0 and k=i+ 1, we have the equality

(X gseees Xt X 1 X ] =[0x 5000y X)X, ]

Any regular sequence is obviously a d-sequence and every system of parameters in
a Buchsbaum ring is a d-sequence ([7] Prop. 1.7.).

Let us state here some remarkable properties of the Rees algebra of an ideal ¢
generated by a d-sequence a,,..., a, of a local ring A.

Firstly, if a,..., a, form a regular sequence, then so do a,, a,—a,X,...,a,—
a,_1X, a,X in the Rees algebra R(¢9). Hence if 4 is a Cohen-Macaulay ring so is
R(9) ([1]). However, the converse of the above is not true in general. It has been
quite an important problem to describe the condition of the Rees ring to be a Cohen-
Macaulay ring. This has been partially settled in some papers [2], [5], [8], [10].

Secondary, if a,,..., a, form a d-sequence, the Rees algebra is isomorphic to
the symmetric algebra [7]. By virtue of this fact, J. Herzog, A. Simis and
W. V. Vasconcelos have given a homological characterization of a d-sequence [4].
Recently, S. Goto and K. Yamagishi have shown results of a d-sequence in more
detail than the above ([3]).

We treat in this paper the following question: If a,,..., a, form a d-sequence,
then do ay, a,—a,X,...,a,—a,_,X, a,X form a d-sequence in the Rees algebra?
This is not true in general (see example (4.2)). We give in this paper a sufficient
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condition for a,, a,—aX,...,a,—a,_, X, a,X to form a d-sequence in the Rees
algebra.

Let M denote the ideal, introduced in Definition 1.1, of a generalized Cohen-
Macaulay ring (abrev. a G.C.M. ring, see also Definition 1.1 for the definition).
Then our first result is stated as follows:

Theorem 1. Let A be a G.C.M. ring and a,..., a, a subsystem of parameters
of A contained in M. Put 9=(a,,...,a,). Then a,, a,—a,X,...,a,—a,_, X,
a. X form a d-sequence in R(9).

As a consequence to the above theorem, we see that there exists a d-sequence
a;, a,—a;X,..., a,—a,_, X, a,X such that dim (R(¢)/(a,, a,—a,X,..., a,—a,_, X,
a,X))=dim A—r.

On the other hand, C. Huneke has shown that a, X, a,X,..., a,X also form
a d-sequence in R(q) if ay,..., a, form a d-sequence [6]. Notice that dim R(¢)/(a, X,
a,X,...,a,X)=dim A.

The main result of this paper presents a d-sequence in the Rees algebra such
that the ideal generated by the sequence can have the arbitrary dimension not
greater than dim 4. It is stated as follows:

Theorem 2. Let A be a G.C.M. ring and aq,..., a, a subsystem of parameters
of A contained in M. Let n be an integer with 0=n<r and define a sequence of
elements in R(q) as:

ai—a,'_IX (0§i§n)
a; X (n+1=Zigr),

where we set ag=a_,=0.
Then the sequence

_f=f1s-~-’fn’ Jovtses fo

form a d-sequence in R(q) and
dim (R(9)/(f))=dim A —n.

We will prove the above theorems in Section 4. In Section 2, some fundamental
lemmas on d-sequences will be prepared.

If a,,..., a, form a regular sequence, one can find the generators of ideals [(a,,
a;—a,X,...,a;—a;_X):a,] and [(ay, a,—a,X,...,a;—a;_(X, ay): (a;,,—a;X)]
([12]). We also find the generators of the above ideals in the case of d-sequence.
This is given in Section 3.

1. Definition and notation.

Definition 1.1. ([11]). Let A be a Noetherian local ring with maximal ideal m.
Then A is called a Generalized Cohen-Macaulay ring (abrev.a G.C.M. ring) if H}(A)



Rees algebra 185

has a finite length for all i<dim A=d. Here H}(A) denotes the i-th local coho-
mology module.

This is equivalent to the condition that there exists an ideal M with A2,/M2m
such that the equality

(ay,....ap): a;,=(ay,...,a;): M
holds for every 0<j<d—1 and for every system of parameters aj,..., a; contained
in M.
Definition 1.2. U(ay,..., a;_;)=(ay,..., aj")i a;for 1 <j<r and for a sequence
of elements a,,..., a,. If Aisa G.C.M. ring, then we have
UGay,...,a)=(ay,...,a;): a=(ay,...,a;): b
for any two subsystems of parameters {a,...., a;, a} and {a,,..., a;, b} contained
in M.
Notation 1.3. If f is an element of Rees algebra R(g), we denote by f(") the

coefficient of the term X" in f.

Notation 1.4. Let R be a Noetherian ring, x,,..., X, a sequence of elements,
and I an ideal of R. We always denote by R the factor ring R/I and a the image
of an element a of R in the ring R. Moreover, we denote by U(X,,..., X;_,) the
ideal [U(x,..., x;_,)+I]/I for every 1<j=<r.

Notation 1.5. Let a,,..., a, be a sequence of elements of 4 and put g=(a,,...,
a,). For an element f of Rees algebra R(q) we denote by f the image of f in the ring
R=R(g+U(ay,..., a)|U(ay,...,ap)) for ISj<r—1.

2. Preliminary.

Throughout this paper, let A be a G.C.M. ring of dim A=d and M the ideal in
Definition 1.1. Let ay,..., a, be a subsystem of parameters for 4 contained in M
and put ¢=(a,,..., a,). Define a sequence of elements in the Rees algebra R(q) as:

gi=a;—a,.;X (1SjSr+1)

where we set ap=a,,,=0. We always denote by Q; the ideal of R(9) generated by
gyse--, g forevery 1ISj<r+1.
Our first lemma, which we will use frequently, is as follows:

Lemma 2.1. Let by,..., b, be a subsystem of parameters for A contained in M.
Then both ring A/(b,,..., b)) and A|U(b,,..., b,) are again G.C.M. rings.

Proof. Let b,,,...., b; be a sequence of elements of 4 such that b,,..., b,
b,+1,..., by form a system of parameters for 4 contained in M. Then b,,4,..., b,
form a system of parameters for A/(b,,..., b,) and A/U(b,,...,b,). Since A is a
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G.C.M. ring and since by,..., b,, b, ,4...., b;, b2, form a subsystem of parameters
for A, we have

(byseees by byyyanns b)) by
c[U(byois b))y by s b1 b4y
c(byseens by, byyy,..., b)) by
=(by,.... by byyyaes b)) M
c[U(by..s b)), by oy b1 M

for every t+1<j<d. Thus we have the desired result.

Lemma 2.2. U(ay,...,a;_)Ng*¥=(ay,..., a;_)q*"" for every 1<i<r and all
k>0.

Proof. See [2] Lemma 4.2 and [10] Lemma 2.2.

Lemma 2.3. U(a;,) N U(ay,..., a)S(a;, )+ U(0) for every 1<i<r—1.

Proof. Suppose that i=1. Let x be an element of 4 and assume that
xa,=sa; and xa,=ta,

for some s, te A. Then we have se U(a}) since ta3=xa,a,=sa? and a3, a, form
a d-sequence. Let xa,=s'a3 for some s'e A, and we have x—s'a, e U(0), i.e.,
x e(ay)+ U(0).

Now suppose that i>1 and the assertion holds for i—1. Let x be an element
of U(a;+,)nU(ay,...,a;) and put A=A/(a,,...,a;_,). Then xeU(a;,,)nU(a,).
By virtue of the above result, we have x € U(0)+(4,,,), which implies

xe€(a;y)+U(ay,...,a;_4).

Hence x e (a;+)+[U(a;4+,) N U(ay,..., a;_ ;)] and by induction we have x e (a;, )+
U(0).

Corollary 24. [g+U(a)+ - +U(a;1 )] nUlay,..., a;_)=(ay,..., a;_ )+ U(0)
for every 1Zi<rand 0Zk=<r—i.

Proof. If r=1, then there is nothing to prove. So suppose that r>1. If
i=1, the assertion is obvious. Thus we may assume that i>1. Since a,,..., a;_;,
d;yy,-+,d, form a subsystem of parameters in the ring 4=A4/U(a;) and since
U(0) =(0), by induction on r we have

[@+U(a;s )+ + U@ )In0@a,...., a;-)=(ay,..., a;_y),
which implies
[+ U(a;, a;y )+ -+ U(a;, a; )] N Uay,..., a)
=(ay,..., a;—,)+ U(a)).

Thus we have
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[¢+U(a)+-+ U(a;+ )N Uay,.... a;_,)
clg+U(a;, a;p )+ +U(a;, a; )]0 Ulay,.... a;_ )
=(ay,..., a;—1)+[U(a) n U(ay,..., a;_,)]
=(ay,..., a;_)+(a;)+ U(0)
=(ay,..., a;))+ U(0).

Now, we will give some results about Rees algebra when a,,..., a, form a
d-sequence.

Lemma 2.5. R(¢+U(ay,..., a,)/U(a,..., a,))=R@q)/[U(a;....,a,).a, X, ..., a,X]
for every 0S<n=r—1.

Proof. See Proposition 4.4 in [2].

Lemma 2.6. [q, U(a,...., a;_), a,X...., a;—X]: a;X=[q, U(a,,..., a;_,),
a;X,...,a;_1X] for every 1<iZr.

Proof. The isomorphism R/[U(ay,..., a;_,), a;X,..., a;- | X]~R(qg+ U(a,,...,
a;-/U(ay,..., a;_,)) allows us to assume that i=1 and that a, is a nonzero divisor
element. So it suffices to prove that ¢: a, X =¢R.

Now, let ¢X' be an element of ¢: a;X. Then ca,eq'*2n U(a,) and so by
Lemma 2.2, we have ca, =c’a; for some ¢'€q'*'. Hence cX'€qR as a, is a non-
zero divisor.

Lemma 2.7. Let 3<k<j<r—1 be integers and c¢ an element of U(a,,...,
ajr2-y). Then

a(a;y1—a;X)=a[X227% (c1a, k-3 X — ¢, 44—, X)]  mod Q;-

Here, cy,..., ¢j1 o (resp. ¢i,..., Cj1,—,) are elements of A satisfying the following
equalities

caj=Y %% ca, (resp.ca;,,=¥i*¥*ca,).
Proof.
ae(a;y —a;X)=ay Ytk (cia,—c,a,X)
=Y (ay-  Xea,—agea, )
=X (A= 1C04 — -1 X84 1)
=Y ay(cid -3 X —¢a,14- 5 X)

mod Q;, which follows from the equation a;=a;_,X mod Q; for every 1<i<j.
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3. Generators of the two ideals.
The purpose of this section is to find the generators of the following two ideals:

(a;, a,—aX,...,a;—a;_,X): a,

and
(ay, ay—a,X,....,a;—a;_, X, a;): (a;,,—a;X)

for every 1<j<r (Henceforth we denote the above two ideals by (Q,): a, and (Q;,
a,): g;+1). However, we will find that the system of generators of the ideal (Q;, a,):
g;+1 is somewhat complicated in the case j=3. Thus, firstly, we will treat the cases
j=1,2.

Lemma 3.1. («,) (a,, a,): g,=[q., U0)].
By (ay):a,=[U(ay), a;X].
(@) (@3, a3): 95=[Q,. a,, Ula,)].
(B2 (Q): a;=[q. U(a,), a, X].

Proof. (a;): First, notice that (a,, a,): g,=(a,, a,): a, X<[q, U0)]: a,X.
Then we have (a,, a,): g,<[¢, U(0)] from Lemma 2.6.
(B,): Let cX" be an element of (a,): a,. Then we have

U(ay) (n=0)
ceU(a;))ng"=
(apg"~' (n>0)
by Lemma 2.2. Thus, in any case, we find cX" e [U(a,), a,X].

(a;): Let f be an element of (Q,, a,): g5 and put R=R(¢+ U(a,)/U(a,))=
R(9)/[U(a,), a,X]. Then, we have

7e(Q,, a3): g3=(ay): G5 (a,, a3): g3=4R

by the claim (a,) in the ring R. Hence we have fe[q, U(a,), a,X] and so f may
be expressed as

f=h+h +h"a, X

with hegR, h'e U(a,)R and h"eR. Recalling h(a;—a,X)e(Q,, a,), we have
hase(a,X, a,X, a,, a,).

Now, put h=hO+hWOX+...+h® Xk  Then h®Heqi*'nU(a,y, a,) for
every 0<i<k, so, by Lemma 2.2, we have h()e(a,, a,)q’. Thus we see he(ay,
a,)R<=(Q,, a,), which implies fe [Q,, a,, U(a,)].

(B,): Let f be an element of R and assume that fa,=h,a, +h,g, with some
h,, hyeR. Then h,e(a,, a,): g,=9R+U(0) by the claim («,). Therefore, we
may express

fay=hja,+hya,—a h,X,
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which implies f—h, € (a,): a,. By the claim (8,), we get fe[q, U(a,), a, X].

Proposition 3.2.

(o) (Q;, a,): gj+1=[Qja U(a,), as, ZIJ(;% akU(alwuaﬁz—k)] for every 3=
Jjsr.
By) (Q):a,=[4, Ulay)...., Ula;_,), a;X,..., a;_ X] for every 3<j<r+1.

Proof. Since (a,) and (f,) follows from Lemma 3.1, it suffices to prove

(i) Ifs=2,..., r and both (ay), (8,) hold, then (g, ) holds.

(i) Ift=2,..., r—1 and both (a,). (f,) hold, then (a,, ) holds.

(i): First we will show that [q, U(a))...., U(ay), a,X...., a, X]1<(Qs4,): a,.
Let y be an element of ¢. Then ya,=(a,—a;X)y+a;yXe€Q,y,. Thus gRc
(Qs+1): ay.

Next, let 1 <k<s be an integer. Let z be an element of U(a,)R and express
z=cX"(ceq"). Then by Lemma 2.2 we have ca, =da, for some deq". Moreover,
da,, ,=d'a, for some d' €q", since de U(a,). On the other hand we observe that

cX"a,=ca, X" "'=da X" ' =da, X"'=d'a, X"=a,d' X"

mod Q,,,, since a;=a;_; X mod Q,,, for every 2<i<s+1. Thus z=cX"e

(Qs+1): ay.
Finally, observing that

ayaX)=—(ay4 —aX)a+aa,4,
= —Gk+102+ 920541~ 10541 X

0

mod Q,,, for every 1 <k<s, we have a, X €(Q,+,): a,.
Now, we will consider the opposite inclusion. Let f be an element of R and
assume that

fa,=g+ug,.,

where ge Q, and ue R. Then ug,,,€(Q,, a,), and so ue[Q,, U(a,), a,, 2§z} a;-
U(ay,..., g4 ,-)] by the claim (o). Thus u may be expressed as

(3.2.2) u=v+y+za,+ 2324 ca;

where ve Q,, ye U(a;)R, ze R and ¢, e U(ay,..., ag4 5 R.
First, since y € U(a,)R, notice that

(3.2.b) Vgs+1=Y1a1— Y201 X =y d,+ Y9, Y4,

for some y,, y, €R.
On the other hand, we have that

(3.2.0) GG+ 1= 25T (e, pprik—3X — Ciipplpii—2X)

—_ +2—-k — - ’
mod Q; for every 3<k<s—1, where ¢,a,=35t37% ¢, ,a, and c,a,, = 25557 ¢ 0,
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Put ¢=3313%(ck, pdprk-3—Cipdp+r-2)- Then clearly cXe(a,X,...,a.X) as
p+k—3=Z(s+2—k)+k—3=s—1and p+k—-2=(s+2—k)+k—2=s.
Combining (3.2.a), (3.2.b) and (3.2.c), we get

fay=ug, =(y+za+ 2325 ¢a)gs
= — )20, 420594+ X

mod Q.. Hence f+y,—zg.+1—cXe(Qy): a,. As () holds, we have
f+y,—2zg,e1—cXelg, Ulay),.... Ula,_y), a; X,...,a,_(X]. which implies fe
[49.U(a)),..., U(ay), a,X,..., a,X].

(ii): First, we will show that
(Qr+1- 42): Gr422[Q14 1, Ulay), ay, 2h-zaU(ay,..., a4 5-4)].

Notice that g,,,U(a,)=(a,, a;X), and we have U(a,)R<(Q,,, a3): g;+,. Now,
let cX" be an element of U(a,,..., a,,3-,)R. Then we have

= +3-k (o
acX"ger2=a3 2L (Cplp -3 X —Cplp iy, X)X

mod Q,,, by Lemma 2.7. This implies a,U(ay,..., a,4+3- )RE(Q;+ 1, a3): gr4 2.

Now, let us consider the opposite inclusion. Suppose that the assertion does
not hold. Then there exists an element f of R(¢) which has minimal degree among
the elements contained in (Q,;, a,): g,+, but not contained in [Q,,, U(a,), a,,
St_yaU(ay,..., a43-,)] (We denote by Q the latter ideal for convenience). Put
R=R/[U(a,), a;X]=R(g+ U(a,)/U(a,)). Then we get

J€[0:44. a3, U(ay), Th=a @ U(ay,.... 4,4 3-4)]
from the claim (o), which implies
felQis1. az. a3, Ulay, ay), Zh-aaU(ay, az,.. dry3-1)].

Thus, we may express f=h, + h,a; for some h, € U(a,, a,)R and h, e R.

Now, put hy=h{PXP+...+h{®. Then for each i>0, we have h{’e(ay,a,)g" "
by Lemma 2.2 and we are able to express hi’=a,y,+a,y, for some y,, y,eqi~1.
Thus we see that

hPXi=a,y, X +a,y, X' =a,y; X" +azy, X!

mod Q. This allows us to express f=ha;+c for some ce U(a,, a,). We will show
that ce Q. Put ca,,,=d a,+d,a,, then

(c+haz)g.+2=azhg,+,—d,a,
mod (Q, ;, a,). which implies
hg,s2—d, €(Q4 1. a3): as.
On the other hand, using the claim (8,) in the ring R=R/[U(a,), a,X], we have
(3.2.d) hg,+,—d,e[q, U(ay, ay),..., U(ay, ap), a;X,..., aX].
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As U(ay, a)=U(ay,...,a) for every 2<i<t, we see d,e[qg+U(ay,...,a)]n
U(a,, a,4,)=(a,+,)+ U(a,) from Corollary 2.4. Therefore, we can express ca,,,=
dia,+d5a,a,, for some dj, d5 € A, and hence ce(a,)+ U(a,)=Q.

Now, in order to establish the assertion, we will show that fe Q, which implies
the desired contradiction. By (3.2.d) we have he[q, U(ay,..., a,), a,X,..., a, X]:
d:+2, and hence helq, U(a,,..., a), a,X,..., a,X] from Lemma 2.6. Recall that
asU(ay,...,a)<=Q, azgc(as;—a,X)q+a,9X<Q, and that aza;X = —as(a;,,—
a;X)+(a3—a,X)a;,,+aa;, X eQ for every 1<j<t, we have f=ha;+ceQ.

4. The proof of Theorems 1 and 2.
Proof of Theorem 1: For 1Lj<k=<r+1 we will prove
G1seees gj—l): gjgk=(g1y-~~7 gj—l): i+

If j=1, the assertion is obvious. Suppose that j>1. Put A=A/a;A. Then
we have

(G2seer Gj-1): gjgk=(gz,~--9 gj—l): 9k

in the ring R=R(q/a,;A)=R(q)/(a,, a,X) since 4 is a G.C.M. ring and by induction
on r. This implies

G5 Gj—1> a1 X): g;0k=(g 15+ gj-1> a1 X): gi-

Now, let f be an element of (g,,...,9;-1): g;9x- Then fe(gy,...,g;-1, a5): g, by
the above result. Express fg,=h+h'a, for some he Q;_,, h"e R. Then we have

h'g;elq, Ulay),..., U(a;-,), a,X,..., a;_,X]

by the claim (8;_,), since h'g;€(Q;_,): a,. Hence h'e[gq, U(ay,..., a;_,), a,X,...,
a;_,X] from Lemma 2.6.
On the other hand, put h'=h'®X?P+ ...+ h’'©®, Then we have

h©®elq, Uay),..., U(ae_y), a1 X,..., ap_ 1 X]
by the claim (), since h' €(Q,): a,, which is a homogeneous ideal. Thus we have
hK®elg+U(a)+ -+ Ua-)In g+ U(ay...., a;_,)]
=qg+U(a)+-+U(a;_))+[g+Ua;- )+ -+ U(a,-)]
nU(ay,...,a;_,)
=9+ U(a)+---+U(a;_,)

from Corollary 2.4. Moreover, h'—h'©e[q, U(a,,...,a;_,), a,X,..., a;_,X], and
hence h'—h'©e[q, a,X,...,a;_,X], since h'—h'©®e(a,X,...,a,X)R. This
implies

h'elq, U(ay),..., Uay),..., U(a;-,), a,X,..., a;_, X].
Recall that (Q;_,): a,=[4, U(ay),..., U(a;-,), a,X,...,a;_,X]. Then we have
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f9:€Q;-1=(g1>...,9;—1). This completes the proof of Theorem 1.

Proof of Theorem 2:
We have only to prove

(frsees S Fre i =i [) 1 e
for every 0<j<k<=r. First, suppose that j<n—1. Using the sequence
a, a,—aX,...,a,—a,_X
for k<n or
ay, Gy—aX,...,0,—a,_1X, 41—, X,.., 1 —dy_, X,
Ay 1 —A—1X, Ay — 41 X, a,—a, 1 X, a,—aX, a X

for k=n+1, we have the desired result from Theorem 1.
Suppose that j=n and put P,=(f,..., f,). Then we have to prove

(4.1.a) (P, ap 1 X,...,a;X): a; Xa X=(P,, 0,4, X,..., a;X): a, X

for every n<j<k=r.

As U(a,4q50o a)Re(Py,a,,X,..., a;X): X (P, 0,4, X,...,0;X): a0 Xa, X
and (P,, U(a,+1,.-., G5), Qpi1 X,..., a;X): a,X=(P,, a,4,X,..., a;X): a, X, we may
consider the above (4.1.a) in the ring R=R/[U(a,41,..., a;), apsy X...., a;X]
R(g+U/JU), whereU=U(a,,..., a;) and the isomorphism follows from Lemma
2.5. Thus we have only to prove

Claim P,:a;,Xa,X=P,: a,X for every n<j<k<r.

Proof. 1If n=0 or 1, the claim follows from Corollary 1.2 in [6]. Thus we
may assume that n=2. Suppose that geP,:a;,;Xa,X. Then we have ge
(P,, ay): a;+,Xa,X. Applying the induction hypothesis on r to the ring R=
R/[U(a,), a;X1=R(g+ U(a,)/U(a,)), we obtain that

g E(Pm U(al)’ aZ): akx=(Pn’ aZ): akX'
Thus, we can express
(4.1.b) ga,X=h+ha,

for some he P, and h’e R. Notice that P,=Q, by the definitions of f; and g; for
every 1<i<n. Then we have

helq, UGa,y,...,a,-1), a1 X,...,a,_1X]: a; ;X
=[q, U(ay,..., ay-1), a1X,..., a,_ 1 X]

from the claim (f8,) and Lemma 2.6, since h'a;,; X e P,: a,. Now, put h'=h"+c
(c is the constant term of h’), and we have h"e(q, a,X,..., a,-,X) since h'e
[q, U(ay,..., a,-1), a; X...., a,_ 1 X].

On the other hand, we have
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celq, U(ay),..., U(a,), a,X,..., a,X]

from (f,) and Lemma 2.6, since h'a,€(ay, a,—a X,..., 1 — a3 _ X, a1 — a1 X,
Apyr— g1 X,s...,a,—a,_ X, a,—a,X, a,X). Therefore, we obtain that

ce[g+U(ay,...,a,-)In[g+U(a)+-+U(a,)]
=q+U(a)+-+U(a,-)+(ay,...,a,_1)
=g+U(a))+-+U(a,-,)

from Corollary 2.4, which implies h'a, € P, by (B,).

Now, we will prove the second statement. Put J=(f,,..., f,,-.., f,), P=(a;,...,
a,, aX,...,a,X,...,a,X) and Q=(fi,.... f,, f,). Then we have dim R/P<dim R/J £
dim R/Q. On the other hand, we have dim R/P=dim A —n, since R/P~A/(a,,...,
a,).

Now, put R=R/Q and consider the set of elements a,, a,—aX,..., a,—a,_; X,
ape1—a,X,...;a,—a,_X,a,X. Put Q=(a,,,—a,X,..,a,—a,_;X). Then we
have dim R/Q’=dim A/(a,,..., a,)=dim A—r. Thus, by Theorem 154 in [9], we
have dim R<dim A—r+(r—n)=dim A—n. Hence dim A—n<dim R/J<dim A—
n, which implies that dim R/J=dim A—n. This completes the proof of Theorem 2.

Example 4.2. Even if a,,..., a, form a d-sequence, a sequence of elements
a;,a,—a,X,...,a;,,—a;X,...,a,—a,_, X, a,X does not allways form a d-sequence.
Indeed, let S, T, U, V and W be indeterminates over a field k. Put A=k[[S, T, U,
V, WII(TV—UW)=k[[s, t, u, v, w]]. Then,s, t, u form a d-sequence, but s, t —sX,
u—tX, uX don’t form a d-sequence, since w3e(s, t—sX, u—tX): (uX)? and w3 &
(s, t—sX,u—tX): uX.

Remark 4.3. A sequence of elements a,, a,—a,X,...,a,—a,_X, a,X,..., a, X
does not necessarily form a d-sequence.

For example, put A=k[[Y, Z, W]], a;=Y, a,=Z and a;=W. Then a,, a,—
a X, a,X, az;X don’t form a -d-sequence. In fact, we have a}e(a,, a,—a,;X):
a,Xa3X, but a} is not contained in (a,, a,—a,;X): a;X.
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