On certain *d*-sequence on Rees algebra

By

Yasuhiro SHIMODA

Introduction.

In this paper we study the *d*-sequences on the associated graded ring of an ideal in a Noetherian local ring.

Let A be a Noetherian local ring with maximal ideal \underline{m} and $\underline{q} = (a_1, ..., a_r)$ an ideal of A. We define the Rees algebra of \underline{q} as the subalgebra

$$A[a_1X,\ldots,a_rX]$$

of the polynomial ring A[X] in the indeterminate X over the local ring A, and denote it by

$$R = R(q)$$
.

A sequence of elements $x_1, ..., x_r$ of a commutative ring R is called a d-sequence if for all $i \ge 0$ and $k \ge i+1$, we have the equality

$$[(x_1,...,x_i):x_{i+1}x_k] = [(x_1,...,x_i):x_k].$$

Any regular sequence is obviously a d-sequence and every system of parameters in a Buchsbaum ring is a d-sequence ([7] Prop. 1.7.).

Let us state here some remarkable properties of the Rees algebra of an ideal \underline{q} generated by a *d*-sequence a_1, \ldots, a_r of a local ring *A*.

Firstly, if $a_1,...,a_r$ form a regular sequence, then so do $a_1, a_2-a_1X,...,a_r-a_{r-1}X, a_rX$ in the Rees algebra $R(\underline{q})$. Hence if A is a Cohen-Macaulay ring so is $R(\underline{q})$ ([1]). However, the converse of the above is not true in general. It has been quite an important problem to describe the condition of the Rees ring to be a Cohen-Macaulay ring. This has been partially settled in some papers [2], [5], [8], [10].

Secondary, if $a_1,...,a_r$ form a *d*-sequence, the Rees algebra is isomorphic to the symmetric algebra [7]. By virtue of this fact, J. Herzog, A. Simis and W. V. Vasconcelos have given a homological characterization of a *d*-sequence [4]. Recently, S. Goto and K. Yamagishi have shown results of a *d*-sequence in more detail than the above ([3]).

We treat in this paper the following question: If $a_1,..., a_r$ form a *d*-sequence, then do $a_1, a_2-a_1X,..., a_r-a_{r-1}X, a_rX$ form a *d*-sequence in the Rees algebra? This is not true in general (see example (4.2)). We give in this paper a sufficient

Communicated by Prof. Nagata, April 27, 1984; Revised, June 9, 1986

condition for $a_1, a_2 - a_1 X, ..., a_r - a_{r-1} X, a_r X$ to form a *d*-sequence in the Rees algebra.

Let M denote the ideal, introduced in Definition 1.1, of a generalized Cohen-Macaulay ring (abrev. a G.C.M. ring, see also Definition 1.1 for the definition). Then our first result is stated as follows:

Theorem 1. Let A be a G.C.M. ring and $a_1, ..., a_r$ a subsystem of parameters of A contained in M. Put $\underline{q} = (a_1, ..., a_r)$. Then $a_1, a_2 - a_1 X, ..., a_r - a_{r-1} X$, $a_r X$ form a d-sequence in $R(\underline{q})$.

As a consequence to the above theorem, we see that there exists a *d*-sequence $a_1, a_2 - a_1 X, ..., a_r - a_{r-1} X$, $a_r X$ such that dim $(R(\underline{q})/(a_1, a_2 - a_1 X, ..., a_r - a_{r-1} X, a_r X)) = \dim A - r$.

On the other hand, C. Huneke has shown that a_1X , a_2X ,..., a_rX also form a *d*-sequence in $R(\underline{q})$ if $a_1,...,a_r$ form a *d*-sequence [6]. Notice that dim $R(\underline{q})/(a_1X, a_2X,...,a_rX) = \dim A$.

The main result of this paper presents a d-sequence in the Rees algebra such that the ideal generated by the sequence can have the arbitrary dimension not greater than dim A. It is stated as follows:

Theorem 2. Let A be a G.C.M. ring and $a_1,..., a_r$ a subsystem of parameters of A contained in M. Let n be an integer with $0 \le n < r$ and define a sequence of elements in $R(\underline{q})$ as:

$$f_i = \begin{cases} a_i - a_{i-1}X & (0 \le i \le n) \\ a_iX & (n+1 \le i \le r) \end{cases}$$

where we set $a_0 = a_{-1} = 0$. Then the sequence

$$\underline{f} = f_1, \dots, f_n, f_{n+1}, \dots, f_r$$

form a d-sequence in R(q) and

$$\dim \left(R(q)/(f) \right) = \dim A - n.$$

We will prove the above theorems in Section 4. In Section 2, some fundamental lemmas on *d*-sequences will be prepared.

If $a_1,..., a_r$ form a regular sequence, one can find the generators of ideals $[(a_1, a_2 - a_1X,..., a_j - a_{j-1}X): a_2]$ and $[(a_1, a_2 - a_1X,..., a_j - a_{j-1}X, a_2): (a_{j+1} - a_jX)]$ ([12]). We also find the generators of the above ideals in the case of *d*-sequence. This is given in Section 3.

1. Definition and notation.

Definition 1.1. ([11]). Let A be a Noetherian local ring with maximal ideal \underline{m} . Then A is called a Generalized Cohen-Macaulay ring (abrev. a G.C.M. ring) if $H_m^i(A)$

has a finite length for all $i < \dim A = d$. Here $H^{i}_{\underline{m}}(A)$ denotes the *i*-th local cohomology module.

This is equivalent to the condition that there exists an ideal M with $A \supseteq \sqrt{M} \supseteq \underline{m}$ such that the equality

$$(a_1,...,a_j): a_{j+1} = (a_1,...,a_j): M$$

holds for every $0 \le j \le d-1$ and for every system of parameters $a_1, ..., a_d$ contained in M.

Definition 1.2. $U(a_1,...,a_{j-1}) = (a_1,...,a_{j-1}) : a_j$ for $1 \le j \le r$ and for a sequence of elements $a_1,...,a_r$. If A is a G.C.M. ring, then we have

$$U(a_1,...,a_i) = (a_1,...,a_i): a = (a_1,...,a_i): b$$

for any two subsystems of parameters $\{a_1, ..., a_j, a\}$ and $\{a_1, ..., a_j, b\}$ contained in M.

Notation 1.3. If f is an element of Rees algebra $R(\underline{q})$, we denote by $f^{(n)}$ the coefficient of the term X^n in f.

Notation 1.4. Let R be a Noetherian ring, $x_1, ..., x_r$ a sequence of elements, and I an ideal of R. We always denote by \overline{R} the factor ring R/I and \overline{a} the image of an element a of R in the ring \overline{R} . Moreover, we denote by $\overline{U}(\overline{x}_1, ..., \overline{x}_{j-1})$ the ideal $[U(x_1, ..., x_{j-1})+I]/I$ for every $1 \le j \le r$.

Notation 1.5. Let $a_1,...,a_r$ be a sequence of elements of A and put $\underline{q} = (a_1,...,a_r)$. For an element f of Rees algebra $R(\underline{q})$ we denote by \overline{f} the image of f in the ring $\overline{R} = R(q + U(a_1,...,a_i)/U(a_1,...,a_i))$ for $1 \le j \le r-1$.

2. Preliminary.

Throughout this paper, let A be a G.C.M. ring of dim A = d and M the ideal in Definition 1.1. Let $a_1, ..., a_r$ be a subsystem of parameters for A contained in M and put $q = (a_1, ..., a_r)$. Define a sequence of elements in the Rees algebra R(q) as:

$$g_i = a_i - a_{i-1}X \quad (1 \le j \le r+1)$$

where we set $a_0 = a_{r+1} = 0$. We always denote by Q_j the ideal of $R(\underline{q})$ generated by g_1, \ldots, g_j for every $1 \le j \le r+1$.

Our first lemma, which we will use frequently, is as follows:

Lemma 2.1. Let $b_1, ..., b_t$ be a subsystem of parameters for A contained in M. Then both ring $A/(b_1,...,b_t)$ and $A/U(b_1,...,b_t)$ are again G.C.M. rings.

Proof. Let $b_{t+1},..., b_d$ be a sequence of elements of A such that $b_1,..., b_t$, $b_{t+1},..., b_d$ form a system of parameters for A contained in M. Then $b_{t+1},..., b_d$ form a system of parameters for $A/(b_1,..., b_t)$ and $A/U(b_1,..., b_t)$. Since A is a

G.C.M. ring and since $b_1, \ldots, b_t, b_{t+1}, \ldots, b_j, b_{j+1}^2$ form a subsystem of parameters for A, we have

$$(b_1,..., b_t, b_{t+1},..., b_j): b_{j+1}$$

$$\subset [U(b_1,..., b_t), b_{t+1},..., b_j]: b_{j+1}$$

$$\subset (b_1,..., b_t, b_{t+1},..., b_j): b_{j+1}^2$$

$$= (b_1,..., b_t, b_{t+1},..., b_j): M$$

$$\subset [U(b_1,..., b_t), b_{t+1},..., b_j]: M$$

for every $t+1 \leq j \leq d$. Thus we have the desired result.

Lemma 2.2. $U(a_1,...,a_{i-1}) \cap \underline{q}^k = (a_1,...,a_{i-1})\underline{q}^{k-1}$ for every $1 \leq i \leq r$ and all k > 0.

Proof. See [2] Lemma 4.2 and [10] Lemma 2.2.

Lemma 2.3. $U(a_{i+1}) \cap U(a_1, ..., a_i) \subseteq (a_{i+1}) + U(0)$ for every $1 \leq i \leq r-1$.

Proof. Suppose that i = 1. Let x be an element of A and assume that

$$xa_2 = sa_1$$
 and $xa_1 = ta_2$

for some s, $t \in A$. Then we have $s \in U(a_2^2)$ since $ta_2^2 = xa_1a_2 = sa_1^2$ and a_2^2 , a_1 form a *d*-sequence. Let $xa_2 = s'a_2^2$ for some $s' \in A$, and we have $x - s'a_2 \in U(0)$, i.e., $x \in (a_2) + U(0)$.

Now suppose that i > 1 and the assertion holds for i-1. Let x be an element of $U(a_{i+1}) \cap U(a_1,...,a_i)$ and put $\overline{A} = A/(a_1,...,a_{i-1})$. Then $x \in \overline{U}(\overline{a}_{i+1}) \cap \overline{U}(\overline{a}_i)$. By virtue of the above result, we have $\overline{x} \in U(\overline{0}) + (\overline{a}_{i+1})$, which implies

$$x \in (a_{i+1}) + U(a_1, \dots, a_{i-1}).$$

Hence $x \in (a_{i+1}) + [U(a_{i+1}) \cap U(a_1, ..., a_{i-1})]$ and by induction we have $x \in (a_{i+1}) + U(0)$.

Corollary 2.4. $[\underline{q} + U(a_i) + \dots + U(a_{i+k})] \cap U(a_1, \dots, a_{i-1}) = (a_1, \dots, a_{i-1}) + U(0)$ for every $1 \le i < r$ and $0 \le k \le r - i$.

Proof. If r=1, then there is nothing to prove. So suppose that r>1. If i=1, the assertion is obvious. Thus we may assume that i>1. Since $\bar{a}_1, ..., \bar{a}_{i-1}$, $\bar{a}_{i+1}, ..., \bar{a}_r$ form a subsystem of parameters in the ring $\bar{A} = A/U(a_i)$ and since $U(\bar{0}) = (\bar{0})$, by induction on r we have

$$[\overline{q} + \overline{U}(\overline{a}_{i+1}) + \dots + \overline{U}(\overline{a}_{i+k})] \cap \overline{U}(\overline{a}_1, \dots, \overline{a}_{i-1}) = (\overline{a}_1, \dots, \overline{a}_{i-1}),$$

which implies

$$[\underline{q} + U(a_i, a_{i+1}) + \dots + U(a_i, a_{i+k})] \cap U(a_1, \dots, a_i)$$

= $(a_1, \dots, a_{i-1}) + U(a_i)$.

Thus we have

$$[\underline{q} + U(a_i) + \dots + U(a_{i+k})] \cap U(a_1, \dots, a_{i-1})$$

$$\subset [\underline{q} + U(a_i, a_{i+1}) + \dots + U(a_i, a_{i+k})] \cap U(a_1, \dots, a_{i-1})$$

$$= (a_1, \dots, a_{i-1}) + [U(a_i) \cap U(a_1, \dots, a_{i-1})]$$

$$= (a_1, \dots, a_{i-1}) + (a_i) + U(0)$$

$$= (a_1, \dots, a_i) + U(0).$$

Now, we will give some results about Rees algebra when $a_1, ..., a_r$ form a *d*-sequence.

Lemma 2.5. $R(\underline{q} + U(a_1, ..., a_n)/U(a_1, ..., a_n)) \cong R(\underline{q})/[U(a_1, ..., a_n), a_1X, ..., a_nX]$ for every $0 \le n \le r-1$.

Proof. See Proposition 4.4 in [2].

Lemma 2.6. $[\underline{q}, U(a_1,..., a_{i-1}), a_1X,..., a_{i-1}X]: a_iX = [\underline{q}, U(a_1,..., a_{i-1}), a_1X,..., a_{i-1}X]$ for every $1 \le i \le r$.

Proof. The isomorphism $R/[U(a_1,...,a_{i-1}), a_1X,...,a_{i-1}X] \cong R(\underline{q} + U(a_1,...,a_{i-1})/U(a_1,...,a_{i-1}))$ allows us to assume that i=1 and that a_1 is a nonzero divisor element. So it suffices to prove that $\underline{q}: a_1X = \underline{q}R$.

Now, let cX^t be an element of \underline{q} : a_1X . Then $ca_1 \in \underline{q}^{t+2} \cap U(a_1)$ and so by Lemma 2.2, we have $ca_1 = c'a_1$ for some $c' \in \underline{q}^{t+1}$. Hence $cX^t \in \underline{q}R$ as a_1 is a non-zero divisor.

Lemma 2.7. Let $3 \le k \le j \le r-1$ be integers and c an element of $U(a_1,...,a_{j+2-k})$. Then

$$a_k c(a_{j+1} - a_j X) \equiv a_2 \left[\sum_{t=1}^{j+2-k} \left(c_t' a_{t+k-3} X - c_t a_{t+k-2} X \right) \right] \mod Q_j.$$

Here, c_1, \ldots, c_{j+2-k} (resp. c'_1, \ldots, c'_{j+2-k}) are elements of A satisfying the following equalities

$$ca_j = \sum_{t=1}^{j+2-k} c_t a_t$$
 (resp. $ca_{j+1} = \sum_{t=1}^{j+2-k} c_t' a_t$).

Proof.

$$a_{k}c(a_{j+1} - a_{j}X) = a_{k} \sum_{t=1}^{j+2-k} (c_{t}'a_{t} - c_{t}a_{t}X)$$

$$\equiv \sum_{t=1}^{j+2-k} (a_{k-1}Xc_{t}'a_{t} - a_{k}c_{t}a_{t+1})$$

$$\equiv \sum_{t=1}^{j+2-k} (a_{k-1}c_{t}'a_{t+1} - a_{k-1}Xc_{t}a_{t+1})$$

$$\equiv \cdots$$

$$\equiv \sum_{t=1}^{j+2-k} a_{2}(c_{t}'a_{t+k-3}X - c_{t}a_{t+k-2}X)$$

mod Q_j , which follows from the equation $a_i \equiv a_{i-1}X \mod Q_i$ for every $1 \leq i \leq j$.

3. Generators of the two ideals.

The purpose of this section is to find the generators of the following two ideals:

$$(a_1, a_2 - a_1 X, \dots, a_j - a_{j-1} X): a_2$$

and

$$(a_1, a_2 - a_1 X, ..., a_j - a_{j-1} X, a_2): (a_{j+1} - a_j X)$$

for every $1 \le j \le r$ (Henceforth we denote the above two ideals by (Q_j) : a_2 and (Q_j, a_2) : g_{j+1}). However, we will find that the system of generators of the ideal (Q_j, a_2) : g_{j+1} is somewhat complicated in the case $j \ge 3$. Thus, firstly, we will treat the cases j=1, 2.

Lemma 3.1. (α_1) (a_1, a_2) : $g_2 = [\underline{q}, U(0)]$. (β_1) (a_1) : $a_2 = [U(a_1), a_1X]$. (α_2) (Q_2, a_2) : $g_3 = [Q_2, a_2, U(a_1)]$. (β_2) (Q_2) : $a_2 = [\underline{q}, U(a_1), a_1X]$.

Proof. (α_1) : First, notice that (a_1, a_2) : $g_2 = (a_1, a_2)$: $a_1X \subset [\underline{q}, U(0)]$: a_1X . Then we have (a_1, a_2) : $g_2 \subset [\underline{q}, U(0)]$ from Lemma 2.6.

 (β_1) : Let cX^n be an element of (a_1) : a_2 . Then we have

$$c \in U(a_1) \cap \underline{q}^n = \begin{cases} U(a_1) & (n=0) \\ (a_1)\underline{q}^{n-1} & (n>0) \end{cases}$$

by Lemma 2.2. Thus, in any case, we find $cX^n \in [U(a_1), a_1X]$.

 (α_2) : Let f be an element of (Q_2, a_2) : g_3 and put $\overline{R} = R(\underline{q} + U(a_1)/U(a_1)) = R(q)/[U(a_1), a_1X]$. Then, we have

$$\overline{f} \in (\overline{Q}_2, \, \overline{a}_2) : \overline{g}_3 = (\overline{a}_2) : \overline{g}_3 \subseteq (\overline{a}_2, \, \overline{a}_3) : \overline{g}_3 = \overline{q}\overline{R}$$

by the claim (α_1) in the ring \overline{R} . Hence we have $f \in [\underline{q}, U(a_1), a_1X]$ and so f may be expressed as

$$f = h + h' + h''a_1X$$

with $h \in \underline{q}R$, $h' \in U(a_1)R$ and $h'' \in R$. Recalling $h(a_3 - a_2X) \in (Q_2, a_2)$, we have $ha_3 \in (a_1X, a_2X, a_1, a_2)$.

Now, put $h=h^{(0)}+h^{(1)}X+\dots+h^{(k)}X^k$. Then $h^{(i)} \in \underline{q}^{i+1} \cap U(a_1, a_2)$ for every $0 \le i \le k$, so, by Lemma 2.2, we have $h^{(i)} \in (a_1, a_2)\underline{q}^i$. Thus we see $h \in (a_1, a_2)R \subset (Q_2, a_2)$, which implies $f \in [Q_2, a_2, U(a_1)]$.

 (β_2) : Let f be an element of R and assume that $fa_2 = h_1a_1 + h_2g_2$ with some $h_1, h_2 \in R$. Then $h_2 \in (a_1, a_2)$: $g_2 = \underline{q}R + U(0)$ by the claim (α_1) . Therefore, we may express

$$fa_2 = h_1 a_1 + h_2 a_2 - a_1 h_2 X,$$

Rees algebra

which implies $f - h_2 \in (a_1)$: a_2 . By the claim (β_1) , we get $f \in [q, U(a_1), a_1X]$.

Proposition 3.2.

$$(\alpha_j) \quad (Q_j, a_2): g_{j+1} = [Q_j, U(a_1), a_2, \sum_{k=3}^{j-1} a_k U(a_1, \dots, a_{j+2-k})] \text{ for every } 3 \leq j \leq r.$$

$$(\beta_j) \quad (Q_j): a_2 = [\underline{q}, U(a_1), \dots, U(a_{j-1}), a_1X, \dots, a_{j-1}X] \text{ for every } 3 \le j \le r+1.$$

Proof. Since (α_2) and (β_2) follows from Lemma 3.1, it suffices to prove

(i) If s=2,...,r and both $(\alpha_s), (\beta_s)$ hold, then (β_{s+1}) holds.

(ii) If t = 2, ..., r - 1 and both $(\alpha_t), (\beta_t)$ hold, then (α_{t+1}) holds.

(i): First we will show that $[\underline{q}, U(a_1), ..., U(a_s), a_1X, ..., a_sX] \subset (Q_{s+1}): a_2$. Let y be an element of q. Then $ya_2 = (a_2 - a_1X)y + a_1yX \in Q_{s+1}$. Thus $\underline{q}R \subset (Q_{s+1}): a_2$.

Next, let $1 \le k \le s$ be an integer. Let z be an element of $U(a_k)R$ and express $z = cX^n$ ($c \in \underline{q}^n$). Then by Lemma 2.2 we have $ca_1 = da_k$ for some $d \in \underline{q}^n$. Moreover, $da_{k+1} = d'a_1$ for some $d' \in \underline{q}^n$, since $d \in U(a_1)$. On the other hand we observe that

$$cX^na_2 \equiv ca_1X^{n+1} \equiv da_kX^{n+1} \equiv da_{k+1}X^n \equiv d'a_1X^n \equiv a_1d'X^n$$

mod Q_{s+1} , since $a_i \equiv a_{i-1}X \mod Q_{s+1}$ for every $2 \leq i \leq s+1$. Thus $z = cX^n \in (Q_{s+1})$: a_2 .

Finally, observing that

$$a_{2}(a_{k}X) = -(a_{k+1} - a_{k}X)a_{2} + a_{2}a_{k+1}$$
$$= -g_{k+1}a_{2} + g_{2}a_{k+1} - a_{1}a_{k+1}X$$
$$= 0$$

mod Q_{s+1} for every $1 \leq k \leq s$, we have $a_k X \in (Q_{s+1})$: a_2 .

Now, we will consider the opposite inclusion. Let f be an element of R and assume that

$$fa_2 = g + ug_{s+1}$$

where $g \in Q_s$ and $u \in R$. Then $ug_{s+1} \in (Q_s, a_2)$, and so $u \in [Q_s, U(a_1), a_2, \sum_{k=3}^{s-1} a_k \cdot U(a_1, \dots, a_{s+2-k})]$ by the claim (α_s) . Thus u may be expressed as

(3.2.a)
$$u = v + y + za_2 + \sum_{k=3}^{s-1} c_k a_k$$

where $v \in Q_s$, $y \in U(a_1)R$, $z \in R$ and $c_k \in U(a_1, ..., a_{s+2-k})R$.

First, since $y \in U(a_1)R$, notice that

(3.2.b)
$$yg_{s+1} = y_1a_1 - y_2a_1X = y_1a_1 + y_2g_2 - y_2a_2$$

for some $y_1, y_2 \in R$.

On the other hand, we have that

(3.2.c)
$$a_k c_k g_{s+1} \equiv a_2 \sum_{p=1}^{s+2-k} (c'_{k,p} a_{p+k-3} X - c_{k,p} a_{p+k-2} X)$$

mod Q_s for every $3 \leq k \leq s-1$, where $c_k a_s = \sum_{p=1}^{s+2-k} c_{k,p} a_p$ and $c_k a_{s+1} = \sum_{p=1}^{s+2-k} c_{k,p} a_p$.

Put $c = \sum_{p=1}^{s+2-k} (c'_{k,p}a_{p+k-3} - c_{k,p}a_{p+k-2})$. Then clearly $cX \in (a_1X, ..., a_sX)$ as $p+k-3 \leq (s+2-k)+k-3 = s-1$ and $p+k-2 \leq (s+2-k)+k-2 = s$. Combining (3.2.a), (3.2.b) and (3.2.c), we get

$$fa_2 \equiv ug_{s+1} \equiv (y + za_2 + \sum_{k=3}^{s-1} c_k a_k)g_{s+1}$$
$$\equiv -y_2 a_2 + za_2 g_{s+1} + a_2 cX$$

mod Q_s . Hence $f + y_2 - zg_{s+1} - cX \in (Q_s)$: a_2 . As (β_s) holds, we have $f + y_2 - zg_{s+1} - cX \in [\underline{q}, U(a_1), ..., U(a_{s-1}), a_1X, ..., a_{s-1}X]$, which implies $f \in [\underline{q}, U(a_1), ..., U(a_s), a_1X, ..., a_sX]$.

(ii): First, we will show that

$$(Q_{t+1}, a_2): g_{t+2} \supset [Q_{t+1}, U(a_1), a_2, \sum_{k=3}^{t} a_k U(a_1, \dots, a_{t+3-k})].$$

Notice that $g_{t+2}U(a_1) \subset (a_1, a_1X)$, and we have $U(a_1)R \subset (Q_{t+1}, a_2)$: g_{t+2} . Now, let cX^n be an element of $U(a_1, \dots, a_{t+3-k})R$. Then we have

$$a_k c X^n g_{t+2} \equiv a_2 \sum_{p=1}^{t+3-k} (c_p a_{p+k-3} X - c_p a_{p+k-2} X) X^n$$

mod Q_{t+1} by Lemma 2.7. This implies $a_k U(a_1, ..., a_{t+3-k}) R \subseteq (Q_{t+1}, a_2)$: g_{t+2} .

Now, let us consider the opposite inclusion. Suppose that the assertion does not hold. Then there exists an element f of R(q) which has minimal degree among the elements contained in (Q_{t+1}, a_2) : g_{t+2} but not contained in $[Q_{t+1}, U(a_1), a_2, \sum_{k=3}^{t} a_k U(a_1, ..., a_{t+3-k})]$ (We denote by Q the latter ideal for convenience). Put $\overline{R} = R/[U(a_1), a_1X] \cong R(q+U(a_1)/U(a_1))$. Then we get

$$\bar{f} \in [\bar{Q}_{t+1}, \bar{a}_3, U(\bar{a}_2), \sum_{k=4}^{t} \bar{a}_k U(\bar{a}_2, \dots, \bar{a}_{t+3-k})]$$

from the claim (α_t) , which implies

$$f \in [Q_{t+1}, a_2, a_3, U(a_1, a_2), \sum_{k=4}^{t} a_k U(a_1, a_2, \dots, a_{t+3-k})].$$

Thus, we may express $f = h_1 + h_2 a_3$ for some $h_1 \in U(a_1, a_2)R$ and $h_2 \in R$.

Now, put $h_1 = h_1^{(p)} X^p + \dots + h_1^{(0)}$. Then for each i > 0, we have $h_1^{(i)} \in (a_1, a_2) \underline{q}^{i-1}$ by Lemma 2.2 and we are able to express $h_1^{(i)} = a_1 y_1 + a_2 y_2$ for some $y_1, y_2 \in \underline{q}^{i-1}$. Thus we see that

$$h_1^{(i)}X^i = a_1y_1X^i + a_2y_2X^i \equiv a_2y_1X^{i-1} + a_3y_2X^{i-1}$$

mod Q. This allows us to express $f = ha_3 + c$ for some $c \in U(a_1, a_2)$. We will show that $c \in Q$. Put $ca_{t+1} = d_1a_1 + d_2a_2$, then

$$(c+ha_3)g_{t+2} \equiv a_3hg_{t+2} - d_2a_3$$

mod (Q_{t+1}, a_2) , which implies

$$hg_{t+2} - d_2 \in (Q_{t+1}, a_2): a_3.$$

On the other hand, using the claim (β_t) in the ring $\overline{R} = R/[U(a_1), a_1X]$, we have

$$(3.2.d) hg_{t+2} - d_2 \in [\underline{q}, U(a_1, a_2), ..., U(a_1, a_t), a_1 X, ..., a_t X].$$

Rees algebra

As $U(a_1, a_i) \subset U(a_1, ..., a_t)$ for every $2 \leq i \leq t$, we see $d_2 \in [\underline{q} + U(a_1, ..., a_t)] \cap U(a_1, a_{t+1}) = (a_{t+1}) + U(a_1)$ from Corollary 2.4. Therefore, we can express $ca_{t+1} = d'_1a_1 + d'_2a_2a_{t+1}$ for some $d'_1, d'_2 \in A$, and hence $c \in (a_2) + U(a_1) \subset Q$.

Now, in order to establish the assertion, we will show that $f \in Q$, which implies the desired contradiction. By (3.2.d) we have $h \in [\underline{q}, U(a_1, ..., a_t), a_1X, ..., a_tX]$: g_{t+2} , and hence $h \in [\underline{q}, U(a_1, ..., a_t), a_1X, ..., a_tX]$ from Lemma 2.6. Recall that $a_3U(a_1, ..., a_t) \subset Q$, $a_3\underline{q} \subset (a_3 - a_2X)\underline{q} + a_2\underline{q}X \subset Q$, and that $a_3a_jX = -a_3(a_{j+1} - a_jX) + (a_3 - a_2X)a_{j+1} + a_2a_{j+1}X \in Q$ for every $1 \leq j \leq t$, we have $f = ha_3 + c \in Q$.

4. The proof of Theorems 1 and 2.

Proof of Theorem 1: For $1 \le j \le k \le r+1$ we will prove

$$(g_1,...,g_{j-1}):g_jg_k=(g_1,...,g_{j-1}):g_k$$

If j=1, the assertion is obvious. Suppose that j>1. Put $\overline{A}=A/a_1A$. Then we have

$$(\bar{g}_2,...,\bar{g}_{j-1}): \bar{g}_j\bar{g}_k = (\bar{g}_2,...,\bar{g}_{j-1}): \bar{g}_k$$

in the ring $\overline{R} = R(\underline{q}/a_1A) = R(\underline{q})/(a_1, a_1X)$ since \overline{A} is a G.C.M. ring and by induction on *r*. This implies

$$(g_1, \dots, g_{j-1}, a_1X): g_jg_k = (g_1, \dots, g_{j-1}, a_1X): g_k$$

Now, let f be an element of $(g_1, ..., g_{j-1})$: $g_j g_k$. Then $f \in (g_1, ..., g_{j-1}, a_2)$: g_k by the above result. Express $fg_k = h + h'a_2$ for some $h \in Q_{j-1}$, $h' \in R$. Then we have

 $h'g_i \in [\underline{q}, U(a_1), ..., U(a_{i-2}), a_1X, ..., a_{i-2}X]$

by the claim (β_{j-1}) , since $h'g_j \in (Q_{j-1})$: a_2 . Hence $h' \in [\underline{q}, U(a_1, ..., a_{j-2}), a_1X, ..., a_{j-2}X]$ from Lemma 2.6.

On the other hand, put $h' = h'^{(p)}X^p + \cdots + h'^{(0)}$. Then we have

 $h'^{(0)} \in [\underline{q}, U(a_1), ..., U(a_{k-1}), a_1X, ..., a_{k-1}X]$

by the claim (β_k) , since $h' \in (Q_k)$: a_2 , which is a homogeneous ideal. Thus we have

$$\begin{aligned} h'^{(0)} &\in [\underline{q} + U(a_1) + \dots + U(a_{k-1})] \cap [\underline{q} + U(a_1, \dots, a_{j-2})] \\ &= \underline{q} + U(a_1) + \dots + U(a_{j-2}) + [\underline{q} + U(a_{j-1}) + \dots + U(a_{k-1})] \\ &\cap U(a_1, \dots, a_{j-2}) \\ &= q + U(a_1) + \dots + U(a_{j-2}) \end{aligned}$$

from Corollary 2.4. Moreover, $h' - h'^{(0)} \in [\underline{q}, U(a_1, ..., a_{j-2}), a_1X, ..., a_{j-2}X]$, and hence $h' - h'^{(0)} \in [\underline{q}, a_1X, ..., a_{j-2}X]$, since $h' - h'^{(0)} \in (a_1X, ..., a_rX)R$. This implies

$$h' \in [\underline{q}, U(a_1), ..., U(a_1), ..., U(a_{j-2}), a_1X, ..., a_{j-2}X].$$

Recall that $(Q_{j-1}): a_2 = [\underline{q}, U(a_1), ..., U(a_{j-2}), a_1X, ..., a_{j-2}X]$. Then we have

 $fg_k \in Q_{i-1} = (g_1, \dots, g_{i-1})$. This completes the proof of Theorem 1.

Proof of Theorem 2:

We have only to prove

$$(f_1,...,f_j): f_{j+1}f_k = (f_1,...,f_j): f_k$$

for every $0 \le j < k \le r$. First, suppose that $j \le n-1$. Using the sequence

$$a_1, a_2 - a_1 X, \dots, a_n - a_{n-1} X$$

for $k \leq n$ or

$$a_{1}, a_{2} - a_{1}X, \dots, a_{n} - a_{n-1}X, a_{n+1} - a_{n}X, \dots, a_{k-1} - a_{k-2}X,$$

$$a_{k+1} - a_{k-1}X, a_{k+2} - a_{k+1}X, \dots, a_{r} - a_{r-1}X, a_{k} - a_{r}X, a_{k}X$$

for $k \ge n+1$, we have the desired result from Theorem 1.

Suppose that $j \ge n$ and put $P_n = (f_1, ..., f_n)$. Then we have to prove

(4.1.a)
$$(P_n, a_{n+1}X, ..., a_jX): a_{j+1}Xa_kX = (P_n, a_{n+1}X, ..., a_jX): a_kX$$

for every $n \leq j < k \leq r$.

As $U(a_{n+1},...,a_j)R \subset (P_n, a_{n+1}X,...,a_jX): a_kX \subset (P_n, a_{n+1}X,...,a_jX): a_{j+1}Xa_kX$ and $(P_n, U(a_{n+1},...,a_j), a_{n+1}X,...,a_jX): a_kX = (P_n, a_{n+1}X,...,a_jX): a_kX$, we may consider the above (4.1.a) in the ring $\overline{R} = R/[U(a_{n+1},...,a_j), a_{n+1}X,...,a_jX] \cong$ $R(\underline{q} + U/U)$, where $U = U(a_{n+1},...,a_j)$ and the isomorphism follows from Lemma 2.5. Thus we have only to prove

Claim $P_n: a_{j+1}Xa_kX = P_n: a_kX$ for every $n \leq j < k \leq r$.

Proof. If n=0 or 1, the claim follows from Corollary 1.2 in [6]. Thus we may assume that $n \ge 2$. Suppose that $g \in P_n$: $a_{j+1}Xa_kX$. Then we have $g \in (P_n, a_2)$: $a_{j+1}Xa_kX$. Applying the induction hypothesis on r to the ring $\overline{R} = R/[U(a_1), a_1X] \cong R(\underline{q} + U(a_1)/U(a_1))$, we obtain that

$$g \in (P_n, U(a_1), a_2): a_k X = (P_n, a_2): a_k X.$$

Thus, we can express

$$ga_k X = h + h'a_2$$

for some $h \in P_n$ and $h' \in R$. Notice that $P_n = Q_n$ by the definitions of f_i and g_i for every $1 \le i \le n$. Then we have

$$h' \in [\underline{q}, U(a_1, \dots, a_{n-1}), a_1 X, \dots, a_{n-1} X]: a_{j+1} X$$
$$= [\underline{q}, U(a_1, \dots, a_{n-1}), a_1 X, \dots, a_{n-1} X]$$

from the claim (β_n) and Lemma 2.6, since $h'a_{j+1}X \in P_n$: a_2 . Now, put h' = h'' + c(c is the constant term of h'), and we have $h'' \in (\underline{q}, a_1X, ..., a_{n-1}X)$ since $h' \in [\underline{q}, U(a_1, ..., a_{n-1}), a_1X, ..., a_{n-1}X]$.

On the other hand, we have

Rees algebra

$$c \in [\underline{q}, U(a_1), ..., U(a_r), a_1X, ..., a_rX]$$

from (β_r) and Lemma 2.6, since $h'a_2 \in (a_1, a_2 - a_1X, ..., a_{k-1} - a_{k-2}X, a_{k+1} - a_{k-1}X, a_{k+2} - a_{k+1}X, ..., a_r - a_{r-1}X, a_k - a_rX, a_kX)$. Therefore, we obtain that

$$c \in [\underline{q} + U(a_1, ..., a_{n-1})] \cap [\underline{q} + U(a_1) + \dots + U(a_r)]$$

= $\underline{q} + U(a_1) + \dots + U(a_{n-1}) + (a_1, ..., a_{n-1})$
= $\underline{q} + U(a_1) + \dots + U(a_{n-1})$

from Corollary 2.4, which implies $h'a_2 \in P_n$ by (β_n) .

Now, we will prove the second statement. Put $J = (f_1, ..., f_n, ..., f_r)$, $P = (a_1, ..., a_n, a_1X, ..., a_nX, ..., a_rX)$ and $Q = (f_1, ..., f_n, f_r)$. Then we have dim $R/P \le \dim R/J \le \dim R/Q$. On the other hand, we have dim $R/P = \dim A - n$, since $R/P \cong A/(a_1, ..., a_n)$.

Now, put $\overline{R} = R/Q$ and consider the set of elements $a_1, a_2 - a_1X, ..., a_n - a_{n-1}X$, $a_{n+1} - a_nX, ..., a_r - a_{r-1}X, a_rX$. Put $Q' = (\overline{a}_{n+1} - \overline{a}_nX, ..., \overline{a}_r - \overline{a}_{r-1}X)$. Then we have dim $\overline{R}/Q' = \dim A/(a_1, ..., a_r) = \dim A - r$. Thus, by Theorem 154 in [9], we have dim $\overline{R} \leq \dim A - r + (r - n) = \dim A - n$. Hence dim $A - n \leq \dim R/J \leq \dim A - n$ n, which implies that dim $R/J = \dim A - n$. This completes the proof of Theorem 2.

Example 4.2. Even if $a_1, ..., a_r$ form a d-sequence, a sequence of elements $a_1, a_2 - a_1X, ..., a_{j+1} - a_jX, ..., a_r - a_{r-1}X$, a_rX does not allways form a d-sequence. Indeed, let S, T, U, V and W be indeterminates over a field k. Put A = k[[S, T, U, V, W]]/(TV - UW) = k[[s, t, u, v, w]]. Then, s, t, u form a d-sequence, but s, t - sX, u - tX, uX don't form a d-sequence, since $w^3 \in (s, t - sX, u - tX)$: $(uX)^2$ and $w^3 \notin (s, t - sX, u - tX)$: uX.

Remark 4.3. A sequence of elements $a_1, a_2 - a_1 X, ..., a_n - a_{n-1} X, a_n X, ..., a_r X$ does not necessarily form a *d*-sequence.

For example, put A = k[[Y, Z, W]], $a_1 = Y$, $a_2 = Z$ and $a_3 = W$. Then a_1 , $a_2 - a_1X$, a_2X , a_3X don't form a d-sequence. In fact, we have $a_3^2 \in (a_1, a_2 - a_1X)$: a_2Xa_3X , but a_3^2 is not contained in $(a_1, a_2 - a_1X)$: a_3X .

Johoku-Gakuen, High School Tokyo 174

References

- J. Barshay, Graded algebras of powers of ideals generated by A-sequences, J. of Alg., 25 (1973), 90-99.
- [2] S. Goto and Y. Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ., 20 (1980), 691–708.
- [3] S. Goto and K. Yamagishi, The theory of unconditioned storong d-sequences and module of finite local cohomology, preprint.
- [4] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation Complexes of Blowing-up Rings II, J. of Alg., 82 (1983), 53-83.

Yasuhiro Shimoda

- [5] C. Huneke, On the symmetric and Rees algebras of an ideal generated by a d-sequence, J. of Alg., 62 (1980), 268-275.
- [6] C. Huneke, Symbolic powers of prime ideals and special graded algebras, Comm. Alg., 9 (1981), 339-366.
- [7] C. Huneke, The theory of d-sequences and powers of ideals, Ad. in Math., 46 (1982), 249–279.
- [8] S. Ikeda, The Cohen-Macaulayness of the Rees algebras of local rings, Nagoya Math. J., 89 (1983), 47-63.
- [9] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago and London, 1970.
- [10] Y. Shimoda, On the syzygy part of Koszul homology on cetain ideals, J. Math. Kyoto Univ., 24 (1984), 83-90.
- [11] V. P. Schenzel, N. V. Trung and N. T. Coung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57–73.
- [12] G. Valla, Certain Graded Algebras are always Cohen-Macaulay, J. of Alg., 42 (1976), 537-548.