On certain d-sequence on Rees algebra

By

Yasuhiro SHIMODA

Introduction.

In this paper we study the d-sequences on the associated graded ring of an ideal in a Noetherian local ring.

Let *A* be a Noetherian local ring with maximal ideal *m* and $q = (a_1, ..., a_r)$ and ideal of *A .* We define the Rees algebra of *q* as the subalgebra

$$
A[a_1X,\ldots,a_rX]
$$

of the polynomial ring $A[X]$ in the indeterminate X over the local ring A, and denote it by

$$
R=R(\underline{q})
$$
.

A sequence of elements x_1, \ldots, x_r of a commutative ring R is called a d-sequence if for all $i \ge 0$ and $k \ge i+1$, we have the equality

$$
[(x_1,...,x_i): x_{i+1}x_k] = [(x_1,...,x_i): x_k].
$$

Any regular sequence is obviously a d-sequence and every system of parameters in a Buchsbaum ring is a *d*-sequence (77) Prop. 1.7.).

Let us state here some remarkable properties of the Rees algebra of an ideal *q* generated by a *d*-sequence a_1, \ldots, a_r of a local ring *A*.

Firstly, if a_1, \ldots, a_r form a regular sequence, then so do $a_1, a_2 - a_1 X, \ldots, a_r - a_r$ $a_{r-1}X$, a_rX in the Rees algebra $R(q)$. Hence if *A* is a Cohen-Macaulay ring so is $R(q)$ ([1]). However, the converse of the above is not true in general. It has been quite an important problem to describe the condition of the Rees ring to be a Cohen-Macaulay ring. This has been partially settled in some papers [2], [5], [8], [10].

Secondary, if a_1, \ldots, a_r form a *d*-sequence, the Rees algebra is isomorphic to the symmetric algebra [7]. By virtue of this fact, J. Herzog, A. Simis and W. V. Vasconcelos have given a homological characterization of a d-sequence [4]. Recently, S. Goto and K. Yamagishi have shown results of a d -sequence in more detail than the above ([3]).

We treat in this paper the following question: If a_1, \ldots, a_r form a *d*-sequence, then do a_1 , $a_2 - a_1X, \ldots, a_r - a_{r-1}X, a_rX$ form a *d*-sequence in the Rees algebra? This is not true in general (see example (4.2)). We give in this paper a sufficient

Communicated by Prof. Nagata, April 27, 1984; Revised, June 9, 1986

condition for a_1 , $a_2 - a_1X$,..., $a_r - a_{r-1}X$, a_rX to form a *d*-sequence in the Rees algebra.

Let *M* denote the ideal, introduced in Definition 1.1, of a generalized Cohen-Macaulay ring (abrev. a G.C.M. ring, see also Definition 1.1 for the definition). Then our first result is stated as follows :

Theorem!. *L e t A be a G.C.M. ring and a¹ ,..., a,. a subsystem of parameters* of A contained in M. Put $q = (a_1, ..., a_r)$. Then $a_1, a_2 - a_1 X, ..., a_r - a_{r-1} X$, *a^r X form a d-sequence in R(q).*

As a consequence to the above theorem, we see that there exists a d -sequence $a_1, a_2 - a_1 X, \ldots, a_r - a_{r-1} X, a_r X$ such that dim $(R(q)/(a_1, a_2 - a_1 X, \ldots, a_r - a_{r-1} X,$ $(a_r X)$) = dim $A - r$.

On the other hand, C. Huneke has shown that a_1X, a_2X, \ldots, a_rX also form a *d*-sequence in $R(q)$ if a_1, \ldots, a_r form a *d*-sequence [6]. Notice that dim $R(q)/(a_1 X,$ $a_2 X, \ldots, a_r X$ = dim *A*.

The main result of this paper presents a d -sequence in the Rees algebra such that the ideal generated by the sequence can have the arbitrary dimension not greater than dim *A*. It is stated as follows:

Theorem 2. *Let A be a G.C.M. ring and a¹ ,..., a,. a subsystem of parameters* of A contained in M. Let n be an integer with $0 \le n < r$ and define a sequence of *elements in R(q) as:*

$$
f_i = \begin{cases} a_i - a_{i-1}X & (0 \le i \le n) \\ a_iX & (n+1 \le i \le r) \end{cases}
$$

where we set $a_0 = a_{-1} = 0$. *Then the sequence*

$$
\underline{f} = f_1, \ldots, f_n, f_{n+1}, \ldots, f_r
$$

form a d-sequence in R(q) and

$$
\dim (R(\underline{q})/(\underline{f})) = \dim A - n.
$$

We will prove the above theorems in Section 4. In Section 2, some fundamental lemmas on d-sequences will be prepared.

If a_1, \ldots, a_r form a regular sequence, one can find the generators of ideals $[(a_1,$ $a_2-a_1X, ..., a_j-a_{j-1}X$: a_2] and $[(a_1, a_2-a_1X, ..., a_j-a_{j-1}X, a_2): (a_{j+1}-a_jX)]$ $([12])$. We also find the generators of the above ideals in the case of d-sequence. This is given in Section 3.

1. Definition and notation.

Definition 1.1. ([11]). Let A be a Noetherian local ring with maximal ideal m. Then A is called a Generalized Cohen-Macaulay ring (abrev. a G.C.M. ring) if $H_m^1(A)$

has a finite length for all i < dim $A = d$. Here $H^i_{\underline{m}}(A)$ denotes the *i*-th local cohomology module.

This is equivalent to the condition that there exists an ideal M with $A \supseteq \sqrt{M} \supseteq m$ such that the equality

$$
(a_1, ..., a_j): a_{j+1} = (a_1, ..., a_j): M
$$

holds for every $0 \le j \le d-1$ and for every system of parameters $a_1, ..., a_d$ contained in M.

Definition 1.2. $U(a_1, ..., a_{j-1}) = (a_1, ..., a_{j-1}): a_j$ for $1 \leq j \leq r$ and for a sequence of elements $a_1, ..., a_r$. If *A* is a G.C.M. ring, then we have

$$
U(a_1, \ldots, a_j) = (a_1, \ldots, a_j) : a = (a_1, \ldots, a_j) : b
$$

for any two subsystems of parameters $\{a_1, \ldots, a_j, a\}$ and $\{a_1, \ldots, a_j, b\}$ contained in M.

Notation 1.3. If f is an element of Rees algebra $R(q)$, we denote by $f^{(n)}$ the coefficient of the term $Xⁿ$ in f .

Notation 1.4. Let *R* be a Noetherian ring, $x_1, ..., x_r$ a sequence of elements, and *I* an ideal of *R*. We always denote by \overline{R} the factor ring R/I and \overline{a} the image of an element *a* of *R* in the ring \overline{R} . Moreover, we denote by $\overline{U}(\overline{x}_1,...,\overline{x}_{i-1})$ the ideal $[U(x_1, ..., x_{i-1})+I]/I$ for every $1 \leq j \leq r$.

Notation 1.5. Let a_1, \ldots, a_r be a sequence of elements of A and put $q = (a_1, \ldots, a_r)$ *a*_{*r*}). For an element *f* of Rees algebra $R(q)$ we denote by *f* the image of *f* in the ring $\overline{R} = R(q + U(a_1, \ldots, a_i) / U(a_1, \ldots, a_i))$ for $1 \leq j \leq r - 1$.

2. Preliminary.

Throughout this paper, let *A* be a G.C.M. ring of dim $A = d$ and *M* the ideal in Definition 1.1. Let a_1, \ldots, a_r be a subsystem of parameters for A contained in M and put $q = (a_1, \ldots, a_r)$. Define a sequence of elements in the Rees algebra $R(q)$ as:

$$
g_j = a_j - a_{j-1}X \quad (1 \le j \le r+1)
$$

where we set $a_0 = a_{r+1} = 0$. We always denote by Q_i the ideal of $R(q)$ generated by g_1, \ldots, g_j for every $1 \leq j \leq r+1$.

Our first lemma, which we will use frequently, is as follows:

Lemma 2.1. *Let* b_1, \ldots, b_t *be a subsystem of parameters for A contained in M. Then both ring* $A/(b_1,...,b_t)$ *and* $A/U(b_1,...,b_t)$ *are again G.C.M. rings.*

Proof. Let $b_{t+1},..., b_d$ be a sequence of elements of *A* such that $b_1,..., b_t$ $b_{t+1},..., b_d$ form a system of parameters for *A* contained in *M*. Then $b_{t+1},..., b_d$ form a system of parameters for $A/(b_1,..., b_t)$ and $A/U(b_1,..., b_t)$. Since A is a G.C.M. ring and since $b_1, \ldots, b_t, b_{t+1}, \ldots, b_j, b_{j+1}^2$ form a subsystem of parameters for *A*, we have

$$
(b_1, ..., b_t, b_{t+1}, ..., b_j): b_{j+1}
$$
\n
$$
\subset [U(b_1, ..., b_t), b_{t+1}, ..., b_j]: b_{j+1}
$$
\n
$$
\subset (b_1, ..., b_t, b_{t+1}, ..., b_j): b_{j+1}^2
$$
\n
$$
= (b_1, ..., b_t, b_{t+1}, ..., b_j): M
$$
\n
$$
\subset [U(b_1, ..., b_t), b_{t+1}, ..., b_j]: M
$$

for every $t+1 \leq j \leq d$. Thus we have the desired result.

Lemma 2.2. $U(a_1, ..., a_{i-1}) \cap \underline{q}^k = (a_1, ..., a_{i-1})\underline{q}^{k-1}$ for every $1 \leq i \leq r$ and all *k>0.*

Proof. See [2] Lemma 4.2 and [10] Lemma 2.2.

Lemma 2.3. $U(a_{i+1}) \cap U(a_1,..., a_i) \subseteq (a_{i+1}) + U(0)$ for every $1 \leq i \leq r-1$.

Proof. Suppose that $i = 1$. Let x be an element of *A* and assume that

$$
xa_2 = sa_1 \quad \text{and} \quad xa_1 = ta_2
$$

for some *s*, $t \in A$. Then we have $s \in U(a_2^2)$ since $ta_2^2 = xa_1a_2 = sa_1^2$ and a_2^2 , a_1 form a d-sequence. Let $xa_2 = s'a_2^2$ for some $s' \in A$, and we have $x - s'a_2 \in U(0)$, i.e., $x \in (a_2) + U(0)$.

Now suppose that $i>1$ and the assertion holds for $i-1$. Let x be an element of $U(a_{i+1}) \cap U(a_1, ..., a_i)$ and put $\bar{A} = A/(a_1, ..., a_{i-1})$. Then $x \in \bar{U}(\bar{a}_{i+1}) \cap \bar{U}(\bar{a}_i)$. By virtue of the above result, we have $\bar{x} \in U(\bar{0}) + (\bar{a}_{i+1})$, which implies

$$
x \in (a_{i+1}) + U(a_1, \ldots, a_{i-1}).
$$

Hence $x \in (a_{i+1}) + [U(a_{i+1}) \cap U(a_1, \ldots, a_{i-1})]$ and by induction we have $x \in (a_{i+1}) +$ $U(0)$.

Corollary 2.4. $[q + U(a_i) + \cdots + U(a_{i+k})] \cap U(a_1, \ldots, a_{i-1}) = (a_1, \ldots, a_{i-1}) + U(0)$ *for every* $1 \leq i < r$ *and* $0 \leq k \leq r - i$.

Proof. If $r = 1$, then there is nothing to prove. So suppose that $r > 1$. If $i=1$, the assertion is obvious. Thus we may assume that $i>1$. Since $\bar{a}_1,...,\bar{a}_{i-1}$, $\overline{a}_{i+1}, \dots, \overline{a}_r$ form a subsystem of parameters in the ring $\overline{A} = A/U(a_i)$ and since $U(\overline{0})=(\overline{0})$, by induction on *r* we have

$$
[\overline{q} + \overline{U}(\overline{a}_{i+1}) + \cdots + \overline{U}(\overline{a}_{i+k})] \cap \overline{U}(\overline{a}_1, ..., \overline{a}_{i-1}) = (\overline{a}_1, ..., \overline{a}_{i-1}),
$$

which implies

$$
[q + U(a_i, a_{i+1}) + \dots + U(a_i, a_{i+k})] \cap U(a_1, ..., a_i)
$$

= $(a_1, ..., a_{i-1}) + U(a_i)$.

Thus we have

$$
[q + U(a_i) + \dots + U(a_{i+k})] \cap U(a_1, \dots, a_{i-1})
$$

\n
$$
\subset [q + U(a_i, a_{i+1}) + \dots + U(a_i, a_{i+k})] \cap U(a_1, \dots, a_{i-1})
$$

\n
$$
= (a_1, \dots, a_{i-1}) + [U(a_i) \cap U(a_1, \dots, a_{i-1})]
$$

\n
$$
= (a_1, \dots, a_{i-1}) + (a_i) + U(0)
$$

\n
$$
= (a_1, \dots, a_i) + U(0).
$$

Now, we will give some results about Rees algebra when a_1, \ldots, a_r form a d-sequence.

Lemma 2.5. $R(q+U(a_1,..., a_n)/U(a_1,..., a_n)) \cong R(q)/[U(a_1,..., a_n), a_1X,..., a_nX]$ *for every* $0 \leq n \leq r-1$ *.*

Proof. See Proposition 4.4 in [2].

Lemma 2.6. [*q*, $U(a_1,..., a_{i-1}), a_1X,..., a_{i-1}X$]: $a_iX = [q, U(a_1,..., a_{i-1}),$ $a_1X, \ldots, a_{i-1}X$ *for every* $1 \leq i \leq r$.

Proof. The isomorphism $R/[U(a_1,..., a_{i-1}), a_1X,..., a_{i-1}X] \cong R(q+U(a_1,..., a_{i-1}), a_iX,..., a_iX]$ $a_{i-1}/U(a_1,..., a_{i-1})$ allows us to assume that $i=1$ and that a_1 is a nonzero divisor element. So it suffices to prove that $q: a_1X = qR$.

Now, let cX^t be an element of $q: a_1X$. Then $ca_1 \in \mathcal{Q}^{t+2} \cap U(a_1)$ and so by Lemma 2.2, we have $ca_1 = c'a_1$ for some $c' \in \underline{q}^{t+1}$. Hence $cX^t \in \underline{q}R$ as a_1 is a nonzero divisor.

Lemma 2.7. Let $3 \le k \le j \le r-1$ be integers and c an element of $U(a_1,..., a_n)$ a_{i+2-k}). Then

$$
a_k c(a_{j+1} - a_j X) \equiv a_2 \big[\sum_{t=1}^{j+2-k} \left(c'_i a_{t+k-3} X - c_t a_{t+k-2} X \right) \big] \mod Q_j.
$$

Here, $c_1, ..., c_{j+2-k}$ (resp. $c'_1, ..., c'_{j+2-k}$) are elements of A satisfying the following *equalities*

$$
ca_j = \sum_{t=1}^{j+2-k} c_t a_t \quad (resp. \ ca_{j+1} = \sum_{t=1}^{j+2-k} c'_t a_t).
$$

Proof

$$
a_k c(a_{j+1} - a_j X) = a_k \sum_{i=1}^{j+2-k} (c'_i a_i - c_i a_i X)
$$

\n
$$
\equiv \sum_{i=1}^{j+2-k} (a_{k-1} X c'_i a_i - a_k c_i a_{i+1})
$$

\n
$$
\equiv \sum_{i=1}^{j+2-k} (a_{k-1} c'_i a_{i+1} - a_{k-1} X c_i a_{i+1})
$$

\n
$$
\equiv \cdots
$$

\n
$$
\equiv \sum_{i=1}^{j+2-k} a_2 (c'_i a_{i+k-3} X - c_i a_{i+k-2} X)
$$

mod Q_j , which follows from the equation $a_i \equiv a_{i-1}X \mod Q_j$ for every

3. Generators of the two ideals.

The purpose of this section is to find the generators of the following two ideals:

$$
(a_1, a_2 - a_1X, \ldots, a_j - a_{j-1}X)
$$
: a_2

and

$$
(a_1, a_2-a_1X, \dots, a_j-a_{j-1}X, a_2) : (a_{j+1}-a_jX)
$$

for every $1 \leq j \leq r$ (Henceforth we denote the above two ideals by (Q_j) : a_2 and (Q_j) , a_2): g_{i+1} . However, we will find that the system of generators of the ideal (Q_i, a_2) : g_{i+1} is somewhat complicated in the case $j \ge 3$. Thus, firstly, we will treat the cases $j=1, 2.$

Lemma 3.1. $(\alpha_1) \quad (a_1, a_2)$: $g_2 = [q, U(0)]$. (6) (a_1) : $a_2 = [U(a_1), a_1X]$. (Q_2, a_2) : $g_3 = [Q_2, a_2, U(a_1)]$. (β_2) (Q_2) : $a_2 = [q, U(a_1), a_1X]$.

Proof. (α_1) : First, notice that (a_1, a_2) : $g_2 = (a_1, a_2)$: $a_1 X \subset [q, U(0)]$: $a_1 X$. Then we have (a_1, a_2) : $a_2 \subset [q, U(0)]$ from Lemma 2.6.

 (β_1) : Let cX^n be an element of (a_1) : a_2 . Then we have

$$
c \in U(a_1) \cap \underline{q}^n = \begin{cases} U(a_1) & (n = 0) \\ (a_1)\underline{q}^{n-1} & (n > 0) \end{cases}
$$

by Lemma 2.2. Thus, in any case, we find $cX^n \in [U(a_1), a_1X]$.

(α_2): Let f be an element of (Q_2, a_2) : g_3 and put $\overline{R} = R(q+U(a_1)/U(a_1))$ $R(q)/[U(a_1), a_1X]$. Then, we have

$$
\vec{f} \in (\bar{Q}_2, \bar{a}_2) : \bar{g}_3 = (\bar{a}_2) : \bar{g}_3 \subseteq (\bar{a}_2, \bar{a}_3) : \bar{g}_3 = \bar{q}\,\bar{R}
$$

by the claim (α_1) in the ring \overline{R} . Hence we have $f \in [q, U(a_1), a_1X]$ and so f may be expressed as

$$
f = h + h' + h''a_1X
$$

with $h \in qR$, $h' \in U(a_1)R$ and $h'' \in R$. Recalling $h(a_3 - a_2X) \in (Q_2, a_2)$, we have $ha_3 \in (a_1 X, a_2 X, a_1, a_2).$

Now, put $h = h^{(0)} + h^{(1)}X + \dots + h^{(k)}X^k$. Then $h^{(i)} \in \underline{q}^{i+1} \cap U(a_1, a_2)$ for every $0 \le i \le k$, so, by Lemma 2.2, we have $h^{(i)} \in (a_1, a_2) \underline{q}^i$. Thus we see $h \in (a_1, a_2)$ a_2) $R \subset (Q_2, a_2)$, which implies $f \in [Q_2, a_2, U(a_1)]$.

 (β_2) : Let *f* be an element of *R* and assume that $fa_2 = h_1a_1 + h_2g_2$ with some $h_1, h_2 \in R$. Then $h_2 \in (a_1, a_2)$: $g_2 = qR + U(0)$ by the claim (a_1) . Therefore, we may express

$$
fa_2 = h_1a_1 + h_2a_2 - a_1h_2X,
$$

Rees algebra 189

which implies $f - h_2 \in (a_1)$: a_2 . By the claim (β_1) , we get $f \in [q, U(a_1), a_1X]$.

Proposition 3.2.

$$
(\alpha_j)
$$
 (Q_j, a_2) : $g_{j+1} = [Q_j, U(a_1), a_2, \sum_{k=3}^{j-1} a_k U(a_1,..., a_{j+2-k})]$ for every $3 \leq j \leq r$.

$$
(\beta_j) \quad (Q_j): a_2 = [q, U(a_1), \dots, U(a_{j-1}), a_1 X, \dots, a_{j-1} X] \text{ for every } 3 \leq j \leq r+1.
$$

Proof. Since (α_2) and (β_2) follows from Lemma 3.1, it suffices to prove

(i) If $s = 2, ..., r$ and both (α_s) , (β_s) hold, then (β_{s+1}) holds.

(ii) If $t = 2, ..., r-1$ and both (α_t) , (β_t) hold, then (α_{t+1}) holds.

(i): First we will show that $[q, U(a_1),..., U(a_s), a_1X,..., a_sX] \subset (Q_{s+1})$: a_2 . Let *y* be an element of *q*. Then $ya_2 = (a_2 - a_1X)y + a_1yX \in Q_{s+1}$. Thus $qR \subset$ (Q_{s+1}) : a_2 .

Next, let $1 \le k \le s$ be an integer. Let z be an element of $U(a_k)R$ and express $z = cX^n$ ($c \in q^n$). Then by Lemma 2.2 we have $ca_1 = da_k$ for some $d \in q^n$. Moreover, $da_{k+1} = d'a_1$ for some $d' \in \underline{q^n}$, since $d \in U(a_1)$. On the other hand we observe that

$$
cX^n a_2 \equiv c a_1 X^{n+1} \equiv d a_k X^{n+1} \equiv d a_{k+1} X^n \equiv d' a_1 X^n \equiv a_1 d' X^n
$$

mod Q_{s+1} , since $a_i \equiv a_{i-1}X$ mod Q_{s+1} for every $2 \le i \le s+1$. Thus $z = cX^n \in$ (Q_{s+1}) : a_2 .

Finally, observing that

$$
a_2(a_k X) = -(a_{k+1} - a_k X)a_2 + a_2 a_{k+1}
$$

= $-g_{k+1}a_2 + g_2 a_{k+1} - a_1 a_{k+1} X$
= 0

mod Q_{s+1} for every $1 \leq k \leq s$, we have $a_k X \in (Q_{s+1})$: a_2 .

Now, we will consider the opposite inclusion. Let *f* be an element of *R* and assume that

$$
fa_2 = g + ug_{s+1}
$$

where $g \in Q_s$ and $u \in R$. Then $ug_{s+1} \in (Q_s, a_2)$, and so $u \in [Q_s, U(a_1), a_2, \sum_{k=3}^{s-1} a_k$. $U(a_1,..., a_{s+2-k})$ by the claim (α_s) . Thus u may be expressed as

$$
(3.2. a) \t u = v + y + za_2 + \sum_{k=3}^{s-1} c_k a_k
$$

where $v \in Q_s$, $y \in U(a_1)R$, $z \in R$ and $c_k \in U(a_1, ..., a_{s+2-k})R$.

First, since $y \in U(a_1)R$, notice that

(3.2.b)
$$
yg_{s+1} = y_1a_1 - y_2a_1X = y_1a_1 + y_2g_2 - y_2a_2
$$

for some $y_1, y_2 \in R$.

On the other hand, we have that

$$
(3.2.c) \t a_k c_k g_{s+1} \equiv a_2 \sum_{p=1}^{s+2-k} (c'_{k,p} a_{p+k-3} X - c_{k,p} a_{p+k-2} X)
$$

mod Q_s for every $3 \le k \le s-1$, where $c_k a_s = \sum_{p=1}^{s+2-k} c_{k,p} a_p$ and $c_k a_{s+1} = \sum_{p=1}^{s+2-k} c'_{k,p} a_p$

Put $c = \sum_{p=1}^{s+2-k} (c'_{k,p} a_{p+k-3} - c_{k,p} a_{p+k-2})$. Then clearly $cX \in (a_1 X, ..., a_s X)$ as $p+k-3 \leq (s+2-k)+k-3=s-1$ and $p+k-2 \leq (s+2-k)+k-2=s$. Combining $(3.2.a)$, $(3.2.b)$ and $(3.2.c)$, we get

$$
fa_2 \equiv ug_{s+1} \equiv (y + za_2 + \sum_{k=3}^{s-1} c_k a_k)g_{s+1}
$$

$$
\equiv -y_2 a_2 + za_2 g_{s+1} + a_2 cX
$$

Hence $f + y_2 - zg_{s+1} - cX \in (Q_s): a_2$. As (β_s) holds, mod Q_{s} . we have $f + y_2 - zg_{s+1} - cX \in [q, U(a_1), ..., U(a_{s-1}), a_1X, ..., a_{s-1}X],$ which implies f ϵ $[q, U(a_1), \ldots, U(a_s), a_1X, \ldots, a_sX].$

(ii): First, we will show that

$$
(Q_{t+1}, a_2): g_{t+2} \supseteq [Q_{t+1}, U(a_1), a_2, \sum_{k=3}^t a_k U(a_1, ..., a_{t+3-k})].
$$

Notice that $g_{t+2}U(a_1) \subset (a_1, a_1X)$, and we have $U(a_1)R \subset (Q_{t+1}, a_2)$: g_{t+2} . Now, let cX^n be an element of $U(a_1,..., a_{t+3-k})R$. Then we have

$$
a_k c X^n g_{t+2} \equiv a_2 \sum_{p=1}^{t+3-k} (c'_p a_{p+k-3} X - c_p a_{p+k-2} X) X^n
$$

mod Q_{t+1} by Lemma 2.7. This implies $a_k U(a_1,..., a_{t+3-k}) R \subseteq (Q_{t+1}, a_2)$: g_{t+2} .

Now, let us consider the opposite inclusion. Suppose that the assertion does not hold. Then there exists an element f of $R(q)$ which has minimal degree among the elements contained in (Q_{t+1}, a_2) : g_{t+2} but not contained in $[Q_{t+1}, U(a_1), a_2,$ $\sum_{k=3}^{t} a_k U(a_1,..., a_{t+3-k})$ (We denote by Q the latter ideal for convenience). Put $\overline{R} = R/[U(a_1), a_1 X] \cong R(q + U(a_1)/U(a_1)).$ Then we get

$$
\bar{f} \in [\bar{Q}_{t+1}, \bar{a}_3, U(\bar{a}_2), \sum_{k=4}^{t} \bar{a}_k U(\bar{a}_2, \ldots, \bar{a}_{t+3-k})]
$$

from the claim (α) , which implies

$$
f \in [Q_{t+1}, a_2, a_3, U(a_1, a_2), \sum_{k=4}^{t} a_k U(a_1, a_2, ..., a_{t+3-k})].
$$

Thus, we may express $f = h_1 + h_2 a_3$ for some $h_1 \in U(a_1, a_2)R$ and $h_2 \in R$.

Now, put $h_1 = h_1^{(p)} X^p + \dots + h_1^{(0)}$. Then for each $i > 0$, we have $h_1^{(i)} \in (a_1, a_2) \underline{q}^{i-1}$ by Lemma 2.2 and we are able to express $h_1^{(i)} = a_1y_1 + a_2y_2$ for some $y_1, y_2 \in q^{i-1}$. Thus we see that

$$
h_1^{(i)}X^i = a_1y_1X^i + a_2y_2X^i \equiv a_2y_1X^{i-1} + a_3y_2X^{i-1}
$$

mod Q. This allows us to express $f = ha_3 + c$ for some $c \in U(a_1, a_2)$. We will show that $c \in Q$. Put $ca_{t+1} = d_1 a_1 + d_2 a_2$, then

$$
(c+ha_3)g_{t+2} \equiv a_3hg_{t+2} - d_2a_3
$$

mod (Q_{t+1}, a_2) , which implies

$$
hg_{t+2}-d_2 \in (Q_{t+1}, a_2)
$$
: a_3 .

On the other hand, using the claim (β_i) in the ring $\bar{R} = R/[U(a_1), a_1X]$, we have

$$
(3.2.d) \t h g_{t+2} - d_2 \in [q, U(a_1, a_2),..., U(a_1, a_t), a_1 X,..., a_t X].
$$

190

Rees algebra 191

As $U(a_1, a_i) \subset U(a_1, ..., a_t)$ for every $2 \le i \le t$, we see $d_2 \in [q + U(a_1, ..., a_t)]$ $U(a_1, a_{t+1}) = (a_{t+1}) + U(a_1)$ from Corollary 2.4. Therefore, we can express $ca_{t+1} =$ $d'_1a_1 + d'_2a_2a_{t+1}$ for some d'_1 , $d'_2 \in A$, and hence $c \in (a_2) + U(a_1) \subset Q$.

Now, in order to establish the assertion, we will show that $f \in Q$, which implies the desired contradiction. By (3.2.d) we have $h \in [q, U(a_1,..., a_t), a_1X,..., a_tX]$: g_{t+2} , and hence $h \in [q, U(a_1, \ldots, a_t), a_1X, \ldots, a_tX]$ from Lemma 2.6. Recall that $a_3U(a_1,..., a_t) \subset Q$, $a_3q \subset (a_3 - a_2X)q + a_2qX \subset Q$, and that $a_3a_jX = -a_3(a_{j+1} - a_1X)$ $a_i X$ + $(a_3 - a_2 X)a_{i+1} + a_2 a_{i+1} X \in Q$ for every $1 \leq i \leq t$, we have $f = ha_3 + c \in Q$.

4. **The proof of Theorems 1 and 2.**

Proof of Theorem 1: For $1 \le j \le k \le r+1$ we will prove

$$
(g_1,...,g_{j-1}) : g_j g_k = (g_1,...,g_{j-1}) : g_k.
$$

If $j = 1$, the assertion is obvious. Suppose that $j > 1$. Put $\overline{A} = A/a_1A$. Then we have

$$
(\bar{g}_2,..., \bar{g}_{j-1})
$$
: $\bar{g}_j\bar{g}_k = (\bar{g}_2,..., \bar{g}_{j-1})$: \bar{g}_k

in the ring $\overline{R} = R(q/a_1A) = R(q)/(a_1, a_1X)$ since \overline{A} is a G.C.M. ring and by induction on *r.* This implies

$$
(g_1, \ldots, g_{j-1}, a_1 X)
$$
: $g_j g_k = (g_1, \ldots, g_{j-1}, a_1 X)$: g_k .

Now, let f be an element of (g_1, \ldots, g_{j-1}) : $g_j g_k$. Then $f \in (g_1, \ldots, g_{j-1}, a_2)$: g_k by the above result. Express $fg_k = h + h'a_2$ for some $h \in Q_{i-1}$, $h' \in R$. Then we have

 $h'g_i \in [q, U(a_1), \ldots, U(a_{i-2}), a_1X, \ldots, a_{i-2}X]$

by the claim (β_{j-1}) , since $h'g_j \in (Q_{j-1})$: a_2 . Hence $h' \in [q, U(a_1, ..., a_{j-2}), a_1 X, ...,$ $a_{i-2}X$ from Lemma 2.6.

On the other hand, put $h' = h'^{(p)}X^p + \cdots + h'^{(0)}$. Then we have

 $h^{(0)} \in [q, U(a_1), \ldots, U(a_{k-1}), a_1 X, \ldots, a_{k-1} X]$

by the claim (β_k) , since $h' \in (Q_k)$: a_2 , which is a homogeneous ideal. Thus we have

$$
h'^{(0)} \in [\underline{q} + U(a_1) + \dots + U(a_{k-1})] \cap [\underline{q} + U(a_1, \dots, a_{j-2})]
$$

= $\underline{q} + U(a_1) + \dots + U(a_{j-2}) + [\underline{q} + U(a_{j-1}) + \dots + U(a_{k-1})]$
 $\cap U(a_1, \dots, a_{j-2})$
= $\underline{q} + U(a_1) + \dots + U(a_{j-2})$

from Corollary 2.4. Moreover, $h' - h' = (q, U(a_1, ..., a_{i-2}), a_1X, ..., a_{i-2}X)$, and hence $h' - h'^{(0)} \in [q, a_1 X, \dots, a_{j-2} X]$, since $h' - h'^{(0)} \in (a_1 X, \dots, a_r X) R$. This implies

$$
h' \in [\underline{q}, U(a_1), \ldots, U(a_1), \ldots, U(a_{j-2}), a_1 X, \ldots, a_{j-2} X].
$$

Recall that (Q_{j-1}) : $a_2 = [q, U(a_1),..., U(a_{j-2}), a_1X,..., a_{j-2}X]$. Then we have

 $fg_k \in Q_{i-1} = (g_1, \ldots, g_{i-1})$. This completes the proof of Theorem 1.

Proof of Theorem 2:

We have only to prove

$$
(f_1, \ldots, f_j) \colon f_{j+1} f_k = (f_1, \ldots, f_j) \colon f_k
$$

for every $0 \le j < k \le r$. First, suppose that $j \le n-1$. Using the sequence

$$
a_1, a_2-a_1X, \ldots, a_n-a_{n-1}X
$$

for $k \leq n$ or

$$
a_1, a_2 - a_1 X, \dots, a_n - a_{n-1} X, a_{n+1} - a_n X, \dots, a_{k-1} - a_{k-2} X,
$$

$$
a_{k+1} - a_{k-1} X, a_{k+2} - a_{k+1} X, \dots, a_r - a_{r-1} X, a_k - a_r X, a_k X
$$

for $k \ge n+1$, we have the desired result from Theorem 1.

Suppose that $j \ge n$ and put $P_n = (f_1, ..., f_n)$. Then we have to prove

$$
(4.1.a) \qquad (P_n, a_{n+1}X, \dots, a_jX); a_{j+1}Xa_kX = (P_n, a_{n+1}X, \dots, a_jX); a_kX
$$

for every $n \leq j < k \leq r$.

As $U(a_{n+1},..., a_j)R \subset (P_n, a_{n+1}X,..., a_jX): a_kX \subset (P_n, a_{n+1}X,..., a_jX): a_{j+1}Xa_kX$ and $(P_n, U(a_{n+1},..., a_j), a_{n+1}X,..., a_jX): a_kX = (P_n, a_{n+1}X,..., a_jX): a_kX$, we may consider the above (4.1.a) in the ring $\overline{R} = R/[U(a_{n+1},..., a_i), a_{n+1}X,..., a_iX] \cong$ $R(q+U/U)$, where $U = U(a_{n+1},..., a_i)$ and the isomorphism follows from Lemma 2.5. Thus we have only to prove

Claim $P_n: a_{i+1}Xa_kX = P_n: a_kX$ for every $n \leq j < k \leq r$.

Proof. If $n=0$ or 1, the claim follows from Corollary 1.2 in [6]. Thus we may assume that $n \ge 2$. Suppose that $g \in P_n$: $a_{i+1}Xa_kX$. Then we have $g \in$ (P_n, a_2) : $a_{i+1}Xa_kX$. Applying the induction hypothesis on r to the ring \overline{R} = $R/[U(a_1), a_1X] \cong R(q+U(a_1)/U(a_1))$, we obtain that

$$
g \in (P_n, U(a_1), a_2)
$$
: $a_k X = (P_n, a_2)$: $a_k X$.

Thus, we can express

$$
(4.1.b) \t\t ga_k X = h + h'a_2
$$

for some $h \in P_n$ and $h' \in R$. Notice that $P_n = Q_n$ by the definitions of f_i and g_i for every $1 \leq i \leq n$. Then we have

$$
h' \in [q, U(a_1, \ldots, a_{n-1}), a_1 X, \ldots, a_{n-1} X]: a_{j+1} X
$$

= [q, U(a_1, \ldots, a_{n-1}), a_1 X, \ldots, a_{n-1} X]

from the claim (β_n) and Lemma 2.6, since $h'a_{i+1}X \in P_n$: a_2 . Now, put $h' = h'' + c$ (c is the constant term of h'), and we have $h'' \in (q, a_1X, ..., a_{n-1}X)$ since $h' \in$ $[q, U(a_1,..., a_{n-1}), a_1X,..., a_{n-1}X].$

On the other hand, we have

192

Rees algebra

$$
c \in [q, U(a_1),..., U(a_r), a_1X,..., a_rX]
$$

from (β_r) and Lemma 2.6, since $h'a_2 \in (a_1, a_2 - a_1X, ..., a_{k-1} - a_{k-2}X, a_{k+1} - a_{k-1}X,$ $a_{k+2}-a_{k+1}X, \ldots, a_{r}-a_{r-1}X, a_{k}-a_{r}X, a_{k}X$). Therefore, we obtain that

$$
c \in [q + U(a_1, ..., a_{n-1})] \cap [q + U(a_1) + \dots + U(a_r)]
$$

= $q + U(a_1) + \dots + U(a_{n-1}) + (a_1, ..., a_{n-1})$
= $q + U(a_1) + \dots + U(a_{n-1})$

from Corollary 2.4, which implies $h'a_2 \in P_n$ by (β_n) .

Now, we will prove the second statement. Put $J = (f_1, \ldots, f_n, \ldots, f_r)$, $P = (a_1, \ldots, a_r)$ $a_n, a_1X, ..., a_nX, ..., a_rX$ and $Q=(f_1,...,f_n,f_r)$. Then we have dim $R/P \leq \text{dim } R/J \leq$ dim R/Q. On the other hand, we have dim R/P=dim A-n, since R/P \cong A/(a₁,..., a_n).

Now, put $\overline{R} = R/Q$ and consider the set of elements $a_1, a_2 - a_1 X, ..., a_n - a_{n-1} X$, $a_{n+1} - a_n X, ..., a_r - a_{r-1} X, a_r X$. Put $Q' = (\bar{a}_{n+1} - \bar{a}_n X, ..., \bar{a}_r - \bar{a}_{r-1} X)$. Then we have dim $\bar{R}/Q' = \dim A/(a_1,..., a_r) = \dim A - r$. Thus, by Theorem 154 in [9], we have dim $\overline{R} \leq \dim A - r + (r - n) = \dim A - n$. Hence dim $A - n \leq \dim R / J \leq \dim A - n$ *n*, which implies that dim $R/J = \dim A - n$. This completes the proof of Theorem 2.

Example 4.2. Even if a_1, \ldots, a_r form a *d*-sequence, a sequence of elements $a_1, a_2-a_1X, ..., a_{i+1}-a_iX, ..., a_r-a_{r-1}X, a_rX$ does not allways form a d-sequence. Indeed, let S, T, U, V and W be indeterminates over a field k. Put $A = k[\,[S, T, U,$ V, W]]/ $(TV-UW) = k[[s, t, u, v, w]]$. Then, s, t, u form a d-sequence, but s, $t-sX$. $u-tX$, uX don't form a d-sequence, since $w^3 \in (s, t-sX, u-tX)$: $(uX)^2$ and $w^3 \notin$ $(s, t-sX, u-tX): uX.$

Remark 4.3. A sequence of elements $a_1, a_2 - a_1X, ..., a_n - a_{n-1}X, a_nX, ..., a_nX$ does not necessarily form a d -sequence.

For example, put $A = k[[Y, Z, W]], a_1 = Y, a_2 = Z$ and $a_3 = W$. Then a_1, a_2 a_1X , a_2X , a_3X don't form a d-sequence. In fact, we have $a_3^2 \in (a_1, a_2 - a_1X)$: a_2Xa_3X , but a_3^2 is not contained in (a_1, a_2-a_1X) : a_3X .

> JOHOKU-GAKUEN, HIGH SCHOOL **Токуо 174**

References

- [1] J. Barshay, Graded algebras of powers of ideals generated by A-sequences, J. of Alg., 25 (1973), 90-99.
- [2] S. Goto and Y. Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ., 20 (1980), 691-708.
- [3] S. Goto and K. Yamagishi, The theory of unconditioned storong d-sequences and module of finite local cohomology, preprint.
- [4] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation Complexes of Blowing-up Rings II, J. of Alg., 82 (1983), 53-83.

194 *Yasuhiro Shimoda*

- [5] C. Huneke, On the symmetric and Rees algebras of an ideal generated by a d-sequence, J. of Alg., 62 (1980), 268-275.
- [6] C. Huneke, Symbolic powers of prime ideals and special graded algebras, Comm. Alg., 9 (1981), 339-366.
- [7] C. Huneke, The theory of d-sequences and powers of ideals, Ad. in Math., 46 (1982), 249-279.
- [8] S. Ikeda, The Cohen-Macaulayness of the Rees algebras of local rings, Nagoya Math. J., 89 (1983), 47-63.
- [9] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago and London, 1970.
- [10] Y. Shimoda, On the syzygy part of Koszul homology on cetain ideals, J. Math. Kyoto Univ., 24 (1984), 83-90.
- [11] V. P. Schenzel, N. V. Trung and N. T. Coung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57-73.
- [12] G. Valla, Certain Graded Algebras are always Cohen-Macaulay, J. of Alg., 42 (1976), 537-548.