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On certain d-sequence on Rees algebra

By

Yasuhiro SHIMODA

Introduction.

In  this paper we study the d-sequences on the associated graded ring of an
ideal in a Noetherian local ring.

Let A  be a Noetherian local ring with maximal ideal m  and q=(a i ,..., a r )  an
ideal of A .  We define the Rees algebra of q as the subalgebra

A[a i X,..., a r X ]

of the polynomial ring A [X ]  in  the  indeterminate X  over the local ring A , and
denote it by

R = R(q) .

A sequence of elements x 1 ,..., x r of a commutative ring R is called a d-sequence
if for all i and i +1, we have the equality

X i) :  Xi + =

Any regular sequence is obviously a  d-sequence and every system of parameters in
a Buchsbaum ring is a d-sequence ([7] Prop. 1.7.).

Let us state here some remarkable properties of the Rees algebra of an ideal q
generated by a d-sequence a 1,..., a, of a local ring A.

Firstly, if a  .... ar  fo rm  a  regular sequence, then so do  a l , a2 —a 1 X,..., a,—
ar _,X, a r X  in the Rees algebra R (q ) . Hence if A  is a Cohen-Macaulay ring so is
R(q) O D .  H ow ever, the converse of the above is not true in general. It has been
quite an important problem to describe the condition of the Rees ring to be a Cohen-
Macaulay ring . T h is has been partially settled in some papers [2], [5], [8], [10].

Secondary, if a 1 ,..., a,. form a  d-sequence, the  Rees algebra is isomorphic to
th e  sym m etric  a lgebra  [7 ]. B y  v irtue  o f  th is  fac t, J. Herzog, A. Simis and
W. V. Vasconcelos have given a  homological characterization o f  a  d-sequence [4].
Recently, S. Goto and K. Yamagishi have shown results o f  a  d-sequence in more
detail than the above ([3]).

We treat in this paper the following question: If a,. form a  d-sequence,
then do  ci 1 ,  a2 —a 1 X,..., arX form a d-sequence in the Rees algebra?
This is not true in general (see example (4.2)). We give in this paper a  sufficient
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condition for a l , a,—  a,X,..., a,.X  to  form  a  d-sequence in  the  Rees
algebra.

Let M  denote the ideal, introduced in  Definition 1.1, of a  generalized Cohen-
Macaulay ring (abrev. a  G.C.M . ring, see also Definition 1.1 for the  definition).
Then our first result is stated as follows :

Theorem!. L e t  A  be a G.C.M. ring and a1 ,..., a,. a subsystem of parameters
o f  A  contained i n  M .  P u t  q=(a,,..., a r ). T hen a l ,  a2 —a 1 X,...,
ar X form  a d-sequence in R(q).

As a consequence to the above theorem, we see that there exists a  d-sequence
a,, a 2 —a 1 X,..., a , . X  such that dim (R(q)I(a,, a 2 —a 1 X,...,
ar X))=dim A —r.

O n the other hand, C. Huneke has shown that a,X, a 2 X,..., a r X  also form
a d-sequence in R(q) if a a , .  form a d-sequence [6]. Notice that dim R(q)I(a,X,
a2 X,..., a r X)=dim A.

The main result of this paper presents a  d-sequence in  the Rees algebra such
that the ideal generated by th e  sequence can have the arbitrary dimension not
greater than dim A .  It is stated as follows:

Theorem 2. Let A  be a G.C.M. ring and a1 ,..., a,. a subsystem of parameters
of A  contained in M . L e t  n be an  integer with O n < r and define a sequence of
elements in R(q) as:

f i= lai —ai _,X  (0._.ç_i n)

ai X ( n + 1 . i _ r ) ,

where we set a0 =a_ 1 =0.
Then the sequence

f„+1,...,.1;

form  a d-sequence in R(q) and

dim (R (q)I(f))=dim  A— n.

We will prove the above theorems in Section 4. In Section 2, some fundamental
lemmas on d-sequences will be prepared.

If a1 ,..., ar  form a regular sequence, one can find the generators of ideals [(a 1 ,
a 2 —a 1X ,...,a 1 —a1 _1X): a ]  and [(a 1 , a 2 —a 1 X,...,d i —af _ 1 X,a 2 ):(a 1 4 1 —ai X )]
( [1 2 ] ) .  We also find the generators of the above ideals in the case of d-sequence.
This is given in Section 3.

1. Definition and notation.

Definition 1.1. ( [1 1 ] ) .  Let A be a Noetherian local ring with maximal ideal m.
Then A is called a Generalized Cohen-Macaulay ring (abrev. a G.C.M. ring) if FIL(A)
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has a  finite length for a ll i <dim A = d. Here H i
t, (A ) denotes the i-th local coho-t

mology module.

This is equivalent to the condition that there exists an ideal M with A M m
such that the equality

aj+,= (a ,,...,a j): M

holds for every O j  d  1 and for every system of parameters a„,..., ad  contained
in M.

Definition 1.2. U(a 1 ,...,a j _ 1 ) —(a 1 ,...,a 1 _ 1 ):a 1  for r and for a sequence

of elements a a,. If A  is a G.C.M. ring, then we have

U(a,,..., a j )=(a ,,..., a.): a =(a 1 ,..., a j ): b

for any two subsystems o f parameters {a 1 ,..., a 1 , a}  and { a 1 ..... a1 , b } contained
in M.

Notation 1.3. If f  is an element of Rees algebra R(q), we denote by f ( n )  the
coefficient of the term X " in f.

Notation 1.4. Let R b e  a  Noetherian ring, x 1 ,..., xr a  sequence of elements,
and I  an ideal of R .  We always denote by R the factor ring R h  and a the image
of an element a  of R in the ring R .  Moreover, we denote by  J - 1 )  the
ideal [U(x i ,..., x i _ /]// for every 1 r.

Notation 1.5. Let a,,..., a, be a sequence of elements of A  and put g=(a,,...,
ar ). For an element f  of Rees algebra R(q) we denote by f  the image off in the ring
K = R (q+ U (a i , . . . ,  ai )1U(a,,..., a 1 )) for 1 r 1 .

2. Preliminary.

Throughout this paper, let A  be a G.C.M. ring of dim A = d and M the ideal in
Definition 1.1. Let a1 ,..., a,. be a  subsystem of parameters for A  contained in  M
and put g = (a 1 , ,  ar ). Define a  sequence of elements in the Rees algebra R(g) as:

gi =ci i —di _ i X  (1 1)

where we set a0 =a,. + 1 = 0 .  We always denote by Q. the ideal of R(g) generated by
g 1 ,..., g j  for every r+ 1.

Our first lemma, which we will use frequently, is as follows:

Lemma 2 . 1 .  L et b1 ,..., b, be a subsystem of param eters for A  contained in M .
Then both ring Al(b,,..., b,) and AlU(b,,..., b,) are again G.C.M. rings.

P ro o f . L et b,+ 1 ,..., b d  b e  a  sequence o f elements o f  A  such that b„,..., b„
bt+1,• • •, ba form a  system of parameters for A  contained i n  M .  Then bd
form  a  system o f parameters for Al(b,,..., b,) and  AlU(13 1 ,..., b,). Since A  is  a
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G.C.M. ring and since b 1 ,..., b„ b ,,,,..., b3+ 1  fo rm  a  subsystem of parameters
for A , we have

(b1,..., b , ,  b t + ,,..., b1+1

b,), b,,,,..., b i ]: 6 1 + 1

b„ b, + 1 ,..., /33+1

b„ b,,,,..., b 1 ): M

b,), b;]: M

for every t +1 . .i d. Thus we have the desired result.

Lemma 2.2. ai_ 1 ) n qka , _ , ) q k - '  f o r every an d  all
k >0.

P ro o f . See [2 ] Lemma 4.2 and [10] Lemma 2.2.

Lemma 2.3. U(a1 1 ) n U(a,,..., a i )g(a,„ ,)+ U(0) f o r every 1 —1.

P ro o f . Suppose that i =1. Let x be an element of A  and assume that

xa 2 =sa 1 a n d  xa = ta2

for some s, te A . T h e n  w e  have s e  U(ai) since tai=x a 1 a2 =sa? and ai, a ,  form
a d-sequence. L e t xa 2 = s 'a i  fo r som e s' e A , a n d  w e have x— s'a 2  e U(0), i.e.,
x e (a 2 ) + U(0).

Now suppose tha t i > 1 and the assertion holds for i — 1. Let x  be an element
of U (a 1 1 ) n U(a i ,..., a i)  a n d  p u t :4 ai_ I ). Then x e U(d i +  i )  n U(ai).
By virtue of the above result, we have .Tc e U(0)+ (d i +  ,), which implies

x 011-1).

Hence x  ( a i+1 ) +  EU(ai+ i) n U(a i , • • •, a1-1)] and by induction we have x +
U(0).

Corollary 2.4. [q +U(a,)+ • •• +U(ai+k)] nU (a ,,..., a1_ 1 ) =(a 1 ,..., a,_,)+ U(0)
for every  l i <r and 0:5_k _r —i.

 I f  r= 1, then there is nothing to p ro v e . So suppose that r> 1. If
i = 1, the assertion is obvious. Thus we may assume that i > 1. Since 
d i + i , • • • , d , .  form  a  subsystem o f  parameters in  th e  r in g  A =A IU (a,) and since
U(C))=(0), by induction on r we have

E4+ U (d i+  1)+ • • + U (d i+ k )] n ,51 -  1 ) = 0 1 — ,

which implies

[q +U(a i , a i + • • •  + U ( a i , a i + k )]n U(a l ,..., a 1)

=(a i ,..., U(di).
Thus we have
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[9+ U(ct i)+ • • • + U(a i + k )] n U(a,,..., a i _,)

[g + U(a i , a1+ )+ • • • + U(ai, cli+0] n U(al,•••, a,- 0

=(a,,. . . ,a i _ 1 ) +[U(a i ) n U(a l ,...,a i _ 1 )]

=(a,,..., a i _ ,)+(a i )+ U(0)

= (a 1 , ,  a  i ) + U(0) .

Now, we will give some results about Rees algebra when a 1 ,..., a,. form  a
d-sequence.

Lemma 2 .5 .  R(q+U (a l ,..., a„)IU(a,,..., R(q)I[U(a ,  a n ),a,X , ...,a„X ]
for every 0 r- 1 .

P ro o f . See Proposition 4.4 in [2].

Lemma 2.6. [q ,  U(a l ,..., a i _ ,) , a ,X ,.. . ,  a i _ ,X ]: a i X =[g , U (a,,..., a,_ ,) ,
a i X ,..., a i _,X ] f or every

Pro o f . T h e  isomorphism R I[U(a,,..., a i _,), a,X ,..., R (g+U(a,,...,
a  1 )) allows us to assume that i = 1 and that a ,  is a nonzero divisor

element. So it suffices to prove that g :a,X =g R .
Now, let c.X t be a n  element of g : a , X .  Then c a ,  q t+ 2 nu(a,) and so by

Lemma 2.2, we have ca 1 = c'a , for some c' e  q t - I - 1 .  Hence cX t e qR  as a ,  is a non-
zero divisor.

Lemma 2 .7 .  L et 3 - _k sj. r — 1 be integers an d  c  an  elem ent of  U (a,,...,
a i+2 - 0 •  Then

ak c(ai + , —ai X ) a 2 [E.11- ; -  c  ak (  ;  t + k _ 3 X —  c
(
at + k _ 2 X ) ]  mod Q..

Here, c 1 ,..., C i+ 2 _ k  (resp. c'1 ,..., c'i + 2 _k )  are  elements of  A  satisfy ing the following
equalities

c a • = Jv  + 2 - k (resp. ca . —  V i + 2 - k )
L -dt=1 ' t  t j + 1 —  L- ,t=1 ' V . ' s /  •

Proof

ak c(ai + , —ai X )=a k E W - k (c;a i —ci at X)

(ak _,X c;a t —ak ci a i + ,)

(ak _ i c;a i + , —ak _,X c t ai + ,)

•••

E-12-
2

- k C 12(C ;a t  + k  3 X  —  ct at + ,_ 2 X)

mod Qi , which follows from the equation ai_ I X  mod Q .  for every
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3. Generators of the two ideals.

The purpose of this section is to find the generators of the following two ideals:

and

(a t , a2 —a,X,...,a 1 —ai _,X ,a 2 ):(a i + , —ai X)

for every r (Henceforth we denote the above two ideals by (Q ): a2  and (Q1 ,
a2 ): g i + i ). However, we will find that the system of generators of the ideal (Q»  a 2 ):
g1 +.1 is somewhat complicated in the case 3. Thus, firstly, we will treat the cases
j=  1, 2.

Lemma 3 . 1 .  (cc 1 ) (a 1 , a 2 ): g 2 = [q, U(0)].

(Si ) (a 1 ): a 2 =[U (a 1 ), a i X ].

( 1 2) (Q 2 , a 2 ): g 3 =[Q 2 , a2 , U (a,)].

( 132 ) ( Q 2 ): a 2 =[g, U(a,), a ,X] .

P ro o f .  (a , ) :  First, notice th a t (a 1 , a 2 ): g 2 =(a 1 , a2 ): a ,X  c[g , U(0)]: ai X.
Then we have (a 1 , a 2 ): g 2  OE [g , U(0)] from Lemma 2.6.

(fl,):  Let cX" be an element of (a,): a 2 . Then we have

c c U ( a i )  n qn= 
f  U(a 1 ) (n=0)

(a 1 )q" - '  ( n >  0)

by Lemma 2.2. Thus, in any case, we find cX"E [U(a,), a,X].
(a2 ): Let f  be an  element o f (Q 2 , a 2 ): g , and  pu t R= R(q +U(a 1 )1U(a 1 ))=

R (q)/[U ( ), a ,X ] .  Then, we have

E (Q 2, a2): g 3  (a2) S  (a2, a 3 ) : g3 =qk

by the claim (a l )  in the ring R .  Hence we have fE[g, U(a,), a i X ] and so f  may
be expressed as

f= h + h '+ h "a iX

w ith  h e q R , h' E U (a ,)R  a n d  h"E R . Recalling h(a 3 —a2 X)e (Q2 , a 2 ) ,  w e have
ha3 e(a 1 X, a 2 X, a 1 , a 2 ).

N o w ,  p u t  h
= h ( 0 ) ± h ( 1 ) X + . . . + h ( k ) X k .  

T h e n  h(i) E qi±i n U(a l , a 2 ) for
every O i k, so , by Lemma 2.2, we have Woe (a ,, a 2 )g1. Thus we see h E (a t ,
a2 )RŒ(Q 2 , a 2 ), which implies fE [Q 2 , 02 , U(a,)].

($ 2 ): Let f  be an element of R and assume that fa 2 =h 1 a1 +h 2 g2  with some
h 1 ,  h2 e R .  Then h2  E (a 1 ,  a2 ): g 2 = qR + U(0) by  the  claim (a,). Therefore, we
may express

fa2= hi a i +h2a2—a,h2X,
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which implies f — h 2  e (a l ): a2 . By the claim (/ ), we get f  E [g, U (a,), a i X ].

Proposition 3.2.
( a . )  (Q1, a 2 ): g 1  t  =C12 p U(al), a 2 , Et.,:lakU(a,,..., ai+ 2 -0 ] f o r every 3 <

j

(Th) ( Q . ) : az =[a, U (a i ),•••, aiX ,• • •, ai- I X ] f or every r 1 .

P ro o f . Since (a 2 ) and (ff2) follows from Lemma 3.1, it suffices to prove
(i) If s=2 ,..., r and both (as), WO hold, then (J3s+ i) holds.
(ii) If t = r — 1 and both (a,), (fly) hold, then (a, ) holds.
(i): F irs t w e  w ill show th a t  [g , U (a,) ,..., U (a s ), a i X ,..., asX ] (2,-F 1): az.

L et y  b e  a n  element o f  g. Then ya 2 = (a 2 a I X )y  + aiy X  e Qs+ 1. Thus q R c

(Qs+ 1): az.
Next, le t 1 be an  integer. Let z be an element o f  U(a k )R  and express

z =cX "(c e qn). Then by Lemma 2.2 we have ca i =d a k for some d e g .  Moreover,
da k + 1 = d 'a ,  for some d' e g n , since d E U ( a , ) .  On the other hand we observe that

cX "a2ca1X n-1-1.dak X n+1=--dak +1X "-=d'a1X "-- a1d'X n

m o d  Qs + 1 , since mod Q s + ,  fo r  every i s +  1. T hus z=cX n E
(Qs+1): az.

Finally, observing that

a 2 (a k X )= —la k+ 1 — ak X )a2+a2ak +,

= —gk + l a2 +g 2 ak + , — a,a k + , X

mod Q + 1
 for every 1 k  s ,  we have ak X  e (Qs +  1 ): a2 .

Now, we will consider the opposite inclusion. Let f  be an element of R  and
assume that

f a2 =g +u g s+1

where g e Qs and u e R .  Then ug s +  E  (Qs , a2 ), and so u E [Q s ,  U (a,), a 2 ,  E r=i, ak •
U (a,,...,  as +  2 _ 0 ] by the claim (2s). Thus u may be expressed as

(3.2.a) u =v +y +z a2 +E r=1 3 e k ak

where v  Qs , y e  U(a 1 )R , z  e R  and ek e U(a as+ 2 _ k)R.
First, since y e U(a 1 )R , notice that

(3.2.b) Yg5-FI=Y1a1—Y2a1X=Y1a1+.Y292—Y2a2

for some y l , y 2 e R.
On the other hand, we have that

(3.2.c) a k ck g s + , ,a 2  Esp+= 2,-- k ( 'Ck  , p a p  + k _ 3X — Ck, p a p  +k _ 2X)

mod Q 2-k
s for every 3 1, where ckas= 2,x ' s t 2 - k  Ck, p ap  and  ck a s , „ = E ps t ,  c 'k ,,ap
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P u t  c= Espti — k (c'k ,p a p + k - 3 ck,pap+k-2). T h e n  c le a r ly  cX a s X )  as
p+k  — 3 (s+2 — k)+Ic — 3=s-1 and p +k  —2_(s+2 — k)+k  —2=s.

Combining (3.2.a), (3.2.b) and (3.2.c), we get

f a 2 ug s + , E....(y +z a 2 +E r=l3 ck a k )gs + ,

— y2 a 2 +z a 2 g s + 1 +0 2 cX

mod 
Q .

H e n c e  f + y 2 — zgs +  —  cX  E (Qs ): a 2 . As (fl,) holds, w e  have
f + y 2 — zgs + , — cX U(a,),..., U(a s _ ,) , a ,X ,..., as _ , X ], w h ic h  im p lie s  f E

U(a s ), a l X ,..., a s X ].

(ii): First, we will show that

(Qt+1, a2): g t+ 2 D EQ,+i , (Aal), a2. Ei,=3 akU(al , •••5 at+3-k)] •

Notice that g t + 2 U(a 1 ) c ( a 1 , a,X ) , and  we have U(a l )ROE(Q t + ,, a 2 ): g t + 2 . Now,
let cXn be an element o f U(a l ,..., ci„, 3 _k ) R .  Then we have

ak cX "g1+2 a 2  E t-1-3--k
 
(C; a p +k_3X — Cp a p ± k _ 2X )X "

mod Qt + 1 by Lemma 2.7. This implies a k U(a l ,..., at +  3 _OR g ( Q t +  a 2 ): g t +  2.

Now, let us consider the opposite inclusion. Suppose that the assertion does
not h o ld .  Then there exists an element f  of R(q) which has minimal degree among
the  elements contained in (Qt +1 a 2 ): g 1 + 2  b u t  not contained in  [Q, + 1 , U (a,), a 2 ,

t
k = 3 ak U (a,,..., a t + 3 _ k ) ]  (We denote by Q the latter ideal fo r convenience). Put

R= RI[U(a 1 ), a  X ]  R(9 + U(a 1 )1U(a 1 )). Then we get

J ea 3 ,  U(a 2 ), Dc = 4 at+3_k)]

from the claim (oc,), which implies

f E a2, a 3 , U(a 1 , a2 ), El= 4  ak U(a i , a2 ,..., at + 3 _k ) ] .

Thus, we may express f = h i + h2 a3 fo r some h, e U(a 1 , a 2 )R  and h2  E R.
Now, put h 1 =117 ) XP + • • • + W,° ) . Then for each i > 0, we have W e (a ,, a 2 )qi - 1

by Lemma 2.2 and we are able to  express h;i )  = +  a 2 Y 2  for some y i , y 2  E q' - 1 .
Thus we see that

Wi
l ) X i =9 ,y 1 X 1 +92Y 2X i a2Y 1X i - l +a3Y 2X i - 1

mod Q .  This allows us to express f  = ha 3 +c  for some cEU (a l , a2 ). We will show
that c e Q .  Put cat + , =d,a, +d 2 a2 , then

(C +  ha3 )g t + 2 _.-- -=a3 hg1 +  2 — d 2 a 3

mod (Qt+j, a2 ), which implies

hg1+2 — d2 G (2t+ 1, a2 ): a 3 .

On the other hand, using the claim (fl,) in the ring = R I[U (a,), a,X ], we have

(3.2.d) hgt+ 2 — d2 e [9, U(a l , a 2 ),..., U (a,, a i), a i X ,..., a t X ] .
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A s  U(a i , a)c U(a,,..., a )  fo r  every 2 w e  s e e  c/2 c [q +U(a,,..., a)] ri
U (a  a f + ,)= (a t + 1 )+U (a 1 )  from Corollary 2.4. Therefore, we can express ca ,,,=
d1a1 + d a 2 a, + , for some d'i , d'2  e A , and hence c  (a 2 )+ U (a , )  Q.

Now, in order to establish the assertion, we will show that fe Q , which implies
the desired contradiction. By (3.2.d) w e have h e [q, U(a,,..., a), a ,X,..., a i X ]:
g t + 2 ,  and hence h E U(a,,..., at ), ai X,..., a t X ]  from Lemma 2.6. Recall that
a3 U(a 1 ,..., a t )c Q , a 3 g  (a 3 — a2 X)g + a 2 qXc Q , and t h a t  a3 af X = — a3 (a i +  1 —
ai X) + (a 3 — a2 X)a i .,, ± a 2 a i  ,X  E Q for every 1 t, we have f = ha 3 + c e Q.

4. The proof of Theorems 1 and 2.

Proof of  Theorem 1 :  For 1 r +1 we will prove

(g i ,...,g ; _ i ): g k •

If j = 1, the assertion is  o b v io u s . Suppose th a t j >  1 . P ut 21=Ala 1 A .  Then
we have

(421 •• • 1 g j - 1 ) :  g j g k - ( 4- 2 5 • • • , g  j - 1 ) :  g k

in the ring = R(q la 1 A) = R(g)I(a i , a,X) since A  is a G.C.M. ring and by induction
on r. This implies

(g 1 ,...,g 1 _ 1 , a1 X ):g i gk —(g 1 ,...,g i _ 1 , a1 X ):g ,.

Now, let f  be an element of (g g _ 1 ): g i gk . Then f e(g,,..., g _ 1 , a2 ): g k by
the above result. Express fg k = h + h'a 2  for some h e Qi _ ,, h' e R .  Then we have

h'g e [9, U(a,),..., U(a i  2 ), a i X,..., a i  _ 2 X ]

by the claim (fli _ ,), since h'g1 e(Q 1 _ 1 ): a 2 . Hence h' E U(a,,...,a i _,), a i X,...,
ai _ 2 X ] from Lemma 2.6.

On the other hand, put h' =h'(P ) XP+ • • • +h'(°). Then we have

h'(°) e [q, U(a,),..., U(a,_,), a ,X,..., a k _ ,X ]

by the claim (fl,), since h' E (Qk ): a 2 , which is a homogeneous ideal. Thus we have

h' e Eg + U (a 1 ) + • • • + U(ak _ n [g + U(a 1 ,..., a i  _2 ) ]

=q +U(a,)+ • • • + U(a i  _ 2 )+ E g  U (a i  _ 1 ) + • • • + U(ak _ ,)]

n U(a,,..., a i _ 2 )

=g+U(a,)+ • • • +U(a i _ 2 )

from Corollary 2.4. Moreover, h' —h'(°) E [q, U(a,,..., a i  _ 2 ), a ,X,..., a i  _ 2 X ], and
h e n c e  h' —h'(°)e[g, a ,X,..., a i _ 2 X ] ,  since h' —h'(°)e (a 1 X,..., a,X)R. This
implies

h' e Eq, U(a1),...,U(ai_2), a1 X,...,g ) _ 2 X ].

R eca ll th a t ( 421-1): a2=Cq , u (a i ),..., U(ai_2), a 1 X,...,a i _ 2 X ] .  T h e n  w e  have
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.f9k 6  Q j - 1  =  ( g 1 5 •  •  • 5  9 1 - 1 ) .  This completes the proof of Theorem 1.

Proof o f  Theorem 2:
We have only to prove

(.ft f i+ ifk = (h , . . . , f ) : fk

for every 0 . j < k r .  First, suppose t h a t  j  n — 1. U s in g  the sequence

a l , a 2 — a,X ,..., an — a„_

for or

a„, a 2 —a 1 X ,..., a„_ ,X , a n + 1 — a„X ,..., a _k _ 1 — ak _ 2 X ,

a k + 1 —  ak _ ,X , a k +  2 ak + a r  a r _ , X , a k —ar X , a k X

for k + 1, we have the desired result from Theorem 1.
Suppose that j n and put P „=( f , , . . . ,  f „) .  Then we have to prove

(4.1.a) (P„, a + , X ,..., a i X ): a i + , X a k X =(P„, an + a i X ) :  a k X

for every n j < k r.
As U(a n + i ,•••, ai )RŒ(P„, a +  1 X ,..., a i X ): a k X  (P„, a +  1 X ,..., a i X ): a i + , X ak X

and (P„, a i) ,  an + , X ,..., a i X ): a k X =(P„, a n + , X ,..., a i X ): a k X , we may
consider the above (4.1.a) in  the ring  R =R I[U(a„ + ,,..., a i ), a + , X ,...,
R (g +U /U), whereU= U (a„,,,..., a 1 ) and the isomorphism follows from Lemma
2.5. T h u s  w e  have only to prove

C la im  P„: a i , ,X a k X =P„: a k X  for every n... _ j < k r .

P ro o f . If n = 0  or 1, the claim follows from Corollary 1.2 in  [ 6 ] .  Thus we
m ay  assume t h a t  n  2 .  Suppose th a t  g  e P„: a i + , X a k X .  T hen  w e  have g e
(P„, a 2 ): a i + , X a k X .  Applying the induction hypothesis o n  r  t o  the ring k =
R I[U (a,), a , X ] R (g  + U (a 1 )1(1(a 1 )), we obtain that

g E (PH, U(a,), a 2 ): a k X =(P„, a 2 ): a k X .

Thus, we can express

(4.1.b) gak X =h+h 'a2

for some h e P „ and h' E R .  Notice that P„=Q „ by the definitions of fi and g i for
every 1 < i < n .  Then we have

h' e [9, U(ai,•••, n-1), atX ,•••, an-1X ]: ai+1X

=[g , U (a,,..., a„_ ,), a i X ,..., a„_ „X ]

from the claim (/3„) and Lemma 2.6, since h'a i + ,X  eP„: a 2 . Now, put h' = h"+c
(c  is  the constant te rm  of h ') , and w e have h"E(g, a i X ,..., a n _ ,X )  since h' E
[g, U (a,,..., a„_,), a i X ,..., a„_,X ].

On the other hand, we have
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ce  [q, U(a i ),..., U(a,.), a,X ,..., a,.X ]

from (fir) and Lemma 2.6, since h'a 2  e (a 1 , a 2  — a,X ,.... a k _ i —ak +2 X , a k + i —ak _,X ,
a k + 2  ak+ IX>•••, a,.—a,._,X, a k — a,X , ak X ) .  Therefore, we obtain that

c e [q +U (a,,..., n [q+  U(a l )+ • • • + U(a,.)]

=9 + U(a,)+ •• • + U(a n _ 1 )+(a,,..., a n _ i )

=9 + U(a,)+ • + U(a„_,)

from Corollary 2.4, which implies h'a 2  e P„ by (fin).
Now, we will prove the second s tat e m e n t  Put J f , „  •  •  • ,  f r ) ,  P=(a i ,...,

an , a,X ,..., a n X ,..., a r X ) and Q=(f,,..., f„, f ,.). Then we have dim R IP  dim
dim R IQ . On the other hand, we have dim R/P = dim A — n, since
a„).

Now, put R= RIQ and consider the set of elements a„, a 2 —a 1 X ,..., an — an _ ,X ,
a , , + 1 —  

a„X ,..., a,.X .  P u t  Q '=(a„,, — d,,X ,..., IX ). T h e n  w e
have dim RIQ' =dim Aga a,.) = dim A— r. T hus, by  T heorem  154 in  [9 ], we
have dim R  dim A — r +(r — n)= dim A — n . Hence dim A —  n dim RI./ dim A -
n, which implies that dim RIJ = dim A— n. This completes the proof of Theorem 2.

Example 4 .2 .  Even if a,. form  a  d-sequence, a  sequence of elements
al , a 2 —a 1 X ,..., a + 1 — ai X,..., a,.— a,._ I X, ar X  does not allways form a d-sequence.
Indeed, let S, T , U, V  and W be indeterminates over a field k. Put A = k[[S , T , U,
V , W ]]1(TV — UW )=k[[s, t, u, y , w ]]. Then, s, t, u form a d-sequence, but s, t —sX,
u— tX , uX  don't form a d-sequence, since w 3 e (s, t — sX , u— tX ): (uX ) 2  and w3 ,k
(s, t— sX , u— tX ): uX .

Remark 4 .3 .  A sequence of elements al , a 2  —  a an— an _ ,X , a n X ,..., a r X
does not necessarily form a d-sequence.

For example, put A = k[[Y, Z, W]], a, = Y, a2 =Z  and a 3 = W . Then a 1 , a 2 —
a,X , a 2 X , a 3 X  don 't form  a -d-sequence. In fact, we have ai e a2— a1X ):
a2 X a 3 X , but ai is not contained in (a 1 , a 2 —a 1 X ): a 3 X.
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