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Some functional equations which generate both
crinkly broken lines and curves

By

Jun KIGAMI

§ 0 .  Preliminary.

Since the discovery of Peano's plane filling curve, we have known many irregular
curves as von Koch curve [5], Pélya curve [11] and Lévy cu rv e  [6 ]. In recent years,
these curves have found to be related to Mandelbrot's Fractal theory and studied
by m any authors. They have shown that these curves can be defined as limits of
sequences of broken lines generated by a  kind of transformation. In fact, such
an idea has already given in [9] by E. H. Moore.

A sequence of complex numbers a= {an }„ fo  e Ci" generates a broken line L(a)
in the comprex plane whose turning points {z„}+,,f ,  are given by

n-1
Z 0 = 0 ,  Z n =  E  a k n = 1 ,  2,....

k=o

Definition. For (yo , y _1) e C" — 101, we define Ty :  CN—> CN such that
Ty (ct o , yiao,..., y n _ i a o , yo a i , y i a i ,...).

This transformation Ty replaces a segment ci ;  b y  segments y o a i , y ka i ,
y„_ 1 a .i . We will treat such a type of transformation in a new view point, which is
different from previous studies, in the following sections. In §1, we will direct our
attention to  the broken lines which are invariant under T .  Roughly speaking, the
invariant broken line is the eigen vector of the linear map Ty  and in the course of the
discussion, the eigen vector turns out to be the solution of a functional equation on
the formal power series C [ [ z ] ] .  In §2, it will be also shown that the solution of
the functional equation has the natural boundary at the unit c irc le . In the rest of
this section, we will review the previous results in our formulation.

The following theorem gives the process of generation of the irregular curves
by T.

n-1
Theorem!. L e t  a= f a i l E CN and Y =(yo , ••• , Y .- 1) E C n . I f  E  y i = i, <1

i=o
f or all j= 0 ,  1 , . . . ,  n -1  and L (a) is a com pact subset of  the plane, then L (T ;(a )) is
compact and converges as n—* + co in the sense of H ausdorff metric.
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In the book [7] by Mandelbrot, such 7 is called the generator of Fractal curves

Example I.

(1) Let y —( 1 1
+  , ()  and a =(1, 0, 0,...) e CN, then L (T (a))  is convergent

to  Lévy curve as + co.

(2) L et y—( 3
1 ,  6

1 - 0 /6
3 i ,  6

1 —N/6 3 i ,  3
1 )  and a =(1, t  N/ 3 i 1  , 0,2 ' 2

0,...), then L (T (a))  is convergent to the snowflake curve (i.e. von Koch vurve).

( 3 )  L e t — ( '
I1

— 
1
4 ,  -

I 
and a=(1 , 0, 0,...), then L (T (a))  is convergent2  2 2 2

to  Pélya's plane filling curve.

Similar theorem is shown by D ekking [2]. His theory of recurrent sets is  able
to apply som e of the curves generated by T .  H ata [4] has studied different type
of transformations viewing from the point of self similarity.

Proof of Theorem 1. We will show that

d m (L (Ty a), L (11a)) rd„(L (a), L (Ty a)), (0.1)

where r= sup j= 0 , n — 1} an d  a i l ( • ) denotes Hausdorff m e tr ic . For
th e  simplicity of the  d iscussion , w e assume a =(1, 0, 0,...). In  th is  case , T a=
(Y o, l'1,• • •, Y „-1, 0, 0,...). Let a = (0, 0,..., 0, y 1 , 0,...), then

dH (L (Ty a), L(T.?.,a))_ sup dH (L (ai), L (Ty al)) •i=o .... n -1

H ere dH (L (aj), L ( T y a l ) ) = I Y i l d „ ( L ( a ) ,  L (Ty a)). T herefore  w e obta in  (0.1). Now,
using (0.1) inductively, we have

dH (L (T 7a), L (T rla)) rndH (L (a), L (Ty a)).

Hence, for n< m, we have

dH (L (T 'y'a). L (T 7a)).-ET --7 ,; d ii(L (ra) , L (T r'a) )

rk)dH (L (a), L (Ty a))

<

-  -

{ - H
d (L (a) L (T  a)).— — r  

Thus, L ( T a)  is convergent in Hausdorff metric as n-0 + cc.

§1 . Invariant broken lines.

We will establish a  new viewpoint on the transform ation T, from the fact that
Ty  is  a  linear map from CN to itself. At first, let us consider a  broken line which is
invariant in s h a p e  u n d e r  T . Here, the shape o f  a  broken line is determined by a
equivalence in C a': a, b e CN are equivalent if and only if there exists a E C -  {0} and
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an =ocb, for all n EIV. Now, a broken line a is invariant in shape under Ty when T a
and a are equivalent in above sense, in other words, a is an eigen vector o f Ty  for a
nonzero eigen value.

Proposition 1. Ty  has a nontriv ial eigen vector if  and only  if yo 0 0 .  And in
this case, T , has only  one eigen value yo and the eigen vector corresponds to this
eigen value.

P ro o f .  First, we rewrite explicitely the definition of T .  L et Tya=(b o , b 1 ,...),
then Ykap— bnq+k (1.1)
for k =0 , 1 ,..., n -1  and p =0 , 1, 2,....
Let a =(a o , a 1 , . . .)0 0  be an eigen vector o f T, with an  e ig en  va lu e  2 . By (1.1), we
have Y k a p =  / l a np + k• (1.2)
For some k  and p, y k ap 0 0 and this implies AO 0  by (1.2). Now using the formula
an p ± k =2 - tyk ap inductively, it turns out that a, = 0  implies a m = 0  fo r all m .  There-
fore, a0 0 0 , an d  hence by a o =y o a o ,  we have 2 = y o •  T h u s , w e  o b ta in  yo ---).#0,
and the eigen vector is determined inductively from a, by the formula an p + k =A - Iyk ap .

By Proposition 1, it turns out that y0 # 0  must be assumed to study th e  broken
lines invariant in shape under T .  And then, the eigen vector of Ty is the fixed point
of (y 0) - I Ty = Ty .  where y ' = (I, Y 117o , Y 2IYo,• • i l Y o ) .  S o , le t  w =(1, w 1 , w2 ,...,
w„_,) and study the fixed points of T o ,.

It is convenient to identify  C i"  w i th  t h e  form al p o w er series C [[z ]] as
a i ,

In this expression, for f  e C[[z ]]

T 0,f (z)= tli.(z)f (z") ,

where iii.( z ) .= + c o l z ± ( 0 2 z 2+ . . . ± c o n  i z n-i . Therefore, t h e  fixed p o in ts  o f  T .
are the solutions of the functional equation in  C[[z ]]

Co(z)./. (zn)=f(z). ( 1 . 3 )

R em ark. Such a  functional equation as (1.3) is seen on  several o ccasion s. In
th e  kneading theory o f  iteration o f  th e  interval maps, th e  functional equation
(1 —t)D(f, t 2 ) =D (f , t)  is used to characterize th e  kneading determinant D  o f th e
unim odal map f  lying o n  a  critical state. S e e  §9 o f [8 ] fo r th e  details. In [10],
Odlyzko has studied functional equations

f  (z )= P(z)+ (Q(Z)) (1.4)

from the interest in the enumeration of 2, 3-trees. N aturally , th is type of functional
equations are closely related with the famous works of F a tou  and  Ju lia  (See [1]).
We will treat the details in §3.

Using (1.3) forf(zn), the solutionf of (1.3) turns out to satisfy 0.(z)ili co(zn)f(zn 2 ) =
f ( z ) .  So, repeating this process infinitely, we can find the solution of (1.3) as follows.

Theorem 2 .  L et f ,„(z )=FM 'o tfr„,(znk ), then f ,, is well defined as an element of
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C[[z ]], and the solution of (1.3) is given by
 Œ f ( z ) f o r  a E C.

Proof of  Theorem 2. Let f  (k)(z)=FF):6 tp (z o ) ,  then
0 .(z n k )f ( "(z )=f  ( " 1 )(z ). H ere 0 ( z '" ) = 1 + co,zn k + +con _ i z ( n-  nn k ,  therefore

we have

f  (k )( z ) _f  (k+1)( z ) E  z n k  C [ [ z ] ] (1.5)

Hence f (k)(z ) is convergent in the formal power series topology and the limit f  ( z )
has the property

f  . (z )—  f ( k) ( z) E Zn k  C[[Z]] • (1.6)

By (1.5) and (1.6), we have C o(z)f (z")—f „(z) E Zn k  C[[Z ]] for a ll k. Hence f  ( z )
is  the solution of (1 .3). By (1.2), for a solution  f ( z )= 0 a j z i  o f (1.3), a
uniquely determined by a,. And so, we obtain f ( z )=a 0 f .(z ).

Definition. F or m E N , n E N— {0} and j =0, n— 1, we define S(m : n, j)
as fo llow s. If m = Ef=, j k -nk such that j k e {0, n —1 }, then

S(m: n, j)=1{ k: j k =j}1 ,

where I • I represents the number of elements of the set.
Especially, S(m)= S(m: 2, 1).

The following lemma is immediately verified by above definition.

Lemma. S(nm + k: n, j)= S (m : n, j)+S i k  f or k =0, 1, n —1.

Making use of S(m: n, j), f  (z ) can be expressed by its coefficients.

Theorem 3. f.(z)— Eni+  (FP.;:i 0 .4(1": "' i ) )Vn .

Remark. In this paper, we define 00 = 1.

Proof of Theorem 3. Let a„=1- Pizt j), then by the lemma, we have

w k a p  = w pp:n,k)+1 n r j i l , i # k  o y )(p:n, j)

= 117 ,71 w iS (np+k :n ,j) a n p + k , (1.7)

where wo  = 1 .  Using (1.2) in the proof of Proposition 1, (1.7) implies that E a„,zm
is a solution of (1.3). By Theorem 2 and the fact that ao  = 1, we obtain

am zm = f .(z ).

4  , then w=(1, 
 1  + i  

)  and f  (z )  represents

the broken line which is invariant under Ty of Example 1 - ( 1 ) .  For arbitral a, Dekking
and Mendès France have studied the broken lines represented by f  w (z) in Example 4.3
of [3].

Example 2. Let co= (1, e 2 nia) where a E R , then the solution of (1+ e2 niaz)f (z 2 )

=f (z ) is f „,(z)= E l- To e 2.i.s (m)z . .  I f  a =   3 1 —i
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§ 2. R ad iou s of convergence and natural boundary of f,„(z ) .

We have considered the functional equation (1.3) on the formal power series
C [ [ z ] ] .  The solution of (1.3) is given by theorems in §1 as a formal power series.
Now, we will discuss some properties of the solution f  m (z ) as an analytic function in
this section. By the way, if co = (1, 0, 0,..., 0), then f ( z ) -  1 and this case is often a
trivial exception in the below discussion. Therefore we will eliminate this case from
our consideration.

Proposition 2. The radious of convergence of f m  is 1.

Proof of  Proposition 2. Let am be the same as in the proof of Theorem 3 and
w=s u p 'coi l where wo = 1 .  By the definition o f S (m : n, j) we have E7:1•

j =0, 1 ,— , n -1

S(M :  n, j)_10,g„ m + 1. Therefore,lam l_Frilico jis(m:1,./)<wiog„m+1.

have lim supla,„I'tm < lim w(logm+i)/.=
m-H-

On the other hand, if co,0 0  for some k , then a„, ( p ) = co, where m (p)= k nP. Hence
we have lim sup la nj'/Tn: l im  l a „ , ( p ) 11 /m( P) = 1. Thus we obtain lim sup la1 1 /m = 1.

m+F p-o-1-

It is also obtained th a tf ( k) (z) converges uniformly on the unit disk D = { z : 1z1.< l}
and for izl > 1, f(k)(z)—■ + co as k—>+ co. And then, the next question is naturally
on the possibility of analytic continuation off (0 .

Theorem 4 . f m  h a s  the natural boundary  at the  un it circle C= { z : iz 1=1}
with the exception of the following case.

m 2mEx ception. L et e2 n tin -1  and w =(1, ( ( ,1L-
1

2 ) m, 1) where m =
1, n — 1, then f  m (z )=1/(1 — (m„_,z).

The natural boundary of f , .  can be thought to represent the  complexity of
the corresponding broken line. F o r  example, f m (z ) in Exception corresponds to  a
regular (n —1) polygon . The rest of this section is filled with the proof of Theorem 4.

Proof of Theorem 4. We will show that if f .( z )  can be continuated on an open
set V D, then f„,(z ) is one of the exceptional cases.

Lemma 1. If f m (z ) can be continuated to an analy tic function on an open set
V D, then f m (z ) can be continuated to a rational function on an open set U DD.

P ro o f . Let P(z )=z ", then for all e P(U) n C , there exists z o  e U n C  such that
P(z 0 ) = t .  Taking a  branch of P - 1  a s  Q(z) such that Q (t)=  z 0 ,  we can continuate
f  m (z ) to  a  rational function o n  a  neighborhood of by f  m (z )=f  m (Q(z))Itlim (Q(z)).
And so, it is easily verified that u  Pn (U )=C , therefore f o r  a l l  C E C , we can

.>
continuate f m (z ) to  a  rational function on a  neibhforhood o f  by repeating above
process. And then, all of the function element on a neighborhood of are compatible
as the direct analytic continuation from D .  Thus we can continuate f  m (z ) to  a
rational function F(z ) on an open set U D D.

Hence we
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We can choose an open set W such that U  W D  I) and P( W )  U , then for all
z e W, ifrn,(z)F(P(z))= F(z). (2.1)
Now, the radious of convergence of f (z) is one and there is a pole n of F(z) such that
In' = 1 .

Lem m a 2. n is a  periodic point of  P.

P ro o f .  By (2.1), we have ili (n)F(p(n))=F(n). Hence, if F(n)= oo, then F(P(n))
=oo and P(n) is a pole of F ( z ) .  The same discussion shows that Pn(n) is also a
pole of F(z) for n = 0 ,  1 , . . . .  Here, if n is not a periodic point of P, then {Pn(n)} 4-„50

has some accumulated points on C .  This contradicts the fact that F is a  rational
function on U.

Let n  be a  q-periodic point of P and no =Pq - '(n). Then 13 - '( 7) has exactly
n-different points no , z,, z 2,..., z„_,.

Lemma 3. t/J(z i ) = 0 f or j = ,  n - 1 .

P ro o f .  If tfro ,(z i ) 0 0, then by (2.1 ), F(z i )=0 ,0 (z i )F(1J)= oo. Therefore, zi  is  a
pole of F .  Then by the  same discussion as Lemma 1, we have z ;  i s  a  periodic
point of P .  This contradicts the fact that n is a q-periodic point and Pq -  i(n)= no 0 z i .

By the above lemma, i/in,(z) must have at least n - 1  different zeros. On the
other hand, i/J,n (z) is a polynominal of degree n - 1  at most. Hence we obtain iiin,(z )=
Fly.,1 (1 — z/zi ). And now, making the same discussion as above, we also obtain
P- I(no ) = {Pq - '(10), z 1, z 2 ..... z _ 1}. Therefore n o = n and n is a  fixed point of P.
Hence we obtain /i(z)=fl7:1 (1— z/z 1 )  where 13 - 1 (P(z i ))={ P(z ; ), z ,, z 2 ,...,
By the elementary caluclation, the above condition implies that O (z ) is one of the
exceptional cases.

§ 3 .  The natural boundary and Julia set.

In  the  preceding section, we show tha t the solution of (1.3) has the natural
boundary at 1z1 =1 except for a few c a se s . It is also known that Julia set of z—,zn
is z I  = 1 . This correspondence will lead us to  a  new  problem . Let us consider a
functional equation

f (z) = 0(z)f1 1 ) (z)), (3.1)

where f r  is a given entire function and P is a given polynominal which satisfy (1i(0)= 1,
P(0)=0 and IP'(0) <  1 . A  continuous function f  on an open set U  is said to be
the solution of (3.1) if P ( U )  U  and f (z) 0(z ) f  (P(z )) for all z e U .  The problem
is the relation between the natural boundary of the solution of (3.1) and the Julia
set of P.

Definition. The stable set of 0 is the set

{z : Pn(z)-00 as n.--4 + col .
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The immediate stable set Ao of 0 is the component o f WS containing O. J(P) denotes
the Julia set of P.

The following proposition is the known fundamental facts about W6, Ao and
A P ). See [1] for the proofs and the details.

Proposition 3. (1) W t, and A , are  open  se ts. T he f ron tier o f  W 6 is con-
tained in J(P) an d  the frontier of  A , is also contained in  .1(P). (2) WS is com-
pletely  invariant by  P and A , is f orew ard invariant by P.

We can find the solution of (3.1) on Wi!, by the same method used in Theorem 2.

Theorem 5.
(1) Frk, =. tp(Pk(z)) is uniformly convergent on W6 as n—>+ 00.
(2) The lim it F(z )=11,-1,-f o tlf(Pk(z)) is the solution of (3.1) on W .
(3 )  Every solution of (3.1) on a neighborhood of ()coincides with ŒF(z) for some

a e C on some neighborhood of O.

P ro o f . (1 )  We can choose A and  a  bounded open set V 9 0  so as to satisfy
I P'(0)1< A <1, P(V )= V  and IP(z)l<A1z1 for all z E V. Then let R = sup 1z1, we have

zE V

P"(z )I < R for all n =1 , 2,... a n d  z E V.

Hence, logli/i(Pk(z))1<cAk f o r  som e c> O. T h e re fo re , ec A k  i s  the m ajorant of
1//(Pk (z ) ) . j i g )  eck " is obviously  convergent t o  ec l IA - 1  a n d  this im plies that
11,7= 0  ii/(Pk(z)) is uniformly convergent on V. Now, for a ll compact set K
w e  have  Pk (K )c: V  f o r  sufficiently large  k. H ence w e can  a lso  obta in  that

tP(Pk(z)) is uniformly convergent on K .  Thus, rip 0  k f r(Pk (z )) is uniformly
convergent on W .

(2) This is obvious by the definition of F(z ) and (1).
(3) Let f ( z )  be  a solution of (3.1) on  an  open  se t U n O. W e can  choose

an open set W9 0 such that U n A 0 W  and P(W )c  W . Then for all z E W, we have
f (z)= tli(z)tli(P(z)).. ( P n -  1 (z)) f (Pn(Z)). H e re , fri31//(Pj(z)) a n d  f  (Pn(z )) are
uniformly convergent to F(z ) and f (0 ) on W respectively. Thus, we obtain

f  (z )= f  (0)F(z ) on  W .

Now we can state our problem precisely.

Problem. When does the natural boundary of F(z)I A o  coincide with the frontier
of Ao ?

The following theorem is one of the sufficient conditions to our problem, which
is very simple and meaningful.

Theorem 6. If  there is ri E Ao such that 0(11)=0, then the natural boundary  of
F(z)l,,,, is the frontier of A ,.

P ro o f . Lem m a. L e t  e A 0 and Pin( ) =?1, then F(C)=0.
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Pro o f . This is obvious by the equation

F(()= 1P(C)...0(Pm ( ))F(P m + 1 (0).

I t  is  e a s ily  v e r if ie d  th a t  P: 240 —›A0  i s  surjective. T herefore , w e have
(P1 A.) - '(1 ) (I) for all 1. Then, by the above lemma, the accumulated points
of (PIA.) - m (i1) is the accumulated points of the zero's of FI A .. By the theorem

m 1 -
of identity, the accumulated points of the zero's of FI A 0  are contained in O A ,. There-
fore we obtain the following lemma.

L em m a. T here  ex ists  eaA 0  such  that FI A .  can not be continuated to any
rational m ap on a neighborhood of

Now, if FI
A 0

 can be continuated to some analytic function on an open set
/10 , then making use of the same arguement as is used in the proof of Theorem 4,
FI A . can be continuated to a rational map on an neighborhood of This contradicts
to the preceding lemma.

R em ark. In [10], O dlyzko has studied th e  functional equation (1.4) and
encountered a problem similar to o u r s .  To avoid the confusion with our notation,
we rewrite (1.4) as

g(z)=4)(z)+ g(P(z)). (3.2)

Odlyzko assume that P(z) and (P(z) are nonzero polynominal with real nonnegative
coefficients, which satisfy 0(0)= P(0) = P'(0) = 0. I f  we consider th e  exponential
form of (3.2), eg( z) =e 0 ( 2 ) eg( P( z) )  and let  e 9 ( z ) = f ( z )  and eo z>= 0(z), then it comes
to our functional equation (3.1). Odlyzko has proved that th e  natural boundary
of the solution of (3.1) is the Julia set of P under some extensive assumptions.

R em ark. If 0(z) and P(z) are formal power series, we can define a  linear map
C [[z ]]— >C [[z ]] b y  Tf;(f)(z )=0 (z )f(P (z )). The eigen vector o f  Trk is given

1 by the formal power series FU23
0 (

0 )

 0(P 1(z ))) when 0(0)0 0, P(0) = 0 and P'(0)= O.- (
This formal power series represents an invariant broken line under T .  S o ,  we can
generate a broad class of crinkly broken lines by the transfomations
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