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A note on the function é_o‘, [nx+y)/n!
By

lekata SHIOKAWA and Jun-ichi TAMURA

Let f(x, y) be the function of real variables x and y defined by

fx, =3 Lnx+rl

n=1 n!

where [t] denotes the greatest integer not exceeding the real number ¢. In this paper

we prove in §3 the linear independency over the filed Q of all rationals of the values
of f(x, y) for different irrationals x and in §2 their transcendency for rationals x.
Also some properties of the function f(x, y) are studied in §1.

1. Some properties of the function f(x, y).

From the definition it follows that

(1 fx, y)y=elx]+(e—DyI+f({x}, {»}),
where {t}=t—[t]. It is easily seen that

o )#EfF(x, ) if (x, AKX, Y),

except when x=x' is a rational number, say x=p/q with coprime integers ¢>0 ‘
and p, and r/q<y, y' <(r+1)/q for some integer r; in this special case we have

€] f(pla. )=f(pla, rl9) if rlqgsy<(r+1)/q.
The quantity in the right-hand side of (2) will be expressed in Theorem 1 as a linear
form of the values of the exponential function. If x is an irrational number, f(x, y)
is strictly increasing as a function of y. f(x, y) is also strictly increasing as a function
of x for any fixed y, not necessarily irrational.

The function [x] satisfies the equality

= 5 |5 g

for any positive integer g, so that we find

0515 ).
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which may be considered as an expression of a kind of self-similarity for the function
f(x, y), whence we have

Lrax, 0=L'S 1. rig).

The right-hand side above converges to the integral Sl f(x, y)dy, since f(x,y) is
0

Riemann integrable, for it is a nondecreasing and bounded function of y in the
unit interval. But, since by (1) the left-hand side converges to ex, we have for all
real number x

S;f (x, y)dy =ex.

We discuss now the discontinuity of f(x, y) which is inherited from that of the
function [x]. We denote by N(x, y) the set of all positive integers n for which nx+y
is an integer. Then if N(xq, yo)=#, f(x, y) is continuous at (xo. ¥o). If N(xo, yo)
is nonempty and finite, x, must be irrational and N(x,, y,) consists of only one point
N(xq, yo)={no}, say. Putting my=nyx,+y,, we have

lim  f(x, y)=f(xo. yo)

(x,y)=(x0,¥0)
nox+y2mo

and

. |
hm f(x’ )’)=f(xm yO)_ n [
(x,¥)~(x0,y0) 0
nox+y<mo

Finally we assume that N(x,, y,) is infinite. Then x, and y, are rational numbers
and if x,=p/q with coprime integers ¢>0 and p, then y,=r/q for some integer r.
Denoting by ny=ng(x,, yo) the smallest integer in N(x,, yo), we have

N(xq, yo)={no+qk|k=0,1,2,...}, 1Sn,<gq
We put n,=no+ gk and m,=n,xo+ yo, so that m,=mq+ pk, and define
Do={(x, y) | nox+y=2mgy and x=2x,},
Dy={(x, )| m_x+y<my_yand nx+y2m} (kx1),
Eo={(x, y)| nox+y<mg and x<x,},
Ev={(x, Y) | ny_x+y=m,_, and mx+y<m} (kx1).
Then we have

lim  f(x, y)=f(xo, Yo)>

(x,y)—(x0,y0)
(x,y)eDo

lim 15, 5)=f o Y0 = &, Gravayr kED:

(x,)=(x0,y0) +ng)!
(x,y)eDk

and
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n=1

& 1

1‘ 9 = R - P o N k 2 0 5
(x,y)l?:o.yo)f(x Y)=fx0: yo) mgk (mq+ ny)! (k20)
(x,y)€Exk
Especially, we find
> o)y ] e,

where ¢(q) denotes the Euler function, since f(1, 0)—f(0, 0)=e and f(x, 0) is an
increasing function increasing only by jumps occuring at rational points.

The function f(x, y) satisfies some functional equations. It follows from the
relation

1 if t=0 (mod1l),

[(+[-1]+1=
0 otherwise,
that
3)
l . 3
neN(x,y) n.
SR S o
,,,z;'o (mq +ny)! if N(x, y)isinfinite,

where ny and q are as above. Here, for any pair of integers g=1 and r with 0= r=<
q—1, we have

& 1

q .
S T =y S e =i,

1
q k=1

“4)
in view of the formula

g if n=r (modyg),
0 otherwise.

o]
z Ck(n—r) —
k=1

Especially
& 1

: > ARSI LT if x=a/2b,a,b(=1)eZ, (a,2)=1,
1 o N ) = 2712m+1))!
f<"’2>+f< %)=
0 otherwise,

and

] q k . . -
— t 1,
F5, O+ f—x. Qe q kglec if x is rationa

0 otherwise,

where {=exp (2ri/q) and q is the positive denominator of x in its lowest term.
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The function f(x, y) also has an interesting expression. Namely, we have

0

(5) )y -L'l)nyJ:exHy—[y]—~§+—lﬂ )

y)
n=1 n. 2 neN(x,y) n’ + (y)

| e 2 2mimx i —2mimx
b (e nimy+e _e—2mmy+u g
* omi ,,,Z, m( )

provided nx+ y#0 for all positive integer n, where

1 =0 (mod 1),
M)={ 2

otherwise.

Indeed, it follows from the Fourier expansion

{6} =%A —% 21 71’1 sin 2mmnt — A(0)

m

that

6 foxy)=3 "V

n=1

—~—

{_t_y_-
n.

TlMs

sin2mn(nx +y)
m

=ex+(e—1)<y—é’>+"l 2 i

l
2 neN(x,y) n' T( n

Applying now the Euler-Maclaurin formula, we have

N 1 N
sin wm sin wt 1\ wcos wt—sinw
> --*»—S 2o dt+g <{t}— L)@ ceos tz SIB7J~d
m=M+1 M M 2, t

1 (sin wN sinoM
2

N —M——> , w=2n(nx+y),

so that

5. sin2mn(nx +y)
m=M+1 m

=, 2O dro(f )= Gz ) o)

where the constants implied in O-symbols are independent of n and M. Hence,
noticing that nx + y#0 for all positive integer n, we see

—0 as M—

& 1 & sin2mn(nx+y)
ngl n! m=§+1 m
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n=1

o .
2rimy+elmimx _ —2pimy+ e~ 2mimxy s_1r3_2_n_y_
(e e )— 2 .

m=1 m

5\—-

which together with (6) yields (5).

2. The values of the function f(x, y) for rational x.

Theorem 1. For any rational number o and any real humber B, we have
a0 q
%) $ 12 tB _po+ 5 oaer, g=eris,
n=1 k=1
where q>0 is the denominator of « in its lowest term, a, is a rational number, and
a, (1£k<q) are algebraic numbers given in (9) below.

By the theorem of Lindemann-Weierstrass [1; Theorem 1.4], we have the
following:

Corollary. The number > [na+f]/n! is transcendental for any rational o
n=1

and any real B, except when a=0 and 0 f<1.

Proof of Theorem 1. We put p/q={a} and r=[q{B}], so that 0= p<qg and 0
r<gq. ngydenotes as in the preceding section the smallest positive integer n for which
np/q +r/q is an integer, and my=ngyp/q+r/q. Then

[np/q+r/q]=mq+[(n—ny)p/q]

for any positive integer n, so that we have, using (1) and (2),

® % B (4 ppe- g1+ § Lrplatrla)

n=1

We assume from now on p#0 and define for any positive integer h

hq/p if hq/p is an integer,
w(h)=
[hg/p]1+1 otherwise,

so that w(1)<v(2)<:-- and
[np/q]=h if v(h)En<v(h+1),

since hq/[p<v(h)En<v(h+1)—1<(h+1)q/p. Then

v(h+1)=v(h)—1 h

& [nplq] _ 2 "0 [nplg] _ _
Z - Z 0 1=0 (v(h)+1+n0)! ’

n=0 (n+n0)! h=0 n=v(h) (n+n0)! h

Ms

Writing h=mp+j with 0<j<p, we find v(mp+j)=mq+v(j), and so,
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© nplq] ABP_I vij+1)=v(j)—1 o mq+v(j)+1+n0+jq/17—V_(j)—l—no
by q g’ lgo mZO (mg+v(j)+1+no)!

P p—1 v(j-H)—v(.i)—l( o mq+r(1 1)
q f

i=0 1=0 =0 (mq+r(j.D)!
vy —l=ne) 3 (o L)
+<IT v(j)—1 no>m=0 (mq +r(j, 1))!> 5

with

—1v(i+1)=v(j)=1 mj, 1)-1 mq+r(], 1)+jq/P—V(])—l—no
g lg() mgo o (m‘1+"(], 1))'

where m(j, 1) and r(j, ) are nonnegative integers such that
m(j, Ng+r(j, D=v(j)+1+no, 0=r(j, I)<gq.

Therefore, using (4), we obtain

Ms

[np/q] p q rk p=1 v(j+1)=v(j)— ]( . jq . l ) G
—_— = £ _ Jq 7 r(j, _B.
o (n+ny)!  ¢? ,,z=: ,;0 {h+ ) v(J) no )¢

uM

1l

n

This together with (8) yields (7) with

ag=—[Bl—mg— B+§ [(n ”O)P/‘I]

n'

1 v(i+1)=v(i)—1

© {a=L2%

q ; P (Ck+]pi_v(j)~l_n0> Tk (1=k<q),

)4 p=1 v(j+1)=v(j)-1 jq
ay =L+ [Bl+mot 1 27 S (14 2 —v(p=1=no),

Where, by means of the simple continued fractin expansion

]

1 1
¢ "B b+ 4D, T 0

the integer n, can be expressed as
- {;’_ I L}
OTNTB, b+ " +b,

Example 1. As the expression (7) in terms of (9) looks rather complicated, we
give here some simple examples.

il [Iin}/n!=ljcoshl,

02:1 [%n +%]/n!=—5 cosh 1 +sinh 1,



Example 2.
s |1
ng 1 |: q

Example 3.

a0
Note on the function Z [nx+y]/n! 109

1[; ]/n' (\/,cos ‘/3 \/lg_sm ‘/3>
M1 1 1 2 V3
o 1= - c_
Lyt g = J3e 2 +e)
1 2 1 1 \/3‘ 1 . \/3 )
: 1= (= NE o4 s
_3n+3i|/n 3< Je cos +\/3e sin +2e
:5’4/"’%@1°°S¢z3‘¢13?5'“é3‘+">
M2 1 1/ 2 . J3 '
B Smr= (S -sin Y42
3ty 3<\/3e sin 5>+ 2¢)
M2 2 1 1 V3 1 . /3
= (- - — o sin V7 +3¢)
U3n+3}/n 3< \/ecosz \/3esm2 +3e
_%nJ/ ~ (cos 1 +sin 1 —sinh 1)
L, =L _
_4n+4jl/n 4(cosl sin 1 +sinh 1)
1 1 1 _
_-4-n+—2—}/ 71( cos 1 —sin 1 +cosh 1 +¢)
(1, 3 =L -
_4n+ 4]/n. 4( cos 1 +sin 1 +sinh 1+ 2¢)
_}n}/n'— -(cos 1 —sin 1 +cosh 1 +e)
I N PR i ;
_4n+ 4_/n. 4(cosl+sm1+smhl+2e)
[ln+—]—/n'=i(——cosl+sinI+cosh]+3e)
¢TI Ty
[—3—n+§4—/n'=~l—(—cos]—sin1+sinhl+4e)
4" T4
1 q9-149-1 n .
n}/n!=——‘-f > 3 e +-— (B—qle,  [=e?i/a
P i=1i=t
As we have seen in the proof of Theorem 1, the values f(p/q, r/q)

can be written as a linear form of the numbers

& 1

Car= 2 (mg+nr)?!

(r=0, 1,...,q—1).

qr =

For p=1, we have the following simple relation; however, in general, it could be
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complicated. We have

f(l/q, 0) I 0 —1 —=2-—g+4 —q+3 —q+2\[e,0
f(1/q, 1/q) 1 0 -1 —2..—q+4 —g+3 2| e,
f(/q. 2/q) 1 0 -1 —2.—g+4 3 2| e,z
(10) I 4 3
q -2
f(l/g. (q=3)/q) I 0 —1g-2- 4 3 2 || egq-3
f(/q. (4=2)/q) 0 g¢g-1¢g-2- 4 3 2| ey
f(1/q. (g—1)/q) I q g=14g-2- 4 3 2/ \egq-1
and by (4)
€q0 1 1 1 e
ey e =2 gt || et
ay
€qat {-amh -2 g—ta-n2 [\ gtat

The determinant of the former matrix is eg42#0, where e=1 if g=1 or 2 (mod 4)
and e= — | otherwise, and that of the latter is also nonzero, since it is Vandermonde’s

determinant. Thus ¢ numbers f(1/q,0), f(l/q, 1/q),...,f(1/q,(g—1)/q) are
algebraically dependent.

Proof of (10). If 1=r<q—1, we have

flq. rlg)= éo qgl Limg+s)/q+r/q]

(mq+s)!
A m < m+1
_m§0< s;) (m4+5)' =§ ( ‘H‘S)' >
12 LR s il I
= b 2 a0t g 2 g 5=t g r T )t Z, Gt

q-1
(eqq I+ z (eqs 1 seq,s)+s=§_ qeq,s)
1 q-r—1 q9-2
=-éf(eq_0+ s; (1 —s)eq,s+s=§_r(q—s+l)eq,s+2eq_q_1).

Similarly we can write f(1/q, 0) as a linear form of e, 4, e, ..., €, 4—1-

3. Linear independence of the values of the function f(x, y).

We generalize a theorem of Skolem [3; Theorem 6] concerning the linear inde-
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pendence over Q of the numbers 1, Z [nx,]/n!,.. Z [nx]/n! when x,,..., x,

are [ distinct positive numbers such that I |s not dependent on them over Q.

Theorem 2. Let x,,..., X, be as above and let y,,..., y, be any choice of | real
numbers. Then 1, > [nx +y]/n,...., 3 [nx;+y]/n! are linearly independent
n=1 n=1

over Q.

Proof. Suppose that
1 00
+xay Doy o
for some integer A; (1<i<[). Denoting by H, the integer

Hy=—(n=Dl(4o+ T ¥ Alkx+y)/kD,

we have
d |
— % At o(-ﬁ>

1
asn—o0. Hence Y A;x;is an integer, and so, by the assumption on x,,..., x,, we get
i=1

(1) 3 =0

i
so that H,=0 for all n=n, for some n,. Thus

!

(12) ; A{nx;} —[{nx;} +yD=0 (nZn,).

We need now the following Lemma [3; pp. 79-80]: If x,...., x, are | positive
numbers, then there are p (<) positive numbers &,,..., &, linearly independent
over Q such that

14

(13) xi= ¥ ayt; (ISJSD. &= ¥ b (1Sj<p),

j=1

where a’s are nonnegative integers and b’s are rational numbers.
We will prove 4, =0. For this we may assume that

(14) yayla  #0 (modl) (2£ig])
and
(15) yaglag +y; #0 (mod1) (2=iZ))

where y is the real number defined by
(16) y+y,=0 (mod1) and O<y<l1.

Indeed, we may assume 0<¢, <¢,<---<¢, Then ¢;—t/~1¢,>0 for all j=2 and
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all t with 0<t<t, for some t,. Putting t=r/s with r, s positive integers, we can write
p ! ’ .
Xi= Zl aijcj (1gigh,
=

p .
where ajy=sP"! ¥ a;ti7t (1ig]), aj;=a;; (12i21,25j=p), and & =E,/SP71,
j=
&i=¢—ti71E, (2£j=p). Clearly &,..., &, are linearly independent over Q and
P
can be written as linear forms of x,,..., x; with rational coefficients. Since > a;;t/7!
=1

(1 £i<) are different as polynomials of t, we can choose t=r/s so that a,flj‘s satisfy
the required properties (14) and (15).
We choose ¢; and a;; as above. Then for any integer n

(17 (nx)= ¥ ay{né} (mod1) (1Sis))

Noticing that 1, &,,..., £, are linearly independent over Q, we may apply Kronecker’s
theorem [2; Theorem 442]: For any real numbers y,,..., 7, and positive &,..., €
there are infinitely many n such that |{n;} —y;|<¢; (1Zj< p).
We put y, =y/a,, —pe, y;=0(2<j<p), a= max a;;, and ¢;=¢ (1 £j < p), where
1isi
¢ is a fixed positive number chosen sufficiently small. Then we have

p°

ya;la,, —2ape< él ag{ing;}<vyayla;,;, (1Zig))
for infinitely many n, so that by (14) we see
(18) nx)= 3 aylng;}—ranfa) esish,
Unxi}+yd=[vau/ar +yil=[vanlai ] Q=i=]),

p
and {nx,}= .‘_;1 a,;{n¢;}, [{nx,} +y,J=[y+y,]1-1, taking (14), (15), and and (16)
into account.J Thus we have by (12)

Eak

ji=1

1
aij{"éj} - ig'x Ailya;fa;]-A4,=0
for some n. But, since &,,..., £, are linearly independent over Q, (11) and (13) imply
14 P
f Aa;;=0 (1<j<p), and hence 3 4; 3 a;;{n{;} =0. Therefore we obtain
i= =1 j=
1
(19) ‘Z:l Ailvaifay +y]—4,=0

Next we put y, =y/a,;;+pe, y;=0 (2£j<!) and ¢;=¢ (1=<j<!). In this case
we find

p
Yalag < ng a.-,-{néj}<vau/an+201’8~

so that we have (18) and (19) again, and for i=1
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n=1

tnxih= 3 ayng) 01 [nx)+9,]=0r+ 9= ]

for infinitely many n. Therefore in the same way as above we get
]
;} Alyai/ay +y:]=0,

which together with (19) yields A, =0. Repeating this argument, we obtain 4,=
Ay=---=A,=0, and the theorem is proved.

Remark. We have established a theorem on linear independence of numbers
1, f(xy, y1)s--s f(x;, y,) when x,,..., x, are | distinct positive rationals such that 1
is not dependent on them over Q. However, the relation (3) shows that 1, f(1, 0)=
e, f(x, y) and f(—x, —y) are linearly dependent over Q provided that x is irrational.

o0
It may be interesting to decide whether three numbers 1, e, and Y [nx]/n! with
n=1

irrational x are linearly independent over Q or not.
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