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Degeneration of K3 surfaces

By

Kenji NISHIGUCHI

Introduction

Let m=: X—4 be a proper surjective holomorphic map of a three-dimentional
complex manifold X to a diskd={t€C||t|<e} with connected fibers. Assume
that z is smooth at each point of =-'(4*), 4*=4—{0}. We callsu ch a holomorphic
map m: X—4 a degeneration of surfaces (a degeneration, for short). By the
singular fiber X,, we mean a divisor on X defined by t=0. A smooth surface
X,=n"'(t)¢+0) is called a general fiber. We call 7: X—4 a degeneration of
K3 surfaces if a general fiber X, is a K3 surface.

A degeneration n’: X’—4 is called a modification of a degeneration = :
X—4, if there exists a bimeromorphic map @ : X---»X’ such that the diagram

is commutative, and res @ : n-'(4*)—=x’"'(4*) is biholomorphic over 4*.

In this paper, we shall study degenerations of K3 surfaces up to modifications.

A degeneration n: X—4 is called semi-stable, if the singular fiber X, is a
reduced divisor with simple normal crossings. Note that by Mumford’s theorem,
every degeneration can be made semi-stable after base change and modification.

Kulikov [7] and Persson-Pinkham [17] studied a semi-stable degeneration
n: X—4 of K3 surfaces under the assumption that z is projective, or under
the weaker assumption that every component of the singular fiber X, is alge-
braic. They showed that under the above assumption there exists a modification
't X'—4 of x: X—4 such that n’ is also semi-stable and the canonical bundle
of X’ is trivial.

A main purpose of the present paper is to study semi-stable- degenerations
of K3 surfaces, in general, without the above assumption. Some results of this
paper have already been announced in Nishiguchi [13].

In §1, we shall generalize the theorem proved by Kulikov and Persson-
Pinkham (see Theorem 1.1). §2 will give a classification of semi-stable degenera-
tions of K3 surfaces with trivial canonical bundles. In these sections, results
about surfaces of class VII due to Enoki [1], Nakamura [9, 10] and Nishiguchi
[14, 15] play a fundamental role. In §3, we shall discuss which surface can be a
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component in the singular fiber of a semi-stable degeneration of K3 surfaces
with the trivial canonical bundle. In connection with this problem, we also
consider the smoothirig problem of simple elliptic singularities and cusp singu-
larities. This section has a deep relation with the work of Looijenga [8].

§4 begins with the construction of the easiest example of a semi-stable
degeneration of K3 surfaces for which no semi-stable modification has the trivial
canonical bundle. Namely, without assuming the algebraicity or Kihlerity on
the degenerations, the result of Kulikov and Persson-Pinkham does not neces-
sarily hold. Degenerations like this example contain a blown-up Hopf surface
or a blown-up (CB)-surface in their singular fibers. §4 also treats a problem,
which blown-up Hopf surface or blown-up (CB)-surface can be a component in
the singular fiber of a semi-stable degeneration of K3 surfaces. This problem
is connected with the existence problem of K3 surfaces with a certain configura-
tion of curves. This section ends with a criterion of smoothability of some
Gorenstein normal surface singularities with geometric genus two.

In §5, we shall systematically construct examples of semi-stable degenera-
tions of K3 surfaces which contain some series of (CB)-surfaces in their singular
fibers. We make use of a result about the canonical bundles of (CB)-surfaces,
which was studied in Nishiguchi [14, 15]. We also give a sufficient condition
that such a (CB)-surface become a component in the singular fiber of a semi-
stable degeneration of K3 surfaces. This condition is reduced to the existence
problem of a surface with certain configuration of curves, as considered in §3
and §4.

The deformation theory due to Friedman [2] is fundamental and plays an
important role throughout this paper.

The author would like to express sincere thanks to Professors M. Miyanishi
and K. Ueno for their invaluable advice and encouragement, and to Professor
M.-H. Saito, who showed the author that the lattice theory due to Nikulin [11]"
can be applied to the existence condition of certain K3 surfaces.

Notations and Conventions

We use the following notations for a compact complex manifold M.

bi(M): i-th Betti number
a(M): algebraic dimension
£(M): Kodaira dimension
P,.(M): m-th plurigenus
p(M): geometric genus
g(M): irregularity.

By a surface (resp. curve), we mean a connected raduced compact analytic
space of dimension two (resp. one). Unless otherwiss mentioned, we assume
that it is smooth. In the configuration of curves on a surface, an integer
attached to a curve indicates its self-intersection number, a small circle indicates
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a point to be blown-up, and a dotted line means an exceptional curve of the
first kind.

Let A=A,+---+ A, be a linear chain or a cycle of curves on a complex
manifold of dimension two. Then Zykel(A) is a sequence of integers (a,, -, @)
when the self-intersection number of A; is —a;. Let C and D be linear chains
or cycles of curves on a complex manifold of dimension two. Then C+D has
the type (pi, g1, P2» G2, *** » Gn-1, Pn) When the self-intersection numbers of com-
ponents of C and D are given as follows:

(1) if p,=3, then

Zykel(c):(plv 2& Tty 27 p2’ 2v ttty 2v tty ﬁn)r

q:—3 g.—3
Zykel(D)=(2, Sty 2; qn-lv 2, Sty 27 Qn-2, *** 2) tt 2);
pn_z pn-x—?’ P1—3

for certain positive integers n(=2), p; (=3), ¢; (=3) (1=7=<n—1), and p,=2.
(1 if p,=3, and n=1, then

Zykel (C)=(p,—2),

Zykel(D)=(2, -+, 2)
pl'—z

for a certain positive integer p,(=3).
©2) if p,=2, then

Zykel(c)z(zr Tty 2) pZy 2: ttty 2» p3y ty pn),

q,—2 q:—3
Zykel(D):(zr tty 27 qn—lr 27 Tty 2) qn—Zr tty 2, tty 2)v
pn_z i)n—l_'3 /-)2—3

for certain positive integers n(=2), p; (23), ¢; (=3) 2=j<n—1), ¢,(=3), and
(22, and =23 if n=2).

A rational cycle means either a rational curve with a node or a cycle of
non-singular rational curves on a complex manifold of dimension two.

By a surface of class VII, we mean a smooth surface with b,=1. If a
surface of class VII has no exceptional curves of the first kind, we call it a
surface of class VII[,, Note that a surface of class VII, is, in fact, minimal.
By a (CB)-surface, we mean a surface of class VII, with (CB), where a (CB) is
an effective reduced divisor consisting of a cycle of curves and some trees of
curves sprouting from the cycle. A (CB)-surface contains just one (CB) and the
cycle in the (CB) is a rational cycle and the trees in the (CB) consist of non-
singular rational curves. See Nishiguchi [14, 15] for more about a (CB)-surface.
We refer to Nakamura [10] for definitions of several classes of surfaces of class
VII,, i.e., a Hopf surface, a hyperbolic Inoue surface, and a parabolic Inoue
surface.

By a Hirzebruch surface Y, of degree n, we mean a P!-bundle over F! of
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degree n, i.e., 2,=P(Op1EBOp(n)).

We confuse a divisor on a complex manifold with the associated line bundle,
and write tensor products of line bundles additively. We denote by Ky the
canonical bundle of a complex manifold X.

A variety X, with only normal crossings is denoted by X(,:V,LEng, when

X, has two irreducible components V, and V, which intersect each other trans-
versally along a divisor E. A one-point union of two topological spaces T,
and T, along a point P is written as Tl}_/Tz.

§1. Classification of degenerations of K3 surfaces

Let #: X—4 be a semi-stable degeneration of K3 surfaces. We shall look
into it without assuming that X is Kdhler. Then we have the following theorem
which is a generalization of the result of Kulikov [7] and Persson-Pinkham [17].

Theorem 1.1. Let m: X—4 be as above. Then this satisfies one of the fol-
lowing conditions.

(1) There exists a modification n’: X'—d of m: X—4 such that =’ is also
semi-stable and Ky =0.

(ii) [In the singular fiber X, of =, there exists a component which is a Hopf
surface or a surface obtained by blowing up a Hopf surface.

(iii) In the singular fiber X, of =, there exists a component which is a (CB)-
surface or a surface obtained by blowing up a (CB)-surface (see Notations and
Coventions for the definition of a (CB)-surface).

Remark. (1) If every component of the singular fiber X, is algebraic (or
Kéihler), only the case (i) occurs. This is nothing but a result of Kulikov and
Persson-Pinkham.

(2) In §2, we shall classify semi-stable degenerations of K3 surfaces with
trivial canonical bundles.

(3) There are examples in each case (i), (ii) or (iii); see §§2, 3 and 4.

(4) We have examples which satisfy both (i) and (ii); see §3. There are
also examples which satisfy (ii) but not (i). These examples show that the
result of Kulikov and Persson-Pinkham does not necessarily hold without the
assumption of projectivity or Kéihlerity.

(5) The cases (i) and (iii) are disjoint from each other, as seen in the
proof of this theorem.

(6) Theorem 1.1 holds for a semi-stable degeneration of surfaces with
trivial canonical bundles. Namely it holds for a semi-stable degeneration whose
general fiber is either a complex torus of dimension two or a Kodaira surface.
But the author does not know any examples satisfying (iii) with a complex torus
or a Kodaira surface as a general fiber.

(7) The canonical bundle of each component in the singular fiber X, has a
non-zero meromorphic section, as seen in the proof below.
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Proof of Theorem 1.1. Let X,=V,+---+Vy be the irreducible decomposi-
tion of the singular fiber X,, and C;;=V.N\V; a double curve. Since the
canonical bundle on a general fiber X, is trivial, the canonical bundle Ky of X
can be written in the form >»;V.(r;€Z) as a divisor. Here r;’s are uniquely
determined up to addition of a constant, i.e., >2#;V; is linearly equivalent to
S(ri+s)V;, where s€Z. We call »; the multiplicity of a component V,. A
component V; with maximal »; among r;’s is called a maximal component.
Moreover, if a maximal component intersects a non-maximal component, we
call it a strictly maximal component.

By the adjunction formula, we have

Ky, =2 (r;—ri—1)Cy;.
J*l
(See remark (7) above.) Hence a maximal component has an effective anti-
canonical divisor. If it is a strictly maximal component, then the anti-canonical
divisor has a component with multiplicity greater than one.

We shall look into a strictly maximal component which is not a Ké&hler

surface. We have the following: '

Proposition 1.2. Let S be a non-Kdhler surface with a non-zero effective

anti-canonical divisor D, i.e.,
KS:'—D.

Then S is a surface of class VII. Moreover, if D has a component of multiplicity
greater than one, then S is a Hopf surface, a (CB)-surface, or a surface obtained
by blowing up such surfaces.

Proof. First we remark that a non-Kidhler surface has a minimal model
and that every divisor on it has only normal crossings. This was proved by
Kodaira [6] in case of non-Kédhler surfaces which are not of class VII, and by
Kato and Nakamura [10] in case of surfaces of class VII. Let V be the minimal
model of S. Then the canonical divisor Ky of V is written as

KVZ—DO

where D, is also a non-zero effective divisor. By the classification of analytic
surfaces due to Kodaira [6], we know that V is a surface of class VII,. More-
over if D has a component of multiplicity greater than one, then so does D,
because D, has a divisor with normal crossings by the above remark. Therefore,
by virtue of Theorem 2.1 of Nishiguchi [15], V is a Hopf surface or a (CB)-
surface. Q.E.D.

The next step of the proof of Theorem is the following:

Proposition 1.3. If every sirictly maximal component is a Kdihler surface,
then one can find a generically contractible component of m: X—4 after modifica-
tions of type 1 and Il (called Modl and Modll briefly). For the definition of generic
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contraction, see Persson-Pinkham [17], and for those of Mod 1 and Mod 1l, see
Kulikov [7].

Proof. This is a main result of Kulikov [7].

Let us now return to the proof of Theorem 1.1. If there is no strictly
maximal component, then Ky is already trivial; so this is the case (i). We
assume that there is still a strictly maximal component. If none of them is a
surface of class VII, then we may assume the existence of generically contrac-
tible components by Proposition 1.3. Therefore, by the induction on the number

of irreducible components of the singular fiber, the theorem follows from Pro-
position 1.2.

Concluding this section, we prepare the following result for §2.

Proposition 1.4. Let #: X—4 be a semi-stable degeneration of K3 surfaces.
If S is a maximal component and a surface of class VII, then S can be made
minimal in the degeneration by means of Mod I, Mod 11 and generic contractions.

Proof. Since S is a maximal component, — K is an effective divisor and
the support R of —Kj is the union of all double curves on S. Let C be an
exceptional curve of the first kind on S if it exists at all. We have

(—Ks)-C=1.

Case 1. We assume that C is not a component of R. Then C intersects
R in only one point which is not a double point. Hence one can move C off
S to another component of X, by means of Mod I.

Case 2. We assume that C is a component of R.

2-1) We consider the case where C intersects R—C in only one point.
Let S, be a component of X, which intersects S along C. Then we have
(C»s,=0 by the triple point formula (see Kulikov [7]). Hence S, is a ruled
surface and C is its minimal fiber. Thus, by definition, S, is generically con-
tractible and the generic contraction blows down C to a point.

2-2) When C intersects R—C in exactly two points, we can contract C
to a point on S by means of Mod II along C.

2-3) We consider the case where C intersects R—C in more than two
points. Recall that any divisor on a surface of class VII has only normal cross-
ings in the support (see Nakamura [10]). But the surface obtained from S by
contracting C to a point has a divisor with non-normal crossings. This is a
contradiction, and this case does not occur. Q.E.D.

§2. Classification of degenerations of K3 surfaces with trivial canonical
bundles

This section gives the classification of degenerations of K3 surfaces in case
(i) of Theorem 1.1:
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Theorem 2.1. Let n: X—d be a semi-stable degeneration of K3 surfaces.
We assume that the canonical bundle Kx is trivial. Then after suitable Mod 1
and Mod 11 performed on X, the singular fiber X, becomes one of the following:

1. X, is a (non-singular) K3 surface.

0. Xo=V,+--+Vy(N=22), where V, and V y are rational surfaces and
Vo, o+, Vo1 are relatively minimal elliptic ruled surfaces. The double curves
are elliptic curves. The dual graph II(X,) is given as follows.

Vl Vz VN

n’. Xo=V,+---+Vy(IN=2), where V, and Vy are rational surfaces and
Va, o+, V-1 are relatively minimal elliptic ruled surfaces or Hopf surfaces. The
double curves are elliptic curves. The dual graph I1(X,) is given as follows.

V. V. Va

M. Xy=V,+--+Vy, where all Vs are rational surfaces. The double curves
form a rational cycle on each surface V. The dual graph II1(X,) is a triangula-
tion of a 2-sphere S°.

m’. Xo=V.,+--+Vy+V®P+---4VEM, where V’s are rational surfaces and
V’s are hyperbolic Inoue surfaces. The double curves form a rational cycle on
each rational surface V; and exactly two rational cycles on each hyperbolic Inoue
surface V. The dual graph II1(X,) is a triangulation of a one-point union of
h+1 S¥s, where a point P; joining two S¥s like Szl\,éS2 corresponds to the com-

ponent V§ and points in S* other than P; correspond to components V ;.

I’'+mW’. X,=V,+---+Vy, whereV;is a rational surface, a relatively minimal
elliptic surface, a hyperbolic Inoue surface or a parabolic Inoue surface. The dual
graph I1(X,) is a triangulation of a one-point union of several spheres S® and
several line segments L, where L must appear as an edge of the dual graph I1(X,).
A point P; joining two S¥s like Sz}n/.S2 corresponds to a component V, which is a

hyperbolic Inoue surface, and a point P; joining L and S* like Sz,\/L corresponds
i

to a component V ; which is a parabolic Inoue surface. A point on S* of the tri-
angulation other than P; and P; above corresponds to a component which is a
rational surface, and a point on L other than P; corresponds to a component which
is a relatively minimal elliptic ruled surface, unless it is an edge point of the
triangulation of L which then corresponds to a rational surface. The double
curves on each component consist of a single elliptic curve or form a rational
cycle.

Proof. 1f every component of X, is a Kihler surface, then Persson [16]
and Kulikov [7] proved that one of the cases I, II and IIl occurs for X, after
suitable Mod I and Mod Il performed on X. So we may assume that X, contains
a non-Kihler component. First note that every component S of X, has the
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canonical divisor Kg=—D, where D is a reduced effective divisor with only
simple normal crossings consisting of all double curves on S. We shall study
a surface like this. .

Proposition 2.2. Let S be a surface with the canonical divisor Ks=-—D,
where D is a non-zero reduced effective divisor with only simple normal crossings.
Then we have:

(i) If S is a Kdhler surface, then S is either
(1) a rational surface with an elliptic curve or a rational cycle as an anti-canonical

divisor D,

(2) an elliptic ruled surface with two disjoint seclions as an anti-canonical divisor

D.

(ii) If S is not a Kdhler surface, then the minimal model V of S is one of
the following:

(1) a Hopf surface, where D consists of two disjoint elliptic curves,

(2) a parabolic Inoue surface, where D consists of an elliptic curve and a rational
cycle,

() a hyperbolic Inoue surface, where D consists of two rational cycles.

Proof. The case (i) is proved in Kulikov [7]. So we consider the case
(ii). By Proposition 1.2, S is a surface of class VII. As seen in the proof of
Proposition 1.2, S has a minimal model V, and the canonical divisor Ky of V
can be written as

KV:_DOr

where D, is a non-zero reduced effective divisor. Then this Proposition follows
from Proposition 3.1 in Nishiguchi [15].

Next, for a general semi-stable degeneration = : X—4 of K3 surfaces, we
have

Propesition 2.3. Let X,=3IV; be the irreducible decomposition of the singular
fiber Xo, Ci;=V NV j double curves, and T the number of triple points in X,. Then
we have

2=200v)—ZXOc; )+ T
For the proof, see Kulikov [7].

We return to the proof of Theorem 2.1. First we take a component S of
a non-Kihler surface. Then, applying Proposition 1.4, we may assume that
the component S is minimal after suitable Mod 1 and Mod II. Here we do not
need a generic contraction as required in Proposition 1.4, because every com-
ponent has a reduced anti-canonical divisor and such a component cannot be
generically contractible. Now note that in the singular fiber X,, any component
which meets S is a Kihler surface except for the case where S is a Hopf
surface and the component which meets S is also a (blown-up) Hopf surface
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whose exceptional curves of the first kind do not intersect the double curve.
This is easily shown by the triple point formula (cf. Kulikov [7]) and the
property of self-intersection numbers of curves on a surface of class VII (cf.
Nakamura [10]). Therefore, we can make another component S’ of a non-
Kihler surface minimal by suitable Mod I and Mod II, while keeping S minimal.
Hence we do such modifications inductively, and we may assume that any com-
ponent of non-Kéhler surfaces is minimal after suitable Mod I and Mod II. Then,
combining Propositions 2.1 and 2.2, this Theorem is proved as in Persson [16]
and Kulikov [7] for Ké&hler case.

§3. Smoothing of simple elliptic and cusp singularities

In this section, we shall study a semi-stable degeneration n: X—4 of K3
surfaces with trivial canonical bundle, which is classified in the previous section.
Especially, we discuss which type of surfaces can be a component in the singular
fiber of such a degeneration =: X—4.

First we shall give examples of the degenerations n: X—4 which contain
non-Kihler surfaces in their singular fibers, i.e., the cases II’, III” and II’4III’
in Theorem 2.1 actually occur.

Example 3.1. (1) K. Ueno constructed an example of the case II’ with the
singular fiber X,=V,+V,4+V,;, where V, and V; are rational surfaces and V,
is an elliptic Hopf surface. Roughly speaking, his construction is as follows:
First one takes an elliptic Hopf surface, blows it up at two points which lie on
distinct elliptic curve, and obtains a normal surface with two simple elliptic
singularities of degree one (see Pinkham [18] for the definition). Next one
proves that this normal surface is deformed to a K3 surface. (We can prove
this fact by using Propositions 3.3, 3.4 and Lemma 3.5 below.) Finally a semi-
stable degeneration we need is obtained by performing base change and Mod I.

(2) In a way similar to the construction in (1), K. Ueno also constructed
an example of the case II’+III” which contains a parabolic Inoue surface.

(3) Friedman-Miranda [3] constructed an example of the case III’ with a
component of a hyperbolic Inoue surface with a small number of curves. They
used the deformation theory of varieties with normal crossings as developed by
Friedman [2]. Moreover, by using such semi-stable degenerations, they studied
the problem of smoothability of cusp singularities, and proved Looijenga’s con-
jecture in the case of small length (cf. Looijenga [8] and Problem 3.6 below).

Remark. The constructions by Ueno and Friedman-Miranda are converse
to each other in the sense that Ueno used the smoothability of certain simple
elliptic singularities to construct semi-stable degenerations and Friedman-Miranda
used certain semi-stable degenerations to show the smoothability of some cusp
singularities. These two methods will become a main theme of this section.
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Now we shall discuss which type of surfaces can be a component in the
singular fiber of a semi-stable degeneration of K3 surfaces with trivial canonical
bundle. In connection with this problem, we shall consider also the smoothability
of simple elliptic and cusp singularities.

Let S be a rational surface and D a reduced effective divisor on S with
only simple normal crossings. We assume that D is an anti-canonical divisor
on S, i.e., the canonical divisor Kg of S is given as Kg=—D. We call such
a pair (S, D) an anti-canonical rational surface, and simply say that D is on an
anti-canonical rational surface S. By Proposition 2.2, if (S, D) is an anti-
canonical rational surface, D is either an elliptic curve or a rational cycle.
Accordingly, we call (S, D) an anti-canonical rational surface of elliptic type or
cusp type. If (S, D) is a component in the singular fiber of a semi-stable de-
generation of surfaces with D the double curves on S, we simply say that (S, D)
is a component of the degeneration. With this terminology, we can raise the
following problem in the case of degenerations of type II (the numbering of
type accords with that in Theorem 2.1) and simple elliptic singularities.

Problem 3.2. (1) Let (S, D) be an anti-canonical rational surface of elliptic
type. When can (S, D) be a component of a semi-stable degeneration of K3
surfaces of type II?

(2) Let (V, P) be a simple elliptic singularity of degree .. When is (V, P)
smoothable?

These problems have already been answered (cf. Friedman [2] and Pinkham
[18]). Namely, with the same notations as in Problem 3.2, we have

Proposition 3.3. (1) (S, D) is a component of a semi-stable degeneration of
type 1l of K3 surfaces if and only if

0) —9=(D*s=9.

(2) A simple ellipic singularity (V, P) of degree k is smoothable if and only if
k=<9,

Remark. In Problem 3.2 and Proposition 3.3, the statement (2) is considered
as the local version of (1). Actually, in order to prove Proposition 3.3, we use
the following proposition which connects the local deformation (i.e., the smooth-
ing of a germ of a singularity) with the global one (i.e., the smoothing of a
compact normal surface).

Proposition 3.4. Let S’ be a compact normal surface with exactly one singu-
larity P. We assume that the germ (V, P) of the singularity P is smoothable.
Then a smoothing of (V, P) can be extended to that of S’, if we have

H*S’, ©5)=0.

For the proof, see Wahl [19].
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Next, if a normal surface is smoothable, then one would like to know what
the general fiber of a smoothing is. In fact, we can see it in the following
lemma, where we also compute a cohomological invariant of a normal surface.
These results are made use of in the proof of Proposition 3.3.

Lemma 3.5. Let S’ be a compact normal surface, and S a non-singular
model with an exceptional divisor E with only normal crossings. Then we have:
(i) If HYE, QLQ0s(mE))=0 for any m=1 and HYS, 2L)=1, then we have

H'(S’, 25)=0.

(ii) We assume that the normal surface S’ has a smoothing n’: X'—d. If
S’ is a Gorenstein surface with trivial dualizing sheaf wg =Os and H'(S', 2}4)
=(), then the general fiber X, of n’ is a K3 surface.

Proof. (i) It is enough to prove that
(%) HS, QL(mE))=0 for any m=1.

We show this by induction on m. We consider the following two exact sequences
(cf. Kodaira-Spencer [6]):

* 00— K— Qi(mE) — 2}Q0s(mE) —> 0
**) 0 —> Q(m—1)E) — K —> Og((m—1)E) —> 0.

First we put m=1. Then the connecting homomorphism 9

1)
C=H0p) — H'QY)

derived from (**) is nothing but the one which maps the fundamental class E
into H'(2%). Hence the class E is not numerically trivial, so ¢ is injective.
On the other hand, recall that HYE, QiQ0s(E))=H'S, 2%)=0. Therefore,
using the cohomology exact sequences derived from (*) and (**) for m=1, we
obtain

H'(S, QKE)=0.

Next we assume that (%) holds for the case m—1 (m=2), namely H(S,
Qi(m—1)E)=0. By the hypothesis, we have HE, 2;Q0s(mE))=0 for any
m=1. Note that H'(E, Ox((m—1)E))=0 for any m=2, because the intersection
matrix of E is negative definite. Therefore, as before, we obtain

H'(S, Q¥(mE))=0.

(ii) The proof is straightforward, by the upper semi-continuity of numerical
invariants (irregularity etc.).

Now we shall return to Proposition 3.3. By using Proposition 3.4 and Lemma
3.5, one can prove Proposition 3.3. In fact, the subsequent argument was given
essentially by Friedman [2] and Friedman-Miranda [3]. So we shall only give
a sketch of the proof of Proposition in the “generic” case to be explained later:
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(1) First we assume that (S, D) is a component of a semi-stable degenera-
tion of K3 surfaces of type II. Let (T, E) be a rational surface appearing on
the other end of the singular fiber. Then note that E is isomorphic to D, and
we identify them (denoted still by E). By the triple point formula, we have

(E®)s+(E»7r=0.

On the other hand, the anti-canonical divisor —K=F on a rational surface has
self-intersection number,

(Efr=9,  (EPs=9,

which follows from the Noether formula. Therefore we have (O).

Conversely, we assume that D satisfies (O). Then we can find an anti-
canonical rational surface (T, E), where E is isomorphic to D, which we identify
with F and denote by E, and

Ngir=(Ngis)*.
Let X,=S\UT be a two-dimensional variety with only normal crossings along E.
E

By the deformation theory due to Friedman [2], one can show X, is smoothable
to a K3 surface under deformation. More precisely, X, can be the singular
fiber of a semi-stable degeneration of K3 surfaces, which is of type II.

(2) Let (¥, E)>(V, P) be a resolution of the singularity P with exceptional
curve E. We embed (¥, E) into an anti-canonical rational surface (S, E) (cf.
Pinkham [18]). Let (S’, P) be a surface obtained by blowing down E on S.
First we assume that £<9, i.e., —9<(F?*s<—1. Then, by the proof of (1),
one can find a semi-stable degeneration = : X—4 of K3 surfaces with singular
fiber XO:SE;]T , where (T, E) is also an anti-canonical rational surface. Note

that Nr;x=(Or(E))*. We have (E?);=—(E?s>0 by the triple point formula,
and hence (E-C)r=0 for every curve C on T. We assume that (E-C);>0 for
every curve C on T. We call this case “generic”. Then Nr,y is a negative
line bundle and T is contractible in X, by a theorem of Grauert. Let

7: X——X
4

be the contraction of T. The singular fiber X} of #’ is nothing but the normal
surface (S’, P). Therefore X’ gives a smoothing of the singularity P. If there
is a curve C with (E-C)r=0, we cannot prove this part of Proposition in this
way (see Pinkham [18] for this case).

Conversely, we assume that the singularity (V, P) is smoothable. By the
above arguments, embed (V, P) into a normal surface (S’, P) which is obtained
by contracting E of an anti-canonical rational surface (S, E). Note then that
the dualizing sheaf wg of S’ is isomorphic to Og. Therefore, by the Serre
duality, we have
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HXS’, Og)=(H"(S’, Q&))*.

On the other hand, the cohomological conditions of Lemma 3.5 (i) for 2} and
E are easily verified, and so we obtain

H(S’, 25)=0.

Hence a smoothing of (V, P) can be extended to that of (S’, P) by Proposition
3.4, and the general fiber X, of a smoothing n’: X'—4 of (§’, P) is a K3
surface by Lemma 3.5 (ii). After performing (if necessary) resolutions of singu-
larities, base changes and Kulikov modifications (i.e., generic contractions, Mod
I and Mod II), we obtain a semi-stable degeneration =: X—4 of K3 surfaces
of type II which has a component (S, E) in its singular fiber (cf. Friedman-
Miranda [3]). Therefore we have (E®)s=—9, i.e., £<9. Hence we gave a
sketch of the proof of Proposition 3.3.

We can raise a problem similar to Problem 3.2 for degenerations of type
IIl and smoothings of cusp singularities. In the rest of this section we discuss
this problem.

Problem 3.6. (1) Let (R, D) be an anti-canonical rational surface of cusp
type. When can (R, D) be a component of a semi-stable degeneration of type

III of K3 surfaces?
(2) Let (V, P) be a cusp singularity. When is (V, P) smoothable?

These problems, especially (2), have been studied by many people (Looijenga
[8], Friedman-Miranda [3], etc.), but have not been solved yet. We have a
conjecture due to Looijenga [8] concerning Problem 3.6 (2). To prove this
Looijenga’s conjecture, Friedman-Miranda [3] proposed a conjecture which is a
global version of Looijenga’s one in the sense that it treats the smoothing of
compact surfaces. These conjectures require the notion of the dual cycle of a
rational cycle, so we define it first.

Definition. Let D be a rational cycle with
Zykel(D)=(p1, 2, =, 2, Po, 2, =+, 2, =+, P, 2, -+, 2)
——— N——— S——
q,—3 q:—3 gn—3
where p;=3 and ¢;=3 (1<:/<n); hence the intersection matrix of D is negative
definite. Then the dual cycle of D is defined to be a rational cycle D* with
Zykel(D¥)=(2, -, 2,1, 2, ,2,qs, **, Gu).
P1—3 P2—3
A rational cycle and its dual cycle appear in the following context:
Proposition 3.7. (1) A hyperbolic Inoue surface has exactly two rational

cycles with negative definite intersection matrices, which are dual to each other.
(2) Any rational cycle with negative definite intersection matrix can be realized
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on a hyperbolic Inoue surface.

See Nakamura [10] for the proof.

Now we fix the notations as follows: Let (V, P) be a cusp singularity,
and (¥, D) its minimal resolution. Let D* be the dual cycle of D. By Proposi-
tion 3.7, we can take a hyperbolic Inoue surface with two cycles D and D*.
Let S’ be a normal surface obtained from S by blowing down D to the cusp
singularity P.

We shall state Looijenga’s conjecture about the smoothability of cusp singu-
larities.

Conjecture 1. With the above notations, a cusp singularity (V, P) is

smoothable if and only if
(#) the dual cycle D* of D lies on an anti-canonical rational surface T

with Kp=—D*,
Looijenga [8] proved that (#) is a necessary condition. Namely we have

Proposition 3.8. We assume that (V, P) is smoothable. Then the condition
(#) is satisfied. More precisely, a smoothing of (V, P) can be extended to a
smoothing ©’: X'—4 of the normal surface S’ such that a general fiber of n’ is
a rational surface T with the anti-canonical cycle D*. :

Friedman-Miranda modified the smoothing n’: X’—4 of S’ obtained above
by Looijenga to a semi-stable degeneration and also proved that the converse
process is possible as follows:

Proposition 3.9. (i) Let n': X'—4 be as in Proposition 3.8. Then with
resolutions of singularities, base changes and Kulikov modifications applied suitably,
the smoothing m' can be made a semi-stable degeneration m: X—4 of the rational
surface (T, D*) such that its singular fiber X, is described as follows.

(##) onisz!Vi is a variety with normal crossings such that

0 V,=S,
(1) the dual graph of X, is a triangulation of S?,
(2) the double curves on V=S form D, and those on V; (i=2) form
a rational cycle D;,
(3) V.i(i=2) is a rational surface with Ky,=—D;,
(4) X, satisfies the triple point formula.
(Such a variety X, is called a variety satisfying (##) with (S, D).)
(ii) Conversely, let m: X—4 be a semi-stable degeneration of the anti-canonical
rational surface (T', D¥) whose singular fiber satisfies (##) with (S, D). Then the
divisor iszzVi in the threefold X can be contracted to a point, and after the con-

traction m becomes a smoothing m': X'—4 of S’ whose general fiber is (T, D*).

Furthermore, Friedman-Miranda [3] proved that a variety X, satisfying
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(##) is smoothable, using the deformation theory due to Friedman [2]. Namely
we have:

Proposition 3.10. Let S, D and D* be as above. Then a variety X, satisfy-
ing (##) with (S, D) can be the singular fiber of a semi-stable degeneration of an
anti-canonical rational surface (T, D¥).

Combining Propositions 3.9 and 3.10, we obtain the following conjecture
which is equivalent to Conjecture 1.

Conjecture 1’ (Friedman-Miranda). Let S be a hyperbolic Inoue surface
with two cycles D and D*. If (#) is satisfied, then there exists a variety X,
satisfying (##) with (S, D).

Remark. This conjecture is true if the number of components of D is
less than 4 by virtue of Friedman-Miranda [3].

Next we shall consider when an anti-canonical rational surface of cusp type
can be a component of a semi-stable degeneration of K3 surfaces of type III
(i.e., Problem 3.6 (1)). We do not have any answers, even a conjecture, to cover
the general case. However, in a special case, we have

Conjetcure 2. Let (R, D) be an anti-canonical rational surface of cusp type
where D has a negative definite intersection matrix. Then (R, D) is a com-
ponent of a semi-stable degeneration of K3 surfaces if and only if the dual
cycle D* of D satisfies (#).

Similarly we can ask when a hyperbolic Inoue surface can be a component
of a degeneration of type IIlI’:

Conjecture 3. Let S be a hyperbolic Inoue surface with two cycles D and
D*, Then (S, D+D*) is a component of a semi-stable degeneration of K3
surfaces of type III” with exactly one hyperbolic Inoue surface, if and only if

(#)" both of cycles D and D* lie on anti-canonical rational surfaces 7 and
T* with Kr=—D and Kr.=—D*, respectively.

In Conjectures 2 and 3, the “only if” part is true as in Conjecture 1. In
fact, we have

Proposition 3.11. (i) Let (R, D) be as in Conjecture 2. If (R, D) is a com-
ponent of a semi-stable degeneration of K3 surfaces, then the dual cycle D* satisfies
(#) in Conjecture 1. .

(ii) Let S, D and D* be as in Conjecture 3. If (S, D+D*) is a component
of a semi-stable degeneration of K3 surfaces, then D and D* satisfy (#) in Con-
Jecture 3.
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We can prove this proposition by using Proposition 3.10. In fact, from the
semi-stable degeneration given in Proposition 3.11 (i), we obtain a variety
which has only normal crossings and satisfies (##) with (S, D), where S is a
hyperbolic Inoue surface realizing D. In Proposition 3.11 (ii), from the semi-
stable degeneration given there, we obtain two varieties which have only normal
crossings and satisfy (##) with (S, D) and (S, D¥*) respectively.

As in Proposition 3.10, the deformation theory due to Friedman [2] implies
the following

Proposition 3.12. (i) Let (R, D) be an anti-canonical rational surface of
cusp type. Then a variety X, satisfying (##) with (R, D) can be the singular
fiber of a degeneration of type lll of K3 surfaces.

(ii) Let S be a hyperbolic Inoue surface with two cycles D and D*. We as-
sume that there exists a variety X, (resp. X¥) satisfying (##) with (S, D) (resp.
(S, D*). Then the variety Xong ¥ which has only normal crossings can be the

singular fiber of a degeneration of type 1II’ of K3 surfaces.

Remark. By using Propositions 3.8, 3.9 and 3.12, one can prove that Con-
jectures 2 and 3 follow from Conjecture 1 (or equivalently from Conjecture 1’).
Moreover, from Propositions 3.11 and 3.12, we obtain the following conjectures
which are equivalent to Conjectures 2 and 3, respectively.

Conjecture 2’. Let (R, D) be as in Conjecture 2. If (#) is satisfied, then
there exists a variety X, satisfying (##) with (R, D).

Conjecture 3’. Let S, D and D* be as in Conjecture 3. If D (resp. D¥*)
satisfies (#), then there exists a variety X, (resp. X¥) satisfying (##) with
(S, D) (resp. (S, D*)).

Remark. For Problem 3.2 concerning the elliptic type, we can treat it
similarly as we did in Conjectures 1, 2 and 3, interpreting the meaning of “dual
cycle” as follows: Let (S, D) be an anti-canonical rational surface of elliptic
type. The dual cycle D* on a surface S* is, by definition, an elliptic curve iso-
morphic to D satisfying Np.,s+=(Np;s)*. Then Proposition 3.3 can be rephrased
as follows:

(1) (S, D) is a component of a degeneration of type Il of K3 surfaces if and
only if

(#)enip : the dual cycle D* of D is on an anti-canonical rational surface S*
with Kg«=—D*,

(2) Let (V, P) and (S, D) be as in Proposition 3.3 and its proof. Then Pis
smoothable if and only if D* satisfies (#)enip.
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§4. Examples of non-Kihler degenerations of K3 surfaces and smoothing
of certain singularities

In this section, we shall give two typical examples of semi-stable degenera-
tions of K3 surfaces which have no semi-stable modifications with trivial
canonical bundles. These two do not belong to the case (i) in Theorem 1.1,
but one belongs to (ii) and the other to (iii). Moreover, as in §3, we shall con-
sider which Hopf surfaces or (CB)-surfaces can be a component of a semi-stable
degeneration of K3 surfaces, and also study the smoothability of certain
Gorenstein singular points with geometric genus two.

First we shall construct an example of a semi-stable degeneration of K3
surfaces which contains a Hopf surface in its singular fiber.

Example 4.1. Let 7 be a Hopf surface defined as follows: T=C*—{0}/<{g>,
where g is the automorphism of C®*—{0} in the form:

g: (21, 2o) —> (@,2,+ 27, ax2,); a;, a,€C, 0<layl, la:| <1, ab=a;.

Let E be an elliptic curve on T defined by z,=0. FE is isomorphic to C?/{a,)>
and Kp=—(m+1)E (see Kodaira [6]). Let S be a surface obtained from T by
the blowing-up indicated as follows:

~
-2 2 -2 \‘\ -1
A Al 1 S~
-1 m - m-1 o e o0 A1 S~

-n|E

~
-2 -2 /(\\
- ~_ -1
n n n ~
1 Am Am_1 D A1 S~

It is easy to see that

e o s o

LIRS SN

Ks=—(m+DE— 5 35 kAt

k=1

Let Vi 2<k<m, 1<i<n) be a Hirzebruch surface %, of degree k with two
sections and a fiber named as follows:

where the canonical divisor is written as Kyj=(k—2)A}—2B}. Let Vi(1=i<n)
be a projective plane P? with two curves named as follows:
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-

|

where Kyi=—A{—2B}. We assume that there exists a minimal elliptic surface
V over P! with exactly one multiple fiber E of multiplicity m and with n multi-
sections Bi (1=<7/<n) isomorphic to P' as shown below:

B’
] .
0lE !
. n
/ &
where Ky=(m—1)E. Note that if m=1 then V is an elliptic K3 surface, and
that if m=2 then #(V)=1 and V can be obtained by m times logarithmic trans-
formations from an elliptic K3 surface which has mutually disjoint n sections.

We construct a variety X, with only normal crossings, by glueing S, Vi
(1£k<m, 1=i<n) and V along the corresponding curves -3 follows:

Proposition 4.2. Under the above hypotheses and notations, X, can be the
singular fiber of a semi-stable degeneration m: X—4 of K3 surfaces. The canon-
ical divisor Ky of X is written as

Kx=0n+DS+V+ 3 33 (m—k+2)VE.

k=1

Moreover, by suitable modifications we can make n’: X’—4 whose singular fiber
Xy is given by Xo’=ngS.
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o

In fact, we start with the variety X,’. Then, as in Nishiguchi [12], one
can prove that X, is the singular fiber of a semi-stable degeneration n’: X’—4,
by virtue of the deformation theory (cf. Friedman [2]). Next, by blowing-up
and Mod I, we obtain = : X—4 as in Proposition.

Remark. In the above construction, n must be less than 20, for V is ob-
tained from a K3 surface by the logarithmic transformations as seen above.
But we do not know a more precise upper bound of n for the existence of V
(see Remark after Theorem 4.4).

Next we shall study an example of a semi-stable degeneration of K3 sur-
faces which contains a (CB)-surface in its singular fiber, i.e., an example of the
case (iii) of Theorem 1.1.

Example 4.3. Let S be a (CB)-surface with the following configuration of
non-singular rational curves P':

We assume that the canonical divisor Kg of S is written as
Ko=—2Ai+ - +An)=(Bit - +Bp).

In fact, one can construct such a surface S containing a global spherical shell
(GSS for short), as in Kato [4]. Such a surface S containing a GSS is also
obtained as a deformation of the blown-up Hopf surface in Example 4.1 with
m=1 (cf. Nakamura [10]).

We consider the following configuration of non-singular rational curves C;
(1=i=<m) and D; (1<7<m) on a surface.
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Then we have

Theorem 4.4. With the above notations, we assume that the divisor C,+ ---

+Cun+Di+ - +Dy on a surface is realized on a K3 surface V. Then S can be
a component in the singular fiber of a semi-stable degeneration of K3 surfaces.

Proof. Let U; be a projective plane P? with the following configuration

of lines:

where we have Ky,=—B;,—2E..
Let V,; be a rational surface with the following configuration of P''s:

-1
CJ. -2 Gi
l" ‘
. - ! X =
vy ® o “HFia (Fpy1 = Fq)
AY
Ai -2 Ei
0 ~

where we have Ky, =—F;—F;;,—G;—2C;. Such a surface V, is obtained by
blowing up P'X P! at the points indicated by o in the following picture:

V 1
[9)
a0 Tgip  olfa ) .
dx,a <Ll olfa «— Ta

1+7

0
i)

(We use the same symbol for a curve and its proper transform.)
Let W; be P? with the following configuration of lines:
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i

where we have Ky,=—G;—2D..

We construct a variety X, with only normal crossings by glueing S, V., W,
(1<i<m)and V along the corresponding curves. We give a picture of X, only
in the case m=3:

N

R —

)

1

1 N
1

1

1

Then we may assume that X, is d-semi-stable (see Lemma 5.14 of Friedman
[2]), and we can prove, as in Theorem 5.10 of [2], that the variety X, is
smoothable to a K3 surface, more precisely, that X, is the singular fiber of a
semi-stable degeneration of K3 surfaces. Q.E.D.

Remark. (i) Let x:X—4 be a semi-stable degeneration of K3 surfaces
whose singular fiber is isomorphic to X, above. Then the canonical divisor Ky
of X is written as

KX=35+3i321Ui+2i§Vi+2ith+V.

(ii) We consider a K3 surface V with the configuration of curves D=C,
+ - +Cpn+D,+ - +D, as above. Since the intersection matrix of D has
signature (1, 2m—1), 2m is not more than the Picard number p(V) of V, where
o(V)=<20. Hence we have m=<10. Professor Masa-Hiko Saito showed the author
that for m=9, there exists a K3 surface with D, by virtue of the lattice theory
due to Nikulin [11]. But it is still an open problem whether there exists a K3
surface containing D with m=10.



288 Kenji Nishiguchi

To conclude this section, we consider the smoothing of singularities obtained
from the above surfaces of class VII by blowing down curves. In Example 4.1

(resp. Exampie 4.3), the divisor E +§E hﬁl Bi on the blown-up Hopf surface S
(resp. ‘§;A¢+§EB,~ on the (CB)-surface S) can be blown down to a normal

singular point. The singularity obtained from Example 4.3 is the “degenerate”
case of that obtained from Example 4.1 with m=1. We study these two cases
at the same time, and use the same notation for Examples 4.1 and 4.3 in the
following. Let (S’, P) be a normal surface with the singular point obtained by
the blowing-down. One can easily show that P is a Gorenstein singular point
with geometric genus p,=2 (cf. Nishiguchi [15]). It is natural to ask when
the singularity is smoothable under deformation. First we have the following
result about the globalization of a smoothing:

Proposition 4.5. Under the above hypotheses and notations, we assume that
P is smoothable. Then a smoothing of P can be extended to a smoothing n’: X’

—4 of the normal surface S’. Moreover, a general fiber X,” of =’ is a K3
surface.

This is a straightforward consequence of Proposition 3.4 and Lemma 3.5.

Finally, we give a sufficient condition for the singularity P to be smoothable:
Proposition 4.6. For the singularity P on S’, we assume that there exists an
elliptic surface V with the curves D:E+§2{ B, as in Example 4.1 (resp. a K3
surface V with the curves D=§l Ci—}—é D; as in Example 4.3). Furthermore,

we also assume that the line bundle —D on V is negative, i.e., D is ample. Then
P is smoothable under deformation.

Proof. We show both cases at the same time. By virtue of Proposition 4.2
and Theorem 4.4, one obtains a semi-stable degeneration n: X—4 whose sin-
gular fiber X, contains the surface S as a component. Let W be the union of
components of the singular fiber X, other than S. Then, by the assumption,
the divisor W is negative in the sense of Grauert, and W can be blown down
to a point in X, by a theorem of Grauert. Let n’: X'—4 be a deformation ob-
tained from = : X—4 by blowing down W. Then n’ gives a smoothing of the
normal surface S’ and a fortiori a smoothing of the singular point P.

§5. Construction of degenerations of K3 surfaces

In this section, we shall systematically construct examples of semi-stable
degenerations of K3 surfaces containing (CB)-surfaces in their singular fibers,
i.e., examples of the case (iii) of Theorem 1.1. All known (CB)-surfaces contain
global spherical shells (GSS). So we restrict ourselves to (CB)-surfaces contain-
ing a GSS. Then the canonical bundles of such surfaces are given explicitly
provided they have exactly one branch (cf. Nishiguchi [14, 15]).
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We shall freely use the notions and results in Nishiguchi [14, 15] concerning
surfaces of class VII,. Let S be a (CB)-surface containing a GSS. We assume
that the (CB) on S has exactly one branch. Let C=C,+D, be the (CB), where
C,=3A; forms a cycle and D,=3B; forms a branch. Nakamura [9] proved
that there are no curves other than A;’s and B,'s, and that C=C,+D, has the
type (b1, 1, P2y -+, Pn), Where the first component of C, meets the first one of
D,. By Remark (7) after Theorem 1.1, the canonical bundle Kg of S has a
meromorphic section, i.e., is a divisor, provised S is a component in the singular
fiber of a semi-stable degeneration of K3 surfaces. Then we may assume that
C has only simple normal crossings, i.e., n=2. Hence, by virtue of Theorem
6.1 in Nishiguchi [15], we know that the type of C is one of the following:

1 3,42

2) p=2.

First we consider the case (1):

Example 5.1. Let S be a surface as above of type (3, /, 2). Then we know
that the canonical bundle Kg of S is numerically a divisor by Nishiguchi [15].

We assume that K is a divisor. Such a surface exists as shown in Example
4.3. Then we have

Ks=—Bl—2Al— o —-ZAl_l

(cf. Proposition 6.3 of [15]). Then we have the following sufficient condition
for S to be a component of a semi-stable degeneration of K3 surfaces.

Theorem 5.2. Let S be as above. We consider the following configuration of
non-singular rational curves P on a surface:

D1

We assume that there exists a K3 surface V with the divisor C+D,+ --- +D,_,
as above. Then S can be made a component of the singular fiber of a semi-stable
degeneration of K3 surfaces.
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Proof. . The proof is very similar to that of Theorem 4.4. So we only
describe each .component which is in the singular fiber.
Let U; (1=<:/</—2) be a Hirzebruch surface X,_; with the configuration of

PVs as follows:

where Ky,=—B;—B+,—2E;. Let U,., be a projective plane P* as follows:

where Ky,_,=—B,.,—2E,_,.
Let V, be a rational surface with the configuration of P's as follows:

-1|F -2|F

—— e - ———d

where Ky =—F,—F,—2D,—G. Such a surface V, is obtained by blowing up}P®
at points indicated as follows by o:

where A, and F, are lines and F, is a conic which meets A, transversally at
two points and tangents F, at a point. Let V; (2<7</—1) be a rational surface
with the configuration of P's as follows: X

-if F, i-1|F (F, = F
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where Ky,=—2D;—F;—F;;,. Such a surface V; (2<{</—1) can be obtained by
blowing up a Hirzebruch surface X; at a point on a positive section Fi.,.

Finally let W be a projective plane P? with the configration of lines as
follows :

where Ky=—G—2C. Now glue these surfaces together along the correspond-
ing curves. Q.E.D.

Remark. Let n: X—4 be the semi-stable degeneration of K3 surfaces con-

structed in the above proof. Then we have
Kx=3543U,+ -+ +3U,-,+2V 4+ -+ +2V 4 2W+V .

Next we consider the case (2) p,=2 with the notation explained first in this
section. First we treat the easiest case n=2, i.e., the case with type (2, q;, p»).
Then we have

Zykel(cl):(zy oy 2y ﬁz)
q,—2
Zykel(D)=(2, ---, 2).
p.—2
By virtue of Example in Nishiguchi [15, § 6], the canonical bundle K of S is
numerically a divisor if and only if the type is
@, (p—20a—1+1, p) az=2, p=3.
In this case, K is written as
Ks=—(a—1)B,—2(a—1)B,— -+ —(p—2)a—1)B,_»
—(p—(a—DA—((p—1)a—1)—1)As— -+ —aAy-p+s,
where N=b,(S)=(p—2)a.

Example 5.3. With the above notations, we put p=3, i.e., the type is
(2, a, 3) (a=3). Then the configuration of curves on S is given as follows:

We assume that the canonical divisor Kg has a non-zero meromorphic section.
Then
Ks=—(a—1)B,—2(a—1)A,— -~ —aA._:.
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We have the following sufficient condition for S to be a component of a semi-
stable degeneration of K3 surfaces.

Theorem 5.4. Let S be as above. We consider the following configuration
of PVs on a surface:

-2 Da—1
-1
a-2 ~
4 4—=2 .
. b . 1
1 .
. -a-1) ° c
7 Ca-1
‘ ) -2/’
D,

We assumme that there exists a blown-up K3 surface V with the divisor C,+ ---
+Co-1+Di+ - +D,_, as above. Then S can be made a component of the sin-
gular fiber of a semi-stable degeneration of K3 surfaces.

Proof. As in the proof of Theorem 5.2, we only describe each component
which is to be in the singular fiber.

Let U be a projective plane P? with the following configuration of lines:

where we have Ky=(a—3)B,—aFE.
Let V, be a rational surface with the configuration of P's as follows:

1 D1 1
0
-2 LY :2
G1 Ga-l
V1 -2 F«] FZ 4-2a
E
-2 »
1 A1
where Ky =2(a—2)A,+(a—2)E+(a—3)F,—2D,—G,— - —G4_,. Such a rational

surface V, is obtained as follows: In case a is even, we take curves on P? as
indicated below :

NN
U

F
1 F2
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where D, is a (singular) curve of degree a/2 with only nodes, F, is a linre and
F, is a conic, F; and F, being tangent to each other ; hence Kp.=—2D,+(a—3)F.
Then the surface V, is obtained by blowing up P? suitably. We omit the detail
of this process. In case a is odd, we take curves D,, E and F, on P* as follows:

LN VYN
g AU

where D, is a (singular) curve of degree (¢-+1)/2 with only nodes, E is a line
and F, is a conic, £ and F, being tangent to each other at a point of D, ; hence
Kp:=—2D,+(a—2)E. Then the surface V, is obtained by blowing up P?
suitably. We omit the detail as before.

Next let V; (2<i<a—2) be a Hirzebruch surface ;,_:-;, with the follow-
ing configuration of PVs:

2

F, .|-2(a-i-1)

where Ky, =—2F;—(G+1)D;+(2a—3—0)A;. Let V,_, be a Hirzebruch surface 2,
with the following configuration of P's:

a-1 * 0 |F, 4 olF, (F, = F,)

a-1
where Ky, _,=—2F,_,—(a—1)Fo+(a—2)As-1—aD,_,.
Let W; (1<i<a—1) be a projective plane P?® with the following configura-
tion of lines:

where Ky,=—G;—2C,.
Note that if there exists a blown-up K3 surface V with a divisor C,+ ---
+Cos+ D+ - +D,_, as described in Theorem 5.4, then we have

Ky=D,+2Ds+ -+ +(a—2)D,_,

and the minimal model of V has the following configuration of curves:
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where the proper transform D,” of D, is a rational curve with node. Q.E.D.

Remark. In Example 5.3 and Theorem 5.4, we gave a sufficient condition
for a (CB)-surface of type (2, a, 3) to be a component of a semi-stable degene-
ration of K3 surfaces. However the author does not know whether or not a
similar result holds, in general, for a (CB)-surface of type (2, (p—2)(a—1)+1, p),
a=2 and p=3.

Next we consider a (CB)-surface S in case p,=2 and n=3. We restrict
ourselves to the type (2, ¢y, 3, ¢,, 3), where ¢,, g.=3. Then we have

c=@2, --,2,32,-,2,93)
=2 g:—3
D=(2, g)

By virtue of Theorem 6.4 in Nishiguchi [15], the canonical bundle Kg of S is
numerically a divisor if and only if the type is

2, 2(¢g—2)(a—2)+2a—1, 3, g, 3) with a=2, ¢=3,
where N=0,(S)=2(¢—2)(a—2)+2a+q—2.

Example 5.5. With the above notations we put a=.2',"i.e., the type is
(2,3,3,¢9,3) with ¢=3. Then the configuration of curves on S is given as follows:

We assume that the canonical bundle Ks of S has a non-zero meromorphic sec-
tion. Then we have

Ks=—B,—2B;,—3A,—2A4,—2A,— --- =24,

and furthermore, we have the following

Theorem 5.6. Let S be as above. Consider the following configuration of
curves on a surface:
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where D, is a non-singular elliptic curve and D; is a non-singular rational curve
for 2<i<q. We assume that there exists a rational surface with a divisor
D+ - +D, and Ky=—D,. Then S can be a component of the singular fiber of
a semi-stable degeneration of K3 surfaces.

Proof. As usual, we only describe each component which is to be contained
in a singular fiber.

Let Ut (1=<:/<¢—2) be a Hirzebruch surface 3,.; with the following con-
figuration of P's:

where Kyi=-—Bi"'—Bi—2E;. Let U{"' be a projective plane P? with the fol-
lowing configuration of lines:

q-1
U1 1 Eq-1

where Kyi-t=—Bi?-2E,_,.
Let U} be a rational surface with the following configuration of P's:

T 7 .
B, ;
1
ul: 1{F
2 1
-2 [k,
0 N4
W
B,

where Kyy=—B}—2F.. Such a surface is easily constructed by blowing up P2.
Let Ui (2<i<¢—2) be a Hirzebruch surface X, ; with the following configura-
tion of PVs:
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i-q

1
B2

c
N e
.
o
%]
-

g-i

i-1

2

where Kyi=—Bi'—Bi—2F;. Let U%"' be a projective plane P? with the”fol-
2

lowing configuration of lines:

B

q-1, 1
U ¢ Fgq-1

g-2
By

where Kyg-'=—2F,_,—B}™.
Let V, be a rational surface with the following configuration of curves:

-g+3

where D, is a non-singular elliptic curve and the other curves are non-singular
rational curves; hence Ky =A,—D,. Such a surface V, is obtained by blowing
up P? suitably from the following configuration of curves:

NN YN
U UAY

G2

1

where G, is a conic, G, is a line, and D, is a non-singular cubic, G, and G,
being tangent to each other at a point of D,. Let V, be a rational surface
with the following configuration of P's:

-1

b,
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where Ky,=—2G,—2D,—G,. Let V; (3<i<q—1) be a rational surface with the
following configuration of PVs:

where Ky,=—2D;—G,—G,. Let V, be a rational surface with the following
configuration of P's:

where Ky =—G,—2D,—2G,. The surfaces V, and V, (resp. Vs, -+, V) are
obtained by blowing up 2, (resp. X,).

Let V be a rational surface with the divisor D,+ :-- 4+D, described in
Theorem 5.6 and Ky=—D,. Q.E.D.

Similarly, we obtain an example for other (CB)-surfaces. Here we state the
following results, without proof, only for (CB)-surfaces of four types.

Example 5.7. Let S,, S;, S; and S, be (CB)-surfaces of type (2, 3, 4), (2, 4,
3,3,2), (3,3,2P3) and (2, 4, 3, 3, 3, 3, 2), respectively. For the notaion P, see
Nakamura [9] (S; has two branches). Then S; has the following configuration
of curves:
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By virtue of Theorem 6.4 in Nishiguchi [15] or by a direct computation, the
canonical bundle Ks; (=1, 2, 3, 4) is numerically a divisor. We assume that
Ks, has a non-zero meromorphic section. Then we have

Kg,=—B,—2B,—3A,—24,,
Ks,=—2B,—5A,—44,—3A,—4A,,
Ksy=—Bi—B,—24,—2A,—24,,
Ks,=—Bi—2B,—4A,—34,—2A,—2A,—34;.

Each S; (:=1, 2, 3, 4) can be made a component of a semi-stable degeneration of
K3 surfaces provided

(i) for S,, there exists a blown-up K3 surface V, with the following con-
figuration of P's

where Ky =D, ;
(ii) for S,, there exists a rational surface V, with the following configura-
tion of curves:

-2

P2

where D, is a non-singular elliptic curve, D,, D; and D, are non-singular rational

curves, and we have Ky,=—D,+D;;
(iii) for S., there exists a K3 surface V, with the following configuration

of PVs:
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where Ky ,=0;
(iv) for S,, there exists a rational surface V, with the following configura-
tion of curves:

T

Vy s D3 -2 D'I (01 2 - 1)

where D, is a non-singular elliptic curve, D,, D, and D, are non-singular rational
curves, and we have Ky,=—D,.

Finally, we consider a (CB)-surface with small second Betti number. Let S
be a (CB)-surface containing a GSS whose canonical bundle has a non-zero
meromorphic section. We assume that the second Betti number b,(S) is less than
six. Then, by virtue of Theorems 6.2 and 6.4 in Nishiguchi [15], the type of
S is one of the following:

(i) in case b,(S)=2, 3);

(ii) in case by(S)=3, (3, 3, 2), (2,3, 3);

(iii) in case b,(S)=4, (3,4, 2), (2,4, 3), 2, 3,4), 3)DA3);

(iv) in case b,(S)=5, (3,5, 2), (2,5,3), (2,3,3,3,3), (2,4, 3,3, 2),

(3, 3, 2)B(3).

All these cases have already been treated in Examples 4.3, 5.1, 5.3, 5.5 and
5.7, where the sufficient conditions are obtained for them to be a component of
a semi-stable degeneration of K3 surfaces. Moreover, it is easy to see that
these conditions are satisfied, i.e., one can find K3 surfaces or rational surfaces
required in the sufficient conditions in Theorems 4.4, 5.2, 5.4, 5.6 and Example
5.7. So we have the following

Corollary 5.8. Let S be a (CB)-surface containing a GSS whose canonical
bundle has a non-zero meromorphic section. We assume that b,(S)<5. Then S can
be made a component of the singular fiber of a semi-stable degeneration of K3
surfaces.
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