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Finite multiplicity theorems for induced
representations of semisimple Lie groups I

By

Hiroshi YAMASHITA

Introduction

Let G be a connected semisimple Lie group with finite center, and G=
KA,N, be its Iwasawa decomposition. In his early work [5, I], Harish-Chandra
proved that any irreducible quasi-simple (hence any irreducible unitary) represen-
tation # of G is admissible, that is to say, the restriction =|K of = to the
maximal compact subgroup K is of multiplicity finite. In view of the Frobenius
reciprocity law, this theorem means that unitarily (= L*-) or differentiably (=C=>-)
induced representation Ind%(r) has finite multiplicity property for any re K, the
unitary dual of K. Moreover, he obtained in [5, IlII, Theorem 4] an estimate
of multiplicities in #|K crucial for construction of the distribution character of
7 : there exists a constant ¢,>0 such that, for any reK,

0.1) dim Homg(x, 7)=dim Home(me, C=-Ind%(e))<c.dim 7,

where .. is the smooth representation of G associated with . (Actually ¢,=1,
see [5, II].) These theorems are obtained mainly through a careful study of
infinite-dimensional representations of the Lie algebra g of G from a purely
algebraic point of view. Nevertheless, once the differentiability of K-finite
vectors for =z is established (the finite multiplicity theorem above assures the
analyticity of such vectors), one can derive the important estimate (0.1) also by
using the theory of (K, K)-spherical functions in [6], which is a purely analy-
tical method.

In 1984, some parts of the latter analytical method were extended by E.P.
van den Ban to the (K, H)-spherical functions for any semisimple symmetric pair
(G, H). He proved in [1] that the induced representation Ind%(1z) has finite
multiplicity property, where 1y denotes the trivial one-dimensional representa-
tion of H. In another direction, M. Hashizume [7] studied (K, N,)-spherical
functions of special kind, so-called class one Whittaker functions. One of his
results [7, Theorem 3.3], the finite-dimensionality of spaces of such functions,
suggests us that the induced representation Ind$ (¢) is of multiplicity finite for
any one-dimensional representation (=character) & of the maximal unipotent
subgroup N,. (This is proved rigorously in §4 of this paper.)

In the present article, we generalize the result of van den Ban, developing
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the theory of spherical functions in a quite general setting which includes those
of (K, H)- and (K, Ng)-spherical functions above. This generalization enables
us to understand finite multiplicity theorems for induced representations of G
in a unified manner. To be more precise, let P,=LN with L=P,NOP, be a
Levi decomposition of an arbitrary parabolic subgroup P, of G, where 8 is a
Cartan involution of G such that K={geG; 6(g)=g}. We denote by ¢
an involutive automorphism of L which commutes with 6| L and coincides with
6 on the split component A of L. Let H be a closed subgroup of the fixed
subgroup L, of ¢, containing the identity component of L,. For a continuous
representation { of the semidirect product subgroup HN=Hx NCLN=P, we
consider the induced representation (L% or C=-) Ind%x({). Notice that, if
P,=G, then (G, HN=H) is a semisimple symmetric pair, which is the case of
Harish-Chandra and van den Ban. We estimate the multiplicities in Ind%~({)
through our theory of (K, HN)-spherical functions, and give good sufficient con-
ditions for { that Ind%y({) has finite multiplicity property. Application of our
results to the case of P,=G reproves the finite multiplicity theorems of Harish-
Chandra and van den Ban.

Our emphasis is, however, placed on the point that our criterions can be
applied successfully to the representations induced from infinite-dimensional {’s,
too. One of such examples is the representation Ind%y ({)=Ind% (&) with {=
Ind¥¥m(&), where M is the centralizer of A, in K, and § is a unitary character
of N,. (Precisely speaking, G must not bz split over R in order that { is in-
finite-dimensional.) This is the case suggested by [7], and contains the case of
so-called Gelfand-Graev representation (=GGR). Any GGR is of multiplicity free
([14], see also 4.3 in this paper) if G is linear and quasi-split.

Besides, the more interesting examples of such cases are in generalized
Gelfand-Graev representateons (=GGGRs), more precisely, in a variant of GGGRs
called reduced GGGRs in [19] and [20]. The GGGR is an important extension of
GGR, introduced by N. Kawanaka [8]. In the second part [19], we give finite
multiplicity theorems for reduced GGGRs, by applying results of this article.
The important cases connect with Whittaker models for (holomorphic) discrete
series representations (cf. [20]). In the subsequent paper [20], we prove
multiplicity one theorems for some of the above important cases, by generalizing
the technique of Shalika [14]. (The method of spherical functions is too rough
to prove theorems of such types.)

Now we explain how the theory of spherical functions is used to estimate
multiplicities in induced representations. Let U(g¢) denote the enveloping algebra
of the complexification g¢ of g, and Z(g¢) the center of U(gc). Let (p, E) be a
compatible (g¢, K)-module. Then, for any algebra homomorphism X: Z(g¢)—C,
the joint X-eigenspace E()={veE; p(2)v=X(z)v (z=Z(gc))} is clearly a (g¢, K)-
submodule of E. For r=K, E®X). denotes the r-isotypic component in E(X).
Now let (wx, Hg) be an irreducible admissible (g¢, K)-module with infinitesimal
character X.: Z(gc)—~C. Then we have easily an estimate of multiplicities :
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(0-2) Igc—K(nK’ P)§Mgc—x(ﬂ'1{, E(xn))

< mi]? [dim E(x:z)f'jl((r’ ”K)_!] »
TE.

where, for X-modules 8, and 8., Ix(B,, B.) denotes the intertwining number
(see §2) from B, to B;, and M,.-x(wx, E(X:)) the multiplicity of 7, in E(X,) as
subquotient. By virtue of (0.2), we have finite multiplicity property for the
(g¢, K)-module (p, E) if

(0.3) dim EQ),<+oc  for any reK and any 1.

We consider the case where p=C>-Ind%({), our induced representation in
C=-context (see 2.1). In this case, each element in E(X), is said to be a (K, HN)-
spherical function of type (r,{:X). Thus, the multiplicity of an irreducible
admissible (g¢, K)-submodule mx of C=-Ind§ x({) is bounded by the minimum of
dimensions of the spaces of (K, HN)-spherical functions of type (z, {:X.), where
t ranges over the elements of R occurring in wg.

Furthermore, we can relate, using the results by Penney [11], the multiplici-
ties in C=-Ind% x({) with the multiplicity function of unitarily induced represen-
tation L2-Ind$ x(§), at least when £ is a finite-dimensional unitary representation.
Thus, we obtain good sufficient conditions for { that C*- or L%*Ind%y({) has
finite multiplicity property (Theorems 2.12 and 3.13). These are the main re-
sults of this paper.

Now let us explain the results of this article in more detail.

In §1, we give a decomposition theorem (Theorem 1.12) of elements in
U(ge) useful to our estimate of multiplicities in §2. This is a variant of the
theorem of such type as giving the “radial component” of differential operators
DeU(gc) with respect to (K, HN).

In §2, we estimate multiplicities in induced representations (z;, C(G ; {))=
C=Ind%x() in C=-context by the method explained above. Here { is a con-
tinuous representation of the semidirect product subgroup HN=HxXN (SP;) on
a Fréchet space F. For this purpose, we study, for any r=K and any ideal I
of Z(g¢) with finite codimension, the subspace A(G;{:I). of C=(G ;{) consisting
of z-isotypic vectors for m; annihilated by #(I). In case where /=Ker X for
some homomorphism X: Z(gc)—C, this subspace is nothing but the space of
(K, HN)-spherical functions of type (r,{:X). The point is that any fe&
A(G;C:I), is an F-valued weakly analytic function on G (Lemma 2.5) thanks to
the regularity theorem for elliptic differential operators. From this analyticity
theorem together with Theorem 1.12, we get an upper bound for dim A(G ;{: I),
(Theorem 2.8 and (2.8)). Accordingly, (0.2) applied to p==; gives an estimate
of multiplicities in z; (Theorem 2.10).

To be more precise, let p,=1Du be the Levi decomposition of the Lie algebra
p, of the parabolic subgroup P, corresponding to the decomposition P,=LN.
The differential of ¢ gives an involution on ! denoted again by ¢. Let =§Pq
be the eigenspace decomposition of | with respect to ¢, where §) (resp. q) is the
+1 (resp. —1) eigenspace, and let g=tPp be the Cartan decomposition of g
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determined by 6. Extend the Lie algebra a of the split component 4 (S L) to
a maximal abelian subspace a,, in pN\q. Denote by [, the centralizer of a,, in g.
Then, [, is, by construction, a reductive Lie subalgebra of g contained in 1.
Let R, and R, be the orders of the complex Weyl groups of gc and ({,)¢ re-
spectively. We set M,,=Z gnn(a,,), the centralizer of a,, in KNH. Then the
multiplicities in x; are estimated as in

Theorem A (see Theorem 2.10). Let { be a continuous representation of HN
(EP), and m;=C=-Ind§ () the induced representation in C=-context. For an
algebra homomorphism X': Z(gc)—C, let my y be the subrepresentation of m on
the joint X'-eigenspace for n(Z(gc)). If (m, K) is an irreducible admissible re-
presentation of G with infinitesimal character X, then the multiplicites I¢(m-, o),
Ije-k(mx, (Wdx) and My, x(mx, (e x)x) admit an upper bound as follows :

0.4) Ie(mos, ﬂc)élgc—lf(ﬂ'm (ﬂc)K)éMgc-K(ﬂ'K, (2. 0)k)
SRR minceg[Iu,,(r, - Ix(r, wx)'],

where mx, () and (wg, 1)k denote respectively the representations of g¢ and K on
the space of K-finite vectors for =, m; and mr. y.

This is the main result in §2. From this theorem, we obtain a sufficient
condition for the finiteness of multiplicities in =; as follows.

Theorem B (see Theorem 2.12). The induced representation n; of G has
finite multiplicity property if so does the restriction {| My, of § to the compact
subgroup Myn: Iy, , (¢, O)=dim Homy, (¢, <400 for any irreducible finite-
dimensional representation p of Myp.

This theorem covers, to a large extent, the finite multiplicity theorems for
induced representations of G, especially the case of van den Ban [1], i.e., the
case of P,=G and {=1,.

In §3, we treat the multiplicity functions for unitarily induced representa-
tions VUr=L*Ind%x({) in connection with those for m; in C~-context. First we
proceed to a more general situation. Let G be a Lie group of type I. Consider
the representation U;=L%Ind§({) induced from a unitary representation { of
a closed subgroup @ of G. Let

0.5) cuczgz Udmdpeln),  Uelm)=[me(m)]-x

be the factor decomposition of U (see 3.4). Here m is the multiplicity function
for U, on the unitary dual G of G. Using the results by Penney [11] on the
disintegration of C=-vectors for unitary representations, we can prove:

Propesition C (see Theorem 3.12). If { is finite-dimensional, then the inter-
twining numbers I(w, mg)=dim Homg(w, 7¢) (r€G) from m.. to me=C=-Ind§)
give an upper bound for mc:
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(0.6) men)SIe(mw, mg)  for almost every reG

with repect to the Borel measure pg on G in (0.5).

We remark that the inequality (0.6) is false for infinite-dimensional { in
general (Example 3.11).

Now we return to our original objects, and let G be a semisimple Lie group
again. From Theorem B combined with Proposition C, we get a finite
multiplicity theorem for U;= L%Ind§y({), which extends Theorem 3.1 in [1].

Theorem D (see Theorem 3.13). Let { be a finite-dimensional unitary re-
prentation of the semidirect product subgroup HN (S P,). Then, the multiplicity
function Gon—myr) for Ug=L*Ind§y() takes finite values for almost every
reG with respect to pg in (0.5).

This is the main result in §3.

To establish a general result such as Theorem D, we have been forced to
assume { to be finite-dimensional.. Nevertheless, Theorem A and Proposition C
are still applicable to infinite-dimensional { to prove finite multiplicity property
for some specified Ug.

In §4, we give important examples of such U including Gelfand Graev
representation (=GGR ; see Definition A.5). More precisely, let M=Zx(A,) as
before, and consider the semidirect product subgroup MN, of the minimal
parabolic subgroup MA,N,. As a representation { of MN,, we take {=
L*Ind¥¥m(§), the representation induced from a unitary character & of the
maximal unipotent subgroup N,. Then { is infinite-dimensional if dim M>0.
Consider (L% or C=-) Ind§yn({). The stage theorem for induced represen-
tations tells us Ind% v ({)=Ind$ (§). First we apply Theorem A to C- -Ind§ v, (),
and then, keeping its result in mind, we apply Proposition C to L*Ind% _(%).
Thus, we find out that Ind§y,(§) is of multiplicity finite (Theorems 4.2 and 4.3)
even if { is infinite-dimensional.

In Appendix, we deal with the problem of decomposing L2Ind% (&) ex-
plicitly into irreducibles. On one hand, we have a complete answer (Theorem
A.4) in case é=1y , the trivial character of N,,. On the other hand, we reduce
the problem for general £ mainly to that for non-degenerate &’s, that is, to de-
composition of the GGRs (of Levi subgroups of G).

The author expresses his gratitude to Professor S. Sano for his stimulating
lectures on harmonic analysis on semisimple symmetric spaces. The author
wishes to thank Professors T. Hirai, N. Tatsuuma and T. Nomura for their kind
discussions and constant encouragement.

§1. A decomposition theorem of elements in U(gc)

Let G be a connected semisimple Lie group with finite center and g its Lie

algebra. U(g¢) will denote the universal enveloping algebra of the complexifica-
tion gc of g. We generalize in this section the results by Harish-Chandra [6,
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Lemma 7] and van den Ban [1, Lemma 3.8], and get a decomposition theorem
(Theorem 1.12) of elements in U(g¢). This theorem will play a crucial role
when we estimate in § 2 the multiplicities in representations of G induced from
those of certain semidirect product subgroups Hx N (see 1.2 for the definition of
HxN).

1.1. Preliminaries. First of all, we prepare some notations on a semisimple
Lie group G after [17, Chap. 1] and [15, Part II, §6].

Let # be a Cartan involution of G and K the fixed subgroup of 8: K=
{geG; 0(g)=g}. Then K is a maximal compact subgroup of G. Denote by f
the Lie algebra of K. The differential of # gives an involutive automorphism
of g denoted again by 6. Let g=tPp be the Cartan decomposition of g cor-
responding to 6.

By a Borel subalgebra of g¢, we mean a maximal solvable complex subalgebra
of gc. Borel subalgebras are all conjugate under the adjoint group of gec. A
subalgebra of g is said to be parabolic if its complexification contains a Borel
subalgebra of gc. For a parabolic subalgebra p, of g, put P,=Ng(p,), the
normalizer of p, in G. Then P, is self-normalizing, N¢(P,)=P,, and p, coincides
with the Lie algebra of P,. We call P, the parabolic subgroup of G correspond-
ing to p;. :

Let n be the nil-radical of p, and N the analytic subgroup of G correspond-
ing to n. Then P, (resp p,) is expressed as

'P1=L'b<N (resp. p,=I@n)  (a Levi decompositon),

where L=P,NOP, (resp. [=p,N0p,) normalizes N (resp. n). L (resp.!) is called
a Levi subgroup (resp. a Levi subalgebra) of P, (resp. p,). Put a=3Mp and
A=expa, where 3 is the center of I. A (resp. a) is said to be a split com-
ponent of P, (resp. p;). Then L admits a direct product decomposition L=MA
with M=NKer X, where X runs through the continuous group homomorphisms
from L to the multiplicative group of positive real numbers. In view of the
Levi decompositions above, we have P,.=MAN and p,=m@PaPn (Langlands de-
compositions) with m the Lie algebra of M.

1.2. The subgroups Hx N. Let o, be an involutive (i.e., ¢}=1) automor-
phism of M which commutes with #|M. Extend o, to an involution ¢ of L=
MA in such a way that e(ma)=ca(m)a~' (mneM, ac A). Let H denote a closed
subgroup of L such that (L,),SHSL,, where L, is the fixed subgroup of ¢
and (L,), the identity component of L,. Consider the semidirect product sub-
group Hx N. We will treat in §§2-3 the representations of G induced from
those of HN=Hx N and examine the multiplicities of irreducible constituents of
them through (K, HN)-spherical functions.

In a special case P,=G, we have N=(1) and (G, H) is a semisimple sym-
metric pair. Our arguments will generalize in some aspects the theory of (K, H)-
spherical functions developed by Harish-Chandra [6] and van den Ban [1].
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1.3. Root space decompositions. By taking the differential of ¢, one gets
an involution of [ denoted again by ¢. Let I=)@q be the eigenspace decom-
position of | with respect to ¢, where ) (resp. q) is the +1 (resp. —1) eigenspace
of ¢. Then Y is the Lie algebra of H. Since ¢ commutes with 6|L, we have
a direct sum decomposition of |

1.1 I=ENHHPENDDONND(MNg)  (as vector spaces).

Let a,, be a maximal abelian subspace of pNg. Extend a,, to a maximal
abelian subspace a, of pN\I. Then one deduces just as in the case of semisimple
symmetric pairs (see [10, Lemma 2.2]) the following lemma.

Lemma 1.1. The vector spaces a, ap, and a, satisfy the following relations
(1) and (2):

1) aSapEa,,

(2) ap=0,,P(a,NY), in particular a, is o-stable.

Proof. (1) Since o(a)=a"! for any ac A, one has ¢|a=—1I (I the identity
operator), whence aSq. Thus it holds that a=3"\pM\q, which implies that a4a,,
is an abelian subspace of pN\q containing a,,. By the maximality of ap, a is
contained in a,,. The second inclusion a,,Sa, is obvious by the definition of a,.

(2) For an arbitrary X<a,, express X as X=Y+Z with Yepnh and
ZepNq according as the decomposition pNI=pNHB(pNq). We show that
Yea,Nh and Z<a,, In fact, for any Wea,,, one has 0=[X, W]=[Y, W]+
[Z,W]. On the other hand we have [V, W][}, q]Sqand [Z, W]<[q, q]<).
Hence [Z, W]=—[Y, W]lebhNq=(0) for any Wea,,. Then Z must be con-
tained in a,, because a,, is a maximal abelian subspace of pN\q. We thus get
Y=X—Ze<a,Nph by (1). Consequently one obtains a,Sa,,H(a,Nh). The con-
verse inclusion is obvious, which completes the proof. Q.E.D.

We need to treat various kinds of root spaces at the same time, so it is
convenient to prepare some general notations as follows. Let r be a commuta-
tive Lie algebra over F=R or C acting on a vector space V over F. For an
element Aey*, the dual space of g, V(x;4) will denote the space of vV such
that Z-v=A(Z)v for every Zy. We denote by A(V:r) the set of all 1+#0
with V(x;4)#(0). In case where g is a subalgebra of a Lie algebra yand V an
(ad p)-invariant subspace of Yy, we always consider the adjoint action of r on V:
1©Z—(ad Z)|V.

Let v,, v,, -+, v, be a basis of a real vector space E. Define a total order
> on E* as follows: for two elements 4, y=E*, A>p if there exists 1<s<n
such that

Awi)=p(vy) for 1=</<s—1 and A@w,)>p,).

We call this the lexicographic order on E* with respect to the basis (v, v, **+, Uy).
For a subset ¥ of E*, put ¥+={1<¥; 1>0}.
Now let j=i*@®a, with j*St be a 6f-stable maximally split Cartan sub-
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algebra of g. We define compatible lexicographic orders on a*, a% and ¥ (jp=
v/ =1i*@®a,) as follows. First take a lexicographic order on a* for which the
elements in A(n:a) are all positive. Such an order always exists. Let
(Hy, -+, Hn,) be the basis of a which determines this order on a*. Secondly
extend (H,, -+, Hp,) to a basis (H,, -+, Hn,, Hn,+1, -, Hy) of jg in such a way
that (Heisesm, (resp. (Hi)isrsm,) forms a basis of a,, (resp. a,), where m,<ms,
=ms<n. Define lexicographic orders on a*, a%, a* and {¥ through the above
bases. :

Let [, be the centralizer of a,, in g. Then I, is a #-stable reductive sub-
algebra of ¢ containing | as a Cartan subalgebra. From Lemma 1.1(1), I, is
contained in I,

Using the above notations, we have joint eigenspace decompositions of g
with respect to the adjoint actions of a and a,, as follows:

1.2) g=0nP!Pn, n= 3 g(a;4), = >  gla;—2),

led*(gio) 2ed*(gia)
8=0n(a,)DleDn(az,y),
(1.3) { Pq 0 pg

(0, = +2 g(apg; A), (ht(tlpq):x = gapg; —A).

Aed*(giapg ed*giapy

One should note that n(ay)=n(l: a,)Pn with n(l: azg)=1Nn(ay,) by virtue of our
choice of lexicographic orders. Hence I is expressed as

{ = 011([: apq)@‘O@n(I: apq):
n(l:ap)= 3 glap; ), Onll: ‘1z>q)=/I 2 8(ap; —A).

edt(liapy

(1.4)

ed*(lapp

We proceed to the root space decompositions of g¢ and lyc=(lo)c. Put @=
A(ge: ic) and @o=A(oc:ic), then @, @, Every element in @ takes real values
on the real form jz of jc. So we may consider @ canonically as a subset of j¥
and denote by @+ (resp. @%) the positive system of @ (resp. @,) with respect to
our order on j§. Then one has root space decompositions of g¢ and l,c with
respect to jc as follows: : :

w5 { gc=uc(P)DicBnc(P),

n0(¢)=a§+gc(ic Ja), ul(@)= 62¢+Qc(ic s —a),
L.6) { lie=1c(D0)DicDnc(Do),

1e(Po)= 3 gclics @), uc(Po)= Z gelic; —a).

acdF ac0}
It follows from the compatibility'of our orders on af, and j} that ne(@)=uc(PD,)
Pnlayy)e with w(ay)e=n(a,,)QrC.

1.4. Structure of Z(l,¢) as a Z(gc)-module.

For a Lie algebra ¢ over C, Z(xr) denotes the center of the enveloping
algebra U(x) of t. Z(l,¢) has a canonical structue of Z(g¢)-module through the
homomorphism p: Z(g¢)—Z(lo¢c) defined below. For the later use, we clarify in
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this subsection the Z(gc¢)-module structure of Z(ly¢).
By (1.3), (1.5) and (1.6) together with the Poincaré-Birkhoff-Witt theorem,
U(gc) and U(l,c) are decomposed respectively as

1.7 Uge)={n(az0)U(gc)+U(ac)n(a)} DU (Le) ,
(1.8) Uge)={ne(D)U(gc)+U(gc)uc(P) DU Ge),
(1.9) U(toc)= {1c(Po)U(loc)+U Lo )ic(Do)y BU (fc) -

Let @: U(ge)—U(loe), 7:U(ge)—U(c) and 7o : U(loc)—U(ji¢) be the projections along
the decompositions (1.7), (1.8) and (1.9) respectively. Then we sze easily the
following

Lemma 1.2. (1) The map ¥ is expressed as f=7,° .

(2) The restriction of fi to Z(gc) gives an algebra homomorphism from Z(gc)
into Z(loc). : '

) Z—@(Z)en(ap)U(gc)0n(ay,) for every Ze Z(gc).

Proof. (1) For an element DeU(gc), one has
(1.10) D—(7oe i)Y D)={D— (D)} +{ g(D)—7Fo(Z(D)} .

Note that n(as,), nc(Po)Snc(®@) and that Gnlan,), uc(Po)Suc(®). Then, from the
definition of @ and 7,, the right hand side of (1.10) is in nc(®)U(ge)+U(gc)uc(P).
Therefore we have 7(D)=(F,° z)(D).

(2) and (3). Now assume that DeZ(gc). First we show that g(D)eZ(ly).
Indeed, for any Xel,, [a(D), X]=[X, D—a(D)] is in w(a)U(gc)+U(gc)n(az,)
since 1, normalizes both n(a,,) and 6n(a,,). On the other hand, [a(D), X]e
[Uoe), 1,JEU(loe). Hence we have

[X, ZD)]eUloc)N{n(a)U(8c)+U(ge)0n(ary)}=(0).

This means that g(D)e Z(lyc).

Before proving (2), we show the assertion (3). Let a,<a,< -+ <a, be the
elements of @*. For every 1<:<r, take a non-zero root vector X:<gc(jic; *a:).
Let H,, -+, H, be a basis of {c. By the Poincaré-Birkhoff-Witt theorem, U(gc)
has a basis consisting of elements

M((s2), (um), @)=(XE)r - (XD HY - Hin(X D)4 (XD,

with non-negative integers s;, t; (1=</<7), u, (1Sm=<n). Then, fora DeZ(g¢),
the element D— a(D)en(ay)U(gc)+U(gc)dn(a,,) has a unique expansion

D—ag(D)y=2ZC((s0), (um), EDM((s2), (wm), (t))

with complex coefficients C((s;), (un), (t;)), where the summation is over ((s;),
(um), (t)) such that 3., (si+1:)>0. Here a,, is the highest root in @, - On
the other hand, [U(l,¢), D— @(D)]=(0) since F(D)eZ(l,c) as proved above. In
particular, [H, D—a(D)]=0 for every H&jic, which means that
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2{§l(sk_tk)ak(H)}C((si)r (Um), @DIM(s0), (Um), (¢:))=0

for all HEje. Thus C((sy), (um), (¢:))=0 unless 3,(s,—t:)a,=0. For a triplet
((s1), (um), (t)) such that 2>, (s:+¢:)>0, the sum 3],(s,—?,)a, can not be equal
to zero if either (sy)i>r,=(0) or (t:)i>,,=(0). Therefore we have D—a(D)e
n(a,)U(gc)On(ay,).

Finally we return to (2). Let us show that @|Z(gc): Z(ge)—Z(loe) is a
homomorphism. For D,, D,Z(g¢), one has

D\D,— @(D)F(D2)=(D,— (D)) Do+ (D, XD, — f(Dy)).

By the assertion (3) proved above, the right hand side is in u(a,)U(ge)+
U(gc)On(ay,). Hence we have p(D,D,)=a(D,)i#(D,), which completes the proof.
Q.E.D.

Let W(®) (resp. W(@,)) be the Weyl group of @ (resp. @,). Then W(®,)
is the subgroup of W(®) generated by reflections corresponding to the elements
of @,. W(®) acts on j¢, hence it acts also on U(ic). Let I(jc) (resp. I (ic))
denote the algebra of W(®)-invariant (resp. W(®,)-invariant) elements in U(jc).
For B=ij¥ we denote by T the automorphism of U(j¢) such that T s(H)=
H+B(H) for HEjfe.

Put y=T,°7 (resp. 1o=T y,°70) With p=2""F,co+a (resp. po=2"'Fscota).
We can now state a fundamental lemma on the structure of Z(gc) (resp. Z(loc))
as follows.

Lemma 1.3 (Harish-Chandra). The map y (resp. y,) gives an algebra iso-
morphisms from Z(gc) (resp. Z(lyc)) onto I(i¢) (resp. In(ic)).

This lemma is well-known. Refer to [3, 7.4.5] for example.

The map 7| Z(g¢) (resp. ol Z(loc)) is called the Harish-Chandra isomorphism
from Z(ge) to I(je) (resp. from Z(lye) to Io(ic)).

Since I(jc) is a subalgebra of I(j¢), I.(j¢) has a canonical structure of I(j¢)-
module, which is described in the following lemma.

Lemma 1.4. I(jc) is a free I(ic)-module of rank |W(®)/W(®D,)|, where, for
a set Y, |Y| denotes the cardinal number. Moreover, one can choose a module
basis consisting of homogeneous elements.

This lemma follows, as a special case, from [15, Part I, § 4, Cor. 10], where
the invariants of finite reflection groups are treated in full generality. But we
sketch the proof of Lemma 1.4 in order to clarify our succeeding arguments.

Outline of proof. S(i¥) denotes the symmetric algebra of j¥. W(®) acts on
i¥ by duality, hence it acts also on S(j¥). Define for any ac<i} a differential
operator d(a) on i¥ by

ApD= - JUH D] (ECED, 2T,
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The assignment a—d(a) extends uniquely to an isomorphism from S(i§) onto
the algebra of constant coefficient defferential operators on i%.

Identify canonically U(j¢) with the algebra of complex polynomial functions
on {¥. An element peU(ic) is said to be W(®)-harmonic if d(u)p=0 for every
W(®)-invariant element u<S(j¥) without constant term. Denote by H(j¢) the
space of W(®)-harmonic elements in U(jc). Then H(j¢) is a W(®)-stable subspace
of dimension |W(®)|, and compatible with the grading on U(jc). Moreover one
can show that the map I(i¢) X H(ic)2(p, e)—pec=U(jc) gives a linear isomorphism
from I(Gc)QH(ic) onto Ulje): U(ic)=I(Gc)Q@H(i¢). From this we see immediately
that Ii(ic)=I(c)®H.(ic), where H,(jc) is the space of W(®,)-fixed elements in
H(c). One can choose a basis of H,(jc) consisting of homogeneous elements,
since each homogeneous component of H(j¢) is stable under W(®,). We have
thus proved that I,(jc) is a free I(j¢)-module of rank dim Hy(jc) and that it has
a module basis consisting of homogeneous elements.

To complete the proof, it is enough to show that dim Hy(j¢)= |W(@)/W(D,)|.
This is done as follows. One can show that the representation of W(®) on
H(j¢) is equivalent to the regular representation of W(®). The space W(®,)-
fixed elements in L2(W(®)) is naturally isomorphic to L*W(®)/W(®,)), whose
dimension is equal to |W(®)/W(®,)|. Consequently we get dim H,(j¢)=
dim LXW(@)/W(D)= |W(D)/W(D,)| as desired. Q.E.D.

Let £ be an automorphism of U(l,¢) defined by
(1.11) £(X)=X+2""tr (ad X|n(ap,)) (Xel).

Denote by w the inverse of x. Put p=«-j, then by Lemma 1.2(2), g restricted
to Z(gc) gives a homomorphism from Z(g¢) into Z(loc). So Z({,¢) has a structure
of Z(gc)-module through p.

We can rewrite the equality 7=f,°# in Lemma 1.2(1) in terms of 7, y, and
¢ as follows.

Lemma 1.5. The map y is decomposed as y=y,op. In particular, one has the
following commutative diagram.

Id .
I(ic) =< I(1c)

(1.12) TSI nro
2@ 200

Proof. For any DeU(l,¢), one has by the definition of 7,
(1.13) D—7y(D)euc(Po)U(loc)+U(loc)itc(Ps) .
Applying & to the both sides of (1.13), we get
(1.14) £(D)—£(F (D)) Enc(Po)U(loe) +U (loc)uc( Do) .
Here we used the fact #(X)=X for any Xen(®,) or any Xeuc(@,). (1.14)
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means that 7,(x(D))=«(7,(D)). Since 11(a,,q)c=2,,€¢+\@ggc(ic ; @), the restriction of
£ to U(jc) coincides with T,_,,. Hence we have

(1.15) T p-peTo=Took.
Then it follows from Lemma 1.2(1) together with (1.15) that
Toott=T poefoere i=T po Ty pyoToe f=T po7=7.

Thanks to Lemma 1.3 and the above equality, one gets (1.12) as desired.
Q.E.D.

By virtue of the commutative diagram (1.12), the Z(g¢)-module Z(ly¢) is
equivalent to the natural I(jc)-module I,(jc) through Harish-Chandra isomorphisms.
In Lemma 1.4 we described the structure of I,(jc) as a I(jc)-module. Therefore
the Z(g¢)-module structure on Z({,¢) is now clear. We summarize this as follows.

Proposition 1.6. There exist r=|W(@D)/W(D,)| number of elements v,=
1, vy, oo, v, in Z(lo¢) satisfying the following conditions (1) and (2).

(1) For every 1<i<r, 7.(v:) is a homogeneous element in I(ic).

(2) Every veZ(lyc) is expressed uniquely as

(1.16) y= izl (Z v

with Z,€Z(gc). Moreover one has degv=deg Z,+degy, for 1<i<r, where deg X
is the degree of an element X€U(gc).

Proof. By Lemmas 1.4 and 1.5, the assertions are clear except the last one
in (2). Taking the commutative diagram (1.12) into account, we apply 7, to the
both sides of (1.16). Then we have an equality in I,(ic)

7.(v)= E 7(Z )re(vi).
By the uniqueness of the above expansion, one has

deg r(Z )+deg ro(v)=<deg 7,(v) for 1<i<r.

On the other hand, it is easily checked that deg y(Z)=deg Z (resp. deg yo(Z.)=
deg Z,) for any Z& Z(g¢) (resp. Z,€Z(l,¢)). Therefore we obtain deg Z;+deg v,
<degy for 1<i<r. Q.E.D.

1.5. Direct sum decompositions of g and 1.

First we explain after [1] an Iwasawa decomposition and a Cartan decom-
position of [ with respect to §, +1 eigenspace of ¢. For this purpose, we need
some more notations and a lemma.,

The centralizer !, of a,, in g is stable under both 6 and ¢ because 0(X)=
d(X)=—X for any X<a,, So it splits into a direct sum of vector spaces

1.17) l=1"PIIDIR DI,

where Er=1,NINDY, 12=1,NEfNq and so on. Note that [§7=aqy,.
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For any A€ A(!: a;,), the root space g(a,q; A) is stable under the involution
g0 of L because g is identity on a,,. Let

8(apq; A=8+(apq; APa-(apq; )

be the eigenspace decomposition of g(a,,; 4) with respect to ¢@, where g.(a,,; 4)
is the +1 eigenspace of g@ on g(ay,; 4). Set

(1.18) A ap)={A€ A a,g) ; 8.(apg; AH#(0)}.
We define an open dense subset Aj, of A,,=exp ap, by
Ape={aE€ Apy; a*+#1 for all A€ 4.(1: ayp)}.

Here (exp H)*=exp A(H) for 1€ (a,)¢ and HEayp,.

For any gG and any DeU(ge), write ¢D for Ad(g)D for simplicity.
Then we have

Lemma 1.7. If A€ A(L: a,,), then every element X*eg.(apq; 4) is expressed as
(1.19) X=(a*Fa )X+ o X)Fa (X +0X*)}
for every ac A%,

Proof. For any Yeg(ay,; 2), oV as well as 0Y is in g(ap,; —4). This im-

plies that ¥(Y+aY)=a?Y+a *¢Y for any acA,, If X*cg.(ay,; ), then
cX=+6X. Hence we have

WX +a X TFa X+ 0X)=(a* X* £ a0 X)Fa H(X*+0.X*)
=(a*Fa Y X=.
Noting that a*+a-*+0 for any a€ A}, we obtain (1.19) Q.E.D.

Using the above notations one gets the following

Lemma 1.8. The Lie algebra | admits the following two kinds of divect sum
decompositions as vector spaces:

(1.20) [=n(l: a,)Pa, DEPENT),
(1.21) [=29'Da,,PENT) for any asAjp,.
where we put §'=9N\{n(l: ap,)Pon(l: a,,)}PLE™,

The decomposition (1.20) (resp. (1.21)) is called an Jwasawa (resp. a Cartan)
decomposition of 1 with respect to 4.

Proof of Lemma 1.8. First we prove (1.20). Recall the decomposition (1.3).
Since both n(l: a, )P On(l: ay,) and I, are f-stable, ¥NI splits into a direct sum
of vector spaces

(1.22) I =CENLBIN (s 0D : a0} ].
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If X,Yeul:a,,), then one has X4 0Y=(X—-Y)+(Y+Y). From this we see
immediately

(1.23) (L2 )P Onl: ap)=n(l: az )PIEN{(: ap)PBOu(l: apy)}].
By replacing the right hand side of (1.3) by those of (1.17) and (1.23), one gets
(1.24) [=n(l: ap)BUEN{n(: ap)POnl: a,)} JPEN)Da, PIE™.

By (1.22) and (1.24) we obtain (1.20) as desired.

Secondly we show (1.21) using (1.20) proved above. It is easily verified that
the assignment X—X4-¢X gives a linear bijection from u(l: ap,) onto {n(l: ap,)
Don(l: ap)}Nh. So we get dim n(l: ayg)=dim [HN\{n(l: ap,e)Pan(l: az)}]. Then
it follows from (1.20) and this equality that

(1.25) dim I=dim §’4dim ap,+dim tNI.

On the other hand, thanks to Lemma 1.7, n(l: a,,) is contained in *§’+(¥NI) for
every a€ Ay, Hence we obtain [=°h’ +ap,+INI using (1.20) again. This sum
must be direct in view of (1.25). Q.E.D.

Taking into account the relation nPfu=nPH{INuPon)}, we apply Lemma
1.8 to ! in the right hand side of the equality g=uPlPfn. Then we obtain
two kinds of direct sum decompositions of g corresponding to those (1.20) and
(1.21) of 1 as follows.

Lemma 1.9. The Lie algebra g splits, in two different manners, into direct
sums of vector spaces as

(1.26) g=1(a, )P, DII"DE,
1.27) g=(0'Pn)Day Pt for every a=Ajp,;.

1.6. A decomposition theorem of elements in U(g¢).
Let g+ be the ring of functions on Aj, generated by the following functions:

(1.28) a-? for A€ Au: ayy),
(1.29) (a*—a=%", a*at—a ' for A€A*(L: ap)N A apy),
1.30) (a*+a N, aHal+a ) for 2€A*(:apgdNA-(:apy)  (cf. (1.18)).

g denotes the ring generated by ¢+ and the constant function 1 on A%, For
an ac Ajp,, consider the linear map

V. FQUODI®| E Z @)} Ut —> Uge)
defined by
(1.31) V.(/Qk@n=/r(a)26n for fed, §€UHcDnc)

and pe{Zigis-Z@c)o)}U ).
In this subsection we find, for any given DeU(g¢), an element in the in-
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verse image ¥'z'(D), independent of a (Theorem 1.12). This will be achieved in
the same line as in the proof of [1, Lemma 3.8].

For an integer m=0, let U(gc)n be the space of elements DeU(ge) such
that deg D<m. Set U(g¢)-n=(0). Then one has a filtration of U(g¢):

O)=U@c)-n= - =U@c)-1EU@c)h=CE - SUGB)nEU@)m+:1 E
For a subspace E of U(ge), set En=ENU(gc)n. Then we obtain

Lemma 1.10. For any non-negative integer m, U(g¢)m admits a decomposition

132)  UGem=1@pUen- 1+ Vet £ ZGoeeafutte)] .

Proof. Take a basis X, ---, X, of the vector space 2*={,"\pN\). Let V
denote the subspace of U(g¢) generated by the elements X{1 .- Xis with integers
t;=0 (1<i<s). Consider the decomposition (1.26) of g. Then, by the Poincaré-
Birkhoff-Witt theorem, we have

(1.33) U@c)m=1(ap)U@c)m- DLV - U(apg)c)U(tc)Im -

Let De[V-U(apc)UEc)Im. Write D=FicnsnQ@.H.W,, where Q,€V,
H,€U((ap))e) and W,eU(¢) such that deg Q.+deg H,+degW,<m. Apply
Proposition 1.6 to £(H,)eU{(ap)c)EZ(loc). Then H, is expressed uniquely as

Hy= 3 4(Z. Jov:)
with Z, :€Z(g¢c). Moreover, deg H,=deg Z,,;+degv; (1=i<r). Thus we have
D=n2i QnZn,iw(Vi)Wn+n2i Qn(ﬁ(Zn.i)—Zn.i)w(Vi)Wn .
By Lemma 1.2(3), i(Z,,)—Z,, :€wap)U(gc)v-1 With v=deg Z,,;. Since I, nor-
malizes W(azy), X Qn(f(Za.)—Zn, )(vi)W, belongs to n(a,)U(gc)m: -1 With m'=
deg Q,+deg v;+deg W,+v<m. Consequently,

1.34) VU@V te)]m S mp)U@e)m-1+ LU (GeNle {2 Z (@)U () Im -

Combining (1.34) with (1.33), we get the desired decomposition (1.32).
Q.E.D.

The map ¥, restricted to 1®U('E)cmioc)®{;Z(gc)w(ui)}U(fc) does not depend

on a€ Ap, because hN\I, centralizes A,,. We denote this map by ¥ instead of
¥,. Thus, in view of the above Lemma, it suffices to consider the elements in
(a,)U(g¢) in order to find an element in (1 ¥3'(D) for any DeU(gc).
a€Ad’pq
Lemma 1.11. If Deu(ap)U(gc), then there exist finitely many elements
freF*, £a€UheBrc) and 7, {2Z(@c)ow)}U(te) A=n=I) such that

0} wa(?fn@&n@’?n):D fOI' any aEAlpq;
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(2) degé,+degn.<degD (1=nxl).

Proof. We prove the lemma by induction on deg D. For an integer m=0,
assume that the assertion is true for any D in [n(a,o)U(gc)]m=1(ap)U(@¢)m-1.
Now let Den(ay)U(gc)m. In view of (1.3), we may assume that D=XD’ with
D'eU(ge)m and Xeg(ap,; A) for some A€ 4*(g: apy).

Case 1: 2€A4*(1: apy). It follows from Lemma 1.7 that

X=f(a)- “( X+ X)+f(a)X+0X) (asA}y,
with f;€d+ (=1, 2). This implies that
(1.35) D=f(a)*(X+eX)D'+f(a)D"(X+ 0 X)+f:(a)D”

with D"=[X+6X, D'1€U(g¢c)n. According as (1.32), decompose D’ (resp. D”)
as D’=Di+D; (resp. D”"=D{+DY) with D;, Dien(ap)U(g¢c)n-, and Dj, DI
[U(bcﬂloc){;Z(gc)w(vi)}U(fc)]m. Apply the induction hypothesis to D; and DY.

Then in view of (1.35), we obtain the desired result for D.

Case 2: 2= A(n: apy). In this case, X=a"*-°X holds for a=A,, whence
D=a"*.eXD’. Repeating the above argument, we can prove the assertion in
this case. This completes the proof. Q.E.D.

By Lemmas 1.10 and 1.11, we obtain immediately a decomposition theorem
of an arbitrary element in U(gc) as follows.

Theorem 1.12. Let DeU(gc). Then there exist Do=1QUHcNloe)Q
{;Z(gc)w(vi)}U(fc) and finitely many elements f,=9*, §,€U(HcDne), 7.€

{2 Z(go)ow)Ue) A=n<I) such that

)] wa(Do+Elsns!fn®en®7}n)=D for all ac Ay,

(2) deg¥(D,)=deg D, deg§,+deg n,<deg D (1sn<lI),

) D-¥(Dyen(a)lU(gc)-
Here F* is the ring of functions on A%, generated by functions (1.28), (1.29) and
(1.30), and ¥, is the map defined by (1.31).

§2, A finite multiplicity theorem for induced representations in C*-context

Let ¢ be a continuous representation of the subgroup HN (£G) in 1.2. In
this section we consider the induced represzntation x:=C=-Ind%x() in C=-
context, and examine the multiplicities of irreducible constituents of it. For
this purpose we study Z(gc)-finite, K-finite vectors for z;. For any reK (= the
unitary dual of K) and any ideal I of Z(g¢) with finitz codimension, consider
the space of r-isotypic vectors for =; annihilated by w (/). We estimate its
dimension in Theorem 2.8 making use of Theorem 1.12. Thanks to this estimate,
an upper bound of the multiplicity in z; is given for any irreducible represen-
tation of G (Theorem 2.10). Especially, we get a sufficient condition for { that
each irreducible representation occurs in z; with at most finite multiplicity
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(Theorem 2.12).

2.1. Induced representations in C>~-context.

In this subsection, let G be an arbitrary Lie group. First we recall after
[17, 4.4] some notations about smooth representations of G.

Let = be a continuous representation of G on a locally convex, complete,
Hausdorff, topological vector space E. A vector v in E is said to be smooth if
the map 7: Gog—rn(gveE is C=. The collection E= of all smooth vectors for
n forms a =(G)-stable, dense subspace of E. The assignment v—¥ gives a
linear embedding from E= onto a closed subspace of C*(G, E). Here C=(G, E)
is the space of E-valued smooth functions on G equipped with the topology of
uniform convergence on any compact subset of a function and its derivatives.
Equip E> with the topology inherited from that of C=(G, E) through the em-
bedding above. The representation (x, E) is called smooth if E=E= with coin-
cidence of topologies. In this case, E has a structure of U(g¢)-module in such
a way that

n(X)v=~%7r(exp X)W =0 (Xeg, veEE).

Set 7.(g)=n(g)| E* (g=G) for any continuous representation (x, E). Then
7. defines a smooth representation of G on E=, which is called the smooth re-
presentation associated to .

Now we define the representations induced in C=-context. Let L be a
closed subgroup of G. For a continuous representation { of L on a (locally
convex) Fréchet space F, let C=(G ; {) be the space of all f€C=(G, F) satisfying

f(gh)y=(.(h)/da(h))"*4(h) ' f(g)  (§€G, hEL).

Here dx is the modular function on a Lie group X with respect to a left Haar
measure dx(x): 0x(g)=dx(hg)/dx(h) (g X). Then C*(G;{) is a closed sub-
space of C=(G, F). Equip C=(G;{) with the topology inherited from that of
C=(G, F). Then G acts smoothly on C=(G;{) by left translation:

(@) f(x)=f(g7'x) (f€C(G;D), x, g€06).

Thus one gets a smooth representation (w7, C=(G ;{)) of G. We call =y the re-
presentation induced in C=-context from ({, F), and often express this as C*>-
Ind§({) instead of x..

Lemma 2.1. Let ({, F) be as adove. Then one has C*(G ;{)=C>(G ; {.) with
coincidence of topologies. In particular, it holds that C*-Ind§({)=C=-Ind§({.).

Proof. For an arbitrary fC>(G ;{), we show that f€C>(G ;{.). Indeed,
by the definition of C*(G ;{) one has the equality

@1 S(h)f(8)=(02(h)/0s(h))* f(gh™")  (g=G, heL).

This implies that f(g)eF> for all g&G. Moreover, from (2.1) we see}easily
that the map G=g—f(g)eC=(L, F) is C=, where f(g)~(h)=(h)f(g). These -
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two facts mean that f&C>(G ;{.). Hence we obtain C=(G ;{)SC>(G ;{.). The
reverse inclusion is clear, whence C=(G ;{)=C>(G ;{~).

The identical map ¢: C*(C ;{~)—C=(G ;{) is continuous because the topology
on F=is, in general, finer than that inherited from F. Notice that both C~(G;{)
and C=(G:l.) have structures of Fréchet spaces. Then, by the closed graph
theorem, ¢ must be bicontinuous, which completes the proof. Q.E.D.

For continuous representations (z;, E;) ((=1, 2) of G, let Homg(x,, ,) be the
space of continuous intertwining operators from E, to E, Put Ig(m,, w.)=
dim Homg(m,, m,). Ig(m,, m,) is said to be the intertwining number from =, to z,.
In case where =, is irreducible, we call I¢(r,, x,) the multiplicity of =, in =, as
subrepresentation.

For the representation C>=-Ind§({), we get a reciprocity law on intertwin-
ing numbers as follows.

Lemma 2.2. For a smooth representation (x, E) of G, one has a canonical
isomorphism of vector spaces

(2.2) Homg(r, m)=Hom(, (d¢/0.)'"°C).

The correspondence is given as
Homg(x, ng)2 A — TeHom(x, (36/0.)'/°C),
T)=AWX1) (eE),

2.3

where 1 is the unit element of G.

Proof. One can easily check that the assignment (2.3) gives the iso-
morphism (2.2). Q.E.D.

2.2. Regularity of Z(gc)-finite, K-finite vectors for z¢.

Now we assume G be a connected semisimple Lie group with finite center
again. For a maximal compact subgroup K, let C=(G ;{)x denote the space of
K-finite vectors for m;=C=-Ind$({). Then C=(G;{)x has naturally a structure
of compatible (g¢, K)-module:

(RO (@)= -3 7 eXD X f (@) 1m0,

(mOx(R)f(g)=f(kg) (ge6),

for Xeg, k=K and fC=(G;{)x. First we give the irreducible decomposition
of C=(G;{)x as a K-module.

K denotes the set of equivalence classes of all irreducible unitary represen-
tations of K. For a r=K, take an irreducible representation of K of class z,
and denote it again by 7. Let X be the character of . Define a linear operator
E. on C(G;Qx by

E.f=dime-{ TRoifde  (FECG;0w),
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where dk is the normalized Haar measure on K. One should note that the
above integral has a meaning because (n¢)x(k)f, k€K, span a finite-dimensional
vector space. It follows from the orthogonality relations of characters that for
any 7, .€K

0 if 7,#7,,
(2.4) E,lE,Zz{

E_—l if T1—=7T2.

Put C%G;{).=E.C*(G;{)k, then K acts on C=(G ;{). according to z. From
(2.4) we see easily that

(2.5) CG; k= ZI;’C“’(G ;O (a direct sum of vector spaces).
TE.

Let V. be the representation space of ¢ with a K-invariant inner product
<,>. Consider the space C3(G;{) consisting of C=-functions ¢ on G with
values in H(V,, F) which satisfy the following two conditions:

d(gh)=(0.(h)/dc(h))*C(h)'p(g) (g€GC, hel),
ok 'g)=¢(g)(k) (keK).

Here H(V,, F)=Hom(V., F) is a Fréchet space canonically isomorphic to
V¥®F. For any ¢=C2(G ;L) and any veV,, put ¢,(g)=¢(g)v (g=G). Clealy
@y is in C(G;{).. Consider C3(G;Q) as a trivial K-module: k-¢=¢ (k=K).
Then one has

Lemma 2.3. The map ¢Qu—¢, gives an isomorphism of K-modules between
CG; DRV, and C=(G ;).

Proof. The map in question is clearly K-equivariant, so we need only prove
that this map is bijective. We show first the injectivity. Let vy, vy, -+, v, be
an orthonormal basis of V.. Suppose that ¢} +¢2,+ --- +¢7 =0 for ¢'=C(G ;{)
(1=:<n). Then one has for any ;

o=, @@w oo { By}

=S40 @B, vse(bid
j=1 K

=dim )¢ (gv:  (g€G).

Here we used in the last equality above the following well-known orthogonality
relation (see for example [16, 2.9.3]):

dim T~SKWw_><r(k)vl, w,dd k=<v;, v){w, w,»

for v, vy, w, w,€V,.. Noting that ¢'(kg)v;=¢(g)r(k) 'v:, we thus get ¢'=0 for
all 1=7/<n, which proves the injectivity.

Let f be an element in C~(G ;{). such that nk)f, REK, generate an ir-
reducible K-module V', of class r. In order to prove the surjectivity, we have
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only to show that such an f can be expressed as f=¢, for some ¢=C3(G;{)
and some veV,. Let ¢:V.—»V, be an isomorphism of K-modules. Define an
H(V., F)-valued C~-function ¢ on G by (¢(@))=(c())g) vV, g&G). Then
we see immediately ¢=C3(G ;) and f=¢,-1¢s)- Q.E.D.

By (2.5) and Lemma 2.3, one obtains the irreducible decomposition of K-
module C(G ;{)x as follows.

Lemma 2.4. One has an isomorphism of K-modules

(2.6) C(G; C)KZE;C?(G ; OQV .

Since Z(g¢) commutes with K, C=(G ;{). is stable under (z¢)x(Z(g¢)). Now

we prove the analyticity of Z(g¢)-finite vectors in C=(G ;{). by applying the
elliptic regularity theorem. '

Let ¢ be a function on an analytic manifold M with values in a topological
vector space E. Then ¢ is said to be weakly analytic if e*-¢p is analytic for
any e*< E* (= the topological dual space of E).

Lemma 2.5, If f€C=(G;{). is Z(gc)-finite (i.e., dim (we)x(Z(gc))f <+ o0),
then it is wealky analytic.

Proof. The statement is proved in the same line as in [15, p. 310]. Let
X, -, X, (resp. Xy+1, -+, Xu) be a basis of t (resp. p) such that —B(X;, 6X))
=0;; (1<i, j<m), where B is the Killing form of g. Put Q=—3,, X}+
Si<jsm X% (the Casimir operator), then 2€Z(gc) and 4=31ci<m Xi=221ci5, X}
4+ 02 is in Z(go)U(Ee).

- If feC(G ;). is Z(gc)-finite, then (m)x(ZD)f (Z€ Z(gc), DeU(¥c)) generate
a finite-dimensional subspace of C~(G ;{).. Hence there exists a polynomial p
of one valuable with deg p=1 such that (z¢)x(p(4))f=0. This implies that
p(d)(e*- £)=0 for all e¥*= F*, where U(g¢) acts on C=(G) as the algebra of right
G-invariant differential operators on G. Since 4° (s=1) are elliptic operators,
e*-f must be real analytic by the regularity theorem of elliptic operators.
Consequently, f is weakly analytic. Q.E.D.

Analogously to the case C=(G ;{)., C¥(G ;{) has a structure of Z(gc)-module:
Uge) acts on C=(G, H(V,, F)) by

Xp(@)= 1 4exp(—1X)Dl w0 @G, Xeg, $€C(G, HV, P
Then the subspace C=(G ;{) is stable under Z(g¢). For any DeZ(g¢), one has

2.7 (®)x(D)p=(Dg)y  (WEV., =C2(G;L)).

For an ideal I of Z(gc), let A(G;:I). (resp. A(G;{: 1)) be the space of
fECG ;0. (resp. ¢=C(G ;L) such that (wg)x(I)f=(0) (resp. I¢=(0)). In
view of (2.7) and Lemma 2.3, it holds that
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(2.8) AG; 8 D=ALG;L: DRV,

through the isomorphism in Lemma 2.3. Therefore we can rewrite Lemma 2.5
in terms of Z(g¢)-finite vectors in C2(G ;{) as follows.

Lemma 2.6. If ¢=C3(G;{) is Z(gc)-finite, then ¢ is weakly analytic.

2.3. An upper bound for dim A(G;{:I). We return to our original ob-
jects in 1.2 and use the notations in §1 without any comment. We prepare a
lemma. Put M,,=2Z xnu(Azy), then M, acts on l,c through the adjoint represen-
tation because l,¢ is the centralizer of a,, in gc.

Lemma 2.7. Let Int({,¢) be the adjoint group of lyc. Then one has an in-
clusion Ad (M 1) lc S Int (Ioe).

Proof. Let Lo be the centralizer of a,, in the adjoint. groupbf gc. Then
Loc is connected, so one has {g|loc; @€ Loc}=Int(l,¢). On the other hand,
Ad(M,,)S Lic by definition. This proves the lemma. Q.E.D.

Let £ be a continuous representation of HN on a Fréchet space F. Consider
the induced representation m;=C>-Ind%x({). Now we can derive from the
previous results a certain upper bound for dim A.(G;{:I), which is a key
step toward our finite multiplicity theorem in 2.4. '

Theorem 2.8. Let I be an ideal of Z(gc). Then one has for any ek
(2.9) dim A(G; {: DS |W(@)/W(Do)|dim (Z(ge)/ 1) In (7, §).
Here W(®) and W(D,) are Weyl groups defined in 1.4, and Iy, (7, {) is the inter-

twining number from t|Myy to {| M.

This theorem generalizes [1, Lemma 3.9] obtained by E.P. \}an den Ban in
the special case where N=(1) and dim {< +co.

Proof of Theorem 2.8. In order to prove (2.9), we may assume that 0<
dim(Z(g¢)/I)=p<+oo without loss of generality. Select elements z,&Z(gc)
(1=k<p)such that z;=1 and Z(gc)=215espC2:PDI (as vector spaces). Put r=
|W(D)/W(D)|. Let v; (1i<r) be the elements in Z(l,c) in Proposition 1.6.
If 6=C3(G;0), then (z,w(vi)gXa) (I1=k=p, 1<i<r) belong to Homy,,(r, )
for all aeA,, where w is the automorphism of U(l,c) defined in .1.4. In fact,
for an m&M,,, one has from the definition of CX(G ;{) '

Lim)(zr0(v)$)(@)=(z0(v)P)am™)=(z:0(x:)$)m ™" a) |
=("™(zr0(v))P)a)r(m)=(z, - "(@(v)gXa)r(m).
On the other hand, we see from Lemma 2.7 that ™(w(v,))=w(v;). ’i‘hus

Com)zro(vog)a)=(zro(vi)@)a)r(m)  (mMEM;a).
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Now we fix an a= Ay, Consider a linear map
ALG; L D3¢ — (@ro(v)@)(a)s. «€ [Homyy (7, £]77.

For the inequality (2.9), it suffices to show that this map is injective. This is

done as follows. Suppose (z,0(v;)¢)a)=0 for all - and all 7. Then,
(Z(gc)o(v:)p)(a)=0 holds for any i because I¢=(0). Let DU(g;). By Theorem
1.12, there exist finitely many elements fn .€F, &n. . €UOPBue), Zm:=2Z(3c)

and 7m, €Ut (1Sm<J, 1<i<r) such that
D="§fm.i(a’)-“'ém,iZm.iw(vi)nm,f
for all a’€ A, Thus we get
D¢(a)="§fm. (@) (ém. N Z n, i 0)P)a)t(nm, )=0.

In particular, it holds for any e*<H(V., F)* that (D(e*-¢))(a)=0. Since ¢ is
weakly analytic on G by Lemma 2.6, one has e*-¢p=0. Hence ¢=0 as desired.
Q.E.D.

2.4. A finite multiplicity theorem for C=-Ind%x({).

Using Theorem 2.8, we give in this subsection an estimate of the multi-
plicities of irreducible constituents of the (g¢, K)-module (7¢).

To begin with, we comment briefly about admissible representations of G in
order to clarify our terminology. For them, refer to [17, Chap. 4]. Let &= be
a continuous representation of G on a Hilbert space 4 on which K acts unitarily.
Such a & is said to be quasi-simple if Z(gc) acts on A by scalars: z.(D)=
L(D)I (I the identity operator) for DeZ(g¢). In this case, the algebra homomo-
rphism X;: Z(g¢)—C is called the infinitesimal character of =. For a rek,
denote by 4. the r-isotypic component of 4. Then 4 is decomposed into a
direct sum of Hilbert spaces: 4 =>%34%,. We call © admissible if dim 4. <+ oo
for every r=K. Irreducible unitary representations are always quasi-simple.
Moreover, an irreducible representation z is admissible if and only if it is quasi-
simple.

Now suppose that w be admissible. Then the space 4 x of K-finite vectors
for & consists of analytic vectors: the map Gog—nr(g)ve 4 is real analytic for
every vEXg. In particular, £ xS 4= Furthermore, 4 x is a dense subspace
of 4= stable under m.(gc) as well as n#(K). Thus one gets naturally a com-
patible (g¢, K)-module structue on 4 x denoted by mg.

Concerning the irreducibility of =z, 7. and 7, the following lemma is well-
known (see [17, p. 254 and p. 324]).

Lemma 2.9. For an admissible representation (z, ) of G, the following
three conditions are mutually equivalent.

(1) = is irreducible, that is, there are no G-invariant closed subspaces of 4
except (0) and 4,

(2) 7w is an irreducible representation of G,

(3) Sk is algebraically irreducible as a gc-module.
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Note. The above condition (1) is equivalent to (2) for any continuous re-
presentation of an arbitrary Lie group.

For (g¢, K)-modules (p;, V) (=1, 2), I,.-x(p:, p:) denotes, as in the case of
group representations, the intertwining number from p, to p,, that is, the dimen-
sion of the space Homg,_x(p:, 0.) of (g¢, K)-module homomorphisms from V, to
V.. In case where p, is irreducible, I,,-x(0:, p.) is called the multiplicity of p,
in p. as submodule. Moreover, the multiplicity M;.-x(0:, 02) of p, in p, as
subquotient is defined to be the supremum of integers n for which there exists
a chain of (g¢, K)-submodules

W, eW.c .- SW,cV, with W /W,_.,.=V, (1<i<n).

Ii.-x(p1, p2) is smaller than M. x(p., p.) in general.
For any homomorphism X: Z(g¢)—C, A(G;L, XN)=>2%% A(G;{:KerX).S
C=(G ; )k has a structure of (g¢, K)-submodule, which will be denoted by (z¢, 1)k-
Now we establish our main theorems in this section.

Theorem 2.10. Let { be a continuous representation of HN=HxXN on a
Fréchet space F. Consider the induced representation my=C>=-Ind§y(Q) in C=-
context. If (m, 4) is an irreducible admissible representation of G with infinites-
imal character X, then the multiplicites I¢(Rw, 7g), Iyo-x(Tx, (W) and My,-x(wk,
(me,1)g) admit an upper bound as

(2.10) Ig(os, ﬂc)é IgC—K(ﬂ'K, (ﬂc)K)_S_MgC-K(ﬂK, (ﬂ'c.x)x)

S IW(D)/W(9)] rélén Up,,(z, O Ix(z, m)7'],
where R,={r=K: 4,#0)} and Ix(z, n) is the multiplicity of rek in | K.

Remark 2.11. Contrary to the case of Harish-Chandra and van den Ban,
our theorem can be applied effectively even to z; with infinite-dimensional {.
Actually, we shall show in §4 and in the second part of this series of our
articles that some important types of such z; have finite multiplicity property,
by using Theorems 2.10 and 2.12.

Proof of Theorem 2.10. If TeHomes(n, ng), then the restriction Tx of T
to Hx gives a (g¢, K)-module homomorphism from 4, into C*(G ;{)k. Since
K g is dense in 4=, the linear map

- Homg(w, )T +—> T xcHomy,_x(7x, (7¢)x)

is injective, which proves the first inequality in (2.10). The second one is ob-
vious from the definition of multiplicities.
To prove the third one, let re K. Then we see easily that

dim K- My, -k(m g, (7g, x)=dim A(G; {: Ker X)..

We apply Theorem 2.8 keeping (2.8) in mind. Then it holds that
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dim A(G ; {: Ker X).<dim z- |[W(®)/W(Do)| - In,,(z, {).
Consequently, we obtain
dim H .- Myo-x(m g, (mg D)=dim - [W(P)/W (Do) | Iy, (7, L)
for all re K, which proves the third inequality in (2.10). Q.E.D.

Notice that My, x(mk, (wg »)x)=0 if 2’#X, the infinitesimal character of .
Then we deduce immediately from Theorem 2.10 a finite multiplicity theorem
as follows.

Theorem 2.12. Suppose that the restriction of { to the compact subgroup M,
has finite multiplicity property: Iy, (¢, D)<4oo for all ;z(.——_M,,,,.. Then, the
multiplicity Myo-x(mk, (g, )k) s finite for any irreducible admissible representa-
tion ® of G and any homomorphism X: Z(gc)—C. In particular, mx (resp. Tw)
occurs in (z)x (resp. in my) as subrepresentation with at most finite multiplicity.

In particular, one has

Corollary 2.13. Let { be a finite-dimensional representation of HN. Then,
for any =, mx occurs as a (g¢, K)-submodule of C=(G ;{)x with at most finite
multiplicity.

Applying Theorem 2.10 to the case H=K, N=(1), one obtains a well-known
but an important estimate of multiplicities Ix(z, =) (reK) as follows.

Corollary 2.14 [5, III, Theorem 4]. Let & be as above. Then there exists
a positive constant c. such that any =K occurs in K x at most c,dim T times.

The last corollary assures the existence of the distribution characters of
irreducible admissible representations of G. (The above constant ¢, can be
chosen as 1 by virtue of Harish-Chandra’s subquotient theorem [5, 117.)

§3. A finite multiplicity theorem for unitarily induced representrtions

In this section, let G be a Lie group of type I. For a unitary representa-
tion { of a closed subgroup L (SG), consider the unitarily induced representa-
tion Uy=L%Indf(). Let

Vo= Umdpm),  Vemy=0mea)] x

be the factor decomposition (cf. 3.4) of U;. We treat in this section the multi-
plicity function m¢ of Uy on G (= the unitary dual of G).

In more detail, we first collect, to clarify our terminology, basic facts about
the direct integral decomposition theory for unitary representations of locally
compact groups. Our main reference is Dixmier’s text book [4]. Further-
more, we prepare some (versions of) theorems due to Penney [11] and Poulsen
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[12] on C=-vectors for unitary representations of G.

After that, we relate m¢(x) (reG) with the intertwining number I¢(7w, 7¢)
(see 2.1) using the results by Penney and Poulsen. Under certain assumptions
on 7&G or on {, I4(m., m;) gives an upper bound for my(z) (Lemma 3.10 and
Theorem 3.12).

In 3.8, we assume that G be a semisimple group as in §1. We apply
Theorem 3.12 to U;=L*Ind§x(), where { is a finite-dimensional unitary re-
presentation of the semidirect product subgroup HN in 1.2. Then, by virtue
of Corollary 2.13 one deduces that the multiplicity function m takes finite values
for pr-almost every 7#=G (Theorem 3.13). This is the main theorem of this
section which extends [1, Theorem 3.1].

In order to state Theorem 3.13 in a general form, we are forced to assume
{ to be finite-dimensional. Nevertheless, even for certain kinds of U, with in-
finite-dimensional {, (variants of) Theorems 2.10 and 3.12 are still useful to
prove finite multiplicity property of such ¥U;. We shall give in §4 and in the
second part [19] important examples of such cases.

3.1. Direct integral of unitary representations.
First, we recall the notion of direct integral of Hilbert spaces. Let (H())icz
be a family of Hilbert spaces indexed by a set Z. A mapping f: Z—-»tJLZ H(t)
. €.

is said to be a vector field on Z if f(t)e H(t) for all t€Z. Now assume that Z
be a measure space with a positive Borel measure ¢ on Z. By integrating

]
t—9((t) over Z, we construct a Hilbert space Szﬂ[ (t)du(t), which is reduced to

the direct sum of the 4 (¢) in case where g is a discrete measure. For this
purpose, some measurability of the family (4 (t)),ez is required.

Definition 3.1. For a measure space (Z, g), a measurable field of Hilbert
spaces is a family (#(#));cz of Hilbert spaces with a set I" of vector fields on Z
satisfying the following four conditions.

(1) I has a structure of complex vector space by pointwise addition and by
multiplication with complex numbers.

(2) There exists a countable subset {fi, fs, ---}SI" such that, for every
teZ, {fa{)}n=1,2.. forms a total subset of 4(¢).

(3) The function t—| f(¢)|l««, is measurable for every fel. _

4) If h is a vector field such that t—(h(t), f(¢))«w> is measurable for any
ferl', then h belongs to I'. Here (, )« denotes the inner product on 4(¢) and
l*lacy the corresponding norm on ().

Each feI is called a measurable vector field.

For a measurable field of Hilbert space ((¥(t))iez, I'), let 4 be the vecor.
space consisting of feI such that SZII F®O%wdp)<+co. Then, after identify-

ing two vector fields which are equal almost everywhere with respect to p, 4
has a structure of Hilbert space with an inner product
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3.0 (For a={ (0, FiOhcdp®)  (fo, o2 0).

Definition 3.2. One calls the Hilbert space % constructed above the direct

integral of the () over (Z, p), and denotes it by giﬂ{(t)d,u(t).
Now we proceed to the integration of a measurable field of bounded operators.

Definition 3.3. Under the above notations, an assignment Z3t—T()e
L(4(t)) is said to be a measurable field of operators, if the vector field t—
T@®)f(t) is measurable for any felI'. Here .L(E) is the space of bounded linear
operators on a Hilbert space E.

For a measurable field (T'(f)).cz of operators, if the function t—|7T()| is es-
sentially bounded on Z, then (Tf)®)=T@)f(t) (tsZ, feH) gives a bounded

®
linear operator on 4. In this case, we express T as SZT(t)d,u(t).

Now let G be a separable locally compact group. Assume that all the
unitary representations in question are acting on separable Hilbert spaces. Under
the notations prepared above, the direct integral of unitary representations of G
is defined in the following way.

Let ((¥())iez, I') be a measurable field of Hilbert spaces on a measure space
(Z, p). Suppose that a unitary represzntation U(t) of G acting on 4 () is at-
tached for every teT. The map t—U(t) is said to bz a measurable field of
representations if, for any g€ G, the field of operators #—<U(t)(g) is measurable.

In this case, put U(g)= @‘U(t)(g)d (t) for each g&G. Then VU : g—U(g) gives
z ¢

&
a unitary represantation of G acting on Sz.fl((t)d‘u(t).

Definition 3.4. The unitary repres:sntation U is called the direct integral

of V() and denoted by ‘Uzgj‘v(t)d,u(t).

3.2. A Borel structure on G. Let G be the set of all equivalence classes
of irreducible unitary representations of G. We equip G with a Borel structure
as follows.

For every ne NU{oo}, take a Hilbert space 4, of dimension n. Here N
is the set of natural numbers, and 4. is a separable infinite-dimensional Hilbert
space. Let Irr,(G) denote the collection of all concrete irreducible unitary re-
presentations of G acting on 4,. Firstly, assign to Irr,(G) the coarsest Borel
structure for which the functions Irr,(G)>m—(n(g)v, w)s,=C are Borel func-
tions for all geG and all v, we4,. Secondly, equip Irr(G):inLIrr,,(G) with

the direct sum Borel structure of thosz of the Irr,(G). Finally, the Mackey
Borel structure on G is the quotient of the structure of Irr(G) through the
canonical surjection Irr (G)—G.
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3.3. Representations of type I. For a set S of bounded operators on a
Hilbert space 4, S’ denotes the algebra of all s’e.£(4) which commute with
every s&S. S’ is called the commutant of S. A subalgebra M of £(4) con-
taining the identitiy operator [ is said to be a von Neumann algebra if it is
stable under the *-operation, and coincides with the double commutant M”=(M")".
We say that a von Neumann algebra M is a factor if the center MMM’ consists
only of the scalar multiples of I4. A type I von Neumann algebra is an M
which is isomorphic, as an involutive *-algebra, to some von Neumann algebra
B for which B’ is commutative.

For a unitary representation (x, %) of G, let M, (S.£(4)) denote the von
Neumann algebra generated by the operators n(g), g=G. One says that z isa
factor representation (resp. a representation of type 1) if M. is a factor (resp. of
type I). A type I factor representation is just a multiple of an irreducible one.

A (separable) locally compact group G is said to be of type I if any factor
representation is necessarily of type I. Abelian groups, compact groups, con-
nected nilpotent Lie groups and connected semisimple Lie groups are all of type
I. But solvable Lie groups are not always of type I.

3.4. Factor decompositions. Any type I unitary representation of G may be
disintegrated over G into factor repressntations as follows.

Lemma 3.5 [4, 8.4 and 13.9]. Let U be a unitary representation of a
separable locally compact group G. Assume that U be of typel. Then there exist
a unique measure class 4 on G and a unique, up to modification on a negligible
subset, measurable function my: G—NU{0, oo} such that

(3.2) CU:S:CU(n)dycu(rr) (factor decomposition)
and
(3.3 U(r)=[my(r)] 7 for pa-almost every reG.

Here pq is a Borel measure on G of class 4, and #—U(x) is a measurable family
of factor representations of G.

The function mq above is called the multiplicity function for .

3.5. Direct integral decompositions of C=-vectors.
In this subsection, let G bz an arbitrary (not necessarily of typs I) Lie group.
Keep to the notations in 2.1. Let

re 2]
3.4) U= | vOdp), J{:Sz H(t)d plt)

be a direct integral decomposition of a unitary representation (U, 4) of G over
some measure space (Z, ¢). We now summarize, in a form convenient for our
later use, the results of R. Penney [11] about the disintegration along (3.4) of
the space 4> of smooth vectors for U and of its topological dual space.
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Proposition 3.6 [11, Theorem C]. Under the notations above, the space 9=
is a direct integral of the (1) (t€Z) in the following sense.

O If f=(f)ezE ™, then f()E K@) for a.e. (=almost every) t€Z and
Ul X) f=(U(t)e X) f())1ez holds for any X€U(ge). Here U(gc) is the enveloping
algebra of the complexification g¢ of g=Lie G.

2 If f=(fOhezEIH is such that fQ) L) for a.e. t€Z and
(U)X ftezE K for all XeU(ge), then fe K.

Using this proposition, one easily gets the following

Proposition 3.7 (cf. [11, Corollary C.I]). Let E be a finite-dimensional vector
space.. Then the space Home( K>, E) of continuous linear mappings from K= to
E is a direct integral of the Homc(4(t)=, E) in the followihg sense.

(1) If TeHomc(K™>, E), then for a.e. t there exist continuous linear map-
pings T(t)eHomc(J ()=, E) such that

(3.5) T(H={, TeU®due

for all f=(f@)es>. The integral (3.5) of E-valued function is absolutely con-
vergent and T(t) are unique almost everywhere. :

2) Let T(t), teZ, be a collection of elements in Homc(HK ()=, E) such that
the E-valued function t—T@)(f(t)) is p-integrable for every f=(f(t))e4>=. Then

the map f»—»SzT(t)( f())du@t) defines a continuous linear map from ¥ to E.

An element T in Home¢(4>, E) is said to be a generdlz'zed cyclic map for U,
if, for a ve L=, T(U(g)v)=0 for all g&G implies that v=0.

Proposition 3.8 (cf. [11, Theorem II. 5]). Let T<Home(%>, E) be a
generalized cyclic map for U. If T:SzT(t)dp(t) denotes the disintegration of T

in the sense of Proposition 3.7, then the maps T(t)eHomc( 4 (1), E) are, for a.e.
t, generalized cyclic maps for U(t). ,

Note. R. Penney proved Propositions 3.7 and 3.8 for the case E=C.
Nevertheless, his proof works for any finite-dimensional E. But, for infinite
dimensional E, the assertion of Proposition 3.7 is no longer true.

3.6. Unitarily induced representations (see e.g. [9, Chap. III]).

Let G be a locally compact group again. To a unitary representation
&, #(Q)) of a closed subgroup L of G, we attach a representation (Ug, L*(G ;{))
of G induced unitarily from .

Let p be a strictly positive continuous function on G satisfying p(xh)=
(0L(h)/ds(h))p(x) (xG, heL), where 8, (resp. dg) is the modular function of
L (resp. G) defined in 2.1. Such a function, so-called a rho-function, always
exists. Moreover, if G is a Lie group, then there exists a rho-function of C*-
class.
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One can associate with p a unique measure g, on G/L such that
(3.6) [, s00mdetn=(, dupxL) gxmrduth

for all ¢=Cy(G) (= the space of all continuous functions on G with compact
supports). Here dex (resp. dph) is the left Haar measure on G (resp. L). From
the uniqueness of u,, we see easily for any geG

3.7 du,(g-y)=p'(g, )du,(y) (y€G/L),

where p’(g, y)=p(gx)/p(x) (y=xL) is a well-defined continuous function on G/L,
and g-y=gxL. In partlcular !, is a quasi-invariant measure on G/L. Namely,
for any geG, the measure L,pp is equivalent to p,, where (L st E)=p,(g'E)
for a Borel subset £ of G/L.

Now let L%G ;{) denote the set of 4 ({)-valued functions f on G satisfying
the following conditions (1)-(3).

(1) For every a= % (), the function x—(f(x), @)« is 2 Borel function on G,
(2) f(xhy=p(h)"?G(h)'f(x) (x€G, hel),
@ Ifliwo=, 0@ 1@ koduyxL)<+oo.

Here one should note that the assignment xL—p(x)'|| f(x)l%«> actually de-
fines a function on G/L thanks to the property (2). After identifying two
functions which are equal almost everywhere, L%G ;{) has a structure of Hilbert
space with an inner product

(3.8) (fu fz)ma;o=SG/Lp(x)"(fx(x), fe(xDadp,(xL)

for f,, fo.€L*G;{). Through the left translation, G acts unitarily on L¥G ;{).
We denote this action by Ug:
3.9) Ud))x)=f(g'x) (g, x€G, feL¥G;Q)).

(Ue, LAG ;Q)) is called the representation of G induced unitarily from (§, #Q)),
and we often express this as L2-Ind¥() instead of 9, This construction of
U, apparently depends on a choice of p, however, the equivalence class does not.

For the later use, we quote here fundamental properties of unitarily induced
representations. Firstly, let H,S H, be two closed subgroups of G. If { is a
unitary representation of H,, then

3.10) L*Ind% (§)= L*Ind§,(L*Ind}2()).
This is said to be the stage theorem for unitarily induced representations.

3]
Secondly, let C:SZC(t)d,u(t) be a direct integral decomposition of a represen-
tation { of a closed subgroup L (SG). Then one has

@.11) L2-Ind¢(@Q)~ S L-Ind(G@)d pt).
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Finally, assume that G be a Lie group. Then the space L*G ;{)* of smooth
vectors for U, is characterized as follows.

Lemma 3.9 [12, Theorem 5.1 and Corollary 5.1]. Under the above notat-
ions, the space L¥G ;{)* is described as

(3.12) LAG; O~={f€CG;0); n(D)fELXG;Q) for any DU},

where (ng, C=(G ;) is as in 2.1. Moreover, for each fixed g=G, the map
LAG ;02 f—f(g)e Q) is a continuous linear mapping from L*G ;) to H(Q).

3.7. An upper bound for the multiplicity function of an induced repre-
sentation. Now let G be a Lie group of type I. Consider a unitarily induced
representation L2-Ind$({)=(U, L¥(G;{)). Let

(3.13) Ve [Jvimapm, 146 0=[ u @ napm

be the factor decomposition of U, as in Lemma 3.5. Furthermore, decompose
each factor representation U¢(r) into irreducibles:

(3.14) Ur)=[myn)]-m, HE, m)=[mm)] H(7)=9H ()P - DI (x)
(my()-copies).

Here we take a concrete representation of G in the equivalence class =, and
denote it again by (z, 4(x)).

We wish to rewrite, or estimate the multiplicity function m; by some
quantity which is rather computable. If G is a compact group, then G is dis-
crete, and the Frobenius reciprocity law (see e.g. [16, 5.3.6]) says that

(3.15) m(m)=1I6(nw, C=-Indf(0)=11(Tw, (86/51)"'°C)

for any z=G. (In this case, ds/0.=1 because G and L are compact.)

We ask if the first equality holds for a general pair (G, L) and any unitary
representation { of L. (The second one always holds thanks to Lemma 2.2.)
The answer is “no” in general (see Example 3.11 below). Nevertheless, the
intertwining number Is(w, 77), m;=C>=-Ind§({), gives an upper bound for m¢(x)
under a certain assumption on # or on {.

First, we put an assumption on =G.

Lemma 3.10. Let n=G be a discrete series representation for Ug, that is, =
may be realized as a subrepresentation of U Then one has an inequality

(3.16) M) S Lo(Te, (V)= (T, 7).

Proof. Every operator AcHomg(r, Ur) gives, through its restriction to
H(r)°, a continuous intertwining operator A. from 7. to (Up. Since JH(w)®
is dense in J((x), this map A—A. is injective, which implies the first inequality
because 7 is a discrete series for Ue.

It follows from Lemma 3.9 that LG ;{)*S C~(G ;{) and that the assignment



Finite multiplicity theorems 203

T:LYG ;02 f—f1)e %) is a continuous linear map. Hence T €Hom (V)
(06/0.)"%0). In view of Lemma 2.2, the canonical embedding L*G ;{)*<-C=(G ;)
gives a continuous isomorphism of G-modules from (V). into x;. This proves
the second inequality. Q.E.D.

Now we proceed to estimate the multiplicity mg(z) for 7= G which are not
necessarily discrete series for U;. The following example suggests that we
need to put some assumption on { or on L in order to get an estimate

(3.17) my(m) < I6(e, C=-Ind$(Q))

on the whole G.

Example 3.11. Let G=R be the additive group of all real numbers. In
this case G has a structure G={e(1); AcR}=R. Here, for a AR, ¢(2) denotes
a unitary character of G:e(l)(x)=expv/—14x (x&R). Take L=G and {=the
regular representation of G on L%*R). Then, through the Fourier transform,
U¢={ is decomposed into irreducibles as

D
3.18) Yp= Sée(l)d] ,

where dA is a suitably normalized Lebesgue measure on R. This implies that
my(e(A))=1 for a.e. AER.

On the other hand, =z; is clearly equivalent to the smooth representation
corresponding to {. Moreover, it is also clear that Ig(e(R), 7f)=0 for every A€R.
One thus gets

Is(e(R), mr)=0<1=myle(d)) for a.e. AR,

which means that, in this case, the inequality (3.17) is false for a.e. x.

Now assume that { is a finite-dimensional unitary representation of L. For
such a {, we can show, using Propositions 3.7 and 3.8, that (3.17) holds on the
whole G. This is done as follows.

For any feL¥G ;) set T(f)=f1)e4(). Then, as we remaked in the
proof of Lemma 3.10, T : L¥G ; {)*— () gives a continuous linear map satisfying

TV ) ))=(0e(h)/d(R)EMT(f)  (fELXG;Q), hEL).

This means that TeHom ((Upw, (06/0.)'/*¢). Moreover, T is clearly a gener-
alized cyclic map from L*G ;{)> to ().

From Proposition 3.7, for a.e. #&G, there exist unique continuous linear
maps T(x): £, n)*—4({) such that

(3.19) T(f)=SéT(n)(f(ﬂ))dﬂc(7r) for all f=(f(z)e LG ; Q).

From the uniqueness of T(z), we see that T(z)€Homy(Uyn)w, (8c/0L)*C).
Moreover, by Proposition 3.8, T'(x) are, for a.e. &, generalized cyclic maps from
H(, n) to H(Q). For such a rG, define a linear operator A(x): H({, ©)°—
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C=(G, %)) by
(3.20) Amf@)=T(x)XUdr)g™"f) (g€GC, feAR, n)).

Then A(r) gives a continuous embedding of a G-module 4({, =) into =;. Keep-
ing Lemma 2.2 in mind, we thus get the following

Theorem 3.12. Let G be a Lie group of type l. For a finite-dimensional
unitary representation § of a closed subgroup L of G, consider the unitarily induced
representation Ur=L*Ind¢(). Then, for a.e. n=G, the multiplicity my(x) of =
in Ug has an upper bound as

@.21) me(m) S Io(nw, C=-IndZC)=11(nw, (86/3)7F).

Here, for a group X and two representations S, and S, of X, Ix(S,, S;) denotes
the intertwining number from S, to S, as in 2.1.

3.8. Application to induced representations L2Ind§y({) of semisimple
groups G. Hereafter, we assume that G be a connected semisimple Lie group
with finite center. Apply Theorem 3.12 to Ur=L*Ind§ (), where HN=Hx N
is a semidierct product subgroup of G as in 1.2. Then, by Theorem 2.10 (or
by Corollary 2.13) we get the following finite multiplicity theorem for induced
representation U..

Theorem 3.13. Under the above notations, let { be a finite-dimensional unitary
representation of HN, and Ur= L*-Indgx({). Let

"U;:S:CUC(n)dyc(ﬂ) L Udm)=[mn)]x

denote the factor decomposition of Ug as in Lemma 3.5. Then, the multiplicity
function mg takes finite values for a.e. n€G with respect to .

This the main result of this section, which generalizes the result [1, Theorem
3.1] for the case N=(1) and {=the trivial character of H.

~3.9. In order to establish our finite multiplicity theorem in a general form
as in Theorem 3.13, we have had to assume { to be finite-dimensional. Never-
theless, even for infinite-dimensional {, there are interesting examples of Ug
which have finite multiplicity property. Among such examples, the ones we
think most interesting are “reduced generalized Gelfand-Graev representations”
of certain types, which will be studied in the second part of this series of
articles. In the next section, we present other important examples of such Uq.

§4. The case of representations induced from infinite-dimensional ones

_ In the previous sections, by generalizing the theory of spherical functions in
(1] and [6], we gave sufficient conditions for a representation { of a subgroup
HN (€G) as in 1.2 that the induced representation Ind$ x({) is of multiplicity
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finite. Here Ind means either C=-Ind (see 2.1) or L*Ind (see 3.6). We em-
phasized there (Remark 2.11 and 3.9) that our criterions may be applied succes-
sfully also to case of infinite-dimensional {. It differs from the cases in [1]
and [6].

We close the present article with some examples (including Gelfand-Graev
representations) of such cases, important in connection with the second part [19]
of this paper.

4.1. Representations Ind%y () with {=Ind¥¥=(&).

Let G=KA,N, be an Iwasawa decomposition of a connected semisipmle Lie
group G with finite center. Set M=Zx(A,). Then the semidirect product sub-
group Mx N, satisfies the assumption for HX N in 1.2. Take a unitary character
§ of the maximal unipotent subgroup N, and put {=L*Ind¥¥m(¢). Since M
is compact, C=-Ind¥¥m(¢) is equivalent to {., the smooth representation of MNn
associated with {. Moreover, if the Lie algebra m of M does not reduce to (0),
then { is actually infinite-dimensional. We deal with the induced representation
Ind% . (0).

The stage theorem for unitarily induced representations tells us

4.1 Ue=L*IndGy,,({)=L*Ind§, (&)  (unitary equivalence).

For the C=-induced representation also, an equivalence similar to (4.1) holds
thanks to Lemma 2.1 and the compactness of M:

“.2) 7¢=C=Ind% ()= C=Ind§n ,(Co) = C~-Ind$,(6).

4.2. A finite multiplicity theorem for Ind%y,({)=Ind§_ (&).
Now we apply our results in §§2 and 3 to Ind% Q).

4.2.1. First, we consider the induced representation m;in C=-context. The
restriction of { to M is equivalent to the left regular representation of M. By
virtue of the Peter-Weyl theorem, for any o= M, the multiplicity Ix(g, {) of &
in { is equal to dime. Theorem 2.10 together with this fact implies the
following

Theorem 4.1. Put m;=C>-Ind%y_, (). For any irreducible admissible re-
presentation © of G with infinitesimal character X, the multiplicities Io(mw, 7o),
Li-x(mk, (m)k) and My, _x(wx, (me 1)x) (see §2) are estimated as

4.3) Ig(7os, ch)éfgc—x(ﬂ't{, (ﬂc)x).S_MgC—K(ﬂK, (e, k)
<R,R;'min.cz {dimt-Ix(z, m)'}<+oo.

Here R, (resp. R;) denotes the order of the complex Weyl group of g¢ (vesp. me),
and 1x(z, 7) is the multiplicity of r<K in n|K.

In wiew of (4.2), one deduces from Theorem 4.1 the following

Theorem 4.2. The induced representation C=-Ind$ () has finite multiplicity
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property for any one-dimensional representation & of Nn, that is, Iy, x(mg, (C>-
Ind$ _(8))x)< oo for every irreducible admissible representation © of G.

4.2,2, Secondly, we are concerned with the unitarily induced representation
U, Taking Theorem 4.2 into account, we apply Theorem 3.12 to L’-Ind%m(e).
We thus obtain the finite multiplicity theorem for U~ L*-Ind§,.(§) as follows.

]
Theorem 4.3. Let ‘Uc:Sé[mc(ﬂ')] -wdp(r) be the factor decomposition of Ur=

Lz-Indfmm(C) as in Lemma 3.5. Then the multiplicity function mg takes finite
values for pra.e. n=G.

Consequently, the induced representation Indffmm(() has finite multiplicity
property, although { is infinite-dimensional in general.

4.3. The case of Gelfand-Graev representations.

As is suggested in Appendix, the study of Ind§ _(§) for an arbitrary ¢ is
reduced, in a certain sense, to that for non-degenerate (see A.2) &’s. Accordingly,
we concentrate on such a case, that is, on the case of Gelfand-Graev represen-
tation (=GGR) (Definition A.5). The GGRs are of multiplicity finite thanks to
Theorems 4.2 and 4.3. Moreover, it is well-known that, under some additional
assumptions on G, the GGRs have multiplicity free property in the following
sense.

Proposition 4.4 (cf. [14, Theorem 3.1 and Appendix]). Suppose that G be
quasi-split (z.e., m s abelian) and linear. Consider the GGR 7r5=C°°-Ind§,m(E)
(in C>-context) with a non-degenerate character & of Nn. Then, for any irreducible
unitary representation U of G, the intertwining number from U to w, is at most
one: Ig(Ue, me)<1.

By virtue of our Theorem 3.12, we can deduce immediately from Proposi-
tion 4.4 the multiplicity one theorem, originally due to Ramakrishnan [13], for
the unitary GGRs U;=L*-Ind%_ (4).

Theorem 4.5. Let G be as in Proposition 4.4. Then the unitarily induced
GGRs U, are of multiplicity one. In particular, the von Neumann algebras
He(U:)=Homg(U;, U,) of intertwining operators for Ue are commutative.

Remark 4.6. Ramakrishnan proved in [13] Theorem 4.5 by generalizing the
idea of Shalika [14] in the proof of Proposition 4.4 quoted above. More pre-
cisely, in order to show that Hg(U,) is commutative, he found out an antiauto-
morphism of Hg(?Ue) which fixes every element in it.

However, as we saw above, his procedure can be replaced by Shalika’s
result (Proposition 4.4) and our Theorem 3.12.

4.4. Toward the continuation [19], [20] of this paper: Application to
generalized Gelfand-Graev representations. N. Kawanaka [8] introduced, by
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generalizing the construction of GGRs, a series of induced representations of
reductive groups G(F) over various fields F. Such an induced representation is
called a generalized Gelfand-Graev representation (=GGGR). The GGGRs are
parametrized by the set of nilpotent classes of the Lie algebra g(F) of G(F),
and the GGGRs corresponding to regular nilpotent classes are the original GGRs.

Contrary to the case of GGRs, the GGGRs of a semisimple Lie group G are,
in general, far from to be of multiplicity finite. Here is a difficulty of the study
on GGGRs. In order to reduce the infinite multiplicities of irreducible con-
stituents of them to be finite or to be free (if possible), we will introduce in
the second part [19] a version of GGGRs, called reduced GGGRs. And then, we
shall apply our results in this article to the reduced GGGRs. The important
cases connect with “generalized Whittaker models” of (holomorphic) discrete series
representations (cf. [20]). And we find out that the reduced GGGRs are of
multiplicity finite in these cases.

Furthermore, in more restricted cases, we have multiplicity free property,
which will be proved in detail in the subsequent paper [20].

Appendix. On the irreducible decomposition of L*-Ind$ (£): Reduction to
the case of 'Gelfand-Graev representations

Let G=KA,N, be an Iwasawa decomposition of a connected semisimple Lie
group G with finite center. For a unitary character & of N,, consider U,=
L*Ind% (&) (see 4.1). We have proved in Theorem 4.3 that U, is of multiplicity
finite. Then there arises a natural question: How can U, be decomposed ex-
plicitly into irreducibles?

In this Appendix, we treat this problem and give a complete answer
(Theorem A.4) for the case é=1y,_, the trivial character of N,. Moreover, we
show in A.3 that our problem for arbitrary & is reduced mainly to that for
non-degenerate characters &, that is, to decompose so-called Galfand-Graev re-
presentations.

A.l. The irreducible decomposition of L*Ind% (1x,).

We give in this subsection the explicit irreducible decomposition of U,=
L*Ind§ (1y,). Firstly, we see from the stage theorem for induced represen-
tations that

(A.1) U,= L*-Ind§(L*-Ind5_ (1y.)),

where P=MA,N,, with M=Zx(A,) is a minimal parabolic subgroup of G.
Keeping (A.1) in mind, let us decompose L*-Ind%, (1w,) into irreducibles.

Lemma A.1. One has an isomorphism of unitary representations
(A.2) Lo Ind§ (L= 22 [dim 07-{ , 0@eI@1 v ,dv.
ageld ﬂp

Here dv denotes a suitably normalized Lebesgue measure on the dual space a% of
ap=log A,, and, for vea}, e(v) is a unitary character of A, defined by e(v)(exp H)
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=exp vV —1u(H) (HEa,).

Proof. The restriction of L*-Ind%, (1x,) to the subgroup N, is a multiple
of 1y, because N, is normal in P and the character 1y, is fixed under the
adjoint action of P on N,. Moreover, we see easily that the restriction
L*Ind§ (1y,)IMA, is equivalent to the regular representation A(MA,) of MA,.
Thus one gets

(A.3) L*-Indh, (1y )~AMA)Rly,, .

Notice that MA, is the direct product of a compact group M and a vector group
Ap. Taking into account the Peter-Weyl theorem for compact groups and the
Plancherel theorem for vector groups, we obtain

~ 3 H .
(A.4) AM A= 22 [dim o] Sazo@)e(y)du.
(A.3) and (A.4) imply the desired (A.2). Q.E.D.

From (A.1) and (A.2), the representation U, is disintegrated as follows:
(A.5) L*Ind§, ()= Z2ldim o1-(", v, .dv,
g ﬂp

where, for (o, v)eMXaﬁ, U,,,=L*Indf(c@e(v)R@1y,,) is a unitary principal
series representation of G.

Let W=Ng(A,)/M be the Weyl group of (G, A,). Then W acts on M and
on a} in the following way. Let weW, vea¥ and oM. Take a representa-
tive w*eNg(A,) of w and a concrete irreducible representation ¢, of M of
class ¢. Define w*vea} (resp. a representation w*g, of M) by w*u(H)=
=y(Ad (w*)"'H) (resp. w*ay(m)=0c(w* 'mw*)) for Hea, (resp. meM). Then
w*y (resp. the equivalence class of w*o,) does not depend on a choice of w*
(resp. w* and ¢,). So we may denote it by wy (resp. wa). Thus W acts on
a} (resp. on M) through (w, v)—wy (resp. (w, o)—wa).

In order to show that (A.5) actually gives the irreducible decomposition of
U,, we now quote a fundamental theorem by F. Bruhat about the unitary
equivalence and irreducibility of the principal series representations.

Proposition A.2 [2]. (1) Ve, w.=U,,, for any weW and any (o, v)E
Mxa%.

2) For (o, vi)EMXat (1=1, 2), the intertwining number Ie(Us,..,, Uoyovy)
from U, .., to U,,.., has an upper bound as

(A.6) I6(Wq,up Uoyu)SH{weW ; wo =0, and wy,=v,}|.
In particular, if (o, vY)EMXa} satisfies the condition
(A7) either wo*ao or wyv#vy for any weW\{l1},

then U,,, is irreducible.

Let (a}) be the open dense subset of a} consisting all vea} such that wyv+#v
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for any weW\{1}. A connected component of (a})" is called a Weyl chamber.
W acts simply transitively on the set of Weyl chambers. Taking this into ac-
count, one deduces immediately from Proposition A.2 the following

Corollary A.3. Let (a¥)* be a Weyl chamber in af. Then one has

(1) for any (a, v)EMX(a%)*, U,,, is irreducible.

@) If (o, v)#(d', v’)eMX(a’S)*, then U,,, and U,.,, are mutually in-
equivalent.

Thanks to Proposition A.2 and Corollary A.3, we can rewrite the right hand
side of (A.5), and get the irreducible decomposition of U, as follows.

Theorem A.4. The representation L*-Ind§ (1y,) admits the following direct
integral decomposition into the irreducible principal series representations U,,,
(6eM, ve(at)*):

(A.8) L*Ind§, (1y )~ z?r* [IW|dim 0]+ U,..dv.
dEM Ja*
Especially, |W|dim ¢ is the multiplicity of U,., in L*-Ind% (1x ).
Proof. W acts simply transitively on Weyl chambers in a%. So one gets

® 3] 3]
U, dy~ ‘BS Uy, wydy= “’S Uy-14,,dv.
Sa’; a,v wéw (az)_'_ g, wy ‘ng (n;)_" w a,v

For the second isomorphism above, we uesd Proposition A.2(1). Accordingly,
the right hand side of (A.5) can be rewritten to that of (A.8) by noting that
dim w'e¢=dim o.

A.2. Unitary characters of N,. Before proceeding to decomposition of U,
for general &, we now clarify the structure of the group N, of unitary
characters of N.

Let n, be the Lie algebra of N,, and let A(g:a,) (see 1.1) denote the col-
lection of all roots of g with respect to a,. Choose a positive system A*(g: a,)
of A(g:a,) so that

(A.9) =2l 1e+ga,8(ap 5 4),

where g(a,;A) is the root space of 4. Denote by II the set of simple roots in

A*(g:ap). Set g(/I)=3icna(ay;A). Then, by [18, Lemma 3.2] n, has a struc-
ture

(A.10) Nn=01DB[1n, tn] (as vector spaces).

Let no,=g(ll)*, the dual space of g(II). Thanks to (A.10), we can, and do,
extend 7, uniquely to a Lie algebra homomorphism #:u,—R. Through the ex-
ponential mapping, define a unitary character §=§(n,)e N}, by

&exp X)=exp v—1In(X) (XEnu).
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Clearly, the map 7n¢—&(n,) gives a bijective correspondence between g(/7)* and
N.

For é=&(n,)e Ny, set F(&)={A€l ; nolg(a,y; A)+0}. We call & non-degenerate
if F(&)=II, namely 5,|g(ap; )#0 for every 2€]l.

Definition A.5. The induced representation Ue=L*Ind% (§) (or m=
C=-Ind% ,(8)) is said to be a Gelfand-Graev representation (=GGR) of G if £E& N},
is non-degenerate.

To any subest FSII, one can associate canonically a parabolic subgroup
Pr (2P) such that <{F) coincides with the restricted root system of its Levi
subgroup Lp=PrNOPr (see [18, 1.2]). Here (F) is the sub-root-system of
A(g: a,) generated by elements of F, and @ is a Cartan involution of G (see 1.1).

For éeN}, let Pe=L(§)N; be a Levi decomposition of P;=Pp¢; such that
L(&)=Lpe. Then N(&)=L(E)NN, is a maximal unipotent subgroup of the re-
ductive group L(£), and the restriction &=¢&|N(¢) defines a non-degenerate
character of N(§). Thus we have associated to each £ N}, a non-degenerate
character &’ N(&)' in a canonical way.

A.3. Reduction to the case of GGRs. Now we consider U, for general
éeN}. In order to give the irreducible decomposition of U,, we generalize our
argument in A.l for §=1y, to arbitrary ¢ so far as possible.

Suggested by the isomorphism of representations

(A.11) L*Ind%, (&)= L*Indg(L*Ind £%,(8)),

we try to decompose L*-Indf%(§) into irreducibles. Then one gets as in the
proof of Lemma A.l

(A.12) L*Ind ¢ (6)~ L®-Ind5%(6)R1 V-

- Here L®-Ind%%)(¢") is a GGR of the reductive group L(£) (defined analogously
to that of a semisimple group). Now let

(A.13) Lz-lndfv‘fg)(f’)'—*gz o [me ()] 0d pz (w)

be the factor decomposition as in Lemma 3.5. Then it follows from (A.1l),
(A.12) and (A.13) that

(A.14) Ug= L*-Ind$, (&)= S:“(e) [mg ()] L*-Ind (0@ y,)d pe (w).

The induced representations ‘Uw(Pe)sz-Indge(w®1,v€) (wEL(E)) are called the
generalized (unitary) principal series representations of G along P;. Every
U,(P;) is expressed in general as a direct sum of finitely many irreducible
unitary representations of G.

Accordingly, the main step toward the explicit irreducible decomposition of
9, is now reduced to the problem of disintegrating the GGR L*Ind%§ (§) into
irreducibles as in (A.13).
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