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Finite multiplicity theorems for induced
representations of semisimple Lie groups I
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Hiroshi YAMASHITA

Introduction

Let G be a  connected semisimple L ie  group w ith  fin ite  center, a n d  G=
KA,Nm  b e  its  Iwasawa decomposition. In  his early work [5, I], Harish-Chandra
proved that any irreducible quasi-simple (hence any irreducible unitary) represen-
tation it o f  G  i s  admissible, th a t  is  to  say, the restriction it I K of i t  t o  the
maximal compact subgroup K is  of multiplicity finite. In view of the Frobenius
reciprocity law, this theorem means that unitarily (=L 2 -) or differentiably (=C - -)
induced representation In d (r )  has finite multiplicity property fo r any rER", the
unitary  dual o f  K .  Moreover, he obtained in  [5 , III, Theorem 4 ] an estimate
of multiplicities in i t  i K crucial for construction of the distribution character of
7r : there exists a constant c„>0 such that, for any rEk,

(0.1) dim HomK (7r, z)=dim  Homa (7r., C - -Ind(r))< c,d im  ,

where r e . is the smooth representation o f G associated with 7r. (Actually c,=1,
see [5 , I I ] . )  These theorems are obtained mainly through a  careful study of
infinite-dimensional representations o f  th e  L ie  algebra g  of G from a  purely
algebraic p o in t o f  v iew . N evertheless, once  the  differentiability o f  K-finite
vectors for it  is  e s ta b lish e d  (the finite multiplicity theorem above assures the
analyticity of such vectors), one can derive the important estimate (0.1) also by
using th e  theory of (K, K)-spherical functions in  [6 ] , which is a  purely analy-
tical method.

In 1984, some parts of the latter analytical method were extended by E. P.
van den Ban to  the (K, H)-spherical functions for any semisimple symmetric pair
(G , H ). He proved in  [1 ]  tha t the  induced representation I n d (1 H )  has finite
multiplicity property, where 11/ denotes the trivial one-dimensional representa-
tion of H . In another direction, M . Hashizume [7] studied (K, N,0-spherical
functions o f  special kind, so-called class one W hittaker functions. One of his
results [7 , Theorem 3 .3 ], the finite-dimensionality of spaces o f  such functions,
suggests us tha t the induced representation I n d , ( )  i s  of multiplicity finite for
any one-dimensional representation (=character)  o f the  m ax im al unipotent
subgroup N „ . (This is proved rigorously in § 4  o f  this paper.)

In the present article, we generalize the result of van den Ban, developing
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the theory of spherical functions in  a  quite general setting which includes those
of (K, H)- and (K, N,„)-spherical func tions above . T h is  generalization enables
u s  to understand finite m ultiplicity theorem s for induced representations o f G
in  a  unified  m anner. T o  be  more precise, le t  P i = L N  w ith  L , --- P i n 0 P , b e  a
L evi decomposition o f  a n  arbitrary parabolic subgroup P, o f G , w here 0 is  a
C artan  involu tion  of G  s u c h  th a t  K = fgE G  ; 0 (g )=g1 . W e denote  by
an involutive automorphism o f L  which commutes w ith  OIL  and coincides with
0 on the split component A  o f L .  Let H  b e  a  closed subgroup o f  th e  fixed
subgroup L ,  of a, containing the identity component o f L „ .  F or a  continuous
representation C of the sem idirect product subgroup HN=HyNOELN=P,, we
consider th e  induced representation (1. 2 -  o r  C- -) I n d g i N ( C ) .  N o t i c e  t h a t ,  if
P i = G , then  (G, HN=H) is  a  semisimple symmetric pair, w hich is the case of
Harish-Chandra a n d  v a n  d e n  B a n . W e estim ate the multiplicities in IndgiN(C)
through our theory of (K, HN)-spherical functions, and give good sufficient con-
d itions fo r  C that Indgi N (C) has finite m ultiplicity property. Application of our
results to the case of P i = G  reproves the finite multiplicity theorems of Harish-
Chandra and van den Ban.

Our emphasis is , however, placed on the point th a t o u r  c r ite r io n s  c a n  b e
applied successfully  to  the  representations induced from infinite-dimensional C's,
t o o .  One of such exam ples is the representation IndL, m (C)=Ind?vm (e) w ith  C =
Indl n,Nin(), where M  is  the centralizer of A , in  K, and e is  a unitary character
of N „ ,. (Precisely speaking, G  must not be split over R  in  order that C  is in-
finite-dimensional.) This is  the case suggested by [ 7 ] ,

 a n d  contains the case of
so-called Gelf and-Graev representation (=G G R ). A ny G G R  is of multiplicity free
([14], see also 4.3 in  th is paper) if G  is linear and quasi-split.

Besides, the  m ore interesting exam ples o f  su c h  c a se s  a re  in  generalized
Gelfand-Graev representateons (=GGGRs), more precisely, in a variant of GGGRs
called reduced GGGRs in  [19] and [ 2 0 ] .  The GGGR is an important extension of
GGR, introduced by N . K a w a n a k a  [8 ]. In the second part [19], we give finite
multiplicity theorems fo r reduced G G G Rs, by applying results o f  th is  article.
The important cases connect with W hittaker models for (holomorphic) discrete
se r ie s  re p re se n ta tio n s  (c f . [2 0 ]) . I n  t h e  su b seq u en t p ap e r [2 0 ], w e  p ro v e
multiplicity one theorems for some of the above important cases, by generalizing
the technique of S h a lik a  [1 4 ]. (The method of spherical functions is too rough
to prove theorems of such types.)

Now we explain how the  theory of spherical functions is used to estim ate
multiplicities in induced representations. Let U (g ) denote the enveloping algebra
of the complexification gc o f  g, and Z (g )  the center of U (g c ) . Let (p, E) be  a
compatible (gc , K )-m odule . Then, for any algebra homomorphism X: Z (g ) —C,
the joint X-eigenspace E(X) ,  fvE E ; p(z)v=1(z)v (z E Z(gc))} is clearly a  (gc, K)-
submodule of E .  For r E E ( X ) ,  denotes th e  r-isotypic component i n  E(X).
Now let (7K, S O  b e  an  irreducible admissible (gc, K)-module with infinitesimal
character X,: Z(gc) - 3 C . T hen  w e have easily an  estimate of multiplicities :
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(0.2) /,C_K(Terc, p) M 2 c -K(71' E(X7r))

min [dim E(X„),- • /r x(r,
—  raft

w h ere , f o r  X-modules AI a n d  A2, LY(13 1, /32) denotes t h e  intertw ining num ber
(see § 2) from  A, to  )32, and  Moc -x (xx , E(X )) the multiplicity o f  r K  in  E (X ) as
subquotient. B y virtue o f  (0.2), w e h av e  fin ite  m u ltip lic ity  p rop e rty  fo r  th e
(gc, K)-module (p, E) if

(0.3) dim E(X ),.<+00 fo r  any  rE k  and any  X.

W e consider the  case  w here p= C - - I n a r N ( C ) ,  our induced representation in
C- -context (see 2.1). In this case, each element in  E(X), is  sa id  to  be  a  (K, HN)-
spherical function o f  ty p e  (r, C: X). T h u s , t h e  m ultiplicity o f  a n  irreducible
admissible ( g c ,  K)-submodule 7r K  o f  C- -IndYiN(C) is bounded by the minimum of
dimensions of the spaces o f  (K , HN)-spherical functions of type (r, C: X-), where
r ranges over the  elements o f  k  occurring in  r K .

Furtherm ore, w e can relate, using the results by Penney [11], th e  multiplici-
ties in  C- -IndfrN(C) w ith  th e  multiplicity function o f  unitarily induced represen-
tation L 2 -Inclgi N (C), a t least w hen  C is a finite-dimensional unitary representation.
T h u s, w e  o b ta in  go o d  su ffic ien t conditions for C th a t  C- - o r  L 2 - In c l f/ N (C )  has
finite multiplicity property (Theorems 2.12 and 3.13). These a re  th e  m a in  re-
sults o f th is paper.

Now le t u s  explain th e  results o f th is  article in  m ore detail.
In  § 1, w e  g iv e  a  decomposition theorem (Theorem 1.12) o f  elem ents in

U(gc) u se fu l to  o u r  e s tim a te  o f  multiplicities in  § 2. T h is  is  a  varian t o f the
theorem of such type  as giving th e  "radial component" o f differential operators
D U (g )  w ith  respect to  (K, HN).

In  § 2, we estimate multiplicities in  induced representations (rcc, C - (G ; C))=
C"-InarN(C) i n  C- -context b y  th e  m ethod explained above. H ere C is  a  con-
tinuous representation o f  th e  semidirect product subgroup H N =H x N  (g P 1)  on
a  Fréchet space F .  F o r this purpose, w e study, fo r  any r c k  and any ideal I
of Z (g ) with finite codimension, the  subspace A (G;C: I ) ,  o f  C- (G; C) consisting
o f  r-isotypic vec to rs f o r  rcc annihilated by 7%(I). In case w here  /=Ker X for
some homomorphism X : Z ()— C ,  th is  su b sp a c e  is  n o th in g  b u t  t h e  space  of
(K, HN)-spherical func tions o f  t y p e  (r, C: X). T h e  p o in t  i s  t h a t  a n y  f
A(G ;C: I ) ,  is  a n  F-valued weakly analytic function o n  G (Lemma 2.5) thanks to
the  regularity theorem fo r  elliptic differential operators. From  this analyticity
theorem  together w ith Theorem  1.12, we get an upper bound for dim A(G ;C: I),
(Theorem 2.8 and (2.8)). Accordingly, (0.2) applied to p=r,-. gives a n  estimate
of multiplicities in  7rc (Theorem  2.10).

T o  b e  more precise, le t pi =--- Ien  be the Levi decomposition of the Lie algebra
pi  o f  th e  parabolic subgroup P ,  corresponding  to  th e  decomposition P, , LN.
T he differential o f  cr gives an involution on I denoted  again  by  a .  Let l=b(Dcl
be the eigenspace decomposition o f I w ith  respect to  a ,  w here f) (resp. q) is  the
+1 (resp. —1) eigenspace, a n d  le t  g=IEDI:i be  the C artan decomposition o f  g
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determ ined by O .  Extend the Lie algebra a of the split component A  ( Ç_L) to
a maximal abelian subspace a„  in p n g .  Denote by t o th e  centralizer of a „  in g.
T hen , lo i s ,  b y  construction, a  reductive Lie subalgebra of g contained in  I.
Let R i a n d  R 2  be the orders of the complex Weyl g ro u p s  o f  g c  a n d  (to)c  r e -
spectively . W e set M k h-=Zicrw(ap q) ,  the centralizer of ap ,  in  K r11 -1 . Then the
multiplicities in ir t. are  estimated as in

Theorem A (see Theorem  2 .10 ). Let C be a continuous representation of HN
(g P 1 ) , and 7% =C - -IncigiN (C) the induced representation in  C- -context. For an
algebra homomorphism X ': Z(g c )—>C, let rc, x

, b e  the subrepresentation of 7rc on
the joint X'-eigenspace fo r nc(Z(g c )). I f  (7r, SC) is an irreducible admissible re-
presentation of G with infinitesimal character X, then the multiplicites 7 % ) ,

(7rc) x )  and M 2 c -x(1 ( I r c .x )x )  admit an upper bound as follows:

(0.4) / c ( r . ,  c) V c c -K (r i c ,  (7%)05MC C -1C(7rK, (7%, X )K )

<R,RV • min,EkUm"(r, 0•Iicer, ,

where 7rK, ( 7rOK and (7rc,x)K denote respectively the representations of gc  and K on
the space of K-finite vectors fo r 7r, 7rc and irc ,x .

This is  the main result in  § 2. F rom  th is theorem , w e ob ta in  a  sufficient
condition for the finiteness of multiplicities in  n.;.- as follows.

Theorem B  (see Theorem 2 .1 2 ). The induced representation 7rc o f  G  has
f inite m ultiplicity  Property  if  so does the restriction Cjill k h  o f  C to the compact
subgroup A lk h : IM k h (P r  C)=-dim Flomm,(P, C)<+co f or any  irreducible f inite-
dimensional representation p  of  Alkh.

This theorem  covers, to a large extent, the finite multiplicity theorems for
induced representations of G, especially the case of van den Ban [ 1 ] ,  i . e . ,  the
case of P i = G  and C=1 11.

In § 3, w e  tre a t the  multiplicity functions for unitarily induced representa-
tions c1.7c=L 2 -Inai N (C) in connection with those for n.c i n  C- -context. First w e
proceed to a more general situation. Let G be  a Lie group of type I. C o n sid e r
th e  representation cUc =L 2 -IndZ,(C) induced  from  a  unitary representation C of
a  closed subgroup Q o f G .  Let

(0.5) GU c =L,c0 c(r)d ,u c(r) , cu c(7r)=-Dnc(7r)1• 7r

be  the factor decomposition of VC (see 3.4). Here n% is the multiplicity function
for 9 Jc on the unitary  dual Ô  of G .  Using the re su lts  b y  P en ney  [ll]  on the
disintegration o f C- -vectors for unitary representations, we can prove :

Proposition C  (see Theorem 3 .12 ). I f  C is finite-dimensional, then the inter-
twining numbers I 0 (7r., 7rc)=dimHomG(7r., Irc) (7c - .6 )  f rom  7 r .  to 7rc =C - -Ine2 (C)
give an upper bound fo r mc:
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(0.6) mc(r).I0(71-00, rc) for almost every r E 6

with repect to the Borel measure p c on Ô  in (0.5).

W e remark that the inequality (0.6) is  fa lse  f o r  infinite-dimensional C in
general (Example 3.11).

Now we return to our original objects, and let G be a semisimple Lie group
again. F r o m  T h e o r e m  B  com bined w ith Proposition C , w e  g e t  a  finite
multiplicity theorem fo r cUc = L 2 -IndfiN(C), which extends Theorem 3.1 in  [1].

Theorem D (see Theorem 3.13). Let b e  a f inite-dimensional unitary re-
prentation of the semidirect Product subgroup H N  (g P i ). Then, the multiplicity
function G"Dr.—>mc(n) fo r  cUc=1, 2 -IndgiN(C) takes f inite values fo r  almost every
r E 6  with respect to pc in (0.5).

This is  the main result in  § 3.
To establish a  general result such a s  Theorem D, w e have been forced to

assume C to be finite-dimensional. Nevertheless, Theorem A and Proposition C
are still applicable to infinite-dimensional C to prove finite multiplicity property
for some specified V.

In § 4, we give important examples o f  such  V c, including Gelfand-Graev
representation (=GGR ; see Definition A.5). More precisely, let M=Z ic (Ap) as
before, a n d  consider th e  semidirect product subgroup M N „, of the minimal
parabolic subgroup M A , N . .  A s  a  representation C o f  M N „„  w e take  C=
L 2 -Indr . ,a(e), th e  representation induced from a  unitary character e  of the
maximal unipotent subgroup N i„. Then C is infinite-dimensional if  dim M>0.
Consider (L 2 -  o r  C -- )  InafNm(C). T h e  s ta g e  theorem for induced represen-
tations tells us InciqfNm (C)=Indg, ,,,(e). First we apply Theorem A to C0 0 -Ind7.N.(0,
and then, keeping its result in m ind, w e  a p p ly  Proposition C  t o  L 2 -Ind,%(e)•
Thus, we find out tha t Ind, N n i (C) is of multiplicity finite (Theorems 4.2 and 4.3)
even if  C is infinite-dimensional.

In Appendix, we deal w ith th e  problem o f  decomposing L 2 -Ind%,(e) ex-
plicitly into irreducibles. On one hand, w e have a complete answer (Theorem
A.4) in case e=1 N ., the trivial character of N m . On the other hand, we reduce
the problem for general e mainly to that for non-degenerate e's, tha t is, to de-
composition of the GGRs (of Levi subgroups o f G).

The author expresses his gratitude to Professor S . Sano for his stimulating
lectures on harmonic analysis o n  semisimple sym m etric  spaces. T h e  author
wishes to thank Professors T . Hirai, N. Tatsuuma and T. Nomura for their kind
discussions and constant encouragement.

§  1 .  A  decomposition theorem o f elements in U(gc )

Let G be a  connected semisimple Lie group with finite center and g its Lie
algebra. U ( g )  will denote the universal enveloping algebra of the complexifica-
tion g c  o f  g .  We generalize in  this section the resu lts  by  Harish-Chandra [6,
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Lem m a 7] and van den Ban [1 , Lemma 3.8], and g e t a  decomposition theorem
(Theorem 1.12) of elements in U(g c ). T h is  th eo rem  w ill p lay  a  c ruc ia l role
w hen w e estim ate in  § 2 the multiplicities in  representations o f G  induced from
those of certain semidirect product subgroups IN N  (see 1.2 for the definition of
IN N ).

1 . 1 .  Prelim inaries. F irs t of all, we prepare some notations on a semisimple
Lie group G  after [17 , Chap. 1 ]  and [15, Part II, § 6].

Let 0  be a Cartan involution of G  a n d  K  th e  fixed  subgroup o f  0: K =
Ig e G ; 0 (g )=g 1 . T hen  K  is  a maximal compact subgroup of G .  Denote by t
the Lie algebra of K .  The differential of 0  gives an involutive automorphism
o f  g  d e n o te d  a g a in  b y  O. Let g=tEep be  the Cartan decomposition of g cor-
responding to O.

By a Borel subalgebra of gc , we mean a maximal solvable complex subalgebra
of gc . Borel subalgebras are all conjugate under the adjoint g ro u p  o f  (lc . A
subalgebra o f  g  is said to be parabolic if  its complexification contains a Borel
subalgebra o f  gc . F o r  a  parabolic subalgebra 13, o f  g ,  p u t  Pi =N G (p,), the
normalizer of 13, in  G .  T hen  P, is self-normalizing, NG (P,)=P„ and pi  coincides
with the Lie algebra of 15

1 . W e call P, the parabolic subgroup o f G  correspond-
ing  to  p i.

Let n  be the nil-radical of p, and N  the analytic subgroup of G correspond-
in g  to  n . T h e n  P, (resp 13,) is expressed as

Pi= L  N  (resp . P i= lea)  ( a  Levi decompositon),

w here  L =P 1 n 0 P 1 (resp. 1---- p,n013,) normalizes N  (re sp . n ). L  (resp. I) is called
a Levi subgroup (resp. a Levi subalgebra) o f  P ,  (resp. pi). P u t  a = 3 1 n p  and
A =exp a ,  w h e r e  3 (  is  th e  c e n te r  of L  A  (resp. a) is  sa id  to  be  a  split com-
ponent of P, (resp. p i ). T h en  L  admits a direct product decomposition L=M A
w ith  M = n K e r  X, w here X runs through the continuous group homomorphisms
from  L  to  the multiplicative group of positive re a l n u m b e rs . I n  v ie w  of the
L evi decompositions above, we have P,=-MA N and pi = melaen (Langlands de-
compositions) with in  the  L ie  algebra of M.

1 .2 .  The subgroups I N N . Let a o b e  an involutive (i.e ., o l) =1) autom or-
phism of M  which commutes w ith  01M . Extend a o t o  an involution a  o f L =
M A  in  such a  w ay  th a t a(ma)--=ao(m)a - i (m e M , ae A ). Let H  denote a closed
subgroup o f L  such  tha t (1,0)0ç-H-c-Lc, w h e r e  L  is  th e  fixed subgroup o f  a
a n d  (L )0 th e  identity component o f L,„. Consider the semidirect product sub-
group Hv N . W e w ill trea t in  §§ 2-3 th e  represen ta tions o f G  induced from
those of HN -Hrv N  and examine the multiplicities of irreducible constituents of
them  through (K, HN)-spherical functions.

In  a  special case P,=-G, w e have N , (1) and (G, H) i s  a  semisimple sym-
metric pair. O ur argum ents will generalize in some aspects the theory of (K, H)-
spherical functions developed by Harish-Chandra [6] and van den Ban [1].
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1 .3 .  Root space decompositions. By taking the differential o f a, one gets
an involution of I denoted again by a .  Let 1=-- b@ii b e  th e  eigenspace decom-
position of I w ith  respect to  a ,  where b (resp. q) is the +1 (resp. —1) eigenspace
of a .  Then b is  the Lie algebra of H .  Since a  commutes w ith  OIL, w e  have
a direct sum decomposition of I

(1.1) 1= --(fnb )E D (fnq)(i)(pnb )E 1)(pnq)  (as vector spaces).

Let a „  be a maximal abelian subspace of p n g .  Extend a „  t o  a maximal
abelian subspace a, of p n t .  Then one deduces just as in the case of semisimple
symmetric pairs (see [10, Lemma 2.2]) the following lemma.

Lemma 1 . 1 .  The vector spaces a, a „  and a ,  satisf y  the  follow ing relations
(1) and (2):

(1) a_Ea„11,,
(2) a,--=a„ED(a,nb), in particular a ,  is  o. -stable.

Pro o f . ( 1 )  Since a (a )= a ' for any aEA, one has a I a= —I (I the identity
operator), whence a ç  q . Thus it holds that a=-31npnq, which implies that a+ a„
i s  a n  abelian subspace of ling containing a „ .  By the maximality of a „ ,  a  is
contained in a „ .  The second inclusion a„ç_a, is obvious by the definition of a,.

( 2 )  For an arb itrary  X E ap , express X  a s  X = Y + Z  w ith  Y E l in f )  and
Z e p n q  according a s  th e  decomposition p n i -- ( p n b ) e ) ( p n g ) .  W e show that
Y E a,n b  and Z E a „ .  In fact, for any W E a„ , one  h a s  0= [X, W]=EY,
[Z, W ] .  On the other hand we have [ Y ,  W ] [ b,  q and [Z ,  W ]  [q, q]
Hence EZ, W ] E b n q , - - ( 0 )  for a n y  W E a „ .  T h e n  Z  m ust be con-
tained in  a „  because a „  is a maximal abelian subspace of b n q .  We thus get
Y=X— Zea 1) (11) by (1). Consequently one obtains ap g a p ,19 ( a ,n b ) .  T h e  con-
verse inclusion is obvious, which completes the proof. Q .  E .  D .

We need to treat various kinds of root spaces at th e  sa m e  tim e , so  it  is
convenient to prepare some general notations as fo llow s. Let g be a  commuta-
tive Lie algebra over F = R  o r  C  acting on a vector space V  over F. For an
element the dual space o f g, V(g; 2 ) will denote the space of vE V  such
that Z•v=2(Z)v for every Z E  g . W e denote by A(V : g )  th e  s e t  o f  a l l  /1 0
with V(g ; 2) (0). In case where g is a  subalgebra of a L ie algebra b and V an
(ad g)-invariant subspace of I), we always consider the adjoint action of g on V :
X D Z-3(ad Z ) V.

Let ti1 , v 2 , ••• , v, be a  basis o f a  real vector space E .  Define a total order
>  on E* as follows :  for two elements 2, pEE*, 2>p i f  there exists 1 s n
such that

2(v,)=7_1(vi) f o r  1 5 i s - 1  a n d  2(1)8 ) > p(v 3 ) .

We call this the lexicographic order on E* with respect to the basis (t),, v2, ••• v.).
For a subset T .  o f  E*, put W+= PEW ; 2>01.

Now le t j =i+Epa, w ith  i+EA b e  a  0-stable maximally split Cartan sub-
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algebra o f  g .  We define compatible lexicographic orders on a*, a  and i t  (i/t =
, V -1 i+ eap ) as follow s. First take a  lexicographic order on  a*  fo r w hich the
elements i n  A(n: a )  a r e  a l l  positive. S uch  a n  o rd e r  a lw a y s  e x is ts . Let
(Hi , • - •  ,  H „,)  be the basis o f a  which determ ines this order o n  a * .  Secondly
extend (H 1 , ••• H „ , i )  to  a  basis (H i , ••• H m „  • - •  of IR  in  such a way
that (H. 0 1 5  k  S M 2  (resp. (Hk)1 3)  forms a  basis o f a„  (resp . ap ), where nil 'in 2
-_7/2 3 n .  Define lexicographic orders on a*, a '„ ,  al, and  ill th ro u g h  th e  above
bases.

Let lo b e  the centralizer o f ap, in  g .  Then i o i s  a  0-stable reductive sub-
algebra o f  g  contain ing j as a C artan sub a lgeb ra . From Lemma 1.1(1), To is
contained in I.

Using the above notations, we have  jo in t eigenspace decompositions of g
w ith respect to  the adjoint actions of a and a „  as follows:

(1.2) g = 0 1 1 (B le u  ,  n =  E  g ( a  ;  2 ) ,  O n =  E  g (a  ; — 2),2
EA +

(fF , ) 2E.1+(p:a)

1
a= on(apOEBtoen(ap,),

( .3 )
g(apq; 2), 01107)0= E g(ap q ;2EA+(g . p q )

One should note that n(a„)= n(I: a„)ein  with n(t : ap q)=--- In n (a „ )  by virtue of our
choice of lexicographic orders. Hence I is expressed as

I= Ott(I : apq)e la n ( t  :  a „ ) ,

n(i : ap q)=E g(apq ; I), 011(i ap q)=-• E gap q ; — 2).leA+(t:a„) 2EA-Fo:.„)

We proceed to the root space decompositions of gc  a n d  loc=(b0)c. P u t 0=
A(g c  : i c )  and 00=A(loc : ic), then (b 0 .  Every element in  0 takes real values
on the real form iR of Îc. So w e m ay consider 0  canonically a s  a  subset of it
and denote by 0 +  (resp . (b-t )  the positive system of 0  (resp. (bo )  with respect to
our order on i t  T h e n  one has root space decompositions o f  gc  a n d  lo c  w ith
respect to  ic  as follows :

9c= 11c(0)eicelic(0),
(1.5)

nc((b)=  E  gc(ic; a ) ,  Itc (0 )=  E  gc(ic ; —a),
a E 0 + aE0+

loC =11 C( 0 0)e i C e n C ( 0 0),

lic ((b o ).= E g C ( i c  ;  a ) ,  uc((b0)--- E gc(ic; —a).
. E 0 4

0
-a E 0 - 1 6

It follows from the compatibility of our orders on ap,, and j that nc(c=nc((b0)
en(a n ) c  w ith  n(a„) c =n(a„)O R C.

1 .4 .  Structure  of Z(b,, c )  a s  a  Z(g c )-module.
For a L ie algebra g  ove r C ,  Z (g ) denotes th e  center o f  th e  enveloping

algebra U ( g )  of g . Z (1 0 c )  has a  canonical structue of Z ( g c ) - m o d u l e  through the
homomorphism Z (gc)— *Z (I0c) defined below. For the later use, we clarify in

(1.4)

(1.6)
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this subsection the Z(g c )-module structure of Z(loc).
By (1.3), (1.5) and (1.6) together w ith th e  Poincaré-Birkhoff-Witt theorem,

U (g ) and U(10 c )  are decomposed respectively as

(1.7) U(gc)= {11(a pq)U(gc)+ U(g c)en(a po )  }  EDU(I0c) ,

(1.8) U(gc)= {nc(0)U(gc)+U(gc)uc(0)} eu(ic)
(1.9) U(loc)=  nc(00)U(I0c)+U(I0c)itc(00)} elgic) .

Let p:U(gc) - 41(Ï0c), ?: U ( ) --4/(j c ) and : U(10 )—+U(j) be the projections along
the decompositions (1.7), (1.8) and (1.9) respectively . T hen  w e see  easily  the
following

Lemma 1 .2 .  (1) The m ap is ex pressed as
(2) The restriction of  p  to Z ( g )  gives an algebra homomorphism from  Z (g )

into Z(Ioc).
(3) Z—p(Z)en(ap q)U(gc)On(ap g ) f o r every ZEZ(gc).

Pro o f . (1 )  For an element DEU(gc), one has

(1.10) D—(?0° P)(D)= {D—P(D)} H- Cre(D) — ^to(fi(D))1 •

Note that n(ap,), nc(00) nc(0) and that On(ap,), nc(00)_Z1tc(0). Then, from the
definition o f p and ?o ,  the right hand side of (1.10) is in nc(0)U(Sc)+U(gc)uc(0).
Therefore we have -7'(D)=-( 0 op)(D).

(2) and (3). Now assume tha t DE Z (g c ). First w e show that p(D)EZ(loc).
Indeed, for any XEl o ,  [p(D), X ]-= [X , D — p(D )] i s  in  n(apOU(gc)+U(gc)On(ap,)
since lo normalizes both  n(a 0) a n d  On(ap,7). On the other hand, [p (D ), X ]c
[U(10c), lo]g.U(lo c ). Hence we have

[X, p(D)]EU(rpo)n{n(ap,)U(gc)+U(Oc)On(a n g )}

This means that p(D)EZ(loc).
Before proving (2), w e show the assertion (3). Let cr1< a 2<••• G a r  b e  the

elements o f 0 + .  For every 11<i r, take a non-zero root vector XI Egc(ic ;
Let H1, , H„ be a  basis of jc . By the Poincaré-Birkhoff-Witt theorem, U(gc)
has a  basis consisting of elements

M((sO• (um), ( t i ) )= (X ) 8 r (X t ) ' ' l -Pti 1-1g4 (XT) t '.••(X71`r

with non-negative integers s i , t,(1 .< i5r), u n,(1 _m _< n ). Then, for a DE Z(gC),
the element D — p ( D ) E n ( a p q ) U ( g c ) + U ( S c ) e n ( a n )  h a s  a unique expansion

D— p(D)=EC((s,), (t„))M((se), (U.), (t i ))

with complex coefficients C((s,), (u m ), (t,)), where the sum m ation is over ((s i ),
(U.), (t1) )  such  that E t> ro  (S t+ t1 )>

0 . Here a r o  i s  the highest root in  0 0. On
the other hand, CU(loc), D - 11- (D)1=(0) since p(D)EZ(1 0 c ) a s  p roved  above . In
particular, [H, D— p(D)]=0 for every H j c , which means that
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ZiA (s k --t k)a k (H)} C((s,), (u r n ), (ti))M((si), (u r n ), (t)) 0

for a ll H Ej c . T h u s  C ((s ) , (u.), (ti))=0 unless E (s k — tk )a k O .  For a  trip le t
((si), (um), (t i )) su c h  th a t a > r o (s,--1-t,)>0, the sum E k(s k —t k )a k can not be equal
to  zero if e ith e r  (si)z>, 0= (0 )  o r  (1 - ),>, 0 =(0). T h e re fo re  w e  have D— p(D)E
n(a„)U(g c )On(apa).

F ina lly  w e  re tu rn  to  (2). L e t u s  sh o w  t h a t  p I Z(gc) : Z(g)-+Z(l 0 )  i s  a
homomorphism. For D i , D2EZ(gc), one has

D1,02— p(D1)p(D2)=(D 1— P(D1))D2+p(D1)(D2 — P(D2)).

B y  the assertion (3) proved  above , th e  r ig h t  h a n d  s id e  is  in it(a n )U(g c )±
U(gc)On(ap,). Hence we have f/(DID2)=ri(Di)iTi(D2), which completes the proof.

Q. E. D.

Let W (0 ) (resp. W(0 0)) be the Weyl group o f  0  (resp. 0 0). T h e n  W(00)
is  the subgroup of W (0 ) generated by reflections corresponding to the elements
of 0 o. W (0 ) acts on  ic , h e n c e  it  a c ts  a lso  o n  U(Ic). L e t  g ic ) (resp. / 0( j))
deno te  the  algebra of W(0)-invariant (resp. W(0 0)-invariant) elements in  U(ic).
For pEit, w e  d e n o te  b y  T  p the automorphism of  U ( j )  s u c h  th a t  T p(H)=
H+13(H) for HEic.

Put r = T p o f  (resp. ro----Tp o oi'o ) w ith  p=2 - i a , e 0+cy (resp. p 0 , 2- iE„ E 4 a) .
W e can now  state  a  fundamental lemma on the structure of Z(g) (resp. Z(loc))
as follows.

Lemma 1.3 (Harish-Chandra). The map r  (rasp. To )  giv es an algebra iso-
m orphism s from  Z(g) (resP. Z (10)) onto gi c ) (resp . I(i)).

This lem m a is w ell-know n. R efer to  [3, 7.4.511 f o r  example.
The map y I Z (g c )  (resp. ro Z(toc)) is called the Harish-Chandra isomorphism

from Z ( g )  to  gic) (resp. from  Z(10c )  to  /0(j)).
Since Mc') is a subalgebra of I(i), /0(ic) has a  canonical structure of I(j)

-module, which is described in the following lemma.

Lemma 1 .4 . io ( ic )  is a free l(jc)-module o f rank IW (0)/W (00)1, where, for
a set Y , IY I denotes the cardinal num ber. M oreover, one can choose a module
basis consisting o f homogeneous elements.

This lemma follows, as a  special case, from  [15, Part I, § 4, Cor. 1 0 ] ,
 w here

the invariants of finite reflection groups are treated in full g e n e ra lity . But we
sketch the proof of Lemma 1.4 in order to clarify our succeeding arguments.

Outline of p ro o f . S(it) denotes the symmetric algebra of it. W (0) acts on
it by  duality , hence  it ac ts a lso  o n  S ( it) . Define f o r  a n y  a E i t  a  differential
operator a (a ) on it  b y

d 
0(a)0(2) --= 0(2-i-t a) I t=0dt (OE C'dilD,
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T h e  assignm ent a—*a(a) extends uniquely  to  an  isomorphism from S(it) onto
the algebra of constant coefficient defferential operators on

Identify canonically  U ( j )  w ith  the algebra of complex polynomial functions
on it. An element P U (j )  is sa id  to  be  W(0)-harmonic if  a(u)P=0 for every
W(0)-invariant elem ent u ES(it) w ithou t constan t term . Denote by H ( j )  the
space of W(0)-harmonic elements in U(ic ). Then H ( j )  is  a  W(0)-stab1e subspace
of dimension I W(0)I , and compatible w ith  the grading on U ( i c ) .  M oreover one
can show that the m ap gic)X Mic)B(P, e).—*peEU(i c )  gives a  linear isomorphism
from  g i c ) O H ( i c )  o n to  U(jc) : U(ic)= 1(1c)011(ic). From this we see immediately
th a t io(ic)= gic)0 1/0(1c). where H0(j) is  the sp ace  o f  W (00-fixed elem ents in
H(ic). O ne can  ch oo se  a  basis of H0(j) consisting of homogeneous elements,
since each homogeneous component of H ( j )  is  stable u n d e r W (0 0 . W e  have
thus proved that io(ic) is  a  f re e  gic)-module of rank dim  H0( j )  and tha t it has
a module basis consisting of homogeneous elements.

To complete the proof, it is enough to show that dim Ho(Ic)= W(0)/W(00)1
This is done as fo llo w s . One c a n  show  t h a t  th e  representation o f  W (0) on
H (j )  is  e q u iv a le n t  to  the  regular representation of W (0 ). The space W(P 0)-
fixed elements in  L 2 (W (0 )) is  na tu ra lly  isom orph ic  to  LAW(0)/W(0 0) ) ,  whose
dimension is e q u a l  t o  W (0)/W (001. C on sequ en tly  w e  g e t d im  Ho(ic)-- --
dim LAW(0)/W(00)r= I W(0)/W(00) I  as desired. Q .  E .  D .

Let K be an automorphism of U(fo c ) defined by

(1.11) K(X)=X+ 2' tr (ad XI n(apq)) (XE 10)

Denote by co the inverse of K . Put p = o p , then by Lemma 1.2 (2), p restricted
to Z(13c) gives a homomorphism from Z (g ) into Z(10c). So Z(10c) has a structure
Of Z(g c )-module through p.

W e can rewrite the equality p  in  Lemma 1.2(1) in  term s of T , To and
p  as follows.

Lemma 1.5. The m ap r  is decomposed as r = r o op .  In particular, one has the
following commutative diagram.

g lc )  (
Id 

/0(ic)
(1.12) r St

• ) ( ?
torc)Z (g) C

Pro o f . For any  DEU(10 c ), one has by  the definition of

(1.13) D—fo(D)Ettc(00)U(foc)+U(10c)itc(00).

Applying ic to  the both sides of (1.13), we get

(1.14) x(D)—K(f0(D))enc.(00)U(foc)+U(10c)iic(00).

H e re  w e  u se d  th e  f a c t  K(X)-- =- X  for an y  XE nc (0 0) or a n y  XEit c (0 0). (1.14)
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m eans that .ro(K(D))=K( - 0(D )). Since n(ap,)c=Ea E o,+\otg c (ic  ; a ) ,  the restriction of
to U ( j )  coincides with T p _p o . Hence we have

(1.15)

Then it follows from  Lem m a 1.2(1) together w ith (1.15) that

r o op=T p o oj'exori=T p o oT fis -=T

Thanks to Lem m a 1.3 and the above equality, one gets (1.12) as desired.
Q. E. D.

B y virtue of the commutative d iag ram  (1.12), th e  Z(gc)-module Z(f o c )  is
equivalent to the natural I ( j ) -module /o(ic) through Harish-Chandra isomorphisms.
In Lemma 1.4 we described the structure of  J 0 (j) a s  a  /(ic )-module. Therefore
the  Z(gc)-module structure on Z(fo c ) is now c lea r . We summarize this as follows.

Proposition 1.6. T here ex ist r=1W(0)/W(00)1 num ber o f  elements vi=
1, v2, ••• , Z(10c) satisfy ing the following conditions (1) and (2).

(1) For every 1 i r, ro(vi) is a homogeneous element in lo (i).
(2) Every  veZ (f o c )  is expressed uniquely as

(1.16) v= p(Z i )v i

w ith Z iE Z (g c ).  Moreover one has deg v.. deg Z i +deg v i for where deg X
is  the degree of an element X U ( ) .

Pro o f . By Lemmas 1.4 and 1.5, the assertions are clear except the last one
in (2 ) . Taking the commutative diagram (1.12) into account, we apply To t o  the
both sides of (1.16). T hen  w e  have an equality in I0 (j)

7 00.,),Ar(zivo(vo.

By the uniqueness of the above expansion, one has

deg r(Z i )+deg r0(vi)5degro(v) f o r  1 5 r

On the other hand, it is easily checked that deg r(Z)=-- deg Z  (resp. deg 1 0 (Z 0)=--
deg Z o) for any ZEZ(gc) (resp. Z oe Z(To c )). Therefore we obtain deg Z i -Fdeg 1;{

1<deg v for 1 i r .  Q .  E .  D .

1 .5 .  Direct sum decompositions o f g and L
First w e expla in  after [1 ] an Iwasawa decomposition and a C artan decom-

position of w ith  respect to  b, +1 eigenspace o f a .  For this purpose, we need
some more notations and a lemma.

The centralizer Io o f  ap, in  g  is  stable under both 0 and a because 0(X )---

a (X)-= — X for an y  X E  a „ . So it sp lits in to  a direct sum  of vector spaces

(1.17) fo=11440PEDPo'har

w here tp=fontnt), 1P -- --ron tnq  and so o n . N o te  that i 0 =  a .
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For any  2 E JI(I  a„ ), the  root space g(a„ ; 2) is  stable under the involution
aB  of L  because 70  is identity on a „ •  Let

g(apq ; 2)=g+(ap q ; 2)eg-(ap q ; 2)

be  the eigenspace decomposition of g(a„ ; 2) w ith  respect to 6 0 , where M a p , ; 2)
is  the  ±1 eigenspace o f o 0  on g(a„  ; 2 ). Set

(1.18) A±(t a„)= A ( t  a„ ); g ± (a„ ; 2)*(0)} .

We define an open dense subset A '„ of A „= exp a„ by

A'„q = { ¢ E A „; a 2 * 1  for a ll 2E ./1,(T: a„)} .

Here (exp H)'=exp 2(H) for 2 E ( a ) t  and HE ap a .
For any  g E G  a n d  a n y  D E U (gc), w r ite  g D  f o r  A d (g )D  f o r  simplicity.

T hen  w e have

Lemma 1 .7 .  I f  2E  A (:: a„ ) ,  then every element X ±Eg ± (a„ ; 2) is expressed as

(1.19) X ±=(a2ra-2)-i{ a(X ±4-oX IT -a-2(X *-F0X ±)}

fo r  every a E

Pro o f . For any  Y eg(a„; 2), crY  as w ell a s  BY  is in  g(a„ ; — 2). This im-
p lie s  th a t  a(Y ±(7Y )=a 2 Y -1-a - 2 a Y  f o r  a n y  a E A „ .  I f  X±Eg ± (a„ ; 2 ), then
o X = ± 0 X .  Hence we have

a(X ±±c,X 1T-a - 2 (X ± +0X I)=(a 2 X '± a - 2 0X*)-T--a - 2 (X ±+0X ±)

N oting that a 2 +a - 2 # 0  for a n y  a EA;,,, w e obtain (1.19) Q. E. D.

Using the above notations one gets the following

Lemma 1 .8 .  The Lie algebra I  admits the following two kinds of direct sum
decompositions as vector spaces:

(1.20) =11(f apq)eap,elghatnt),

(1.21) ab 'ea„e l(In l) fo r  a n y  aEA '„,,

where we put b '=b n itt( f : a„)e)an(1:

The decomposition (1.20) (resp. (1.21)) is called an Iw asaw a (resp. a Cartan)
decomposition of I  with respect to b.

Proof  o f Lemma 1.8. First w e prove (1.20). Recall the decomposition (1.3).
Since both n(f a„)EBOn(l a„) and l o are  0-stable, fn t splits in to  a  d ire c t  sum
of vector spaces

(1.22) frv,untoe[fn itt(t: apq )Eeen(f apq)}1
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I f  X , YEn(1: a„), then one h as X + 0 Y = (X — Y )+ (0 Y + Y ). F ro m  th is  w e  see
immediately

(1.23) n(t : a„)0)0 n(1 : a„).=, n(I : a„) ,ED[fn { n(I : a„)ep 0 tt(t :

By replacing th e  righ t hand  side  of (1.3) by those o f (1.17) and  (1.23), one gets

(1.24) ,n(1 : a„)e[fn in(1 : a„)(1)0n(t : a„) ](1)(tnt o )ea „G tV

B y (1.22) and (1.24) w e obtain (1.20) as desired.
Secondly we show  (1.21) using (1.20) proved above. It is easily verified that

the  assignment X—X-FctX gives a  linear bijection from  n(1: a„) o n to  in(t: a„)
egio : a „ )}n b . So w e get dim  n(t: a„) , dim [bnin(I : a„)(Dan(t : a„)}3. Then
it follow s from  (1.20) and this equality that

(1.25) dim 1=-dim a„+dim tni.

O n the  other hand, thanks to Lem m a 1.7, rt(t: a„) is contained in  av+(tn i) for
every a E A ; .  Hence we obtain 1=-4)/4-a„-+ tnt using (1.20) a g a in .  T h is sum
m ust be direct in  view  o f  (1.25). Q. E. D.

Taking into account th e  relation net9n=natn(nEBOn)}, w e apply Lem m a
1.8 t o  I  i n  t h e  right hand side o f th e  equality g=netEE)Ott. Then we obtain
tw o kinds of direct sum decompositions o f g  corresponding to those (1.20) and
(1.21) of I  a s  follows.

Lemma 1.9. The L ie algebra g splits, in  two dif ferent m anners, into direct
sums of  vector spaces as

(1.26) g =11(a pq )ea pg e f r .

(1.27) g=a(Ven)eap,ef f o r e v e ry  ar. A j .

1.6. A decom position theorem  o f  elem ents in U ( 9 ) .
L et g + be the ring of functions on A'„ generated by the following functions:

(1.28) a f o r  2E A(n : a„),

(1.29) (a 2 —a - 2 ) -- ' ,  a ' (a '— a ') ' f o r  2E A+(1 : a„)nil,(1 : a„),

(1.30) (a 2 +a - 2 ) - 1 , a -1 (a'l±a - 2 ) - ' f o r  2EA+(t : a„)(1.A_(1: a„) (cf. (1.18)).

F d e n o te s  th e  r in g  generated by g + and the constant function 1 on For
a n  a E A ;,  consider th e  linear map

F a : goLi(0ceac)(84Z(gc)(0(1)Jitgfc) U (g)

defined by

(1.31) gia(fOGY0=f(d)•a477 f o r  f E g ,  eEU(f)cettc)

and  )7E {Eists,Z(Bc)04t)}(Atc).
In  this subsection we find, fo r any given DGU(gc), a n  elem ent in  th e  in -
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verse image W V(D ), independent of a  (Theorem  1 .1 2 ) . This will be achieved in
the same line as in  the  proof o f [1 , Lemma 3.8].

For an integer m O , l e t  U(gc)1m b e  th e  space  o f  elem ents DEU(g c )  such
that deg Set U (g c ) , ,= (0 ) . Then one has a  filtration of U (g c ):

(0 )= U ( sc )- ia =  • • •  = U (g c ) ,  - U(gc)0 =C  • • • •••

For a  subspace E  of U(gc), se t E ,„ ,= E n U (G c ).. Then we obtain

Lemma 1.10. F or any non-negative integer m , U ( g c ) n t  admits a decomposition

(1.32) U(gc).=n(a„)U(gc).-i-E[U(bc(toc)-{A Z(gc)(0(i)i)}1/(fc)] .  •

P ro o f. Take a  basis X 1 , ••• , X , of the vector space fr) h=t on p n b .  L e t  V
denote the subspace of U ( g )  generated by the elements Xi' ••• X; 8  with integers

(1 i s ) .  Consider the decomposition (1.26) of g .  Then, b y  the  Poincaré-
Birkhoff-Witt theorem , w e have

(1.33) U(gc).--=u(apo)U(gc)m-ie [V •U((ap o ) c ) U ( * ) ] . .

L e t  DE [V •U((ap q)c)U(fc)]..•  W rite  D = 7 N Q nlinW a, w h e r e  Q n E V,
HaEU((ap,)c) a n d  W iz E U (fc) su c h  th a t d e g  Qa +deg Ha +deg W . Apply
Proposition 1.6 to  K(H,i)EU((ap o )c),Ç Z(10c). T hen I I „  is expressed uniquely as

p:(Zn,i)(0(vi)

w ith  Z i Z ( g c ) .  M oreover, deg  H n deg Z., i +deg v i ( 1 .< i  r ) .  Thus we have

D= E Q nZ Q .( f i (Z . , i )— Z ., i ) a ) (v i )W n .

By Lemma 1.2 (3), re(Za,i)—Za,,En(ap o) ggc)u-1 w ith  v=deg Z a , Since lo n o r -
malizes n(apo), Q.(17(Za,) — Za, i)(0(vi)Wa belongs to n(ap,)U(gc).•_ z w ith  m'=

deg Q„+deg vi +deg W iz +v_< M .  Consequently,

(1.34) [VU((a„)c)U(fc)].. n((tpo)U(gc)m-i-ECU(bcrlfoc){ Z(gc.)(0(vi)}U(fc)]..

Combining (1.34) w ith  (1.33), w e g e t the desired decomposition (1.32).
Q. E. D.

The map T a re stric ted  to  10U(f)cnt3c)0{EZ(gc)(0W}U(fc) does not depend

on a EAp o because f)n l o centralizes A p g . W e denote this m ap by T . in s te a d  of
„. Thus, in view of the above Lemma, it suffices to consider the elements in

n(a 3)U (g )  in  order to find a n  element in n TT,l(D) for an y  D U ( ) .
aetl'pq

Lemma 1.11. I f  DEll(ap,)U (Oc), then there exist finitely many elements
f m E g+, enE U (b cen c) and 7)n E { Z (gc)(0(1di)}1gfc) (l• n• I )  such that

( 1 )  T.  a(E f 7z0 .0 7 2 n )= D  for any ¢E
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( 2 )  deg en-Fdeg 72„ deg D

Pro o f . W e prove the lem m a by induction on deg D .  For an integer 772 0,
assume t h a t  the assertion is  true  for any  D in En(a„)U(gc)]nt=a(a„)U(gc)m-i.
Now let D ert(a„)U (gc)... In view  of (1.3), w e m ay assume th a t D =X D ' with
D'EU(gc).. and XEg(a„ ; 2) for some 2EA +(g: a p g ).

Case 1: 2E A +(t: ap q ). It follows from Lemma 1.7 that

X= f  i (a) • a(X- X )-Ff  2(a)(X -  X ) (a EA'„),

w ith f i E g+  (i= 1, 2). This implies that

(1.35) D =f  i(a)"(X + X )D ' f  2(a)D ' (X + 0 X)-Pf 2 (a)D"

w ith  D "=[X -1-0X , D IEU(g c ) . .  According as (1.32), decompose D ' (resp. D")
as D '=D 'od-D i (resp . D "= M + D ? ) w ith  IX„ D'jEa(ap g )U(gc).-1 and D;,
EU(1)cnfoc){ Z(gc)(0( 1Ji)}11 (f c)im . Apply the induction hypothesis to DO and

T hen  in view  of (1.35), w e obtain the desired result for D.
Case 2 :  2 E A ( n : a „ ) .  In th is case, X =a ' •  aX holds fo r  a E , 11, 0 ,  whence

D=a - 2 .a X D '. R epeating the above argument, w e can prove the assertion in
th is case. This completes the proof. Q .  E .  D .

By Lemmas 1.10 and 1.11, we obtain immediately a decomposition theorem
of an arbitrary element in  U (g )  as follows.

T h eo rem  1.12 . L e t  D E U ( 9 c ) .  T h e n  th e re  e x is t  DoE1OU(f)cntoc)0
{EZ(gc)(0(v i)1U(fc) and f initely  m any  elem ents f n E g + ,  enEucbcenc), nnE
{EZ(g c )a)(1),)1U(fc ) (1 S n S  I) such that

(1) gr a (D O +E lS IL S ifn en e 72 n)
.=

 D  fo r all a E A , ,
(2) deg gr(Do) deg D , d e g  fl --I-degd e g  D
(3) D— W (Do)En(apX (gc).

Here g+ is  the ring of functions on A 0  generated by functions (1.28), (1.29) and
(1.30), and f „ is  the map defined by (1.31).

§  2 . A  finite multiplicity theorem for induced representations in C - -context

Let be a continuous representation of the subgroup H N  (g G ) in 1.2. In
th is  section w e co n sid e r  the induced representation 7r:=C"-IndgiN(:) in C 's -

context, and examine the multiplicities o f irreducible cm stituents of it. F o r
this purpose w e study Z(gc)-finite, K-finite vectors for Tr:. For any r e k (=  the
unitary dual of K ) and any ideal I  of Z ( g c )  w ith  f in i te. codimension, consider
the space  o f r-isotypic vec to rs fo r 2rc annihilated by r c (/ ) .  W e estimate its
dimension in Theorem 2.8 making use of Theorem 1.12 . T hanks to  th is estimate,
an upper bound of the multiplicity in rc  is given for any irreducible represen-
tation of G (Theorem 2 .1 0 ). Especially, we get a sufficient condition for that
each irreducible representation occurs in  irc w ith  a t m ost fin ite  m ultip lic ity
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(Theorem 2.12).

2 .1 .  Induced representations in C- -context.
In this subsection, le t G  be an  arbitrary L ie  g roup . F irst w e recall a fter

[17, 4.4] some notations about smooth representations o f G.
Let 7r be a  continuous representation o f G  o n  a  locally convex, complete,

Hausdorff, topological vector space E .  A  vector y  in  E  is said to be smooth if
the m a p  :  Gpg--)7r(g)vEE is  C- . The collection E - of all smooth vectors for
7r forms a 7r(G)-stable, dense subspace o f  E .  The assignment y,---q) gives a
linear embedding from o n t o  a  closed subspace o f  C- (G , E ). Here C- (G, E)
i s  the space of E-valued smooth functions on  G  equipped with the topology of
uniform convergence on any compact subset o f a  function a n d  its derivatives.
Equip E -  w i t h  the topology inherited from that o f  C- (G, E) through the em-
bedding above. The representation (7r, E) is called smooth if  E =E -  with coin-
cidence of topologies. In this case, E  has a structure of U(gc)-module in such
a  way that

7C(X ) V =  
t

(exp t X)v I t =i) (X , v E E) .
d

Set r.(g)=-7r(g)IE -  ( g  G )  f o r  any continuous representation (7r, E ) .  Then
7r. defines a  smooth representation of G  on E - , which is called the smooth re-
presentation associated to 7r.

Now we define th e  representations induced in  C - -context. L e t  L  b e  a
closed subgroup o f  G .  F o r  a  continuous representation C o f L  on a  (locally
convex) Fréchet space F, let C- (G ;C) be the space of all fE C - (G, F) satisfying

f (gh)=-(51,(h)/60(h))'"C(h) - 1  f (g) (g EG, h G L).

Here ax  i s  the modular function on a Lie group X  w ith respect to  a  left Haar
measure dx(x):ax(g)=dx(hg)/dx(h) (gEX). Then C- (G ;C ) i s  a  closed sub-
space o f  C- (G, F). E quip  C-(G; C) with the topology inherited from that of
C- (G , F ). Then G  acts smoothly on  C- (G ;C) by left translation :

rc(g)f (x)= f (g - 1  x) (fE C - (G;C), x, gEG).

Thus one gets a  smooth representation (2%, C- (G;C)) of G .  We call 7rc the  re-
presentation induced i n  C- -context from (C, F ),  and often express this as C - -
Ind2(C) instead of rc.

Lemma 2.1. L et (C, F) be as adove. Then one has C- (G ;C)=C - (G ;C...) with
coincidence of  topologies. In particular, it holds that C0 0 -Ind(C)= C - -Ind?(C„.).

Pro o f . For an arbitrary f  C - (G;C), w e show that f EC - (G ;C .) . Indeed,
by the definition o f C- (G;C) one has the equality

(2.1) C(h)f (g) — (61,(h)/6o(h))" 2 f (gel) (g E G, hE L).

This implies that f ( g ) F 0  fo r  all g e G .  Moreover, from (2.1) we see] easily
th a t  th e  map Gpg— f(g) -- EC - (L , F ) is  C o o ,  w here  f(g ) -- (h )=C (h )f(g ). These
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two facts mean that f E  C- (G ; C .). H ence w e obta in  C(G ; C ) C - (G ;C .) .  The
reverse inclusion is  clear, whence C- (G ;C)=C - (G ;C.).

The identical map e C - (C ;Cc.)--+C - (G ;C) is continuous because the topology
on F -  is, in general, finer than that inherited from F .  Notice tha t bo th  C- (G ;C)
a n d  C- (G ; C .)  have structures of Fréchet sp a c e s . Then, b y  the closed graph
theorem, e must be bicontinuous, which completes the proof. Q .  E. D.

For continuous representations (r i , (i= 1, 2) of G, le t HomG(r i , r 2) be the
space  o f  continuous in tertw ining operators from  E ,  t o  E 2 .  Put ic(ri, 2r2)=
dim HomG(r i , r2). 7 r 2 )  is said to be the intertwining number from  2T1 to  7r2.
In case where 2v 2 is irreducible , w e call /0(r 1 , 7:. 2 ) the multiplicity of rc, in ir2 as
subrepresentation.

For the representation C- -Ind2(C), w e g e t a  rec ip roc ity  law  o n  intertwin-
ing numbers as follows.

Lemma 2 .2 .  For a smooth representation (r , E) of G, one has a canonical
isomorphism of vector spaces

(2.2) Hom0(7v, rc)=-_•HomL (z, (3G /3L )' 2 C).

The correspondence is given as

HOMG(Z, 7tc)D A F-->  T E  HomL(r, ((3GML) 1 1 2 C),
(2.3)

T (v)= A(v)(1) (v E E) ,

where 1 is  the unit element of G.

P ro o f .  O ne c a n  e a s ily  check t h a t  th e  assignm ent (2.3) gives t h e  iso-
morphism (2.2). Q. E. D.

2.2. Regularity of Z(gc)-finite, K-finite vectors fo r  rc.
N ow  w e assume G be a  connected semisimple Lie group w ith finite center

a g a in .  For a maximal compact subgroup K, le t C- (G ;O K  denote the space of
K-finite vectors fo r  rc-=- C- -Ina(C). T h en  C- (G ; C )K  has naturally a structure
of compatible (gc, K)-module :

d  
(7) K(X)f (g)= 2rc(exp t X) f (g)I =o,dt

rc)K(k)f (g)= f ( k ' g) (gEG),

fo r XE g , k EK and f EC - (G ;O K .  F irst w e  g ive  the irreducible decomposition
o f C- (G ;C)Ic as a  K-module.

denotes the set of equivalence classes of all irreducible unitary represen-
tations of K .  For a  r e  f?", take an  irreducible representation of K  o f  c la ss  r,
and denote it again by r .  Let X. be  the character of r .  Define a linear operator
E , on C - G ; ) , ‘  by

E, f =dim r • X,( k)(7%)K k)fdk (fE C -(G ;0 ) ,
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w h ere  d k  i s  th e  norm alized H aar m easure o n  K .  One should note th a t the
above integral has a  meaning because (rc) K (k )f , , k E K , span a  finite-dimensional
vector space. It fo llow s from  the orthogonality relations of characters that for
any ri, r2ER

0 if r i,
(2.4)

E-1 if r 1 = r 2 .

P u t  C- (G ; O K , th e n  K  acts on  C- (G ; O r  according to  r. From
(2.4) we see easily that

(2.5) C-(G ;C) K = Ea'C"(G ;C), (a  direct sum  of vector spaces).
rek

Let V , be the  representation space o f  r  w ith  a K -invariant inner product
< , >. Consider th e  sp a c e  CT(G ;C) consisting o f C - -functions 15 on G with
values in H(V r , F) w hich satisfy the following two conditions :

95(gh)-=(3L(h)/3c(h))' 2 C(h) - 1 0(g) (g  E  G, hE L ),

0(k g)— ç5(g)r(k ) (k EK ).

H ere  H (Vv , F)=Hom c (VT , F )  i s  a  F ré c h e t  space canonically  isom orphic  to
V l'O F . For any OE CT(G ; C) and any yE V r ,  put 0 ,(g )=0(g )v  (gE G ). Clealy
Øv is  in  C- (G ; O r. C o n sid e r  CT(G ;C) as a  tr iv ia l K -m odu le  k •O =0 (k E K ).
Then one has

Lemma 2 .3 .  The m ap 00v ,--)0, gives an isomorphism o f K-modules between
C7(G ;C)OV , and C- (G ;C),.

P ro o f . The m ap in question is clearly K-equivariant, so we need only prove
tha t th is m ap  is bijective. W e show first the injectivity . L et v i , y 2 , ••• , y ,, b e
an orthonormal basis of V , .  Suppose that 041--1-042 + • • • +0 7,=0 for O i E C7(G ;C)
(1<i n). T hen one has for any  i

O= v  i > 1 g)} d k

= AO-1(g)- <r(k)v z , v i >r(k)v,dk

=(dim r) (g)v i ( g e G ) .

Here we used in  the last equality above the following well-known orthogonality
relation (see for example [16, 2.9.3]):

dim r• w><T(k)vi, wi>dk=<vi, w1>

for y ,  y1 , w , w j E V , . .  N oting  that Oi (kg)v t =g5 i (g)z(k) - 'v „ w e thu s g e t çbi = 0  for
a ll 1 < i< n , which proves the injectivity.

Let f  be an  element in  C- (G ; C ) ,  su c h  th a t rc ( k ) f ,  k  K ,  genera te  a n  ir-
reducible K-module V f  of class r. In order to  prove the surjectivity, w e have
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only to show that such an  f  can be expressed as f = 0 ,  fo r  som e tiSE C ( G  C)
a n d  som e vG Vr . L et c: V „---+V f  be an  isomorphism of K-modules. Define an
H (VD , F)-valued C - -function 95 on G  by (95(g))(v) , (e(v ))(g) (v EV ,, geG ). Then
we see immediately çl•EC7(G ;C) and f=0,_1 ( f ) . Q. E. D.

By (2.5) and Lemma 2.3, one obtains th e  irreducible decomposition o f  K-
module C- (G ;Ou as follows.

Lemma 2 .4 . One has an isomorphism o f K-modules

(2.6) C-(G ;C)0V ,.
rek

Since Z(gc) commutes w ith K , C - (G;C)r is stable under (rc)K (Z(gc)). Now
w e p rove  th e  analyticity o f  Z(gc )-finite vectors in  C's(G ; C), by applying the
elliptic regularity theorem.

Let 0  be a  function on an analytic manifold M  w ith values in a topological
vector space E .  Then 0  is said to be weakly analytic i f  e*.çb is  ana ly tic  for
any e*E E *  (= the topological dual space of E).

Lemma 2 .5 .  I f  f  GC - (G ;Or is Z (gc)-f inite ( i . e . ,  dim (2 -cc)x(Z(Gc))f <+ 0 0 ),
then it is wealky analytic.

Pro o f . The statement is proved in the same line a s  in  [15, p. 310]. Let
X i , ••• , X , (resp. X r +i, ••• , X „) be a  basis of f  (resp. p) such that —  B(X „ X ,)
=6 ,, (1 5 i, j5 m ), where B  i s  th e  K illing form  o f  g. P u t  ‘2=---E ig igrX +
E r < i .X ;  (the Casimir operator), then DEZ (gc) and
+D is in Z (g )U (t) .

If f  EC - (G ;O r is Z(gc)-finite, then (rc) K (ZD)f  (ZGZ(gc), DEU(fc)) generate
a  finite-dimensional subspace o f  C- (G  ;C ),. Hence there exists a polynom ial p
o f  o n e  valuable with deg p 1  su c h  th a t ( 7 % ) K ( P ( 4 ) ) f - = 0 .  T h i s  implies that
P(11)(e* .f )=-0  for all e*EF*, where U(gc) acts on C ( G )  as the algebra o f right
G-invariant differential operators on G .  Since 4 8 (s. 1) are elliptic operators,
e*. f  m ust b e  rea l an a ly tic  b y  th e  regularity theorem  o f  elliptic operators.
Consequently, f  is weakly analytic. Q .  E .  D .

Analogously to the case C(G ;C),, C7(G ;() has a structure of Z(gc)-module :
U (g) acts on  C- (G, H (V , F)) by

X 0(g) --= 0(exp (— tX )g)=0( g E G ,  XE g, OG C-(G, H (V r , F))).
dt

Then the subspace CT(G ;C) is stable under Z(g c ). For any DGZ(gc), one has

(2.7) (I%) K(D)95,,= (D0),, (ye V r, C(G ;C)).

For an  ideal I  o f Z(gc), le t A(G ;C: I ) ,  (resp. A ,(G ;C: I)) be th e  space of
fG C- (G ; C)r (resp. •OECT(G ; C)) su c h  th a t (nc)K(/)f -=- (0) (resp. /95=(0)). In
view of (2.7) and Lemma 2.3, it holds that
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(2.8) A(G ; C: AJG ; C: I)01 z.

through the isomorphism in  Lemma 2.3. Therefore we can rewrite Lemma 2.5
in terms of Z(g c )-finite vectors in ; C) as follows.

Lemma 2 .6 .  If 0ECT(G ;C) is  Z(gc)-finite, then 0 is weakly analytic.

2.3. An upper bound fo r dim A r (G;C: I ) .  W e return to  our original ob-
jects in  1.2 and use the notations in § 1 without any com m ent. We prepare a
lemma. Put M k k--- =Zia-,H(An ), then M k h  acts on To c  through the adjoint represen-
tation because L c  i s  the centralizer of an  in  9c.

L em m a 2.7. Let Int(l o c )  be the adjoint group of roc .  Then one has an in-
clusion Ad (M k  h ) fkc (lc).

Pro o f . Let L o c  b e  the centralizer o f an  in the adjoint group of gc . Then
L o c  is connected, so o n e  h a s  {g foc ; gE Loc} =Int (Toc). O n  th e  o ther hand,
Ad (M k  h  )g Lo c  by  defin ition . This proves the lemma. Q .  E .  D.

Let C be  a  continuous representation of HN on a Fréchet space F .  Consider
th e  induced representation r c =C - -InG N (C). N ow  w e  can  de rive  from  the
previous results a  c e r ta in  upper bound f o r  dim A,(G ;C: /), w hich is a  key
step toward our finite multiplicity theorem in 2.4.

Theorem 2 .8 .  Let I be  an ideal of Z(g c ). Then one has fo r any  rE k

(2.9) dim A r (G I)5.1W(0)/W(00) I dim (Z(g)/I) • imk h (r, C).

Here W (0) and W(00) are Weyl groups defined in  1.4, and I m  k h (r, C) is the inter-
twining number from DIM k h  to  CIMkh.

This theorem generalizes [1 , Lemma 3.9] obtained by E. P. van den Ban in
the special case where N=- (1) and dim C< +oe.

Proof  of Theorem 2.8. In order to prove (2.9), w e  m a y  assume th a t  0<
dim (Z(gc)//)=P< +00 w ithout loss o f  generality. Select elements zk cZ(gc)
(15 k p) such that z1=1 and Z(fIc)=E1 C.zk IED/ (as vector spaces). Put r=
IW(0)/147 (00)1. L e t vi ( 1 5 i r )  b e  th e  elements in Z (t0 ) in Proposition 1.6.
If OE CT(G;C), th e n  (zk w(2,)0)(a) (1 k 13, 1 i r )  b e lo n g  to  Homm , h (z-, C)
fo r  a ll a E Alm , where co is the automorphism of U(10 c ) defined in  1.4. In fact,
for an mEM k h , one has from the definition o f  CT(G ; ()

C(m)(z kw(vi)0)(a)-- -=(z ko)(2))0)(am - 1 )=(z kw(v,)0)(m - ' a)

=Mzk(00)0)0)(a)r(rn)-=(z k • m (0)(14))0Xa)r(m).

On the other hand, we see from Lemma 2.7 tha t m (w ())=w (v,). Thus

C(m)(zkw(vi)0)(a)=(zko)(1),,)95)(a)r(m) (mEM kh).
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N ow  w e fix an a E A , .  Consider a linear map

A r(G ; C: /)D ( (Z k W (V i.)0 ) ( a ) )k .  t E  [Hommk h(r, C
) ] P r

*

For the inequality (2.9), it suffices to show th a t th is  m ap  is  injective. This is
d o n e  as follows. Suppose (z k w (v )0 )(a )= 0  fo r  all k  and a l l  i. Then,
(Z(g c )w(vi)0)(a)=0 holds for any  i  because /0=(0). Let D U ( ) .  B y  T heorem
1.12, there exist finitely many elements  Zrn.iE Z(gc)
and 72.,,EU(tc) such that

D = E  fm , i(e). a 'em,
m, i

for a ll a'E A ; ) ,. Thus w e get

DO(a)== z .f., t(a )C (e. , t)(z  t a ) (1 ,  )q3)(a)r (7 2 7 . ,  z ) = - 0

In particular, it h o ld s  for any  e*E H (V  F )*  th a t (D (e* .0 )) (a )= 0 . Since 0  is
weakly analytic on G  by Lemma 2.6, one has e*.0 =0 . Hence 0=0 as desired.

Q. E. D.

2 .4 .  A  finite multiplicity theorem for C- -Inn N (C).
Using Theorem 2.8, w e give  in this subsection an estim ate  of the multi-

plicities of irreducible constituents of the (gc, K)-module (1v)K.
T o begin  w ith , w e comment briefly about admissible representations of G in

order to  c larify  our term inology. For them , re fe r to  [17, Chap. 4]. Let iv  be
a continuous representation of G  on a Hilbert space 3C on which K  acts unitarily.
Such a 7r is  sa id  to  be  quasi-simple if Z ( g )  a c ts  on s c -  by scalars :  7r.(D)=
X„(D)I ( I  the identity operator) for DEZ(g c ). In this case, the algebra homomo-
rphism Z(gc)—>C is  c a lled  the inf initesim al character of 7r. F o r  a  r E k ,
d e n o te  b y  SC, the r-isotypic component of SC. T hen  SC is decomposed into a
direct sum of Hilbert spaces : .4C-=E,TE K-Mr . W e call 7r admissible if dim JC r < + c o

fo r e v e ry  r E l t .  Irreducible unitary representations are alw ays quasi-simple.
Moreover, an irreducible representation 7r is  admissible if and only if it is quasi-
simple.

Now suppose th a t  7r be admissible. T hen  the space M K  of K-finite vectors
for iv consists of analytic vectors : the m ap GDg—>7r(g)v,5C is real analytic for
e v e ry  vESCK . In particular, S' K gc4C - . Furtherm ore, MK is  a dense subspace
of J r °  stable under 7r.(gc) as well as 7r(K ) .  T h u s  one g e ts  n a tu ra lly  a  com-
patible (gc, K)-module structue on ,ICK  denoted  by  ric.

Concerning the irreducibility of IL, 7r. and , t i c , the following lemma is well-
known (see [17, p. 254 and p. 324]).

Lemma 2 .9 .  For an adm issible representation (7r, SC) o f  G , th e  following
three conditions are mutually equivalent.

(1) iv  is irreducible, that is , there are no G-invariant closed subspaces o f  SC
except (0) and SC,

(2) 7r i s  an irreducible representation of G,
(3 )  <MK  is algebraically irreducible as a ac-module.
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N o t e .  The above condition (1) is equivalent to (2) fo r  any continuous re-
presentation of an arbitrary  Lie group.

For (gc, K)-modules (pi, V i) (i=l, 2), l i c - K ( p i ,  p i )  denotes, as in the case of
group representations, the intertwining number from p i  to  p i ,  th a t  is, the dimen-
sion of the space Hom g c -K(PI, p i )  o f  ( g c ,  K)-module homomorphisms from V , to
V , .  In case w here p i  is  irreducib le , I g c - K ( p i ,  p i )  is called the  m ultiplicity of p i

i n  p i  a s  su b m o d u le . M oreover, th e  multiplicity M g c -K (Pi, p2) of p i  in  p i  a s
subquotient is defined to be the supremum of in tegers n  for which there exists
a  chain of (gc , K)-submodules

W ogiV tg Ç _W „Ç -V , with Wi/Wi--1=V1

I , c _ K (p i ,  p i )  is sm aller than M i c - K ( p i ,  p i )  in  general.
F o r  any hom om orphism  X: Z(9c) — C , A (G ;C, X )=E?ek A (G ; C; Ker X),Z

C- (G;C)K has a structure of (gc, K)-submodule, which will be denoted by Orc,x)K.
N ow  w e establish our main theorems in th is  section.

Theorem 2 .1 0 .  Let be a continuous representation o f  HN-=1-11: 01 on a
Fréchet space F. Consider the induced representation nc=C - -Inn-N(C) in  C- -
contex t. I f  (r, JC) is an irreducible admissible representation of G  with infinites-
imal character X , then the multiplicites 7 % ) ,  I g c -K(nic, (74. )K) and M o c -K(rcic,
( i t , ) )  admit an upper bound as

(2.10) IG( 7roo, TCC) - -- inc— K( 7rK , ( 1r) K ) .A le c — K ( 2rK I  ( 1TC.X)K)

W(0)/W(00)1 In  [ 'A r k  h (p, C)•/K(r,

where 1?-,= {rE I?" ; ,.9-C,#(0)} and I K (r, 7r) is  the multiplicity o f r E R "  in it 1 K.

Remark 2 .1 1 .  C ontrary  to  the case of Harish-Chandra a n d  v a n  d e n  Ban,
our theorem  can  be  applied  effec tively  even  to  rc  with infinite-dimensional C.
A ctually, w e shall show in § 4 a n d  in  th e  se c o n d  p a rt o f  th is  s e r ie s  o f  our
articles tha t som e important types of such 7cc have finite multiplicity property,
by using Theorem s 2.10 and 2.12.

Proof  o f Theorem 2 .1 0 . If  T e H o m c (r ., rc ) , then  the restriction T K  o f  T
to SC K  g iv e s  a  (gc, K)-module homomorphism from  ,ICK in to  C- (G ; C)n. S in c e
JCK  i s  dense in JC— ,  the  linear map

Hom c ( r . ,  r c)D T T K E H o m w _  (n . ( rK . - - K ,

is  injective, w hich proves the first inequality in  (2.10). The second one is ob-
vious from  the definition of multiplicities.

To prove the th ird  one, let r E k .  Then w e see easily that

dim M r •M g c - K(n" K, ( 7"cc.x)x) dim A (G ;C: Ker

W e apply Theorem 2.8 keeping (2.8) in  m in d . Then it holds that
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dim A(G ;C: Ker . X), _5•dim r • 1W(0)/W(00)1 • /Ar k  h er, C) •

Consequently, we obtain

dim 9i'r•M9c -x(2Tic• (rc, x)x)-5- dim r • I W(0)/W(0.)1./m k h (r, C)

for a ll rE k , which proves the third inequality in  (2.10). Q. E. D.

Notice th a t M ne -K (nif, (nc. r ) )=0 if X ' X , the infinitesimal character of r.
Then we deduce immediately from Theorem 2.10 a  finite m ultiplicity theorem
as follows.

Theorem 2.12. Suppose that the restriction of C to the compact subgroup M i c h

has f inite m ultiplicity  property : Imk (p ,  )< + 0 0  f o r  a l l  p E la  k h .  Then, the, C 
multiplicity M g c -x (r  ( ir c ,x )x )  is f inite for any  irreducible admissible representa-
tion 7r of G and any  homomorphism X: Z(g c )—W. In particular, ir K  (resp. 7r.)
occurs in (7r c )K  (resp. in 7%) as subre presentation with at most finite multiplicity.

In particular, one has

Corollary 2.13. Let C be a finite-dimensional representation o f H N . Th en ,
f o r  any  7r, 7r i c  occurs as a (g c , K)-submodule of C - (G ;C) K  w ith at m ost f inite
multiplicity.

Applying Theorem 2.10 to  the case H =K , N = (1 ), one obtains a well-known
but an important estimate of multiplicities .fic(r, r) (z E R ) as follows.

Corollary 2.14 [5, III, Theorem 4 ] .  Let 7r be as above. T hen  there  ex ists
a positive constant c„ such that any  rE IZ  occurs in  S  K  at m ost ci,dim r times.

The last corollary assures the existence of the distribution characters of
irreducible admissible representations o f  G .  (T h e  above  constant c, can be
chosen as 1 by virtue of Harish-Chandra's subquotient theorem  [5, II].)

§  3 . A finite multiplicity theorem for unitarily induced representrtions

In th is  section, let G  be a Lie group of type I. F o r  a  unitary representa-
tio n  C of a  closed subgroup L  (Ç G ), consider the unitarily induced representa-
tion V =  L 2 -Ind ). L e t

5.1c= 6, 4.1c(r)d iuc(r), cl-ic(7r)-= [m(70].7

be  the factor decomposition (cf. 3.4) of ci/c. W e trea t in  th is  section the multi-
plicity function mc o f V c  on 0  ( =  the unitary dual of G).

In more detail, w e first collect, to clarify our terminology, basic facts about
the direct integral decomposition theory f o r  unitary  representations o f  locally
compact g r o u p s .  O ur m ain  re fe re n c e  is  Dixmier's t e x t  book [4 ] .  Further-
m ore, we prepare som e (versions of) theorems due to  Penney [11] and Poulsen
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[12] on  C- -vectors for unitary representations of G.
After that, we relate nic(r) (r E 6) with the intertwining number I G (7r., itc)

(see 2.1) using the results by Penney and Poulsen. Under certa in  assumptions
o n  r E 0  o r on  C, Io (r., irc) gives an  upper bound for mc(r) (Lemma 3.10 and
Theorem 3.12).

In 3.8, we assume th a t G  be a  semisimple group a s  i n  § 1. We apply
Theorem 3.12 to  ctic, --- L 2 -InnN(C), where C is a  finite-dimensional unitary re-
presentation of the semidirect product subgroup HN i n  1.2. T h e n , by virtue
of Corollary 2.13 one deduces that the multiplicity function mc takes finite values
for pc-almost every r E (Theorem 3.13). This i s  th e  m a in  theorem o f  this
section which extends [1, Theorem 3.1].

In order to state Theorem 3.13 in  a  general form, we are forced to assume
C to be finite-dimensional. Nevertheless, even for certain kinds o f cLic with in-
finite-dimensional C, (variants of) Theorems 2.10 a n d  3.12 are  still useful to
prove finite multiplicity property of such V . W e shall g ive in  § 4 and in  the
second part [19] important examples of such cases.

3 . 1 .  Direct integral o f unitary representations.
First, we recall the notion of direct integral of Hilbert spaces. Let (9 ((0 )tez

be a  family of Hilbert spaces indexed by a  se t Z .  A  mapping f :N ( t )
LEZ

is said to be a  vector field on Z  if  f(t )E H (t) for all tE Z .  Now assume that Z
be a  measure space with a positive B orel measure p  o n  Z .  By integrating

t—>St(t) over Z, we construct a Hilbert space ..4((t)dp(t), which is reduced to

th e  d irec t sum o f  th e  SC(t) in case where p  is  a  discrete measure. For this
purpose, some measurability of the family (SC(t))cez is required.

Definition 3 . 1 .  F or a  measure space (Z, p), a  m easurable f ield of  H ilbert
spaces is a  family (S((t))tEz of Hilbert spaces with a set P  of vector fields on Z
satisfying the following four conditions.

(1) 1" has a structure of complex vector space by pointwise addition and by
multiplication with complex numbers.

(2) There exists a  countable subset i f 1, f 2,••• IgT  such that, fo r  every
tE Z ,  {in(t)In=1.2,... forms a total subset of SW).

(3) The function tHlf(011,g ( t )  is measurable for every f
(4) If  h  is a  vector field such that t—, (n(t), f (t))s(t) is measurable f o r  any

f  Er ,  then h  belongs to T .  Here ( , )5c(t) denotes the inner product on A (t) and
11. 11stu) the corresponding norm on ,.4C(t).

Each f ET is called a  measurable vector field.

For a  measurable field of Hilbert space aJC(0)tez, r ) ,  le t SC b e  th e  vecor

space consisting of f E r  such that 5z Ilf(t)111( t ) dp(t)<+00. Then, after identify-

ing two vector fields which are  equal almost everywhere with respect to p, st
has a structure of Hilbert space with an  inner product
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(3.1) (fi, fOsi.= .fz (fi(t), f2(0)sc(i)dp(t) (fi, f2E s).

Definition 3.2. One calls the Hilbert space JC constructed above th e  direct

integral of the .9C(t) over (Z , p ), and denotes it by .4C(t)dp(t).

Now we proceed to the integration of a measurable field of bounded operators.

Definition 3.3. U n d er t h e  above nota tions, an  assignm ent ZD t ,---*T (t)E
£(.4( ( t ) )  i s  s a id  t o  b e  a  measurable f ie ld  o f  operators, if the  vector field
T (t)f(t) is measurable for any  f E r .  H ere . f (E ) is  the space of bounded linear
operators on a Hilbert space E.

For a  measurable field (T(0)2Ez of operators, if the function tHIT(t)11 is es-
sentially bounded o n  Z ,  th e n  ( T f )(t )= T (t )f (t ) (tE Z  , f  E N )  g iv e s  a  bounded

linear operator on • In th is  case, w e express T  as T(t)dp(t).

Now le t G  b e  a  separable locally com pact group. A ssum e t h a t  a l l  the
unitary representations in question are acting on separable Hilbert spaces. Under
the notations prepared above, the direct integral of unitary representations o f G
is defined in the following way.

Let ((JC(t))/Ez, 1") be a  measurable field of Hilbert spaces on a measure space
(Z , p ) .  Suppose th a t  a  unitary representation V(t) o f G  acting on N (t )  is  a t-
tached  f o r  e v e ry  tE T .  T h e  m ap t■—*V(t) is  sa id  to  be  a  measurable field of
representations if, for any  g E G , the field of operators t—>c11(t)(g) is measurable.

9
In th is  case, put c11(g) ,  ct.7(t)(g)dp(t) for each g E G .  T h en  V : g ,—*cU(g) gives

a  unitary representation of G  acting on SC(t)dp(t).

Definition 3 .4 .  The unitary representation V  is called  th e  d irec t integral

of V ( t )  and denoted by 9.1= cU (t)dp(t).

3 .2 .  A Borel structure on  Ô . L e t  6  be the set of all equivalence classes
of irreducible unitary representations of G .  W e equip 6  w ith a Borel structure
as follows.

For every nENU{ca}, take  a Hilbert space .9C„ of dimension n. H e re  N
is  the set of natural num bers, and SC. is a separable infinite-dimensional Hilbert
s p a c e . Let Irrn (G) denote the collection of all concrete irreducible unitary re-
presentations of G  acting on i ( .  F ir s t ly , a s s ig n  to  Irr n (G) the coarsest Borel
structure for w hich the functions Irr(G)7r —0(r(g)v, w) s c ,,E C  are  B ore l func-
tio n s  f o r  a l l  g E G  and a ll 1), w ES 7z. Secondly, equip Irr (G) ,  I r r n (G) with

the direct sum  Borel structure of th o se  o f  th e  Irrn (G). F ina lly , th e  Mackey
B orel structure on Ô  i s  the quotient of the structure of Irr (G ) through the
canonical surjection I r r (G ),6 .
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3 .3 . Representations of type I. For a  set S  o f  bounded operators on a
Hilbert space  X , S ' denotes the algebra of a ll s'E_C(N ) w hich commute with
every s E S . S ' is called the commutant of S .  A  subalgebra M  o f _C(9f) con-
ta in ing  th e  identitiy o p era to r I j c  is  sa id  to  be  a  von Neumann algebra if  it is
stable under the *-operation, and coincides with the double commutant M ''= :(M T.
W e say that a von Neumann algebra M  is a factor if the center Mr -1M' consists
only of the scalar multiples of I .  A  type I  von Neum ann a lg e b ra  is  a n  M
which is isomorphic, as an involutive *-algebra, to som e von Neumann algebra
B  for w hich B ' is  commutative.

For a  unitary representation (n, JO  of G , let M„ (g..e(gC)) denote the von
Neumann algebra generated by the operators n (g ),  g G G . One says that iv is  a
factor representation (resp. a  representation of type I) if M., is  a  factor (resp. of
type I). A type I  factor representation is just a multiple of an irreducible one.

A  (separable) locally compact group G  is  sa id  to  be  of type I  if  any  factor
representation is necessarily  of type I. A b e lia n  g ro u p s , compact groups, con-
nected nilpotent Lie groups and connected semisimple Lie groups are a ll of type
I. But solvable Lie groups are  not alw ays of type I.

3 .4 . Factor decompositions. Any type I unitary representation of G may be
disintegrated over Ô  into factor representations as follows.

Lemma 3.5 [4 , 8 .4  a n d  13.9]. L e t  V  be  a  unitary  representation of a
separable locally compact g ro u p  G . Assume that V  be of type I. Then there ex ist
a unique measure class d on Ô  and a unique, up to modification on a negligible
subset, measurable function m u : 6--ATU{O, 00} such that

(3.2)

and

(3.3)

V c U ( i t )dpv(it) (factor decomposition)
G

cU (r) -= EinV(701 • for pv-almost every rE O

Here p v  is a Borel measure on Ô  of  class d, and r —'1_1(7r) is a measurable family
of factor representations of G.

The function mv above is called the multiplicity function fo r V.

3 .5 . Direct integral decompositions of C- -vectors.
In this subsection, le t G  be an arbitrary (not necessarily of type I) Lie group.

K eep to the notations in 2 .1 .  Let

(3.4) Ç V(t)dp(t), .gC=
z

,g("(t)dp(t)

be a direct integral decomposition of a  unitary representation (V , ...4C) of G over
some measure space (Z ,  p ) .  W e now summarize, in  a  form convenient for our
later use, the results of R . Penney [11] about the disintegration along (3.4) of
the space ,g/- * of smooth vectors for V  and of its topological dual space.
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Proposition 3.6  [11, Theorem C ] .  Under the notations above, the space ,41-

is  a direct integral of the SC(t)- (te  Z ) in the following sense.
(1) I f  f = ( f ( t ) ) t E z e , 4 0 ° ,  then  f(t)EJC(t) -  for a. e. (=alm ost every ) tE Z  and

c1.1.(X )f= (`U (0-(X )f(t))tez holds for any XEU(g c ). Here U(gc )  is the enveloping
algebra of the complexification g c  o f  g=Lie G.

(2) I f  f -= (f(t))tezE S  i s  s u c h  th a t  f(t)ESC(t)o0 f o r  a. e. t E Z  and
(51(t).(X)f(t)), E z EM  fo r  all XEU(g c ), then f

Using this proposition, one easily gets th e  following

Proposition 3.7 (cf. [11, Corollary C. I ] ) .  Let E be a finite-dimensional vector
space.. Then the space Homc (X - , E ) of continuous linear mappings from 3C-  t o
E  is a direct integral of the Homc (gC(t)- , E) in the followihg sense.

(1) I f  TeHomc(S( - , E), then fo r  a. e. t there ex ist continuous linear m ap-
pings T(t)EHom c (..C tr , E ) such that

(3.5) T ( f ) ,  L T (0( f (t))d p(t)

f o r all f= (f (t ))E M - . The integral (3.5) o f E-valued function is absolutely con-
vergent and T(t) are unique almost everywhere.

(2) Let T (t), tE Z , be a collection of elements in Homc (S((t)°°, E) such that
the E-valued function t■-*T(t)(f(t)) is g-integrable fo r  every f=(f(0)e,g1 - . Then

the m ap f ,--->LT(t)(f(t))dp (t) defines a continuous linear map from JC-  to E.

A n element T  in  Homc (S( - , E ) is  sa id  to  be  a  generalized cyclic map for V ,
if , fo r  a  vEM - , T(cti(g)v)=0 fo r a ll gE G  im plies that v=0.

Proposition 3.8 ( c f .  [ 1 1 ,  T heorem  II. 5]). L e t  TEHom c Cg(- ,  E ) b e  a

generalized cyclic map fo r  V .  I f  T=r:T (t)dp (t) denotes the disintegration of T

in the sense of Proposition 3.7, then the maps T(t)EHom c (SC(t)°°, E) are, for a. e.
t, generalized cyclic maps fo r  cU(t).

N ote. R . P e n n e y  p ro v e d  Propositions 3.7 a n d  3.8 f o r  th e  c a s e  E=C.
N everthe less, h is  p roof w orks f o r  any finite-dimensional E .  B ut, fo r infinite
dimensional E, the assertion of Proposition 3.7 is  no longer true.

3 .6 .  Unitarily induced representations (see  e .g . [9, Chap. III]).
L et G  b e  a  locally  com pact g r o u p  a g a in .  T o  a  unitary representation

(C, SC()) o f  a  closed subgroup L  o f G, we attach a  representation (ctIc, L2 (G;C))
o f  G  induced unitarily from C.

L et p be a  s tr ic tly  positive  continuous function o n  G  sa tisfy ing  p(xh)=
(5L(h)/(3G(h)),0(x) (xEG, hEL), where 5L, (resp. 3G)  is  th e  modular function of
L  (resp. G) defined in  2.1. Such a  function, so-called a  rho-function, always
ex ists. M oreover, i f  G  is  a  L ie  group, then there  exists a  rho-function of C '-
class.
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One can associate with p a unique measure p,„ on GI L such that

(3.6) 1G0)(x)p(x)dG(x)-= clpp (xL) g5(xh)d L (h)GIL

for all OE Co(G ) (=  the space of all continuous functions o n  G  w ith  compact
supports). Here cic x (resp. chh ) is  the left Haar measure on G (resp. L ) .  From
the uniqueness of p p , we see easily for any gEG

(3.7) dpp(g • y)= p'(g, y)dp p (y) (yEG/ L),

where p'(g, y)=p(gx)/p(x) (y=xL) is a well-defined continuous function on G/ L,
and g•y = gxL . In particular, p p  is a quasi-invariant measure on G / L . Namely,
for any gE G, the measure L p , . is equivalent to p p , where (E gpp )(E) , pp (g - T )
for a Borel subset E  of G/L.

Now le t LAG ;C) denote the set of N(C)-valued functions f  on G satisfying
the following conditions (1)-(3).

(1) For every aEsC(C), the function x ,--(f(x), a ) s r (c ) is a Borel function on G,
(2) f (xh)= p(h) 112 C(h) - 4  f (x) (x  e G, hE L),

(3) f 1112(G; c)=-.
G/L 

p(x) '11 f (x)111(od p p(x L)< + C O .

Here one should note tha t the assignment x L — y ( x ) - 1 1 1 f ( x ) 1 1 1 ( c )  actually de-
fines a  function o n  G/ L th a n k s  to  th e  property (2). After identifying two
functions which are equal almost everywhere, LAG ; C) has a structure of Hilbert
space with an  inner product

(3.8)( f i, f)L2(o, LP(x)- i(x), f2(x))31.(c)c p p(x L)

for f,, f2EL 2 (G  ;C ). Through the left translation, G  acts unitarily on LAG ; C).
We denote this action by  clic:

(3.9) c(g) f)(x)= f (g x)( g ,  x E G ,  f  L 2 (G ; C)) .

(clIc, LAG ;C)) is called the representation o f G  induced unitarily from (C,N(C)),
and we often express this as L 2 -Ind(C) instead of V .  T h is  c o n s tru c tio n  o f
clic apparently depends on  a  choice of p, however, the equivalence class does not.

For the later use, we quote here fundamental properties of unitarily induced
representations. Firstly, let  H ,LH 2 be two closed subgroups of G .  I f  (  i s  a
unitary representation of H „ then

3.10)L ' - I n d  ,(C)  P-Ind7, 2 (L 2 -Indli n(C)) .

This is said to be the stage theorem for unitarily induced representations.

Secondly, let
z
C(t)dp(t) be a direct integral decomposition of a represen-

tation C of a  closed subgroup L  ( G ) .  Then one has

(3.11) L2-Ind2(C)=zL2-Inc12(C(t))dp(t).
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Finally, assume tha t G be a L ie group. Then the space LAG; C)-  of smooth
vectors for 5./c is characterized as follows.

Lemma 3 .9  [12 , Theorem 5.1 and  Corollary 5.1]. Under the above notat-
ions, the space L 2 (G ;CY* is described as

(3.12) L2 (G ; ff C '(G  ; C ) ; c(D ) f  E  I- 2 (G ; C) fo r  any  De-U(gc)}

where (nc, C- (G ;C)) i s  as in 2.1. Moreover, fo r  each f ixed g E G , the map
L 2 (G ; ) f_ 4f(g)ESC(C) is a continuous linear mapping from 1,2 (G ;C) -  to SC(C).

3 .7 .  An upper bound for the multiplicity function of an induced repre-
sentation. Now le t G be a Lie group of type I. C onside r a  unitarily induced
representation L2 -Inclq(C)=(cUc, L 2 (G  ;C )). Let

re
(3.13) vc--2-10Vc(r)dfi

re
c(r), L 2 (G ;C) -= ) 6.,gC(C, 2v)citt(r)

be the factor decomposition o f 5.1c as in  Lemma 3.5. Furthermore, decompose
each factor representation 9.7c(7r) into irreducibles :

(3.14) Vc(r).= [mc(r)1 • SC(C, 7)= [MC(r)1 • A (r ) = SC(r)ED JC(r)

(mc(7r)-copies).

Here we take a  concrete representation o f G in  th e  equivalence class Z , and
denote it again by (2v, SC(r)).

W e  w ish  to  re w rite , o r  estimate th e  multiplicity function mc by some
quantity which is rather computable. I f  G is a compact group, then C is dis-
crete, and the Frobenius reciprocity law (see e.g. [16, 5.3.6]) says that

(3.15) mc(2v)=-/G(2v., C- -Ind(C))=//,(2v., (3c/h)' )

for any 7rE O . (In this case, 30/3L=1 because G and L  are compact.)
W e ask if the first equality holds fo r a  general pair (G, L) and any unitary

representation C o f L .  (The second one always holds thanks to Lem m a 2.2.)
T h e  an sw er is  " n o "  in  general (see Example 3.11 below). Nevertheless, the
intertwining number /G(2v..„ Irc), 7rc= C--Inc12(C), gives an  upper bound for mc(2v)
under a certain assumption on Z or on C.

First, w e put an  assumption on Ire 0 .

Lemma 3 .1 0 . Let rE C  be a discrete series representation for ctI c , that is, r
may be realized as a subre presentation of  V .  T h e n  one has an inequality

(3.16) 1nc(2v) /c(2v, (Vc)-)5IG(2v., z().

Proo f . Every operator Ae Hom G(7r, 91c )  g ives, th rough  its  restriction to
sC(7r) - , a  continuous intertwining operator A . from 7r. to  (53c).... Since SC(r)°'
is dense in 9C(2v), this map A—>Acs, is injective, which implies the first inequality
because ir is a  discrete series fo r cLic.

It follows from Lemma 3.9 that L 2 (G ;C) -  .ç C - (G ; C) and that the assignment
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T: LAG ; f  (1)E ‘gc(C) is a continuous linear m a p . Hence TEHomL(N-10-,
(3G/3.1.)112C). In view of Lemma 2.2, the canonical embedding .LAG ;C) - c,C - (G ;C)
gives a  continuous isomorphism of G-modules from (Ric),  in to  rc. This proves
the second inequality. Q .  E .  D .

Now we proceed to estimate the multiplicity mc(r) for r EO which are not
necessarily discrete series fo r cUc. T h e  following example suggests that we
need to put some assumption on C or on L  in order to get an  estimate

(3.17) mc(r , C--Inc12(C))

on the whole C.

Example 3.11. Let G = R  be the additive group o f  a ll re a l n u m b e rs . In
this case C  h a s  a structure 6= le(2); R .  Here, for a 2ER, e(2) denotes
a  unitary character of G : e(2)(x)=exp-V 1 12x ( x E R ) .  Take L = G  a n d  C=the
regular representation o f  G  on  L A R ). Then, through the Fourier transform,
cUc=C is decomposed into irreducibles as

(3.18) ciJ e(2)d2,

where ca is a  suitably normalized Lebesgue measure on R .  T h is  implies that
mc(e(2))-=1 for a.e. 2ER.

On the other hand, rc is clearly equivalent to the smooth representation C.
corresponding to C. Moreover, it is also clear that I 0 (e(2), rc)=0 for every 2e R.
One thus gets

I G (e(2), rc)=0<1=-- mc(e(2)) for a.e. 2ER,

which means that, in this case, the inequality (3.17) is false for a.e. r.

Now assume that C is a  finite-dimensional unitary representation of L .  For
such a  C, we can show, using Propositions 3.7 and 3.8, tha t (3.17) holds on the
whole C . This is done as follows.

For any f EL 2 (G ;C)°°, set T ( f )= f (1 )E M ( ) .  Then, as w e remaked in the
proof of Lemma 3.10, T: LAG ; C) - c(C) gives a continuous linear map satisfying

T((c c).(h)f)=(aa(h)/h(h))'"C(h)T(f) ( f  LAG ;0, he L) .

This means that TEHomL(( cUc)-, (5G/5L) C). Moreover, T  is clearly a  gener-
alized cyclic map from LAG ; Cr to  JC(C).

From Proposition 3.7, for a.e. 7rEC , th e re  ex is t unique continuous linear
maps T (r ): JC(C, 77) - ,9C(C) such that

(3.19) T (f)=  .ç6 T(7r)(f(Tr))dpc(71. ) for all f =(f(7r))e LAG ; C) -

From  th e  uniqueness o f  T ( r) ,  w e  s e e  th a t  T(r)EHomL(Vc(r)., (3G/OL) 1/2C).
Moreover, by Proposition 3.8, T(7r) are, for a.e. r, generalized cyclic maps from
JC(C, 7c)-  t o  if(C ). For such a  rE  .0 ,  define a  linear operator A(7r): JC(C, 7r)0—*
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C- (G, S(C))

(3.20) A(7r)f(g)=-T(7r)(9.1()(g')f)( g  G ,  f E J( (C, 7r)- ).

Then A(7r) gives a continuous embedding of a G-module C(C, 7r)-  into 7rc. Keep-
ing Lemma 2.2 in mind, w e thus get the following

Theorem 3.12. Let G be a Lie group of type I. For a  finite-dimensional
unitary representation C of a closed subgroup L of G, consider the unitarily induced
representation V c= L 2 -Ind2(C). Then, for a. e. 7rE6 , the multiplicity mc ( r )  of 7r
in 5.7c has an upper bound as

(3.21) mc(7r) /G(7r., C--Ind2(C))=--/L(r., (6o/aL) 1 2C).

Here, for a group X  and two representations S i and S 2 of X , 1 1 (S 1 , S 2) denotes
the intertwining number from S i to  S2 as  in 2.1.

3.8. Application to induced representations L 2 -Inn N (C) of semisimple
groups G .  Hereafter, we assume tha t G be a connected semisimple Lie group
with finite center. Apply Theorem 3.12 to 9ic=L 2 -InnN(C), where HN-=--- H yN
i s  a semidierct product subgroup of G as in 1.2. Then, by Theorem 2.10 (or
by Corollary 2.13) w e get the following finite multiplicity theorem for induced
representation V .

Theorem 3.13. Under the above notations, let C be a finite-dimensional unitary
representation of H N, and 9.1c= L 2-IncWi N (C). Let

cUc= 69
6.ciic(ir)dpc(7r), cliC(r)= EniC(r)] • r

denote the factor decomposition of Vc as in Lemma 3.5. Then, the multiplicity
function mc  takes f inite values for a. e. 7rE -0  w ith respect to pc.

This the main result of this section, which generalizes the result [1, Theorem
3.1] for the case N=(1) and =the trivial character of H.

3 .9 .  In order to establish our finite multiplicity theorem in a general form
as in Theorem 3.13, w e have had to assume C to be finite-dimensional. Never-
theless, even for infinite-dimensional C, the re  are interesting examples of clic
w hich have finite multiplicity property. Among such examples, the ones we
think most interesting are "reduced generalized Gelfand-Graev representations"
of certain types, w hich  w ill be  stud ied  in the second part of this series of
articles. In the next section, we present other important examples of such Vc.

§  4 . The case of representations induced from infinite-dimensional ones

• In the previous sections, by generalizing the theory of spherical functions in
[1] and [6], we gave sufficient conditions for a representation C of a subgroup
H N  (g G ) as in 1.2 tha t the induced representation InnN(C) is of multiplicity
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finite. H ere  Ind  m eans e ithe r C- -Ind (see 2.1) o r  1,2 -Ind (see 3.6). We em-
phasized there (Remark 2.11 and 3.9) that our criterions may be applied succes-
sfully also to case of infinite-dimensional C. It differs from th e  c a se s  in  [1]
and [6].

W e close the present article with some examples (including Gelfand-Graev
representations) of such cases, important in connection with the second part [19]
of this paper.

4 . 1 .  Representations Ind ,7f  N  .(C ) with C=Indffn iNm(e).
Let G =K A„N m  b e  an  Iwasawa decomposition of a connected semisipmle Lie

group G w ith finite center. Set M =Z K (A p ). Then the semidirect product sub-
group M v  N .  satisfies the assumption for Hv N in 1 .2 . Take a unitary character
e of the maximal unipotent subgroup N„,, a n d  p u t C=L 2 -IndlZm(e). Since M
is compact, C- -Indr.m(e) is equivalent to C., the smooth representation of MN m

associated with C. Moreover, if the L ie algebra in of M  does not reduce to (0),
then C is actually infinite-dimensional. We deal with the induced representation
IndYIN,„,(C).

The stage theorem for unitarily induced representations tells us

(4.1) V c= P-Ind,,i(e) (unitary equivalence).

F o r  th e  C- -induced representation also, a n  equivalence similar to (4.1) holds
thanks to Lemma 2.1 and the compactness of M :

(4.2) rc-= C- -IndLr.(C).= C - -Ind?ffN 7,,(C.)= C - -Inar n ( )

4 .2 .  A  finite multiplicity theorem for InarN,,,(C)=In6 7, ( ) .
Now we apply our results in  §§ 2 and 3 to  InarN i,(C).

4 .2 .1 .  First, we consider the induced representation rc in C"-context. The
restriction of C to  M  is equivalent to the left regular representation o f  M . By
virtue of the Peter-Weyl theorem, for any a E 11-1, the  multiplicity i m (a, C) o f a
in C is equal to  d im  a. Theorem  2.10 toge ther w ith  th is fac t im plies the
following

Theorem 4 . 1 .  Put irc=C - -Inai N n t (C). F or any  irreducible admissible re-
presentation 7C o f  G  with infinitesimal character X , the multiplicities I c (r.., rc),
1,C _K(ric,(irc)K) and M g c _K(7c (I r c ,x )x ) (see § 2) are estimated as

(4.3) rc).Vgc-K(2Trc, (nc)K)5Mg c -K(rx, (2%, x)x)

mink. {dim  • K(7, 7r) - 1 }<±00 .

Here R i (resp. R 2 )  denotes the order of the complex Weyl group of gc  (resP. m c ),
and I K (r, n) is the multiplicity of rE IZ  in 2r! K.

In wiew of (4.2), one deduces from Theorem 4.1 the following

Theorem 4 .2 .  The induced representation C"-Indg,.(e) has finite multiplicity



206 Hiroshi Y amashita

property for any one-dimensional representation e  of N ., th at  is, l c -K( (C -

Ind%(e)) K )< + co  fo r every irreducible admissible representation r  of G.

4 .2 .2 . Secondly, we are concerned with the unitarily induced representation
CJ  Theorem  4.2 into account, we apply Theorem  3.12 to  L 2 -Indg, m ( ) .
W e thus obtain the finite multiplicity theorem f o r  Vc-= L 2 -Ina r n (C) a s  follows.

Theorem 4 .3 .  Let V  . ç o [ m c ( r ) ] • r d p c ( r )  be the factor decomposition of Vc=

L 2 -Indqn v .(C) as in Lemma 3.5. T hen the m ultiplicity  function mc tak es f inite
values for p c-a. e.

Consequently, the  induced representation Ind7, N .(C ) has finite m ultiplicity
property, although is infinite-dimensional in general.

4 .3 .  The case of Gelfand-Graev representations.
A s is suggested in Appendix, the study of In d % () f o r  a n  arbitrary is

reduced, in a certain sense, to that for non-degenerate (see A.2) Accordingly,
we concentrate on such a case, th a t is, on the case of Gelfand-Graev represen-
tation (=GGR) (Definition A .5 ) . The GGRs are of m ultiplicity finite thanks to
Theorems 4.2 and 4 .3 .  Moreover, it is well-known that, under some additional
assumptions on G, the GGRs have multiplicity f re e  property  in  th e  following
sense.

Proposition 4.4 (c f . [1 4 , Theorem 3.1 and A ppend ix ]). Suppose that G be
quasi-split (i. e., n i is  abelian) and linear. Consider the GGR 2r = C°°-Ind -m (C)
(in C`°-context) with a non-degenerate character e of N .. T h e n , fo r any irreducible
unitary representation 9.7 of G, the intertw ining number from RI. to r E is at most
one :  I G(V .,  e)._1.

B y virtue of our Theorem  3.12, we can deduce immediately from Proposi-
tio n  4.4 the multiplicity one theorem, originally due to  Ramakrishnan [13], for
the unitary GGRs cii e =L 2 -Ind iGy m ( ) .

Theorem 4.5. Let G be as in Proposition 4.4. T hen the unitarily induced
GGRs Ve a re  o f  m ultiplicity  one. In particular, the von Neumann algebras
HG(cUe)=HomG(c4 V Œ)  of intertwining operators fo r  Ve are commutative.

Remark 4.6. Ramakrishnan proved in  [13] Theorem 4.5 by generalizing the
idea of Shalika [14] in  the proof of Proposition 4 .4  q u o te d  a b o v e . M ore pre-
cisely, in  order to  show th a t HG(V e)  is  commutative, he found out an antiauto-
morphism of H G(V )  which fixes every element in it.

However, as w e  sa w  a b o v e , h is  p ro c e d u re  c a n  b e  re p la c e d  b y  Shalika's
result (Proposition 4.4) and our Theorem  3.12.

4 A . Toward the continuation [19 ], [20 ] o f  this paper : Application to
generalized Gelfand-Graev representations. N . Kawanaka [8] introduced, by
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generalizing the construction of GGRs, a  se rie s  o f induced representations of
reductive groups G(F) over various fields F .  Such an induced representation is
called a generalized Gelfand-Graev representation (= G G G R ). The GGGRs are
param etrized  by  the set of nilpotent classes of the Lie algebra g(F) of G(F),
and the GGGRs corresponding to regular nilpotent classes are the original GGRs.

C ontrary to the case of GGRs, the GGGRs of a semisimple Lie group G are,
in general, far from  to be of m ultiplicity finite. H ere is a difficulty of the study
on G G G Rs. In  o rd e r  to  re d u c e  the infinite multiplicities of irreducible con-
stituents of them  to be finite  or to  b e  free (if possible), w e  w ill in tro d u c e  in
the second part [19] a version of GGGRs, called reduced GGGRs. And then, we
shall apply our results in th is  article t o  the reduced G G G R s. The important
cases connect with "generalized W hittaker models" of (holomorphic) discrete series
representations (cf. [2 0 ]) . And w e find  out t h a t  the reduced GGGRs are of
multiplicity finite in these cases.

Furtherm ore, in more restricted cases, w e have m ultiplicity free property,
which will be proved in detail in the subsequent paper [20].

Appendix. On the irreducible decomposition o f  L 2 -Ind% ( e ) :  Reduction to
the case of Gelfand-Graev representations

Let G-- -- K A ,N „, be  an Iwasawa decomposition of a connected semisimple Lie
group G  w ith  f in ite  cen te r . For a unitary character e  o f N n„  consider q4=
L 2 -Ina, m (e) (see 4 .1 ). W e have proved in Theorem 4.3 that ci4  is of multiplicity
finite. T h e n  th e r e  arises a natural question : H ow  can ci.4  be decomposed ex-
plicitly into irreducibles?

In th is  A p p e n d ix , w e  tre a t th is  p ro b le m  and g iv e  a  complete answer
(Theorem A.4) for the case e=1 N n i ,  the trivial character of N m . Moreover, we
show in A.3 that our problem  for a rb itra ry  e  is  re d u c e d  m a in ly  to  th a t  for
non-degenerate characters e ,  th a t  is, to decompose so-called Galfand-Graev re-
presentations.

4 . 1 .  The irreducible decomposition o f L 2 -Ind%(1N„).
W e give in this subsection the explicit irreducible decom position o f V 1 =

L 2 -Inn . ( 1 N .). Firstly , w e see  from  the stage theorem  for induced represen-
tations that

(A.1) V1=L2-Indig(L2-IndEN'.(1Nm)),

where P=M A ,N „, w ith  M =Z  K (A ,)  i s  a minimal parabolic subgroup o f  G.
Keeping (A.1) in mind, let us decompose L2 -Indfv n ,(1N ,,,) in to  irreducibles.

Lemma A.1. One has an isomorphism o f unitary representations

(A.2) Ee [dim a]• a0e(v )01 N n i dv
oE M

Here di denotes a suitably normalized Lebesgue measure on the dual space al',  of
ap = log A p, and, for ce;„ e(v) is a unitary character of A, defined by e(v)(exp H)
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=exp -V-1v(H) (H ea p ).

Proof. The restriction of L 2-Ind%(1Arn ) to  the subgroup N .  is a multiple
of 1N n , because N .  is normal in P  and the  character 1

N m
 is  f ix e d  u n d e r  the

ad jo in t ac tion  o f P  o n  N . .  M oreover, w e see  easily  that the restriction
L 2-IndIN'.(1 N .)I M A, is equivalent to the regular representation  A(MA) of MA,.
Thus one gets

(A.3) L2-Ind (1N) := A(MAP )®1N .

Notice that M A , is  the direct product of a compact group M  and a vector group
A .  Taking into account the Peter-Weyl theorem for compact groups and the
Plancherel theorem for vector groups, we obtain

(A.4) 2(MAr):1—_ ET [dim a] a 0 e ( v )d v .
aEM

(A.3) and (A.4) imply the desired (A.2). Q. E. D.

From (A.1) and (A.2), the  representation V ,  is disintegrated as follows :
9

(A.5) L2-Innpi(1Np)= ET [dim a]•  c 1 .1 „d v ,
aEM a*

where, f o r  (a, v)eS/x 9J„,,=L2-Ind(a0e(v)01N.) i s  a  unitary principal
series representation o f G.

Let W=N K (.21.,)/M  be the Weyl group of (G, Ar ). Then W acts on M  and
on al; in the following w a y . L e t w EW, vea l, and a e /19/. Take a  representa-
tive w*eN K(A p) o f w a n d  a  concrete irreducible representation a o o f  M  of
class a. Define w*veal; (resp. a  representation w*a o o f  M ) b y  w*v(H) --=
-=v(A d(w*)'H ) (resp. w *a o(m)--=a 0(w* -1 m w *)) for HEa r  (resp. m e M ) .  Then
w * v  (resp. th e  equivalence class o f w*cro )  does not depend on a  choice o f w*
(resp. w* and a o). So we may denote it by w v  (resp. w a ) .  T hus W  a c ts  on

(resp. on K i) through (w, (resp. (w,
In order to show that (A.5) actually gives the irreducible decomposition of

V ,  w e now  quo te  a  fundamental theorem by F .  Bruhat about the unitary
equivalence and irreducibility of the principal series representations.

Proposition A .2  [2 ]. (1 )  c li, o ,, =cU a ,„ f o r  any  w E W  and any  (a, 0 E
lax at.

(2 ) For (a i , v i )E k x a t, (1=1, 2), the intertw ining num ber IG(9 .1 11. , i ,c 2 . v 2 )

from R J„,.„, to has an upper bound as

(A.6) I { weW ; wa 1 =a 2 and  wvi=v2}I •

In particular, if (a , v)e/f/YX4 satisfies the condition

(A.7) either w a * a  or u n ii.)  fo r  any  w EW \{ 1}  ,

then c1J,,, is irreducible.

Let (at)/ be the open dense subset of at consisting all veal; such that w v*  v
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for any wEW\ {1}. A  connected component of (a t) ' is called a Weyl chamber.
W  acts simply transitively on the set of W eyl chambers. Taking this into ac-
count, one deduces immediately from Proposition A.2 the following

Corollary A .3 . L et (at)÷ be a W ey l chamber in  at,. T hen  one has
(1) f o r any  (a, 1., )efaX  (at)+, V„,„ is irreducible.
(2) I f  (a, p)*(e, 2/')E ftx (a t)+ , then  ct.1,/ ,„ and are  mutually  in-

equivalent.

Thanks to Proposition A.2 and Corollary A.3, we can rewrite the right hand
side of (A.5), and get the  irreducible decomposition of V , as follows.

Theorem A .4 .  The representation L 2 -Ind7,77,,(1N.) admits the following direct
integral decomposition into th e  irreducible principal series representations cU,,„
(6E10, E (W) )

re)
(A.8) L2-Inn.(1N.)-= [IW I dim a. ] 0,, ,d

Especially, IWIclim a  is  the multiplicity of in  L 2 -Ind%(1N,„).

Pro o f . W acts simply transitively on Weyl chambers in  a t . S o  one gets
ce ce

r i)Z e cU dv=* wew3 (n4 ) +ap

For the second isomorphism above, we uesd Proposition A .2 (1). Accordingly,
the right hand side of (A.5) can be rewritten to that o f  (A .8 ) by noting that
dim w'a.=dim

A .2 . Unitary characters o f N . .  Before proceeding to decomposition of V e

fo r  general e ,  w e now  clarify th e  s tru c tu re  o f  th e  group  N I o f  unitary
characters of N ..

Let np, be the Lie algebra of N ., and let A(g ap) (see 1.1) denote th e  col-
lection of all roots of g  with respect to ap . Choose a positive system A+(g ap )
of A(g a p )  so that

(A.9) nm=E2EA+(o:o9)g(ap ; 2)7

where g(ap  ; 2) is the root space of 2. Denote by H  the set of sim ple roots in
A4- (g  a p ). Set g(H)=E2 E fig(a 9  ; 2). Then, by [18, Lemma 3.2] um, has a struc-
ture

(A.10) nm=g(H)ED[upi, um ] (as vector spaces).

Let v o Eg(H)*, the dual space of g (H ). Thanks to (A.10), we can, and do,
extend v o uniquely to a L ie algebra homomorphism 77 : tt.—Je. Through the ex-
ponential mapping, define a  unitary character -.--(770 ) E N 71, by

e(exp X)=exp A/ 4  v(X) (XE um).
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Clearly, the m ap 7 2 0 '- 4 e (7 )0 )  g iv e s  a bijective correspondence between g(H)* and
N .

For e = e ( 7 2 0 ) E N J „  set F(e)=. {2E11 ; no I (a ;  2) 0 }. We call e non-degenerate
if  F(e)=11, namely 7201gap ; 2)*0 for every ASH.

D efinition  A.5. T h e  induced  representa tion  cUe =L 2 -Incl% (e ) (or ' r =
C- -Ind%(e)) is  sa id  to  be  a  Gelf and-Graev representation (=GGR) of G if esN il,
is non-degenerate.

T o  any  subest F H, one can associate canonically  a  parabolic subgroup
PF P )  s u c h  th a t  <F> coincides w ith  the restricted root system  of its  Levi
subgroup LF=PFnOPF ( se e  [18, 1.2]). H e re  <F> i s  th e  sub-root-system of
A(g (4) generated by elements of F, and 0 is a Cartan involution of G (see 1.1).

For eEN 71,, le t Pe= L(e)AT$ b e  a Levi decomposition o f  /3 =-PF ( ..; )  s u c h  th a t
L(e)=LF (e). T hen N(e)= L(e)(1N. is  a maximal unipotent subgroup of the re-
d u c tiv e  g ro u p  L(e), and the restriction  IN(E) defines a  non-degenerate
charac ter o f  N(e). T h u s  w e  have associated to each esN,T, a  non-degenerate
character e'sN(e)t in  a  canonical way.

A.3. R eduction to  the case of GGRs. N ow  w e consider cUe  f o r  general
e E N 7 .  In order to  g ive  the irreducible decomposition of V e , we generalize our
argument in A.1 for e=1N,,, to  arb itrary  e so  far as possible.

Suggested by the  isomorphism of representations

(A.11) L2-Ind , m(e)=L2-Ina,e(L2-Ind (e)),

w e  try  to  d e c o m p o se  L 2 -Ind ( )  in to  irreducibles. T hen  one gets as in the
proof of Lemma A.1

(A.12) L2-IndkI(e)=P-Indfv(id)(e')01Ne.

H ere L 2 -InW ike') is  a  GGR of the reductive  g roup  L(e) (defined analogously
to  th a t of a  semisimple group). Now let

9
(A.13) L2-Ind )(e')= [inc (C0)] • cod pv ((o)

b e  th e  fac to r decomposition a s  in  Lemma 3.5. Then it follow s from  (A.11),
(A.12) and (A.13) that

(A.14) 94= L2 -Ind„,(e)= .f f a )  [me , (w)] • L 2 -Ina e(co01,e)dtte,(w).

The induced representations V (P)= L 2 -Inc17,e(o)01 N e) (o.,E L,.e)) a re  called the
generalized (unitary) principal series representations o f  G  a lo n g  P .  E v e r y
V  (Pe ) is expressed in  g en era l a s  a  d ir e c t  su m  o f  finitely m any irreducible
unitary representations of G.

Accordingly, the main step tow ard the explicit irreducible decomposition of
V e  is  now  reduced  to  the  problem of disintegrating the GGR L 2 -Ind ) (E ')  in to
irreducibles as in  (A.13).
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