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Necessary and sufficient conditions for the local
solvability of the Mizohata equations

By

Haruki NINOMIYA

§ 1. Introduction.

As is well known, there exists a  suitable C°°(R 2) function f (x ,, x 2) such that the
Mizohata equation

Oua u  m n u(xi , — f (x ,, x 2)ax, a.;
where n is a non-negative integer, does not have a distribution solution in any neigh-
borhood o f the  o rig in . B u t it seems the  necessary and  sufficient conditions on

.f (x„ x 2) for (1.1) to have a local solution are not yet known except for those of the
micro-local solvability (see Sato-Kawai-Kashiwara [6] and Htirmander [2]).

In this article, we are concerned with the  necessary and  sufficient conditions
on f (x ,, x 2) for (1.1) to have a 0  solution in a neighborhood of the origin.

Definition. W e say a  function f (x ,, x ,)  is  the admissible data for the local
solvability of (1.1) at the origin when (1.1) has a  0  solution in a neighborhood of
the origin.

Let 2  and S denote respectively an open neighborhood of the origin in 1r and
an open interval (— r, r) .  Throughout this article m denotes 2n+2 . Now, our
main result is stated thus:

Theorem A .  Assume that f(x,, x 2 ) C ° ( 2 )  and a x 2 f(x,, x 2) is Holder continuous
in D. Let f$(x, x ,) denote the function defined in D by

a „ f(t, x 2)dt .
-x,

Then, f(x ,, x ,) is the admissible data for the local solvability of (1.1) at the origin if
and only if there exists a positive constant 8 such that the function A L f(x 2) defined in
IV by

(8  f t  f l ( ( m Y1 )1/ m ' y$)  dy1dY2
J -a  Jo  y i -Fi(y 2 —x,)
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is analytic in (-8, 8).

According to this, from the integration by parts, for whatever function f (x 2)
such that f " (x 2)  is Holder continuous in  (5, f (x i , x 2) =- f(x 2)+ix ?" -2f ( x 2)  is  the
admissible data for the local solvavility of (1.1) at the origin. O n the other hand,
applying the same theorem to f (x i , x 2)-. . f ( x 2), w e get the following

Proposition B. A ssume that f(x 2) E C 2(5 ). T hen , f (x 2)  is  the admissible data
for the local solvability of (1.1) at the origin if and only if f(x 2) is analytic at .;= 0 .

Next, let us introduce the function Jilt, f(x 2) defined in RI. by

dy 2 f - dy
J —oc J o  yr/m+i(Y2-x0

provided that f (x i , x2) E o(2). Then, Theorem A can be restated thus:

Theorem A ' .  A ssume that f (x ,, x ,)eC (D ). T hen , f (x ,, x 2)  is  the admissible
data for the local solvability of (1.1) at  the origin if  and only  if LALf(x 2) is analytic
at x 2 =0.

Treves [9] showed that f (x ,, x 2) E C ,r(2 ) is the admissible data for the local
solvability of A/10(x1 , x 2)=f (x ,, x 2) at the origin when the function defined in 1r by

f(Y i, Y 2) d y i dy 2

yf12-ki(y 2 —x,)

is analytic at x2 = 0 .  We find that his sufficient condition is necessary. Namely,
we get the following

Theorem C .  A ssum e that f (x i , x 2) e 0 ( , ( 2 ) .  T h e  follow ing conditions are
equivalent.

( i )  f ( x i , x 2) is the admissible data for the local solvability of (1.1) at the origin.
( i i ) J a , f ( x 2) is analytic at x 2 =0.
(iii) A m f (x 2) is analytic at x 2 =0.
(iv) Q+ f (x ,, x 2) is real analytic at the origin.

where

f(Y 1' y 2 ) d Y 1 dy 2y rIm +i(y 2 —x2)

and

1 .̀Q+f(xi, x2) --=" 
2 r r ( 1 + 1 / m )  13

.* e i h n  de 55 exp ( — Q(x, Y)e)f(Yii, Y2)dYidY2

where Q(x , y )=(xr-kyr)Im -Pi(y 2 —x2). x,) was introduced by Hdrinander
[2; Proposition 26.3].)

Theorem A  is proved in §2, very elementally; Proposition B is proved in § 3;
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Theorem C is proved in § 4. Finally, in § 5, we notice the problem of existence of
C1 solutions of Lu=0 such that grad u*O, where L denote smooth complex vector
fields in R2. As an application, it is presented the necessary conditions for certain
Mizohata type equations to have such a solution. This concerns with L. Nirenberg
[5], F. Treves [8], and J. Sjiistrand [7].

§ 2. Proof of Theorem A.

Hereafter we say shortly .f(x i , x2) is the admissible data when it is the admissible
data for the local solvability of (1.1) at the  o rig in . First we remark this:

f (x i , x2 ) is th e  a d m is s ib le  d a ta  w h e n  a n d  o n ly  w h e n  t h e  function
, x i n i - 1

x 1 82 2 f(t, x 2 )dt is so.
0

Because: y=i(u — S
i f(t, x 2 )dt) for any C1 solution u of (1.1) is a  C1 solution of

(2.1) M„v(x,, x,) = x1 ax ,f(t, x2 )dt .

Conversely, — ivHT f(t, x 2)dt fo r any  C1 solution y of (2.1) is a  C1 solution
of (1.1).

Next we see the following

Lemma 2.1. Assume that g(x,, x 2 )  is  Hiilder continuous in D and even in x„.
Then, x?" - i g(x l , x,) is the admissible data.

From this and the above remark, we get the following:

Lemma 2 .2 . f(x i , x2 )  is the admissible data if  and only if  4." 4 -1 f 1 (x,, x2) is the
admissible data.

Proposition 2.3. Under th e  sam e assum ption a s  Theorem  A , furthermore,
assume that f (x i , x2 ) is odd in x,. Then, f (x i , x2 ) is the admissible data.

We omit the proof of Lemma 2.1, since it will be clear in the following argu-
m en ts . N ow , let us assum e that f (x i , x2 )  i s  the adm issible data. Then, from
Lemma 2.2, the equation M n  tr(x,, x2)=--x 1

.f $(x,, x,) has a C1 solution u in  a  neigh-
borhood of the o r ig in . Let u, be th e  odd part of u with respect to  x,. Then, it
holds that

au(2.2) au 0 + 0 =  x iO 4- ifs( x  x 2 )
Ox, ax,

in a neighborhood of the orig in . Hence, there is a suitable positive constant 8 such
that the function U  defined in 65 by U(x,, x2 ) =1,0 ((mx,)vm, x,) is C'(cT)) fl C1(co) and

8U . a u(2.3) — fl((inx i )vm, x2 )
ax, 8x2
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in 0.) where co= {(x,, x2); 0<x1<8, lx 2 1<a}  .  Notice that f l((mx,) 11m, x2 ) is Holder
continuous in 83. Making use of Stokes theorem, from (2.3) we have the following:

u(s, Y2) dy28
d-iy2—(Xi-FIX2)

(2.4) U (xi, xz)
1  If u ( Y 1 '  dY l+i2 7 r i kJ, y1 -  is —  ( x,+ix2) a

ins •r  ( 8   Pqn/Y0 1 Y 2 )   d
y 1

dy 2° UCY1' 8 )c l Y 1 )
1

22c J -8 Jo y i d-iy 2 —(x1 -kix,)Yld- i8 — (xl - k ix2)

in co. Since U(0, x2)=0, it follows that

At,f(x2) = U(ô, y 2 )   dy2— i8( (,3+ xU ( Y il ' a )) y i ( au+(iYi' x ) )41)  2-8 a +i (Y2 — x2)

in ( -8 , a). Whence it follows that A t,f(x2 ) is analytic in (-8, 8).
Conversely, let us assume that for some positive constant 8 A„,f(x 2) is analytic

in (-8, 8). Then, there exists a holomorphic function h(z) in a domain {z=x 1±ix 2 ;
I x, I <p , lx ,1<p l such that h(z)I x i =0 =A tzf (x 2)(p5__ a). By the way, we see the fol-
owing

Lemma 2 .4 .  L et v=v(x,, x 2 ) denote the function defined in Co by

—1
 f 8

 r   fs((nui)vm, Y2)  dy i dy 2

27r J -8 Jo y i d-iy 2 — (x,+ix,)

Then, it holds that ye C°(e-o) fl C l (co) and

ava v " ( m x i ) ,,,,,, x 2 )
ax, ax 2

in Q .

This follows from the well known theorem concerning the Beltrami equation
(see, for instance, R. Courant-D. Hilbert [1 ]). Now. set V = v h(z )1(27r). In view
of V(0, x2)=0, we see that V E 0 4 )  where colic= {(x i , x2); OS x i < p, 1 x2 1 <p } and

av av
+ i = Pam x i)", x 2)a x, ax 2

in

Finally, let us define the function u in a neighborhood .g) of the origin in the follow-
ing manner: I V(xr/m, x2)

u(xi , x2) — V(xr/m, x2)
i f  x2 0
if x1<0

where g =  {(x 1, x 2); xr< mp, 1 x21 < 101 . Since V(0, x2)=0, we see that u G  C (g ) .
It is evident that M„u(x,, x2)=x 2

1
. -" Mx,, x2) in g .  Therefore, from Lemma 2.2,

f (x ,, x 2) is the admissible data.  Q.E.D.

Remark 2 . 1 .  In the above arguments, the following too has been proved.

Proposition 2.5. A ssum e that g(x i , x 2)  is Holder continuous in  D .  Then,
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x1" 1 g(x1 , x2 )  is the admissible data if  and only if there exists a positive constant a
such that the function defined by

C8 f 8 gomyoon, yo—e—(ryi)vm, Y2 )  dy,c1Y2—8 JoY i  +  i(Y2—x2)

is analytic in ( -8 ,  a).

Remark 2 .2 .  The assumption of Holder continuity of 8x 2 f (x 1
, x2) is used only

in the proof of the sufficiency. The condition of the continuity of it suffices for the
proof of the necessity.

§  3 .  Proof of Proposition B.

The sufficiency follows from Cauchy-Kowalewskaja theorem. Thus we shall
prove the necessity. Take a CW(S) function a(x2) such that a(x2) -=1  in [—r/2, r/2].
Then, f(x 2 ) is the admissible data if and only if a(x2 )f(x 2 ) is so. Hence, hereafter we
can assume that f(x 2) e  C (S ) and, from Theorem A, for some positive constant
a (<r/2).

f 8 8 y  f '(Y 2 )  dy2dh
Yi+kY2 — x2)

is analytic in (—a, .

Lemma 3 . 1 .  L et I y2— x21 < 8 / 2 .  Then, it holds that

o lecni,„((xY221 yx :))1111": ++ SS,„(( xx22, Yy22))

f o r  OS y2 —x2 < 8/2
f o r  OS x2 — y2 > a/2

where

V e in s ( _Onplim—n
Cm  —  dt—E  (p : a constant, 1<p52), c,„*0

ot+ i .=0 11m—n

Sni(X2, Y 2 ) =  i)" ( Y 2 —  X
)n= 0 11m—n a

P ro o f  It is trivial when x2 = y 2 . Let 0<y 2 —x2 < 8 /2 . T hen ,

0 y,±i(y2—x2)dYi (Y2—x0vm (8/(y
2 -. 2 ) t

8

y ib n

J0 t+ i 
dt

= (Y2 — X2) 1 I m t i h n d t  +  " y 2 - x 2 ) dt)
.0 t+i

P t i h n  

= CY2 — X2Y' m+  V ( Y 2 - z 2 ) tvm- 1 (— d t)
o t-1-1 n=0 p

= c„,(y 2 — x2 ) 11m+S„,(xi , y2)  (We take a constant p such that 1<pS2, c„,*0) .

In case of 0<x2-3/2<13/2,
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Y 
1/m

0  y i  i (  y 2 x 2 ) 1 2 2, dt))11m (  P f i lm  dt+ç8(12-Y2)
o f — i Jp t — i

= em(x2— Y2)1/m S . (x 2 , Y2)

From this, making use of the integration by parts, we get the following

Lemma 3.2.

r2 '8 /4
Cm f (Y 2)(X 2 Y 2) adY2— b-m i ' f (Y 2)(Y 2 —  X2YdY2

-8/4 X2

is analytic in (-814, 8/4) where a= 1/ni—i.

Thus we get the following

Lemma 3.3.

exp ( i x 2 e ) J ( e ) { ( e „ , - - e , „ )  cos (r1(2m))—i(cm + 4 )  sgn e sin (n/(2m))1 e I -iimd e

is analytic in (-814, 814).

P ro o f  Considering that f (x 2) C ((g), we have

„

Cm Lft,y2Rx,__yoody2_em  fuo( Y2—  X2)a dY2

=  C m  , f ( Y 2 ) - H (X 2  y2) x2—y2 I a dY2— ens .f(Y 2)( 1—  II(X 2 y 2)) I x2—y2 adY 2

(11(x) denotes the Heaviside function.)

(c2,+ 4 )( f* 1 1 (x)ixi a )(x2 ) (f* ix i a )(x 2)

— Cm+ e n,e i x 2 E . f 4 x )ix ia  d e c m eix2E.f*Ixiacl

— C m +rn  e ix 2V (e) exp {—ri/(2m) sgn e}a! ICI r r i b u de
"Ix

— m e i  x 2t f(e) 2 cos (r 1(2m))a! IC i -ihnd e (a! r  (a+ 1))

=  a! -e i l2t,f(e)-((c,„—c- „,) cos (7r1(2m))— sgn e sin (r/(2m)))- I CI - vmd e
2r

On the other hand, it is evident from Lemma 3.2 that the above first term is
analytic in ( -8/4, 8/4). Thus the lemma is proved.

Now, set Q(C)= {(c„, — e„,) cos (r/(2m)— i(c„, +4) sgn e sin (r/(2m)))-  lc I - v. .  Let
ft(x) be a C ( R ')  function such that fi(x)=0 in [-8 /2 , 8/2] and 9 (x)=1 outside of
[- 8 ,  8 ] .  Then, set p(C)=fi(f)Q(C). W e see p(e)eS T !ohn. Denoting by P  the
pseudo-differential operator whose symbol is p(e), we see that P is elliptic. F r o m

1Lemma 3.3 it follows that pf(x 2)— e1z 28p(e)j()(le. is analytic in  (- 8/4, 8/4).
27r
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Thus we can conclude that f (x 2) is analytic in (-8/4, 674) because of the analytic-
hypoellipticity of P. Q.E.D.

Remark 3 . 1 .  Let f ;/ (x 2)  be Holder continuous in  J(k =0 , 1 , N ) .  Then,

lxlmfk (x2 XVg+i)in f X2 ) }  is the admissible data.
k= 0

km+ l

§  4 .  Proof of Theorem C.

Let f (x ,, x 2) C ( 2 ) .  We get the following in relation to all„,f(x2) and Am f (x 2).

Lemma 4 . 1 .  atf(x2)—iA,,,f(x2).

Proof. D enote by F(y,, 3 ,
2 ; x 2 ) 11(yr md - i(y 2 — x 2)). Then, it follows from

Fubini theorem and the integration by parts that

VYT- 1 dYi ( V I  f(t, y2)dt)F(Yr y 2 ; xody2

0 UY2 -Y1

Yin - 1 dy 1( f(t, Y 2)dt)(F(Y 1 ,  Y2> X 2D2 dY2
0

-  a y i
cly2

o  

(
a y ,

F(Y1, .Y2; x2) f(t, Y 2)dt)dY i

i dy2( f ( Y i ,  Y2) - Lf( — .Y1, Y O)F(Y i, .Y2; x2)dY1 iAmf(x2) •
0

Next, we note that Q.,f (x l , x 2 )  is continuous in 122 . In relation to  Q+ f(x„, x2 )

and A m f (x 2), we get the following

Lemma 4.2.

f (x ,, x 2 )dx 1 = Amf(x2).

Proof. In  view of Q+ f (x 1 , x 2)=Q + f ( — x 1 , x2), making use of Fubini theorem,
we have

x 2)dx 1 =  lim 2 Q4 .f (x 1 , x 2)dx 1
c

lim km  f ( y i , y 2)dy,dy 2 e - Forh; s2) t de evmdx,
,+0 + 0

(km =-11(7rr(1+11m))

_ mwm-1 umdtk m l im  f ( y  y 2)dy,dy 2F  o i ,e - t tY2 ; .2)t de
0  

= 55f (Y i' y2)dy1dy2 F ( Y r Y2  ; : 2 )  t(F (11m)— c 'U n g t i l m 'd t ) d e

= myna lz  A m f (x 2)—milm - 1 55f( i 'y i )dy,dy 2
-  eFor Y2  ; : 2)  t d e r   e - it'1 "2 - 'cit
O

Ix A m  f(x 2) .

at,f ixo =
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On the other hand, we get the following

Lemma 4.3.

Q +flxi, x2) = .Y r i {V1 8  .f(t, Y2)dt}Q(x, y ) - 1 - ilmdyidY2 2 .
0  8y2

Proo f . F o r  s im p lic ity , w e  set Q = Q (x, y ) ( = (xi +Yr)Inl - ki (Y2—  x2)).
Making use of Fubini theorem and the integration by parts, we have:

e- Qtlyr -1
8

8
y 2  f it, Y2)dt}dyidy2 e-QE 0

8
y 2 f(t, Yz)dt}dh

r
= je jy r 1 dy1

Y3 
f (t, y 2)chl dy2 = if (  

 8  (e -Q E) Y1f(t, y 2)dt)dy i

8Y1 0

= e 'E f 0 , 1, Y2)dY142.

Whence it follows that

1f f
 ( Y2)dt)dYidY2Q + f i x i ,  x 2 )  —

8

2 r if (1 + 1 1 m ) ' 11m J 1  e  ‘ 1  \ Y r  J o  8y 2
f

t,

1y r --1 V i
a f ( t ,  y 2)dt dyidy2.

27ri °  8 Y2

Now, it is evident from Theorem A' and L em m a 4 .1  th a t (0 (ii)( iii) . S in ce
Q+ f (x i , x 2) is real analytic at x 1 * 0 , (iv) implies (i) because of Lem m a 42 Thus w e
have only to prove that (i) implies (iv). That is as follows: as is remarked in § 2,
(i) implies that there is a  C I  solution u of the M izohata equation M„u(x l ,  x2)—

xi  a2n+1
X i f ( t ,  x 2)dt in a neighborhood a) of the origin. We can take a)—(—S, )x

o 8x 2

(--(3, 8) where ô is a positive constant. Then, it follows from Lemma 4.3 that

27riQ+f(xi, = yr - 1  V i  
 a  f (t, yodt dyidy2+

R2 \ . 0 0 Y2

YOQ- l - v m dYidY2

The first term of the righthand side is real analytic in  a). M a k in g  use of Fubini
theorem and the integration by parts, we see that the second term of the righthand
side is expressed thus:

'.8  fu(ô, y 2 ) Q ( x ;  ô , .Y2)— u(— a, YOQ(x; — a, Y2)1 dY2+
8

Y rifu (v i, a)Q(x; y , ,  (1)—u(YI, —a)Q(x; yl, —(3)}dY1-8

where Q(x; y 1, y2 ) denotes 1/((xT-kyr)Im-Fi(y2—x2))11m.
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Whence it follows that Q ,f (x „ x 2) is real analytic in co.

Remark 4 .1 .  Notice that

f '
a

Y r . ' 3
o  8 y 2

f(t, yOdt0-1-vm dy i dy ,< 0 0 f o r  a n y  (x„ x2) e  R2  .

§  5 . An application.

In this section, we notice the problem of the existence of C' solutions such that
grad u * 0  to the equation of the form

M u (x ,
Ou  

+ i a ( x ,  y )(5.1) Ou — 0
Ox Oy

where a(x, y) is assumed to be realvalued and C - (R2). When a(x, y) is real analytic,
(5.1) has a real analytic solution such that grad u # 0 . When it is C - , for instance,
if it is non-negative (non-positive) in a neighborhood of the origin, (5.1) has such a
solution in a neighborhood of the origin (H. Ninomiya [4]). But, L. Nirenberg [5]
constructed the example which admits only constant C' solutions in any small neigh-
borhood of the origin. That is one of the Mizohata type equations; here we call
the equation (5.1) Mizohata type when a(x, y ) is of the form

(5.2) a(x, y ) = x 2 2 + 1  b(x, y)

where n denotes a non-negative integer and b(x, y) is a nonvanishing realvalued C -

function. His example is of the form:

(5.3) au +ix ( 1 +4 ( x , y ) ) : u
y  —  0

ex

w here (x , y ) is  a suitably choosen realvalued C '  function which is even in  x.
Hereafter, let (5.1) be Mizohata type. In relation to (5.3), we shall set

be(x, y ) =  the even part of b(x, y ) in x

be(x, y ) =  the odd part of b(x, y ) in x .

Notice that be(x, y ) * O . First, we see the following

Proposition 5 .1 .  A ssume that b„(x , y )a-0. T hen, (5.1) has a  C 1 solution u,
such that grad u 0, in a neighborhood of the origin.

The proof is omitted (see [4]). From this, we see that it is the very problem only
when be(x, y )  $ O in any small neighborhood of the origin. Then, as an application
of Proposition 2.5, we get the following

Proposition 5 .2 . A ssume that b e(x, y ) is real analy tic. In order that (5.1) has
a C ' solution u, such that grad u$0, in a neighborhood of  the origin, it is necessary
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that there exist some positive constant 8 and some nonvanishing C(a)) (a); a neighbor-
hood of the origin) function 0(x, y) which is even in x such that

Sa
 r   ( 111(..vp Y be (!F (Y  Y O )

 d y , d y 2

Yi+ i(Y2 — x)

is analytic in ( - 8 ,  d); Vi is a suitably choosen analytic diffeomorphism from a neigh-
borhood of the origin onto one.

The proof is not difficult. Since the idea is same, in relation to Nirenberg's
equation (5.3), we shall prove the following

Proposition 5 . 3 .  Assume that a(x , y )= x(1 xa(x , y)) where a(x, y) is a realvalued
Ce° function which is even in x. Then, if (5.1) has a C71 solution w ith grad u*0 in a
neighborhood of the origin, there exist some positive constant 8 and some non vanishing
continuous function 0(x, y) which is even in x  such that the function defined by

( 8 ( 8   0 (GY0112
,  y2 )a((2y,)0 , v

- 2 'Y  1 2  dy 1 dy 2
– 8 Jo -371+i(Y2—x)

is analytic in ( - 8 ,  a).
P ro o f  Let u be such a solution. Set u e = th e  even part of u in x and u 0 —the

odd part of u in x .  Then, we have

(5.4) auO u a u  mo ujx, y) -a , ° +  ix  x (  ix a ( x ,  y) e) .
8x ay ay

Set (1)(x, y)=— 
 O t t

e. Then, 0(x , y) is nonvanishing and continuous in a neighbor-ay
hood of the origin, and even in  x. Therefore, we get the conclusion by virtue of
Proposition 2.5 (and Remark 2.2).

R e m a r k  5 .1 .  Under the assumption that be(x, y) is real analytic, the necessary
condition for (5.1) to  have a nonconstant C' l  so lu tion  in  a  neighborhood of the
origin can be derived by the above m ethod. That is the same as the above pro-
positions except that the function 0(x, y) is not identically null in place of the con-
dition that it is nonvanishing. Then, we can verify that the Nirenberg's equation
(5.3) admits only constant C ' solutions in any small neighborhood of the origin.
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