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Necessary and sufficient conditions for the local
solvability of the Mizohata equations

By

Haruki NINOMIYA

§ 1. Introduction.

As is well known, there exists a suitable C*(R?) function f(x,, x,) such that the
Mizohata equation

(1.0 My, x) = it 28— i, ),
ox, ox,

where # is a non-negative integer, does not have a distribution solution in any neigh-
borhood of the origin. But it seems the necessary and sufficient conditions on
Sf(x;, x,) for (1.1) to have a local solution are not yet known except for those of the
micro-local solvability (see Sato-Kawai-Kashiwara [6] and Hormander [2]).

In this article, we are concerned with the necessary and sufficient conditions
on f(x,, x,) for (1.1) to have a C? solution in a neighborhood of the origin.

Definition. We say a function f(x,, x,) is the admissible data for the local
solvability of (1.1) at the origin when (1.1) has a C! solution in a neighborhood of
the origin.

Let £ and 4 denote respectively an open neighborhood of the origin in R? and
an open interval (—r, r). Throughout this article m denotes 2n+2. Now, our
main result is stated thus:

Theorem A. Assume that f(x,, x,)EC%(2) and 3,,f(x,, x,) is Holder continuous
in 8. Let f¥(x,, x,) denote the function defined in 2 by

S" 8,,1(t, x)dt .
ca

Then, f(x,, x,) is the admissible data for the local solvability of (1.1) at the origin if
and only if there exists a positive constant 8 such that the function A%, f(x,) defined in
R! by

82 fHmy)Y™, y,)
S-ago y1+i(;’z_xz) dyldy2
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is analytic in (—9, d).

According to this, from the integration by parts, for whatever function f(x,)
such that f”(x,) is Hélder continuous in 9, f(x,, x,) = f(x,)+ix3"*2f'(x,) is the
admissible data for the local solvavility of (1.1) at the origin. On the other hand,
applying the same theorem to f(x;, x,)= f(x,), we get the following

Proposition B. Assume that f(x,)€ C¥YJ). Then, f(x,) is the admissible data
Jor the local solvability of (1.1) at the origin if and only if f(x,) is analytic at x,=0.

Next, let us introduce the function A, f(x,) defined in R' by
oo oo m-—1 ¢}
dy S W O v)) dy
S-'” Yo ytimti(y—x)
provided that f(x,, x,)€ Cj5(2). Then, Theorem A can be restated thus:

Theorem A’. Assume that f(x,, x,)€C¥82). Then, f(x,, x,) is the admissible
data for the local solvability of (1.1) at the origin if and only if A%, f(x,) is analytic
at x,=0.

Treves [9] showed that f(x;, x,)€ C7(82) is the admissible data for the local
solvability of Myu(x,, x,)=f(x,, x,) at the origin when the function defined in R! by

) yf/g‘fiiy?lxz)

is analytic at x,=0. We find that his sufficient condition is necessary. Namely,
we get the following

dy,dy,

Theorem C. Assume that f(x;, x,)ECE(2). The following conditions are
equivalent.

(i) f(xy, x;) is the admissible data for the local solvability of (1.1) at the origin.

(i) A f(x,) is analytic at x,=O0.

(iii) A,,f(x,) is analytic at x,=O0.

(iv) Q4 f(x,, x,) is real analytic at the origin.

where
= SO 1)
e e e L
and
N N s _
0oy 3) = [ et exp (0 20O by,

where Q(x, Y)=(xT+y!)/m+i(y,—x,). (Q4+f(x,, x,) was introduced by Hormander
[2; Proposition 26.3].)

Theorem A is proved in § 2, very elementally; Proposition B is proved in §3;
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Theorem C is proved in §4. Finally, in § 5, we notice the problem of existence of
C! solutions of Lu=0 such that grad u=0, where L denote smooth complex vector
fields in R%. As an application, it is presented the necessary conditions for certain
Mizohata type equations to have such a solution. This concerns with L. Nirenberg
[5]. F. Treves [8], and J. Sjostrand [7].

§2. Proof of Theorem A.

Hereafter we say shortly f(x;, x,) is the admissible data when it is the admissible
data for the local solvability of (1.1) at the origin. First we remark this:
f(x;, x,) is the admissible data when and only when the function

X
X3! S l6,,zf(r, x,)dt is so.
0

Because: vsi(u—sxlf(t, x,)dt) for any C* solution v of (1.1) is a C* solution of
0

@.1) Myv(a, ) = 50 |7 0,,/(0, 3

Conversely, uE—iv—l—Sz’f(t, x,)dt for any C! solution v of (2.1) is a C* solution
0
of (1.1).
Next we see the following

Lemma 2.1. Assume that g(x,, x,) is Hodlder continuous in 2 and even in x,.

Then, x3*+1g(x,, x,) is the admissible data.

From this and the above remark, we get the following:

Lemma 2.2. f(x,, x,) is the admissible data if and only if x3"*' f¥(x,, x,) is the
admissible data.

Proposition 2.3. Under the same assumption as Theorem A, furthermore,
assume that f(x,, x;) is odd in x,. Then, f(x,. x;) is the admissible data.

We omit the proof of Lemma 2.1, since it will be clear in the following argu-
ments. Now, let us assume that f(x;, x,) is the admissible data. Then, from
Lemma 2.2, the equation M, u(x;, x,)=x3"*'f¥x,, x,) has a C* solution u in a neigh-
borhood of the origin. Let u, be the odd part of v with respect to x,. Then, it
holds that

(2.2) %’Hx%"“ Oty _ P ¥, x,)
X, 0x,

in a neighborhood of the origin. Hence, there is a suitable positive constant é such
that the function U defined in @ by U(x,, x,)=ug((mx,)¥™, x,) is C%(®@) N C¥(®) and
/U

.3) 80U 19U _ mymxy)m, x)
ox, Ox,
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in @ where o= {(x;, x,); 0<x,<9, | x,| <6}. Notice that f¥((mx,)¥", x,) is Holder
continuous in @. Making use of Stokes theorem, from (2.3) we have the following:

— l 8 U(y i) _6) ; 8 U(a* y)
24)  Uxy X)) = — 1 d =t
@4 Ul x) = - (so ity S-s S iy eyt ixg)
[ Y0nd _g)_ L[ (" L™ s
8 y,+i0—(x;,+ix,) 2z J-s Jo y+iy,—(x,+ix,)

dydy,

in . Since U(0, x,)=0, it follows that

' _(® U@,y U —0) U, 9)
Anfr) = S-a 8+£(J’2_X2)dy2 150(5’1—;(6"‘3(2) yl'l'i(al_xz) >dyl

in (—9&,8). Whence it follows that A%, f(x,) is analytic in (—9, 0).

Conversely, let us assume that for some positive constant 6 A, f(x,) is analytic
in (=0, 6). Then, there exists a holomorphic function A(z) in a domain {z=x,+ix,;
| %1 <o, |x,] <o} such that h(z)|,o=A4%f(x,) (0=8). By the way, we see the fol-
owing

Lemma 2.4, Let v=v(x,, X,) denote the function defined in & by

—1 (% FHOny )", y,) dv.d
2z S—sgoyl—kiyz—(xx-i-ixz) e

Then, it holds that ve C%(&) N CYw) and

O i pmx ) k) in w.
ox, Ox,
This follows from the well known theorem concerning the Beltrami equation
(see, for instance, R. Courant-D. Hilbert [1]). Now, set V=v+h(z)/(2z). In view
of ¥(0, x,)=0, we see that V & C{w¥) where of={(x,, x,); 0= x,<p, |x,| <o} and

9

ov v
X

= fH(mx,)'™, x,) in of.
ox,

0

Finally, let us define the function u in a neighborhood & of the origin in the follow-
ing manner:

V(xt/m, x,) if x,=0

WD) =1 pmim x) if x<0

where D={(x,. x,); x'<<mp, |x,|<p}. Since V(0, x,)=0, we see that uc C}(9).
It is evident that M,u(x,, x,)=x3"*!f¥x,, x,) in 9. Therefore, from Lemma 2.2,
S(x;, x,) is the admissible data. Q.E.D.

Remark 2.1. In the above arguments, the following too has been proved.

Proposition 2.5. Assume that g(x,, x,) is Hdlder continuous in 2. Then,
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x3"*g(x,, x,) is the admissible data if and only if there exists a positive constant &
such that the function defined by

5o g((m)’l)l/m’ J’z)_g(—(m}’l)vms V2)
S" S“ n+i(y,—x,) B1dys

is analytic in (—0, 0).
Remark 2.2. The assumption of Holder continuity of 8,, f(x;, x,) is used only

in the proof of the sufficiency. The condition of the continuity of it suffices for the
proof of the necessity.

§ 3. Proof of Proposition B.

The sufficiency follows from Cauchy-Kowalewskaja theorem. Thus we shall
prove the necessity. Take a Cg(J) function a(x,) such that a(x;)=1 in [—r/2, r/2].
Then, f(x,) is the admissible data if and only if @(x,)f(x;) is so. Hence, hereafter we
can assume that f(x,)€ C#(J) and. from Theorem A, for some positive constant
d (<rf2).

5 (3 Vm £
S S _J’I__._L(_J’Ldyzdyl is analytic in (—8, 8) .
-8Jo y,+i(y,—x;)

Lemma 3.1. Let | y,—x,|<6/2. Then, it holds that
Ss yilm —dy, = { (Y2 %)™+ S0(Xz0 ¥2) for 0=y,—x,<d/2
0 Yy +i(y,—x;) Cn(X— Y)Y+ S (x5, ¥2) Jor 0=x,—y,>0/2

where

- pylm fad (_i)"pllm-n .
=\ —dt—3 25 (p:aconstant, 1<p=2), ¢, *+0
or4i »=0  1/m—n

Sp(xy y5) = 0™ % 15’;_’_); (J’z;‘ xz)"

Proof. 1tis trivial when x,=y,. Let 0<y,—x,<d/2. Then,
8/(95=12) {Um

sc—LdJﬁ = (J’2_x2)um S —
01 +i(y,—xp) 0 t+i

P 4lm 8(y,—x,) 4 1/m
= (yz‘xz)vm(g £ , t+$ 2 t_-. t)
Jot+i ? t4i

b Um o (8(yyxp)
= Qe ({5 [0 iy )
ot4i n=0Jp
= cp(y,—X)""+S,,(x;, ¥,) (We take a constant p such that 1<p=2, ¢, *0).

In case of 0<x,—y,<9/2,
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& 1/m b 4VUm §(x,—~y,) t1U/m
=2y, = oy ([P e |71 )
o Y, F+i(y,—x,) ot—i ) t—I

= ém(xz_yz)l/m—l_sm(xz’ yz) .
From this, making use of the integration by parts, we get the following

Lemma 3.2.
£ ‘ 8/4 .
en (" TNy dyi—en | FrD(remsdy
- .
is analytic in (—0/4, 6/4) where a=1/m—1.

Thus we get the following

Lemma 3.3.
S exp (z'xzf)f(f) {(c,,—¢,) cos (x|(2m))—i(c,,+¢,,) sgn & sin(z/(2m))} | €| "Vmd ¢

is analytic in (—0/4, 6/4).
Proof. Considering that f(x,)€ C¥(J), we have

| 10Ny dyi=en | SON i r

= Cu Sf(.vz)H (=) | x—y, | "dy,—¢,, Sf( y)(1 = HOt— ) | x,— ¥, | “dy,
(H(x) denotes the Heaviside function.)
= (e FE)(f+H(X) [ x] ) (x)— &, (fi| x] ) xz)

= c,,,’)_—}—E,,,_ S st (&) exp{—mi/(2m) sgn E}al|&| " Vnde
LT

— s et £(£)2 cos (x/Qm))al || Vde (al =T (a+1)

= -‘2% S eixzef(f){(cm—é,,,) Ccos (ﬁ/(Zm))—,(cm _|_ém) sgn & sin (75/(2111))} |E l _l/”'df .

On the other hand, it is evident from Lemma 3.2 that the above first term is
analytic in (—06/4, 6/4). Thus the lemma is proved.

Now, set 0(&)= {(c,,—&,,) cos (z/(2m)—i(c,,~¢,,) sgn & sin (z/(2m))} | €| ™. Let
B(x) be a C=(R") function such that B(x)=0 in [—§/2, §/2] and B(x)=1 outside of
[—&, 8]. Then, set p(&)=RB(&)O(£). We see p(6)eSty¥™. Denoting by P the
pseudo-differential operator whose symbol is p(§), we see that P is elliptic. From

Lemma 3.3 it follows that Pf(xz)=—2—1—— S ei%2tp(E)f(£)dE is analytic in (—8/4, 8/4).
Y4
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Thus we can conclude that f(x,) is analytic in (—0/4, 6/4) because of the analytic-
hypoellipticity of P. Q.E.D.

Remark 3.1. Let f4’(x,) be Holder continuous in J(k=0, 1, -+-, N). Then,

é {x'{’” filxe)+—L— xgtrom £ ,’,(xz)} is the admissible data.
k=0 km-+1

§4. Proof of Theorem C.
Let f(x;, x,) EC¥(2). We get the following in relation to A, f(x,) and A4,,f(x,).
Lemma 4.1. A, f(x;)=iA,, f(x,).

Proof. Denote by F(y,, y,; X,) l/(y7'/m4i(y,—x,)). Then, it follows from
Fubini theorem and the integration by parts that

At = § v, {72 (7 7030t )Py xpa,

= 8y, \J-y

=i [T (" suspan@o, v oy,
0 —eo )y

I et L 6 ¥y
= —i{" @ (2 FOu a7 0 vat i

=1 Stmdyz S: (f1 y) =21 yDE(1, yos x)dy, = i4, f(X,) .

Next, we note that Q, f(x,, x,) is continuous in R%. In relation to Q. f(x;, x,)
and 4,,f(x,), we get the following

Lemma 4.2.

S—,, Q.4 fxy, x)dx, = m'" [z A, f(x,) .
Proof. 1In view of Q. f(x;, x,)=0.,f(—x,. x,), making use of Fubini theorem,
we have

[~ 0. fon. xpdx, = tim 2 "0 st xax,

= lim k,, SSf(yl, ¥2)ay,dy, s: e~ FOpri st g S e *E/m fV'"dx,

>0y c

k,=1/(zI"(141/m))

= m'" 1k, lim ng(yl, Yo)dy,dy, jw e~ FOuyys xE & S ; e~ttim gy
>0, 0 c"Efm

o0 c™Efm
— m¥m1k lim SS T y)dv,dy, S e Fous YD (1 /m)—S o=t 1Ym=1g\de
>0, 0 0

c"e/m

— i)z A, f(x)— "k, lim SS/( Yo y,)dyldyzrenwz ; *z)EdES e~ trim=1gy
>0, 0 0
= mllm/z Amf(xz) .
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On the other hand, we get the following

Lemma 4.3.
m- 19 —i=Um
0t 39 = 5= ([ {12 1t vt} @ . 3+ mdy,dy,.
2mi o dy,

Proof. For simplicity, we set Q= Q(x, y) (=GT+yD)/m+i(y,—x,)).
Making use of Fubini theorem and the integration by parts, we have:

, y
SS e 9 {yi"'1 S li—f(t, Yot }dyldyz = S yin-ldyl g{s ’e-QG _—a_f(t’ vt }dyz
0 3y, 0 0y,

=it [ ey, (oo e, yoaryay, = =i [ (% (=9 {110, ypae )y,

i&
’SS e % f(yy, y)dy,dy,.
Whence it follows that
1 ey - m-1(’1 0
0.ty x) = b (e ([ et (32 [ 22 pee v ayuay
2

2zil(1+41/m) Jo

_ 1 m-1 N1 a -1-Ym
N — f{t, yp)dt Q dydy, .
o 9y,

2ri

Now, it is evident from Theorem A’ and Lemma 4.1 that (i)Z(ii)<=(iii). Since
Q. f(x,, x,) is real analytic at x;==0, (iv) implies (i) because of Lemma 4.2. Thus we
have only to prove that (i) implies (iv). That is as follows: as is remarked in §2,
(i) implies that there is a C* solution « of the Mizohata equation M,u(x,, x,)=

x
X3+t S ! —a—a—f(t, x,)dt in a neighborhood @ of the origin. We can take o=(—8&, 6) X

(—46, &) where 0 is a positive constant. Then, it follows from Lemma 4.3 that

270, f(%), X)) = SS ot So’% S, y)dr Q71" Vmdy, dy,+
@ 2

R\
+SS M,u(y,, y)Q~'"Vmdy,dy,.
The first term of the righthand side is real analytic in . Making use of Fubini

theorem and the integration by parts, we see that the second term of the righthand
side is expressed thus:

S: {u(@, y)O(x; 8, y)—u(—0, y2) Q(x; —8, y))}dy,+
i Ss_syi”"{u(yl, 0)Q(x; yy, O)—u(yy, —0)Q(x; y1, —0)}dy,

where Q(x; y,, y,) denotes 1/((x +y1)/m~+i(y,—x))V™.
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Whence it follows that Q, f(x,, x,) is real analytic in ®.

Remark 4.1. Notice that
N

§5. An application.

r Syl aif(t, YAt Q™" | dy dy,<eo  forany (¥, x)ER.
0 0),

In this section, we notice the problem of the existence of C* solutions such that
grad u==0 to the equation of the form

3.1 Mu(x, y)Eé-LL-l-ia(x’ y)_ai =0
ox ay

where a(x, y) is assumed to be realvalued and C*(R?). When a(x, y)is real analytic,
(5.1) has a real analytic solution such that grad ¥3=0. When it is C*, for instance,
if it is non-negative (non-positive) in a neighborhood of the origin, (5.1) has such a
solution in a neighborhood of the origin (H. Ninomiya [4]). But, L. Nirenberg [5]
constructed the example which admits only constant C! solutions in any small neigh-
borhood of the origin. That is one of the Mizohata type equations; here we call
the equation (5.1) Mizohata type when a(x, y) is of the form

(5.2 a(x, y) = x*"*1b(x, y)
where n denotes a non-negative integer and b(x, y) is a nonvanishing realvalued C*
function. His example is of the form:
(5.3) Bu i (1x(x, y) 2L = 0
ox oy
where ¢(x, y) is a suitably choosen realvalued C§g function which is even in x.
Hereafter, let (5.1) be Mizohata type. In relation to (5.3), we shall set
b,(x, y) = the even part of b(x, y) in x
b,(x, y) = the odd part of b(x, y) in x .
Notice that b,(x, y)5=0. First, we see the following

Proposition 5.1. Assume that b(x, y)=0. Then, (5.1) has a C* solution u,
such that grad u=£0, in a neighborhood of the origin.

The proof is omitted (see [4]). From this, we see that it is the very problem only
when b,(x, y)==0 in any small neighborhood of the origin. Then, as an application
of Proposition 2.5, we get the following

Proposition 5.2. Assume that b,(x, y) is real analytic. In order that (5.1) has
a C! solution u, such that grad u==0, in a neighborhood of the origin, it is necessary
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that there exist some positive constant 8 and some nonvanishing C%(w) (w: a neighbor-
hood of the origin) function ®(x, y) which is even in x such that

R IO LICACN))
S 3 So yll+2i e LYy, dy,

is analytic in (—0,0); ¥ is a suitably choosen analytic diffeomorphism from a neigh-
borhood of the origin onto one.

The proof is not difficult. Since the idea is same, in relation to Nirenberg’s
equation (5.3), we shall prove the following

Proposition 5.3. Assume that a(x, y)=x(14xa(x, y)) where e(x, y) is a realvalued
C= function which is even in x. Then, if (5.1) has a C* solution with grad u=£0 in a
neighborhood of the origin, there exist some positive constant § and some nonvanishing
continuous function @(x, y) which is even in x such that the function defined by

Ss 5 2y, y)a(y)?, y it dy,dy,
-8Jo yl+i(y2_x)

is analytic in (—0, 0).

Proof. Let u be such a solution. Set u,=the even part of u in x and u,=the
odd part of u in x. Then, we have

5.4 Myu,(x, y)E%—l— ix Ou, _ x(—ixa x, ) au,) .
ox oy oy

Set O(x, y)=—g—u‘. Then, @(x, y) is nonvanishing and continuous in a neighbor-
y

hood of the origin, and even in x. Therefore, we get the conclusion by virtue of
Proposition 2.5 (and Remark 2.2).

Remark 5.1. Under the assumption that b,(x, y) is real analytic, the necessary
condition for (5.1) to have a nonconstant C! solution in a neighborhood of the
origin can be derived by the above method. That is the same as the above pro-
positions except that the function @(x, y) is not identically null in place of the con-
dition that it is nonvanishing. Then, we can verify that the Nirenberg’s equation
(5.3) admits only constant C* solutions in any small neighborhood of the origin.
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