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On first variation of Green's functions
under quasiconformal deformation

By

Masahiko TANIGUCHI

Introduction

T he  purpose o f  th is  no te  is to  give variational fo rm ulas fo r G reen 's functions on
a rb itra ry  R iem ann surfaces under quasiconformal deformation, which contains known
formulas such a s  those due to  Sontag [7], G uerrero [3] and M aitani [5].

A fter som e prelim inary discussion on quasiconform al m appings i n  § 1 ,  w e w ill
prove the m ain form ulas in § 2 and § 3 (Theorem s 2 and 3).

§  1 .  A  surgery o f quasiconformal mappings

L e t U  be the  unit disk {1z1<1} a n d  U '= {  Iz I  < r< 1 } . Then w e can define a  sur-
gery  o f  a  given quasiconformal mapping f  of U onto itself such that f(0)=0 a s  follows.

L e t  p=p f  b e  th e  c o m p le x  d ila ta t io n  o f  f ,  and  first decompose f  a s  f e f i  w ith
quasiconformal mappings f , = /7(' and  f 2 =R‘ o f  U o n to  i t s e lf  s u c h  th a t  th e  complex
dilatations p i - ,  and p f 2  a r e  equal to Plcu_tr) and (plu , •(f 1)d(71)2)°(f i) -1 ,  respectively,
f ,(0)=0 (hence f 2 (0)=0) a n d  f 2 (1)=1.

N ext le t  H  be th e  upper half p lane in  C , and set

2r(z)=exp(27ri•z).

Then f ,  can be lifted  to  a quasiconformal mapping F =F 1'  o f  / /  on to  itse lf  such  tha t
F (0)= 0  and  7r. F= fe7r. Since w e can find a  c o n s ta n t  r '< 1  depending only on  r and
a  given h (<1) such that f , (U ')  is contained in  f lz 1 < r 'l whenever llpll (=ess.supulp1)

F  is conformal on {z / i: 0 < y < c i  with c=(-1/27r)• log  r ', w here  z = x + iy .  Here
w e m ay also assume tha t c< 1 .

Now set
F° (z)= F(z) on {0<y<c/3} ,

 3 )  

z +

 (2cc/3/3) — y  

F(z) o n  1 c /3  y  2 c /3 1 ,

—z on 2 c/3< y 1.

T h e n  c le a r ly  F ° (0 )= 0  a n d  F°(z+1)=F°(z)-1-1, hence  F °  can be projected to a  self-
mapping S (f 2)  o f  V  f ix in g  0  an d  1 . A n d  setting S ( f )= S ( f 2 ) » f 1 ,  w e  h a v e  a  reforma-
tion o f f .  Note th a t S (f )  is conformal on  U ' .  M oreover we can show  the following
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Theorem 1 .  i) There are  positive constants ko an d  Co depending only on r ' such
that, f o r every quasiconformal mapping f  o f  U onto itself such that f(0)=0 and Ilpf

Sk o , S (f) is quasiconformal and

(1) Ilttscol Co•Ilter11-•

ii) Moreover, f o r  every such f  a s  in  i) and every meromorphic function h on  U
which is holo,norphic on U—{0} and has at most simple pole at 0,

(2) W f , h
=

 d ( f  
—

S (f)) A hdz

is absolutely integrable on U, and satisfies that

(3) 0.1f. h =0 .

R em ark . A b o v e  T h eo rem  1  is  c lo se ly  re la te d  to  Ohtake's recent more general
result [6. Theorem 1].

Proof o f  Theorem 1 is elementary and  involves n o  u se  o f th e  Teichmilller theory.
T he  second assertion ii) o f Theorem 1 is related also to th e  locally trivial Beltrami

differentials. See (8) in  § 2.

To prove Theorem  1, w e need the following

Lemma 1 . S et E = {c/ 3 S y  2c/3, 0-_xS11 and E '= {c/6 y.-_5c/6, —1/2 x_3/2}.
Then there are constants k, and C, depending only on c such that

(4) 1 F(z) — z 1 5_ C I Iltt 11- on E ' and

(5) 1P (z )-11_C 1•Iltell. on E

f o r every F=F , as above with Ilp11- 5k,.

T h is  le m m a  is  a  corollary  o f  a  b a s ic  result on quasiconformal mappings due to
Ahlfors-Bers [2]. B ut we include a  d irec t proof.

P ro o f. First extend F  to  a  quasiconformal m apping  Ê  o f  C  o n to  itse lf  w ith  the
com plex dilatation 2 ,  t h e  sym m etric ex ten sio n  o f  p ,  a n d  consider P(z)=11 P(1/ z),
which fixes again 0, 1 an d  00 and has the complex dilatation p(z)=12(1/z)•(z 2 /22 ). Since
the support of p is contained in  {izl<1/c}, there  is a unique quasiconformal mapping
fP(z) o f  C onto  itse lf w ith  th e  complex dilatation p such  tha t f (0 )= O  a n d  (fP ),-1
belongs to LP(C) whenever 11p11. is  suffic ien tly  sm all, w here  p>2 (c f. [1, 91p, Theo-
rem  1]).

B y the standard construction of ffi (c f. [1, 92p]), we can find k, an d  C2 depending
only on  c (and p) such that

(6) f (z)— z I c2.11p1I. o n  E"= {  z  <6/c}

fo r every p  w ith  litell. k2 ( ,  also see [1, 86 1)- (3 )]). Replacing k, b y  a  smaller one if
necessary, w e m ay assume by  (6) t h a t  f ' 7 (1) 1/2 w henever 11P1I- k2. S in c e  P (z )=
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f fl(z)1 P (1), and hence

(7) P(z)— z= (f (z)— z)/ f z • (P (1)-1) / f (1) ,

we have

(8) I P(z)—z! 52(1+6/c). Co • p C3JjpII- on E " .

In  p a rt ic u la r , IP(1/z)1 1/(5e/6+3/2) — C3.11Plloo o n  E', h en ce  w e  can  fin d  de s ired  con -

s ta n ts  f o r  (4) b y  u s in g  (8). The second  assertion  (5) can  be  seen  by  u s ing  C auchy 's

in teg ra l form ula , q .  e .  d.

Proof of Theorem 1-0. Since F = F 1 is  c o n fo rm a l o n  10<y<c}, s o  does F° out-

s ide  o f  {c/3.<y<2c/3}, w here  it h o ld s  th a t

(F°)0=(3/2ic)•(F(z)—z), and

(F °), =1+ 2c-3y (F'(z)-1)— —

3  

.(F(z)— z) .2ic

1 
S e t  ko=min (2+31c)/c 1I , w h e re  k1 a n d  C, a re  a s  in  Lem m a 1, then  fo r  e v e ry  F

w ith  M p I I 0 0 k 0 , w e  have

3
I (I?

 ° )2.1 < — • CI • IIP II..< 1/2 , and
=2c

(12) (F °)1 .1— (1± - ).C1•11,11 11- 1 /2 on E .

H ence  it ho ld s tha t

3C2/2c 
11-(13) P °)1/ 1—(1+3/2c)•C1•k0

(3C1/c)•IIPII0<1 on E ,

w h ich  s t ill h o ld s  o n  ic/3 y 2c/31, fo r  p°(z+1)-.7. --.- p°(z).

N o w  w e  can  se e  th a t F° is  lo ca lly  injective. In  fa c t, th e  a sse rt io n  is c lear ou ts ide
o f  Ic/3 y2c/31, and at any po in t in  ic/3<y<2c/31, F ° is  sm oo th  and  has a  pos itive
Jacobian b y  (11) and  (12), hence  is  in je c tive  on  som e neighborhood o f the  po in t.

N e x t  f ix  a  point zo w i t h  1m z0 =2c/3, and set

'(z)= max -10, 
( 2 c / 3 ) — y

c/3
(F(z)—z),

then  F°(z)=z+77(z) n e a r  Z .  N o t in g  t h a t  (5) i n  Lem m a 1 ho ld s  o n  Ic/3<y52e/31 (,
fo r  F'(z  +1) -  F '(z )), w e  can  f in d  a  neighborhood W o f  zo su ch  th a t

(14) 72(z1)-72(z2)1 '1,Z1-Z21, and  hence

IF ° (zi)— F °(z2)1>--.1zi — z21 - 171(zi)- 72(z2)1 • Izi — z21

(9)

(10)

fo r  e ve ry  z, and  z2 i n  W .  T h e n  F ° is  in je c t iv e  o n  W . A n d  s im ila r ly  w e  c a n  f in d  a
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wn•hdz)=1ime_o w•hdz
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(15)

594 Masahiko Taniguchi

neighborhood o f  a n y  p o in t z o w i t h  Im z0 =c/3 on  which F °  is  injective, and we can
conclude that F °  is locally injective on the whole II.

T hus by  th e  monodromy theorem, F° is a  homeomorphism of H onto  itse lf. F inally
by (13), F °  is  quasiconformal and  w e can find a  Co a s  desired, q. e. d.

Proof o f  Theorem 1-ii). L et f  and h be as in ii), an d  se t w= f — S (f ) .  Then
outside of a  com pact se t o f U .  A lso  it is  w e ll-know n tha t w  h a s  LP-derivarives on
U f o r  a n y  g iv e n  p > 2 .  A n d  b y  a ssu m p tio n , lh I " 7' ) is  lo c a lly  in te g ra b le  o n  U.
Hence by Holder's inequality, we see that w1 ,  =dw A hdz is absolutely integrable on U.

T a k e  a  suitable  sequence i wnIci7= 1 o f  smooth functions o n  U approximating w in
L (U ) so  th a t the  derivatives o f  w. approximate those of w in  LP(U) (, cf. for instance
[4, III §6]), then by G reen's formula w e have

w h e re  U,= is <  lz I <1— el f o r  e v e ry  s > 0 . Since  lim ,w (z)=0  and zh(z) is bounded
near z=0, we conclude the assertion , q. e. d.

Here as an application of Theorem 1, w e p rove  the  fo llow ing  L em m a 2  d u e  to
Ahlfors-Bers [2 ].

Lemma 2 .  L e t p > 2  be given, then there are constants kp and C p  depending only
on p  such that

(16) Ilf,-111,<=cp• Iltif1100

fo r  every quasiconformal mapping f o f U  onto itself, fixing 0 and 1, with ilp f lic kp,
where 11.11, is the LP-norm on U.

P ro o f .  S e t  .7 (z )= f (z ) o n  U  a n d  i(z )= 1 / S (f)(1 M  o n  C— U, w here  S ( f )  is  as
above w ith r=1/2. Then by Theorem  1-i), there a re  universal constan ts k (<1) and
C  such that, for every f  as in  Lemma 2 w ith  Ilti1 110.5k , :( is quasiconformal and
• • Ilp f II.. R ecall that 7  fixes 0, 1 and  00, and that p=dcy:f has a compact support in
C . L e t  f P  b e  a s  in  th e  proof o f  Lemma 1, then since  7(z)= P(z)/ f P(1), w e have

(17) L-1-=((177).,-1)/f11(1)—(P(1)-1)/f '7(1) •

Hence the assertion follows from (6) and the standard construction of f f i  (cf. [1, 92p.

(7), (8)]) . q. e. d.

§ 2. Generalized Sontag-Maitani's formulas

First, we generalize Sontag's form ula  [7 , Proposition 4.1 ] a n d  Maitani's o n e  [5,
Formula 3] a s  follows.
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Theorem 2 .  Let Ro b e  a Riemann surface admitting Green's functions, and I ftitz0
be  a  one-param eter fam ily  o f  quasiconformal mappings f ,  o f R o onto another R, with
the complex dilatation f it.

Let g 0(., q) be Green's function on R, with the pole q R,, and set 01(4)=--dg0(• , 9) - 1-
i*dg,(•, q) fo r  every t ( 0).

I) Assume that le0 =- 11/411.=0(t) as t tends to O. Then

1
(1) gt(ft(Pi), ft(P2))— g0(Pi, PO = —

2 7 r 
Re 00(P1).ptA*00(P2)+E(t 2)

no

as t tends to 0 fo r  every mutually distinct point p, and P2 On Ro, where limsup 0_0 E(t 2)/t 2

is finite.
II) Further assume that

(* )
p=lim,_opt/t exsits in  L - (Ro)•

Then it holds that

(2) gt(ft(P i), ft(P2 )) — go(Pi, P2)= - 2
t7 - • R e  i ? , 950(P1) . ti A * 00(P2)+E(t)JJ

as t tends to 0 fo r  every mutually distinct p, and P2 on Ro, where lime-0s(t)/t=-0.
III) In  I), the fam ily  {E(t 2 )1t 2 } is locally  uniformly bounded with respect to  ( p i ,  p2)

on R0 XR0-4, where 4={(P, P): PGR01•
In  II), 6(011- converges to 0  locally  uniformly with respect to  (p 1, Po) on R0XR0-4

as t tends to O.

Proof  o f  Theorem 2-I). F i x  (P„ po and mutually disjoint simply connected neigh-
horhoods U, o f  p, ( j= 1 ,  2 ) .  M ap u ., onto {1z1<2} by a  conformal mapping z, so that
z1 (p1)=0, and  se t P . 7 . = ( z 1 ) - 1 ( { 1 z 1 < r } )  f o r  every positive r ( ( 2 )  and j. F ix  a positive
r< 1 , a n d  reform  a quasiconformal mapping hi=z t ,,of t .(z,) - ', o f  U=z,(U ;) onto itself
fixing the origin, to  S(111) as in § 1 for every t and j, where z,  m aps f ,(U)) conformally
onto U so  tha t zt ,1 ( f t (P 1) )= 0 .  And set

S(f t )=(z t ,,) - i0S(h1).z, on  U) ( j= 1 , 2 ) , and

=f 0  o n  Ro—(MUU) .

T h e n  b y  T h e o re m  1 - i) , S(f 0)  is quasiconform al f o r  every sufficiently sm all t, and
soco(p .o=f ap,) (j=1, 2). A n d  f o r  such a  t, a standard argum ent (cf. for instance the
proofs o f  [8 , Lemmas 2 and 4]) show s that

(3) gt(ft(Pi), f0(P2)) — g0(PI, P2)= 2
1-
7 R e  .L 9 5 t(f  e(P1)).S(f t)A*950(P2)

and

(4) 1195t(f t(P1)).S(f t) - 00(P1)11R,   t-110o(P1)11R-v

w here çbof is  th e  pull - back o f g5 by  f, V=LAUU72" and 11•11E i s  the Diri-
chlet norm o n  E cR o . H ence w e see by Theorem  1-i) and (4) that



596 Masahiko Taniguchi

(5) t(P i)).s(f t)A *00 (P 2 )-55 ,, Q 00(PD• psu 1 A*00(P2)

<ret•ilOt(f ID° S(f t) - 0001)11u,•1100(1)2)11Ro -v

=0(t 2 ) a s  t tends to  0.

N e x t  f ix  j  a n d  w r ite  950(Pk).(zi)'=a )
k (z)dz (j, k = 1 , 2 ) , dato(zi)'=- (z)d2/ dz and

1s ( f t ) .(z i ) ' ,---- pi(z)d2/dz (1= 1 ,  2 ) .  Then by Theorem  1 -ii) , w e have

(6) 1rici(h{—S(hit))A al(z)a(z)dz

= b ii(z ).(h •D z — pl(z). S(li )c12 A ai(z)ai(z)dz=0 .

Hence by Theorem 1 -i) , Lemma 2  and Holder's inequality, we can show  that

(7) 55u,4(z)ai(z)(pgz)dz A d2-55 u f-ii(z)ai(z)a(z)dz A cl"2

p (kH-repllai• 411, 1 ( ,_, ) =0(t 2 ) , hence

(8) 5RogS0(Pi)•p,A*950(P2) 1Rosb0(P1). p su -,)A*00(P2)

=0(t 2 ) a s  t tends to  0.

T hus the assertion follows by (3), (5) and (8). q. e. d.

Proof o f  Theorem 2-II). T he  assumption (*) implies that

(9) 5L00(P1)•tif A*00(P2) — t • 5 R 0 q50(i) i)• p A * 0002)

tet —t tell.•11 R 0  I OD(/) siso(P2)1 = ow  .

Hence the assertion follows by Theorem 2-1). q. e. d.

To prove Theorem  2-III), we need the  following

Lemma 3. For every positive q<2, there is a constant C, depending only on a n d
r  such that

(10) Cq•11950 (P 1 )6 0 -v • 11950(1)2)11R0 - v  ( 3= 1 , 2) •

P ro o f. F ix  j. Since z • al(z)• a(z) is  holomorphic on { I z! < 2 f ,  w e have

z • ai(z). ai(z)1 max (181=111 O s) • a(s)I

Smaxiiv=h11,-.(5 aii(w)12dxdy)1/2
(1 w -s1 < t- r1 (l w -s1 < 1 -r)

I a(w)I 2 d cly) " 2

A,. • 1100(P1)11u0 -1, • 1100(P 2)1Iuo -v ,

w here A  is  a  constant depending only on r. Hence the assertion follows by a simple
computation. q. e. d.
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Proof o f  Theorem 2-III). W e  have shown actually in  (4), (5) and  (7 ) th a t  E(t 2 )  in
I) is bounded by

(12) t2. m.CI00(1)1)11R0-v•1100(1)2)11R0-v+ ai• (/.
1)/(2,-0)

w ith  a constant M  independent o f  p, and p2 . Using Lemma 3, w e see that bounded-
ness o f  1100(P1)11R0-v•1100(P2)11R0-v on some neighborhood o f (pi , Po in  R o xR 0 —J implies
th e  a s se r t io n  fo r  E(t2 ). T h is  a lso  im p lie s  th e  a s s e r t io n  fo r  e (t) in  II) , by  (9) and
Lemma 3.

N ow  to clearify the  dependence to p, and  P2 ,  w e w rite  Uri =Urp i  (j=1 , 2 ) and  V =
T h en  it is  c lea r th a t th e re  are  neighborhood TV5 of p ;  ( j= 1 , 2) such that

contains V' =1P-11
2 UUrp i: f o r  e v e ry  q;  i n  IV5 (j=1 , 2 ) (, w here  w e use  the  sam e U5  a s

the neighborhood o f q5 ). Since 110 0 (9 .0 1 1 R 0 -v , i s  b o u n d e d  i n  a  neighborhood o f  p;  (cf.
[8, Theorem 1]), we conclude the  desired boundedness, q. e. d.

Rem ark. W e can use the same argument to loose the assumption in  other formulas
such a s  [9, Theorems 3 and 4].

§ 3 . Generalized Sontag-Guerrero's formulas

By Theorem 2, it is easy to generalize Sontag-Guererro's formulas ([7 ] and  [3, § 3])
a s  follows.

Theorem 3. Let So be a subsurface of a given Riemann surface R , and If ,}  be a
one-Parameter family o f  quasiconformal mappings f t o f  So in to  R  with the complex
dilatation p t .

Suppose that S, admits Green's functions. Let g 2(., q) be Green's function on St =
f ,(S0) with the pole qES,, and set Ot (q)=dg t (• , q)-ki*dg,(•, q) fo r  every t

I) Assume that Ilite.2
11,„,0 ( t )  as t  tends to 0, and that

(#) lz° f t-21/t is locally uniformly bounded on W  f o r  every local chart (W, z) (,
i. e. every pair (W, z) of a  simply connected subdoniain W of So and a conformal mapping
z of W onto U).
Then it holds that

(1) po—g o (p„ po= R e  3,,00(P1)•/-itA * 00(P2)

—Re [agzi(PM• (zi(f t(P1)) —zi(P1))+ ai(z2(P2))•(z2(f t(P2)) — z2(p2))i - l- E(t 2 )

as t  tends to 0 fo r  every mutually distinct p, and I), on S0 , where (W5 , z5 )  is a local chart
such that W5 Dp 5 f o r  each j ,  and we set 00(Pk).(z5)'=ai(z)dz on U  (=z 5 (W5 )) fo r  each

and k.
Here IE(t 2 )/t 2 1 is locally uniformly bounded with respect to  (p„ on S0 xS 0 - 7 4,

4 =={(1), p): PGS0}.
II) Further assume that

(*) t exists in  L - (S 0 ), and that
(# ') (z . f t —z)/t converges to some (continuous) function f ,  locally uniformly on W for
every local chart (W, z) o f So . T h e n
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(2) gt(PI, P2) — g0(P1, P2)= 2
t
r  R e  so 00(P1).[IA * 560(P2)

— t • Re (a i(zi(P1))• f  w 00+ ai(z2(P2))• fiv 2 (P2))+E(t)

as t tends to 0 fo r  every mutually distincts pl and p, on So .
Here E(t)/t converges to 0  locally uniformly with respect to (pi , p2) on S o XS.--4.

Remark. Since

a
(3) Re td-i(z)(PJ))•fiv i (PJ)= -E, go(f t(Pi), po-s)lt--0

for each j ,  every term  of (2) does not depend on the choice of local charts.

T o  p rove  T heorem  3 ,  w e  f ir s t  note some consequences of Theorem 2-I). Since
Ilpt11-=0(t), w e have

(4) Igt(ft(Pi), ft(P2)) —g0(Pit P2)1

II poll.• s o 00(P 1) As/50(Po) 1+ 0 (t 2 ) E T) .

And similarly as in  the  proof of Theorem  2-III) w e can see that E'(t)/t is locally uni-
formly bounded on S0 X S ,-4  for E '(t) in  (4).

Let {UA L, and {zj I ) ,  be as in §2 , and set

G i(z , C)= go(zT 1(z) , zV(C)) , and

f t ,; (z)=z i of t .(z i ) - 1 (z) for each j .

T hen  by  the assumption (# ), w e m ay assume, w ithou t lo ss o f  genera lity , tha t f t ,i (z)
is w ell-defined o n , s a y  U°=i rz I <3/2} and  th a t  f i (U°) contains U (-=-{1z1_1} ) for
every t  and j. T hen (4) im plies that there is a constant M i such  tha t

(5) 1Go(f f ,,,(C)) — Go(z, C)I . 11/1.,•t

for every t and every z, in  LI'.
In particular, {Gt(z, C ) }c E u . t a o  i s  a  family of uniformly bounded harmonic functions

of z E U . Hence by Poisson's formula, there  is  a constant M, such that

(6) I Gt(z, C) — Gt(z' C)1511/2.1z — z'l

for every  t and every z, z', in  U'-={1z1<1/2 }.
H e re  b y  th e  assum ytion (# ) ,  w e  m a y  assume, w ithout loss of generality, that

f  t . i ( z ) e u ' f o r  e v e ry  t ,  j  and  ze (/"={1z1<1/4}. Hence by (5), (6) and (# ), we can
conclude that

(7) I G t(z C) — Go(z, C) 1

51 G t(z, C)—Gi(z, f t,o(C))I I Gt(z , f t.2(C))—Gt(f t, ,(z), f

+ I G t(f f,,,())—  Go(z, C)I M o • t
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fo r every t and z, C in  U" w ith som e constant M,.
Again by Poisson's form ula, (7) im plies that there is a  constant M, such that

(8) I (Gt),(z, C)— (Ga),(z, C)I 5V I4. t

for every t and z, C in  U * =  1z1 <1/81.

Proof  o f  Theorem 3. Under th e  assumptions in  Theorem 3-I), w e have by  (8) and
the assumption (#)

(9) gt(ft(91), f2(42)) — g2(q1, q2)

= (G t ( f , t,i(z?), f 2 ,2(4))-G 1(z ?, f 1 ,2(4)))+(G t(z ?, f 2 ,2(4))-G 1(z ?, z D )

I t ,  i ( ' ? ) r ¼f t ,2 4Z )=
2.Re[1 (Gt),(z, f t.2(4))dz-E (Gt),(z, z?)dz]

- 4
t, z( 2 i )

=2 R e ) (Go)z(z, f t,2(4))dz +5 (G0),(z, 4)dz]-1-0(t 2 )

fo r every (91, 42) in  a  suitable neighborhood of (P1, P2), w here w e se t z,-=z.,(q j )  (j=1, 2)
and  the  paths in  integration are the segm ents between z3 and f

H e re  s in c e  {Go(z, C)}1E-ti i s  a  fam ily o f uniformly bounded harmonic functions of
z E U , w e can show  as before that

(10) (Go)z(z C) —(Go ) 4 (z', C') 1 5_ Al5 • ( z—z' 1 + 1 C 
—

C' 1)

fo r every z, z ', C and C' in  U" w ith som e constant M 5 . Hence by (9) and  the  assump-
tion (# ), we conclude that

(11) g t(ft (q i), f2 (q 0 )-g 2 (q 1 , q 2 )

=2. Re ((Go)4(4, 4)•(f t,1(4)— z?)+(Go)t(4, 4). (f t.2(4)— 4))

-1-0(t 2 ) a s  t  tends to O.

A lso  t h e  above a rg u m en t sho w s th a t  {E(t 2 )/t2 }  is locally uniform ly bounded on
S 0 xS 0 - 4  fo r  E(t 2 )  in  (1 ). A nd s in c e  a(z)=2.(G0)t(z, 4 ) o n  U = z i ( U .1), we conclude
the assertion I).

The assertion II) follows by Theorem  3-I) and  the assumptions, q. e. d.
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