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On first variation of Green’s functions
under quasiconformal deformation

By

Masahiko TANIGUCHI

Introduction

The purpose of this note is to give variational formulas for Green’s functions on
arbitrary Riemann surfaces under quasiconformal deformation, which contains known
formulas such as those due to Sontag [7], Guerrero [3] and Maitani [5].

After some preliminary discussion on quasiconformal mappings in §1, we will
prove the main formulas in §2 and §3 (Theorems 2 and 3).

§1. A surgery of quasiconformal mappings

Let U be the unit disk {|z|<1} and U’'={|z|<r<1}. Then we can define a sur-
gery of a given quasiconformal mapping f of U onto itself such that f(0)=0 as follows.

Let p=p, be the complex dilatation of f, and first decompose f as f,of, with
quasiconformal mappings f,=f# and f,=f4 of U onto itself such that the complex
dilatations gy, and gy, are equal to glw-py and (ulp-(f1)./(F))(f1), respectively,
£1(0)=0 (hence f,(0)=0) and f.(1)=1.

Next let H be the upper half plane in C, and set

n(z)=exp(2ni-z).

Then f, can be lifted to a quasiconformal mapping F=F4 of H onto itself such that
F(0)=0 and nm-F=f,-w. Since we can find a constant »'<1 depending only on » and
a given k(<1) such that f,(U’) is contained in {|z| <7’} whenever [u|l» (=ess.supy|g|)
<k, F is conformal on {zeH:0<y<c} with c=(—1/2x)-log ', where z=x+iy. Here
we may also assume that c¢<1.
Now set
F*(2)=F(z) on {0<y<c/3},
=2 EBZY k) on (e3sysen),

=z on {2¢/3<y}.
Then clearly F°(0)=0 and F°(z+1)=F"°(z)+1, hence F° can be projected to a self-

mapping S(f.) of U fixing 0 and 1. And setting S(f)=S(f.)-f,, we have a reforma-
tion of f. Note that S(f) is conformal on U’. Moreover we can show the following
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Theorem 1. i) There are positive constants k, and C, depending only on r' such
that, for every quasiconformal mapping f of U onto itself such that f(0)=0 and |pslle
<k, S(f) is quasiconformal and

05) legscrllo=Corllptslles

il) Moreover, for every such f as in i) and every meromorphic function h on U
which is holomorphic on U—{0} and has at most simple pole at 0,

@) Wy 2v=d(f—=S(f)HAhdz

is absolutely integrable on U, and satisjies that
@) [, @rn=0.

Remark. Above Theorem 1 is closely related to Ohtake’s recent more general
result [6. Theorem 1].

Proof of Theorem 1 is elementary and involves no use of the Teichmiiller theory.

The second assertion ii) of Theorem 1 is related also to the locally trivial Beltrami
differentials. See (8) in §2.

To prove Theorem 1, we need the following

Lemma 1. Set E={c/35y=<2¢/3,0=xZ1} and E'={c/6<y<5¢/6, —1/2<x<3/2}.
Then there are constants k, and C, depending only on ¢ such that

) |F(z)—z|=Cy- |l on E’ and
(5) |[F'(2)—1|=C- gl on E

for every F=F¥% as above with ||pl=<k,.

This lemma is a corollary of a basic result on quasiconformal mappings due to
Ahlfors-Bers [2]. But we include a direct proof.

Proof. First extend F to a quasiconformal mapping F of C onto itself with the
complex dilatation 4, the symmetric extension of g, and consider ﬁ‘(z)zl/F(l/z),
which fixes again 0, 1 and oo and has the complex dilatation j(z)=ga(1/2)-(2%/2%). Since
the support of /7 is contained in {|z|<l/c}, there is a unique quasiconformal mapping
ff(z) of C onto itself with the complex dilatation g such that f7(0)=0 and (f#),—1
belongs to L”(C) whenever ||¢ll. is sufficiently small, where p>2 (cf. [1, 91p, Theo-
rem 1]).

By the standard construction of f# (cf. [1, 92p]), we can find k, and C, depending
only on ¢ (and p) such that

6 | fi(@)—2z|<Co- et on E”"={|2]<6/c}

for every p with |plle=<k, (, also see [1, 86p-(3)]). Replacing k, by a smaller one if
necessary, we may assume by (6) that |f#(1)| =1/2 whenever [g|-<k,. Since F)=
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fA(z)/f#(1), and hence

) F(2)—z=(f(2)—2)/ fA1)—z-(fAQL)—1)/ (),
we have
) | F(2)—2z| £2(146/¢)- C,- | pl«=Csllptlle o E”.

In particular, lﬁ(l/z)]gl/(Sc/6+3/2)—C3-|],a||.,, on E’, hence we can find desired con-
stants for (4) by using (8). The second assertion (5) can be seen by using Cauchy’s
integral formula. q.e.d.

Proof of Theorem 1-i). Since F=F¥% is conformal on {0<y<c}, so does F° out-
side of {¢/3<y<2c¢/3}, where it holds that

© (F*)%=(/2ic)-(F(z)—z), and
(10) (F*), =14 273 (pr(0)— )= o - (F(2)—2).
¢ 2ic
1

Set ky=min {kl,( )/Cl}, where &, and C, are as in Lemma 1, then for every F

2+3/c
with [glle=<k,, we have

vo 3
(1) IF*)l =5 - Cirllplo<1/2,  and

(12 ((F). 1 21—(142)-Coollez1/2 on E.

Hence it holds that

L
1—(1+3/20)-C, -k "H1=
=@BCy/o)lple<l  on E,

which still holds on {¢/3=y=<2¢/3}, for p°(z4+1)=p°(2).

Now we can see that F° is locally injective. In fact, the assertion is clear outside
of {¢/3=<y=2c¢/3}, and at any point in {¢/3<y<2¢/3}, F° is smooth and has a positive
Jacobian by (11) and (12), hence is injective on some neighborhood of the point.

Next fix a point z, with Im z,=2¢/3, and set

a@=max {0, EOZLY (ra)-2),

13) e [=1(F°)/(F°). | =

then F°(z)=z+7n(z) near z,. Noting that (5) in Lemma 1 holds on {¢/35y=<2¢/3}
for F'(z+1)=F’(z)), we can find a neighborhood W of z, such that

1
(14) | p(z)—n(z2)| = R |z,—z2|, and hence

o o 1
|F*(z)—F (z)| 2| 21—2:| — | 9(2)—7(22) | 2 5 - | 21— 2]

for every z, and z, in W. Then F° is injective on W. And similarly we can find a
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neighborhood of any point z, with Im z,=¢/3 on which F° is injective, and we can
conclude that F° is locally injective on the whole /1.

Thus by the monodromy theorem, F° is a homeomorphism of H onto itself. Finally
by (13), F° is quasiconformal and we can find a C, as desired. q.e.d.

Proof of Theorem 1-ii). Let f and & be as in ii), and set w=f—S(f). Then w=0
outside of a compact set of U. Also it is well-known that w has LP?-derivarives on
U for any given p>2. And by assumption, |A|?P/?"Y is locally integrable on U.
Hence by Holder’s inequality, we see that w,, ,=dw A hdz is absolutely integrable on U.

Take a suitable sequence {wa.}%-, of smooth functions on UJ approximating w in
L=(U) so that the derivatives of w, approximate those of w in L?(U) (, cf. for instance
[4, IIl §6]), then by Green's formula we have

(15) ngwf_ = limgaoggvsw,, A= limm(lim "““Sgusd wa A\ dz)

=lim5*o(limnmg~u w,.-hdz)zlimsﬂogw w-hdz,

where U.,={e<|z|<1—e¢} for every e>0. Since lim,.,w(z)=0 and zh(z) is bounded
near z=0, we conclude the assertion. q.e.d.

Here as an application of Theorem 1, we prove the following Lemma 2 due to
Ahlfors-Bers [2].

Lemma 2. Let p>2 be given, then there are constants k, and C, depending only
on p such that

(16) I1f:=Lp=Cp sl

for every quasiconformal mapping f of U onto itself, fixing 0 and 1, with |pyslle<ky,
where |||l s the LP-norm on U.

Proof. Set f(z)=f(z) on U and f(z)=1/S(f)(I/Z) on C—U, where S(f) is as
above with r=1/2. Then by Theorem 1-i), there are universal constants % (<1) and
C such that, for every f as in Lemma 2 with [¢,l.<k, f is quasiconformal and ;|
<C-llgslle Recall that 7 fixes 0, 1 and oo, and that ﬂfﬁ‘? has a compact support in
C. Let f# be as in the proof of Lemma 1, then since f(z)=/#(z)/f#(1), we have

an Fo=1=((f M. =D/ fAO—(FAD—D/ A1)

Hence the assertion follows from (6) and the standard construction of f# (cf. [1, 92p.
@, ®D. g.e.d.

§2. Generalized Sontag-Maitani’s formulas

First, we generalize Sontag’s formula [7, Proposition 4.1] and Maitani’s one [5,
Formula 3] as follows.
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Theorem 2. Let R, be a Riemann surface admitting Green’s functions, and {f:}:zo
be a one-parameter family of quasiconformal mappings f, of R, onto another R, with
the complex dilatation p..

Let g.(-, q) be Green’s function on R, with the pole g R,, and set ¢.(q)=dg.(-, ¢)+
i*dg.(-, q) for every t (Z0).

I) Assume that k,=|p:]l-=0(t) as t tends to 0. Then

o)) g(fe(p1), fe(pe))—go(Ds, ;Dz):_l‘ Re Bo(p1): e N*Po(pa)+ E(t?)
2 Ry

as t tends to O for every mutually distinct point p, and p, on R,, where limsup,.,E(t?)/t*
is finite.
1) Further assume that

(*) p=lim, o/t exsits in L=(R,).
Then it holds that

) Guf b, Fp)—enpn b= Re [ B A" Blpo)et

as t tends to 0 for every mutually distinct p, and p, on R,, where lim,_,e(t)/t=0.

II) In 1), the family {E(t*)/t*} is locally uniformly bounded with respect to (p,, ps)
on RoXRo—4, where 4={(p, p): pER,}.

In 1), e(t)/t converges to 0 locally uniformly with respect to (p., ps) on RoXR,—A4
as t tends to 0.

Proof of Theorem 2-1). Fix (pi, p») and mutually disjoint simply connected neigh-
horhoods U; of p; (j=1, 2). Map Uj onto {|z|<2} by a conformal mapping z; so that
zi(p;)=0, and set Uj=(z;)"'({1z] <r}) for every positive r (<2) and ;. Fix a positive
r<1, and reform a quasiconformal mapping hi=z, ;°f,°(z;)"!, of U=z, (U%) onto itself
fixing the origin, to S(h{)as in § 1 for every ¢ and j, where z,,; maps f,(U}) conformally
onto U so that z, ;(f«(p;))=0. And set

S(f)=(z..)"eS(hi)oz;  on Uj (=1, 2), and
=f. on R—UIVUY.

Then by Theorem 1-i), S(f.) is quasiconformal for every sufficiently small ¢, and

S(f)p=rf«py) (U=1, 2). And for such a ¢, a standard argument (cf. for instance the
proofs of [8, Lemmas 2 and 4]) shows that

®) GF DD, FpN—8xps, p)= 5= Re ([ SuFp0-SUIN D),
and '
4) Ide(f P ) SUf )= Po(p1)lIR, = li_z—}};‘ lép)lr-v,

where ¢ f is the pull-back of ¢ by f, E,:Ilysgt)”m, V=U7UUj and ||- ||z is the Diri-
chlet norm on ECR,. Hence we see by Theorem 1-i) and (4) that
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) |18, 84 0= SGIA 0= G0 scs o A0
S I9(F D)= S )= Gop )y a2 2yr
=0(t? as t tends to 0.

Next fix j and write @o(pe)e(z))'=aj(2)dz (J, k=1, 2), p,~(z;)"'=pi(z)dz/dz and
Uscrpe(z) ' =pl(2)dz/dz (=1, 2). Then by Theorem 1-ii), we have

© SSvd(h{—S(h{))/\a{(z)a%(z)dz

=[{ (@) (b= @) SUD )z A ai(@ai(z)dz=0.
Hence by Theorem 1-i), Lemma 2 and Hélder’s inequality, we can show that
O l SSUﬂ{(Z)a{(Z)aé(Z)dZ/\dE—SSU{I{(z)a{(z)ag(z)dz/\dg
<Cy(ki+kDlai- adllpicp-»n=0@*,  hence
® 'SSR0¢0(p1).‘u‘/\*¢°(‘D2)_3SR0¢0(1)1)'#S(IL)/\*¢o(/)2)|
=0(?) as ¢ tends to 0.
Thus the assertion follows by (3), (5) and (8). q.e.d.

Proof of Theorem 2-11). The assumption (*) implies that

® |11, o012 A% =1 [ utp - A%t

Slp—tpler [, 160 AGBD| =00t

Hence the assertion follows by Theorem 2-I). q.e.d.
To prove Theorem 2-III), we need the following

Lemma 3. For every positive ¢<2, there is a constant C, depending only on q and
r such that

(10) llai-ajlly=Co (P )re-v* I1@o(pe)llre-v (=1, 2).
Proof. Fix j. Since z-ai(z)-ai(z) is holomorphic on {|z| <2}, we have
an |z-a{(2)- aj(2)| =max s | ai(s)- ai(s)]

maxon (|| |afw)*dxdy)” ({ |ak(w)|*dxdy) "

(lw-sI<1-1} (Hw=-s1<1-71)

SA - N9p )R- Il P)llRo-v

where A. is a constant depending only on ». Hence the assertion follows by a simple
computation. q.e.d.
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Proof of Theorem 2-111). We have shown actually in (4), (5) and (7) that E(#?) in
I) is bounded by

(12) £+ M- (I @a(P)lIrg-v - @a( Do)l ry-v Flal- @dllps-15)

with a constant M independent of p, and p,. Using Lemma 3, we see that bounded-
ness of [|@o(pi)llry-v 1@o(p2)llr,-+ On some neighborhood of (p,, ps) in RoeX Ry—4 implies
the assertion for E(t*). This also implies the assertion for e(t) in II), by (9) and
Lemma 3.

Now to clearify the dependence to p, and p,, we write Uj=Uj%; (j=1,2) and V=
Vp.p Then it is clear that there are neighborhood W; of p; (=1, 2) such that V ,,
contains V'=U3?UU%? for every g¢; in W; (j=1, 2) (, where we use the same U; as
the neighborhood of ¢,). Since [|@o(¢g;)lr,-v+ is bounded in a neighborhood of p; (cf.
[8, Theorem 1]), we conclude the desired boundedness, g.e.d.

Remark. We can use the same argument to loose the assumption in other formulas
such as [9, Theorems 3 and 4].

§ 3. Generalized Sontag-Guerrero’s formulas

By Theorem 2, it is easy to generalize Sontag-Guererro’s formulas ([7] and [3, §3])
as follows.

Theorem 3. Let S, be a subsurface of a given Riemann surface R, and {f,} be a
one-parameter family of quasiconformal mappings f. of S, into R with the complex
dilatation .. » _

Suppose that S, admits Green's functions. Let g.(-, q) be Green’s function on S,=
fi(So) with the pole q=S,, and set ¢.(q)=dg.(-, q)+i*dg.(-, q) for every t (=0).

D) Assume that ||plle=0(t) as t tends to 0, and that
(#) lzefi—2zl/t is locally uniformly bounded on W for every local chart (W, z) (,
i.e. every pair (W, z) of a simply connected subdomain W of S, and a conformal mapping
z of W onto U).

Then it holds that

W b pa—gipi b= o Re [ gulp AT
—Re [aizi(p)- (= p D) =2 (b )+ aHexpo) (el F b~ 2ap NI+ EC)

as t tends to 0 for every mutually distinct p, and p, on S,, where (W}, z,) is a local chart
such that W;sp; for each j, and we set ¢o(pr)o(z5)'=al(z)dz on U (=z,W,)) for each
Pand k. h L
Here {E(t%)/t*} is locally uniformly bounded with respect to (p,, p.) on Sox'So—A,
d={(p, p): pES,}. '

1) Further assume that
(*) p=lm,_op./t exists in L=(S,), and that .
(#") (z°fi—2)/t converges to some (continuous) function fw locally uniformly on W for
every local chart W, z) of So. Then
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@ gubs, p)=gupu, b= Re [ gup-A*9ip2)

—t-Re(ai(zi(p ) fw (p1)+ai(z(p2))- fw (p2))+et)
as t tends to 0 for every mutually distincts p, and p, on S,.

Here e(t)/t converges to O locally uniformly with respect to (p, p») on SeXS,—4.

Remark. Since

®) Re ai-(z,(p)) Fr (2= o 84S (D, D-)ec

for each j, every term of (2) does not depend on the choice of local charts.

To prove Theorem 3, we first note some consequences of Theorem 2-I). Since
ltelle=0(t), we have

) lg(fe(p1), fe(Da))—8o(D1, Do)l
<l (] 9up0NGLBD |[+OE) =)

And similarly as in the proof of Theorem 2-III) we can see that E’(t)/t is locally uni-
formly bounded on S,XS,—4 for E’(t) in (4).
Let {U,}%., and {z;}3_, be as in §2, and set

Gz, 0)=gu(z1'(2), z3'€)), and

fo.i@)=2z;0 fo(2)'(2) for each j.
Then by the assumption (#), we may assume, without loss of generality, that f. ,(z)
is well-defined on, say U°={|z|<3/2} and that f, (U contains U (={|z|<1}) for
every t and j. Then (4) implies that there is a constant M, such that

(&) [G(fe1(2), fr.:(0)—GColz, D) =M, -t

for every t and every z, { in U°.

In particular, {Gy(z, {)}¢ev.c20 is @ family of uniformly bounded harmonic functions
of zeU. Hence by Poisson’s formula, there is a constant M, such that

(6) |Gz, O)—Gi(2', D) =M,- 12—2'|
for every ¢t and every z, z’, { in U'={]|z|<1/2}. _

Here by the assumytion (#), we may assume, without loss of generality, that
fu.(2)elU for every t,j and zeU”={|z|<1/4}. Hence by (5), (6) and (%), we can
conclude that
) |Gz, )—Golz, D)

LGz, D)—Gulz, f1.. NI+ 1Guz, fr,)—GC(fe.1(2), fr.D)]

+1GUfe(2), fe.o@)—Golz, DI =M+t
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for every t and z, { in U” with some constant M,.
Again by Poisson’s formula, (7) implies that there is a constant M, such that

) Gz, O)—(Go)z, DI S M,-t
for every t and z, { in U*={|z|<1/8}.

Proof of Theorem 3. Under the assumptions in Theorem 3-1), we have by (8) and
the assumption (#)

© g(f(g1), fulg2))—g:(g:, g2)
=(G(fe.1(2Y), fe. 2@ —Gu(2, fr.2(2D)H(Gi(2Y, fr.2(20)—G (2, 23))

=2-Re[§;"‘(z?)<ct>z<z, funteraer| 6o, adz]

J.o
erea() re.2079)
=2-Re|[ " Gz, fuslehdz+ T T (Gatz, dz]+0w)
1 2
for every (¢, ¢») in a suitable neighborhood of (p,, p,), where we set 29=z,(q;) (j=1,2)

and the paths in integration are the segments between z} and f, ,(z}.
Here since {Go(z, {)}rer is a family of uniformly bounded harmonic functions of

ze U, we can show as before that
(10) [(Go)(z, ©)—(Go)(2', EN =M;-(Jz—2' [+ 1L )

for every z, z’,{ and {’ in U” with some constant M;. Hence by (9) and the assump-
tion (#), we conclude that

(11) gu(fi(qy), fulge))—8:(q:, g2)
=2-Re ((Go).(2}, 23)-(f+,1(2)—2D)+(Go).(23, 20)+(f1.2(28)—2D))
+0(?) as t tends to O.

Also the above argument shows that {E(t?)/t*} is locally uniformly bounded on
SeXSe—4 for E(*) in (1). And since a{(z)=2-(Go).(z, 2}) on U=z,U}), we conclude
the assertion I).

The assertion II) follows by Theorem 3-I) and the assumptions. q.e.d.
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