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On the strongly hyperbolic systems II

—A reduction of hyperbolic matrices—

By

Hideo YAMAHARA

§1. Introduction

This article is the continuation of the previous paper [12]. We shall study the
strongly hyperbolic systems (mXm-matrix) in more general cases.
Let Q=(—T, T)X R% and we shall consider the Cauchy problem :

L{u]=d,u— 33 Axlt, x)0s,u—B(t, x)u=0 on @,
(L.1) &

u(te, x)=uo(x), —T<t,<T),

where u(¢, x) and uo(x) are m-vectors. 1
We consider (1.1) in the C=-category. Let L,=0,— X A(t, x)d-,, then we say

k=1
that L, is a strongly hyperbolic system when the Cauchy problem (1.1) is uniformly
C=-wellposed for any lower order term B(¢, x). For details see [12].
When the coefficients A.(t, x) are constant or the multiplicites of the characteristic

roots of A(t, x; &)= éAk(t, x)€, are constant for any (¢, x; §)€ QX RiN{0}, we know
k=1

the necessary and sufficient conditions for L, to be a strongly hyperbolic system ([3],
[51). On the other hand if we do not impose the assumptions on the characteristic
roots in the case of variable coefficients, the situation will be much more complicated.

In [12] the author gave a necessary condition without any assumptions of the
characteristic roots. But, in it, we assumed that the rank of (A/—A(, x; &)=m—1,
where det (A/—A(¢, x; £)=0. And the necessary condition for L, to be a strongly
hyperbolic system was that the multiplicities of the characteristic roots are at most
double at every point (¢, x; &).

It seems that the difficulties specific for systems will be appear when we drop the
above assumption of rank. And instead of the above condition, if L, is a strongly
hyperbolic system then it will hold that the orders (sizes) of the Jordan’s blocks for
any characteristic roots must be at most two at any point (¢, x; £). We will prove the
above result in some restricted cases. Moreover when the orders of the Jordan’s blocks
are equal to two at a certain point we can give the following example.

Example. L,=0d,—A(t)0, (=1,
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0 1 0 O
0 0

A@) = 00 0 1 (m=4),
0 0 20

where p is a positive integer.

For this L, we can prove that L, is a strongly hyperbolic system if and only if
p=2.

Now turoughont this paper we assume that the coefficients A,(¢, x) and B(, x)
depend only on time variable . And instead of (1, 1) we study the Cauchy problem

for the ordinary differential system depending on a parameter é=R}:

{ aui(t; §)=GA(; &)+ Bt)a(t; &)
alte; E)=u§),  —T<hL<T.

1.2)

where we denote the Fourier transform of f(¢, x) with respect to space variables x by
fa; 8.

As is well-known, the following theorem is due to L. G. Petrowsky.

Theorem 1.1. ([11]) In order that the Cauchy problem (1.1) is uniformly C=-well-
posed it is necessary and sufficient that the following ineqaulity holds: There exist con-
stants C and M independent of the initial plane t=t,, which satisfy

(1.3) la@t; &) S CA+1EN" @),
for the solution a(t; ) of (1.2).

Owing to the above theorem our problem is now to find the condition on A(t; &)
L

= 3V A4(t)€, in order that the inequality (1.3) holds for any lower order term B(¢) in
k=1

(1.2).
Since our purpose in this article is to give its necessary conditions pointwisely, we
remark that the following assumption is not any restrictions of our situation. (See [4],

(7], [12])

(A) There exist t,e(—T, T) and &= RiN{0} (1&°]=1) such that the eigenvalues
of A(t,; &) are equal to zero.

Moreover without loss of generality we can take #,=0. Thus throughout this
paper we assume the assumption (A) with t,=0 without mention of it.

Let J=J(1)DJ(2)D --- DJ(v) be a Jordan’s form similar to A(0; &°) where J({7) is
the Jordan’'s block of order »; with null eigenvalue (r,27r,= - =r,).

0 1

J@)= L (r¢ X ry-matrix)
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We denote the largest order of Jordan's blocks by 7, and the number of the Jordan’s
blocks of order r is denoted by s. Let A(t; &)=A0; &)+tA,+1t*A.(t) (Taylor expan-
sion) and denote the (7, j)-entry of A, by a;,;. We consider the sXs-matrix K whose
@i, )-entry is @ir,g-nyrer (154, J<5).

Now in order to propose our theorems we must impose some assumptions.

(A.1) The Jordan’s form J does not contain the Jordan’s blocks of order »—1.
(A.2) v is at most 3.

Theorem 1.2. Assume (A.1l) or (A.2). If r=3 then L, is not a strongly hyperbolic
system.

Theorem 1.3. Assume (A.1) or (A.2). Moreover assume that K is not null matrix.
If r=2 then L, is not a strongly hyperbolic system.

For the proofs of these theorems we employ a reduction of hyperbolic matrices.
Here we say that a matrix A(y) depending on yE0, © being an open set, is a hyper-
bolic matrix in @ when the eigenvalues of A(y) are real for any y=0. In §2 we
shall explain a reduction in general cases. Owing to this reduction we shall prove
Theorem 1.2 and Theorem 1.3 under the assumption (A.1) in §3. Theorem 1.2 and
Theorem 1.3 under the assumption (A.2) will be proved in §4.

§2. A reduction of hyperbolic matrices in general cases

We start with the system (1.2). Let £&=né&°, where n is a large parameter. Then
our system can be written as follows.

(2.1) 0,2=(inA®)+B)a,

where A@)=A(; &)=A,+tA,+12A,(t). As is well-known the following proposition is
due to Lax-Mizohata’s Theorem ([6], [8]).

Proposition 2.1. In order that the Cauchy problem (1.1) is uniformly C=-wellposed
A(t) must be a hyperbolic matrix, i.e., the characteristic roots of A(t) are real for any t.

Let us take the asymptotic transformation t=n"%s, where ¢ is a constant which
will be determined afterward. And denote the non-singular matrix which transforms
A, into the Jordan’s form J by N,, then (2.1) becomes

(2.2) n°9w==n(J+n""A(s)+n"2 Ag(s; n)+ B,

where v=N,#, ﬁl(s):sN;)AlN;‘, 1712(3; n)=s*N,As(n"?s)N7* and §=NOBN3‘.
For simplicity we only denote A,(s), A.(s; n) and B by A,(s), Ax(s; n) and B re-
spectively.

(2.2) n'0w=0En(J+n°A(s)+n Ay (s; n))+Bw.

Our staxjting point is actually (2.2)’. We consider (2.2)" for s=1 and our purpose
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is to choose the lower order term B and the initial data at s=s, ((t=n""s,) which lead
that the Cauchy problem is not C=-wellposed.

Definition 2.1. We say a mXm-matrix A4 is (S)-type with respect to Jordan's
form J when all the components of A except for r,4r,+ --- +r;-th row vector are
zero (1<7<y), where we used the notations in § 1.

Lemma 2.1. Lei C(n)=]4+C,(n) be a mXm-matrix which depends on a parameter
n, where C,(n) is (S)-type with respect to | and can be expressed as follows:

Cin)=n"1C,+n""2Cy+ --- (mod n™=) as n—oo ,

where 0<a,<a,< ---. Then there exist a positive constant &,, a diagonal matrix W(n),
a constant matrix C, and a Cy(n) which satisfy:

(1) WCEW ()" =n"*(J+C +Con),
(i) Ca(n)=o0(1) as n—oo,
Apply this lemma to (2.2)'. Let i=Wuv then we can see
2.3) n?9p=(in' "o J+ Ay(s)+ Adls ; m)+B)p .
Secondly, keeping in mind the change of variable t=n""s we propose the following
Lemma 2.2. Assume C(t) is a hyperbolic matrix in a neighborhood of t=0 and C(0)

is nilpotent. And assume that there exist an interval I;, a positive constant ¢ and a non-
singular matrix N(s; n) such that

N(s; n)C(n~"s)N(s; n) '=n"(Co(s)+Cg(s; n))  for s€l;,

where Cgr(s; n)=0(l) as n—oco,
If e<a, then Cy(s) must be nilpotent for all s€l,.

Thirdly we employ the following
Lemma 2.3. Let C(s: n) be a mXm-matrix given on an open interval I, and n is
a large parameter. Assume that C(s; n) has the following expansion:
C(s; n)=Cy(s)+n"“1C(s)+n"*2Cy(s)+ -+ (mod n™),

for all s€l; (0<a,<a,< ). Moreover assume that Cs) is nilpotent for all sel,
then there exist an open interval I, and a mXm-matrix N(s; n) which satisfies that

(i) det N(s; n)#0  for all s€l; and for large n.
(i) N(s; m)C(s; m)N(s; m)=J+C(s; n),
where [ is a Jordan’s form and Ci(s: m)y=o(l). Moreover Ci(s; n) is (S)-type with re-

spect to J.

Owing to these lemmas we can deform (2.3). At first, if ¢ <o in (2.3) then
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j+ﬁ,(s) is nilpotent. So we can apply Lemma 2.3. Set =N(s; n)0 then
(2.4) ndd=Gn'"( i+ A(s: n)+B+n°(N(s; n)iN(s: n) ™),
where /’il(s; n)=o(1) and B=NBN-'=NWBW-'N-,
Comparing (2.2)" and (2.4) we can repeat a reduction similar to above steps. Ob-
serving this reduction we shall choose a lower order term such that the Cauchy prob-
lem is not C=-wellposed. In that process, the fact that we can choose a constant ¢ is

a crucial point for our arguments.
Our purpose is to obtain the following proposition.

Proposition 2.2. Assume that there exist a positive constant ¢, and a mairix Ns: n)
which is products of some matrices of type W(n) in Lemma 2.1 and N(s; n) in Lemma
2.3, such that when we set w=N(s; n)v, (2.2) turns into

2.5) dsw(s; n)= n‘"l(ﬁn(s)-}- 71,3(5 cn)w(s; n),

where Zlg(s; n)=o0(1) as n—oo.
Moreover there exists s, such that Ao(s,) has at least an eigenvalue whose real part
is positive, then the Cauchy problem (1.1) is not uniformly C=-wellposed.

Proof. This proposition is a slight modification of Lax-Mizohata’s Theorem (See
[10].). So we explain this briefly. At first we can take a constant matrix N, such
that D‘,:No;lo(so)Nz‘ is a triangular matrix and when /<j, the absolute value of the
(¢, 7)-component can be taken small as we wish. Set w=N,w then we obtain
2.6) 0510 =n( Do+ No( Ao(s)— Aa(s0) N5' + Ny Ar N7 .

We denote the diagonal components of D, as follows:

{ Real part Of 11, 22, ey lk;al (>0) )
Real part of 1,4, -+, An<0.

And we denote a energy form by

On()={exp(—dinei(s—s}( £ 1@d(s; mI*= 33 Jins: mI*),

Jj=k+1

where we denote the components of @¥(s; n) by “(&¥,, -, Wx). Then we obtain the
following inequality :

@.7) On(s)2 {exp(8:n*i(s—s0)}Onlse)  for s=so,

where 0, is a positive constant.

On the other hand, in the Cauchy problem (1.2) we shall take the initial data #,(£)
at t=n"’s, which assures @,(s,)=1. Assume that the Cauchy problem (1.1) is C>-
wellposed, then owing to (1.3) and the property of N(s; n) we obtain

2.8) @.()<C,n" for large n,

where C, and Af, are constants which do not depend on .
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The inequalities (2.7) and (2.8) are not compatible when s>s, and » is large. Our
proof is thus complete. (Q.E.D.)

At the end of this section we shall give the proofs of the lemmas which are used
in this section.

Proof of Lemma 2.1. At first we shall write concretely the entries of C,(n). Let
Ci¥(n) be the (i, j)-block of C,(n) corresponding to J, and let the last row vector of
C*I(n) be (¢, ¢, -, ¢t’). Remark that other row vectors are null. Denote the order

of ck/(n) by —pii. (When ci/(n)=0 then pli=—c0.) And for a positive number e,
denote that

{ q"f(e)=m§x (—ppI+(ry—k+1e)  for i#j
q*(e)=0

Define a positive number ¢, in the following way: e,=max{e,, &}, where

{ e;=max{e; mgxgq"”‘“(e)goh

gs=max{e; nggX(—pi"+(n—k+1)e)-§0},

where 7= runs through all the permutation of {1, 2, ---, v}. Then ¢*/=¢"(e,) (#7),
(g**=0) satisfies the conditions of Volevich’s Lemma. (See [9], [13].) Thus there
exist numbers B; (1= B,<v) such that ¢"/<8;,—B..

When we take the diagonal matrix of weight in the following way, we can see
easily that (i), (ii) in the lemma hold.

2.9) Wny=nPW.,, , (WDnPW ., (D - On* W, (n),

n&
where W, ,= - . (Q.E.D.)

) n(f—l)e
Proof of Lemma 2.2. Let
det AI—C(n 98))=A™+c,(s; n)A™ '+ - +cn(s; n)

be the characteristic polynomial of C()=C(n""s). Owing to Proposition 2.1 (See also
[2].), we know that cx(s; n)=0(n"*?) (1<k=m). Assume that Co(s) is not nilpotent,
then there exists k, (1<k,<m) such that p, =koe where we denote the order of
c(s:n) by —pr (1=k<m). Thus we are led to the inequality: kyo<p.,=koe. This
is a contrudiction to our hypothesis. (Q.E.D.)

For the proof of Lemma 2.3, see the previous paper ([12]). (See also [1], [4].)

§3. Proo of Theorem 1.2 and 1.3 under the assumption (A.l)

We start with (2.2)" in §2. Actually A,(s) in (2.2)" is equal to sA,, where A,is a
constant matrix of (S)-type with respect to /. (See Definition 2.1.) For =1 to v, de-
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note the (r,+r,+ --- r;)-th row vector by (a;.,, as.2, -, @s.n), and define the sXs matrix
as follows:
Ay, 1@y, rgy moe Ay, ¢s-r+1
K=| GGz r4y o A2, (s-1¥r+1
)
As,1Qg, 741 """ As, (s-1)7+1

where s is the number of the largest Jordan’s block of order 7.

Note that on account of Lemma 2.1 and Lemma 2.2, K is nilpotent when r=2.
Here we shall consider (2.2)" in two cases, i.e., the case when K is null matrix and
the others.

(1) The case when K=+#0.
Set ¢,=0¢/r and multiply the matrix of weight W, of the form (2.9) to (2.2)" in §2
from left. Actually W, is given as follows:

W=W, . (n)D - GW.,..(n)
DnBC AW, (D - @B ().
When we set =W v the system (2.2)" becomes
3.1 n°0d=3En' " 1(J+sA®+n " 1s AP+ n" 25 A®(n))
Fin' W, Ao(s; n)WHW, BW D .
Remark that from our hypothesis that K#0, A{® is not null matrix. Now we

deform J4+sA{® to a new Jordan’s form.

Lemma 3.1. Let s=1. There exists a non-singular matrix N(s) which satisfies the
following (i)~(iii):

(i) N(s) (J+sA®IN(s)'=], (a new Jordan's form)

(i) (—;—%N(@)N(s)'l is a diagonal matrix,

(iii) the (i, j)-entry of N(s)A{®N(s)™! vanishes if the same entry of A" vanishes.

Proof. We can construct N(s) in the form I(s)N,, where I(s) is a diagonal matrix
whose entries are powers of s, and N, is a constant matrix of the form: NO:NO@I,"_,,,
where N, is a non-singular sr X sr-matrix which is a blockwisely scalar matrix.

It is easy to see that N, is commutative with J and that N, changes K to a Jordan’s

form K derived from NyA®N3! in the same way. Thus the lemma is proved.
(Q.E.D)

Set 9=N(s)y, then we see that
(3.2) nOF=Gn'"(Ji4+n 1AW (s)+n BB (s : n))
+in 2 N(SW, Ao(s ; mWTN(s)" '+ NW,BWiN - +n°(NY,N-I .

Here we remark that the largest order of the Jordan’s blocks of the new Jordan’s
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form J, can be denoted by Fk,» (k,=22), and also remark that for 1</, j<s, all the
@k, 14(Gj—1)k,r)-entry of ﬁf"(s) are zero, where s, is the number of Jordan’s blocks
of order k,». Keeping in mind the new Jordan’s form J, we divide the matrix ﬁ,‘"(s)
as follows: ﬁ,‘":ﬁf'°)+ﬁf"’, where /le”" is composed with the (k,r, 24-(G—1)k,7)-
entry of ﬁ,“)(s) (17, j<s).

For this ﬁ{”’(s)z similarly to Lemma 3.1, we obtain

Lemma 3.2, Let s=1. There exists a non-singular matrix N,(s) which satisfies the
following (i)~(iii):
(1) Nu(s)i=JiNi(s).

(i) (g;)N,(s))Nl(s)" is a diagonal matrix.

(iii) The s,Xs,-matrix whose (i, j)-entry is eqaul to the (Gk,r, 2+(j—1)k,¥)-entry of
N AMPNT (14, 7<s,) is a Jordan’s matrix with null eigenvalue.

In (3.2) set 5=Ny(s)¥ and A{®=N,AM"N7' then it holds that
(3.3) ndS=(in'"*1(J;+n 1 A{®)+N,NW,BW'N'N7*
N,(z'n"“l(ﬁ,‘”>(s)+n"””‘l;l,"’(s; n))+in' 2 NW A(s; n)WTIN!
+n (NN DN7 +n?(N)N7HD

Now we choose the lower order term B. On account of the constructions of N(s)
and N(s) it is easy to see

Proposition 3.1. We can take a constant matrix B which is represented as follows:
N(S)N(SW  BWT'N(s)*Ni(s)" ' =n¢" 1 5(s),

where all the entries except for the (kir, 1)-entry are zero, and the (k,r, 1)-entry is equal
to bs* (b is an arbitrary number we can take and a is an integer.)

Taking account of Proposition 3.1, we can introduce another matrix of weight
corresponding with J,. Let e;=(1—a)/k,» and denote that

(3.4) Wo=W e, &, (0)DNW ey 0, r(n)D - DnC VW, 4 ()

@nt’l+lWez'?:l+1(n)® o @nzle€2_,=”(n) ’

where we denot that J,=J,(1)BJ,2)D :-- BJ:(vy) and denote the order of Jordan's block
Ji®) by #; (s,+1=<i<y,). Indeed for 1<i<s, the order is k&,r.

We will take &, & (s;+1<i<y,) in order that our argument works well.

Set w=W,?, then (3.3) changes into

(3.5) nodw=Cn'"11(J,+i ' B(s))+ Ar(s; n)w ,

where Ag is the remainder term, in our sense, such that
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(3.6)  Ap=in' W, ALOWS in P W, N (AD(s)+ RS AS(s ; m)NTW3!
F+in' W ,N NW, As(s; n)WTININTW 3!
+n W (N(NNTNT (N NTHW T
The Ag(s; n) is evaluated as follows.
Proposition 3.2. There exist g, & and Z, (s,+1=<i<v,) in (3.4), a positive number
g0 and a constant C which do not depend on n such that
3.7 |Ar(s; n)| S Cnis1¢27%0  for lorge n.
Precisely, for (3.6) to hold ¢ must satisfy the following inequality.

si(kyr—1)—r k=1
;(klr+kl_1)_r)<0‘<

1
(3.8) Max (5 bt l—1

It is easy to see that when r=2 we can take ¢ which satisfies (3.7). Owing to
Proposition 2.2 we obtain Theorem 1.3 in this case.

(2) The case when K=0.

At first, recall that r is the largest order of Jordan’s blocks of J. In this case set
e,=0/(r—1) and we use the same W, as one in the previous case. Let =W then
(2.2)" in §2 becomes

3.9 n 0D =>En' " J+sAP+n " PAM(s; n)+in' W, Ay(s s )W W BW D .

Keeping in mind the assumption that »=3, we can see that the matrix J4+sA{® is
nilpotent (Lemma 2.1 and Lemma 2.2). The following lemma plays an important role
for our proof.

Lemma 3.3. For s=1 there exists Ny(s) such that

(i) det Ny(s)=0.
(il) No(S)JH+sAP)=],Ny(s) where ], is a new Jordan’s form.

(iii) g—s (No(s)N3! is a diagonal matrix.
The proof of this lemma will be given in the last part of this section. set §=
Ny(s)U then we obtain
(3.10) n“asﬁz(in““(j.-i-n“"”“ANE”(s )]
+in' P NW L AW TINGT + NW BW NG +n7(No)sNTDD .

Here on account of the construction of N,(s) we can give the lower order term B
(constant matrix), which satisfies

(3.11) NW,BW TN =n¢" D61 5(s)

where the (r, 1)-entry or the (2r—2, r—1)-entry of g(s) does not vanish and the non-
zero component can be taken arbitrarily.
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Observing the above fact set e,=1/r(1—rc/(r—1)) and define that W.=W., r,(n)D
GBWSZ_sz(n), where we denoted the order of the Jordan’s block /() of the Jordan’s
form [i=L(1)D/2)D --- BJi(ve) by R; (RiZR,= - ZR,).

Let w=W,b then (3.10) becomes to

(3.12) nodaw=in'"r%2( J,+i ' B(s))w+ Ap(s; w ,
AR:WZ(z'n““’/”sl/Nl,‘”(s s n)Fn P NW L A(s s n)WTINGT Hno(Ny)iNGOW L.
For the remainder term Ag(s; n) it holds that

Proposition 3.3. We can take o such that there exist a positive constant e, and a
constant C which satisfy

(3.13) IAR(S; 71)‘§Cn!_51—52_€"’
for large n and for s=I; (I; is a certain open interval.).

Actually we must take ¢ in such a way that

Max {ZRl(r—l) R.(r—1) 1

.
(3.14) AL }»<a<7 .

Taking account of the assumption =3 we can take ¢ which satisfies the above
inequality. Moreover noting that there exists s=s, such that (z'jx+l§(so)) has at most
one eigenvalue whose real part is positive. Thus Proposition 2.2 derives Theorem 1.2
in this case. (Q.E.D.)

Proof of Lemma 3.3. For our argument to simlify we assume that J does not
contain the Jordan’s blocks of order less than »—2 and denote the number of the Jordan’s
blocks of order », »—2 by s, s, recepectively. Also we assume that A{®+#0. In fact
when A{®=0, N(s) is nothing but the identity matrix.

Remark that the components of A{® are zero except for (ir, 2+(j—1)r)-entry (17,
7<s), Gr, sr+1+(G—D(r—2)-entry (1=i<s, 1<7<s,), and (sr+i(r—2), 1+(j—1)r)-entry
(1<i<sy, 1S7=0).

Let {#,, -+, preqcr-2v} is One of the Jordan’s chains of (J+sA{®) such that p, ¢=1,
then the matrix [7,, -, @y +qcr-2y] 1S given by one of the following figures.
r r—2 r r-2 .. r—2 r r—2 vr
r{ 0 0 ry| 0 0

r—21 0 0 r—2 0 0

(Figure 1) (FigureT2)
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In the above figures the oblique lines are the same numbers.

Observing this we can see that there exist integers a; (1=/< pr+q(r—2)) such that
=57, where 7{” is a constant vector. This fact derives that there exist a non-
singular constant matrix N and a diagonal matrix I(s) whose entries are powers of
s such that Ny=I(s)N¢. Thus Lemma 3.3 is proved. (Q.E.D)

§4. Proof of Theorem 1.2 and 1.3 under the assumption (A.2)

Here we shall only argue in the case when v=3, that is, the number of Jordan’s
blocks is equal to three. In case of v=1 or v=2, the proof is much easier, so we
omit it.

Though our argument is already given in §2 in general cases, when we apply it
we must need more delicate discussion according to cases. We shall give the proof as
follows: The case when r,=r,=r, r,=r—1 is in §4.1, the case when r»,=r, r,=r,=
r—1 is in §4.2, and the case when r,=r, r,=r—1 and »,<r—2 is in §4.3, where we
denote that J/=/(1)DJ(2)P/(3) and the order of J(i) are denoted by r; (=1, 2, 3).

4.1. r,=r,=r, r,=r—1L.

Let us recall our starting point (2.2). We know that A,(s) in that equation is
actually sA, (A4, is a constant matrix.), and without loss of generality we can regard
that A, is (S)-type with respect to /. Keeping it in mind we denote the r-th row
vector of A, by (a,, @, =+, as,,). Also the 2r-th row vector and (3r—1)-th row vec-
tor is denoted by (by, bs, -+, bsr_,) and (¢, ¢s, -, ¢3-,) recepectively.

With those notations the 2X2-matrix K which was introduced in §1 is now ex-

pressed by
a, ari
K:[ ]
b, bri
Remark that by virtue of Lemma 2.1 and Lemma 2.2 K must be nilpotent. To

carry out the reduction which was explained in §2 we must divide our argument in
two cases. One is the case when K0 and the other is when K=0.

(1) The case when K=+0.
At first we assume that »=2 in this case. Let ¢,=¢/r and multiply the matrix
of weight W, of the form (2.9) to (2.2) in §2 from left, where
W1:Wel. 7'(7Z)®Wel. 7'(”)@”“’2)51”/51, r»l(n) .

Then (2.2) becomes the same system as (3.1).

We can also construct N(s) which satisfies (i)~(iii) in Lemma 3.1, where J,=
Ji(OBJ(2), the order of /(1) is 2r and the order of J,(2) is »—1. Thus we obtain the
similar system to (3.2). Denoting that d=N(s)W,v, we rewrite this.

4.1) n”&,ﬁ:(in““(/,+n“‘/Z’SIA{”(s)+n‘ElAl‘”(s)+n‘“/z’e,ﬁl‘”(s ; n))

Fin'PINW Ao(s; n)W TN ' NW BWIN ' n?(N;N-Ni .
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After those multiplications A and A® are also (S)-type with respect to /. We

denote these entries as follows: The r-th row vector of A®, A® is @®, -, a)),
(@a®, -, a§2,) recepectively, the 2r-th row vector is (O, -+, b)), (6@, - ;i)_l) and
the last (Br—1)-row is (&{?, -+, ¢§), (@2, -, &2, In those row vectors simple

caluculation shows that the entries of A® are zero except for a§t,, b, ¢ and &Y,
and the entries of A® are also zero except for a®, a2, b®, b2, and &,
By virtue of Lemma 2.1 and Lemma 2.2, when s=1 it holds that

[ b5, & =0
(4'2) 1 51 ~x( ( ~(
8 L"bz%—l( =0.
Moreover from the same lemmas we also obtain
4.3) h=0.

Now we can choose the lower order term B which possesses the similar property
as explained in Proposition 3.1.

(4.4) N(s$)W,BWT'N(s) ' =n¢" "D B(s),

where the entries of E(s) are zero except for only (2r, 1)-entry and it is expressed by
bs“. (b is an arbitrary number we can take and « is an integer.)

Taking account of (4.4) we introduce another matrix of weight corresponding with
Ji. Let e;=(1—0)/2r and denote that

4.5) Wo=W,..(n)DnW,, ,_(n).
Operate W, to (4.1) from ieft then we obtain
(4.6) ‘ n°0aw=(in' 1% J,+i " B(s))+ Aa(s; M) ,
where w=W,b and
Ap=in' " WWy(n~ D AM f -1 A® 4 - Gma @)W
+int 2 WL,NW L AW TN WS+ n W (NN W5
For this remainder term it holds that

Proposition 4.1. There exist o, z in (4.5), a positive number e, and a constant C
which do not depend on the parameter n such that

4.7) |Ar(s; n)| ECni=17%27%0  for large n.

Actually we take & according to three cases as follows.

ls.+2rez< <3 y—(r—1)e, when b, #0.

1 1 -
re,<e; and — e, +re,<i<—e,+e  when b, =0, @i, #0.

2 2

— %81+27’62<§< % e —(r—1)e, when 5{2.,=0, a,=0.
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In order that the above three inequalities hold, we must choose ¢ such that

3r—1 r r—1

3r+3<6’ r—+2<a, —r+1<a.
On the other hand we must impose the condition ¢ <l1—¢,—e¢,, that is ¢ must be
taken such that

4.8)

2r—1
(4.9) o< 2"—+1 .
Note that (4.8) and (4.9) are compatible when »=2. Thus owing to Proposition 2.2
we obtain Theorem 1.3 in this case. (Q.E.D.)

(2) The case when K=0.
At first we assume »=3 in this case. Remark that from Lemma 2.1 and Lemma
2.2 it holds that

(4.10) Qorp1CitbargiCr =0,

Observing (4.10) we prove our theorem dividing four cases:

@)1 @arsl +1b2redl #0, e+ lera 0.
), lazrsil+1b2ray | #0,  lol+lera|=0.
@) lasr il +1boreal =0, led+Tlers[#0.
@)y lasreil+1bora =0, led+lere =0

In the cases (2),~(2); the arguments are parallel to the previous case when K=+0
and in the case (2), we need not N(s) and W,. So we roughly explain our proof.

In the case (2),, set ¢,=(2/(2r—1))g (different from one in the previous case), and
use the same W,. And also use a similar N(s) having the same property, but in this
case J, in (4.1) is formed only one Jordan’s block of order 3r—1. Observing N(s) we
can choose the lower order term B such that NWIBWT‘N“’:n““”SIE, where the
entries of B except for only (3r—1, 1)-entry are zero and the non-zero component can
be arbitrarily given.

Set e,=(1—re¢,)/(3r—1) and operate W,=W,, ,,_,(n), then we obtain the similar sys-
tem as (4.6). And the corresponding inequality to (4.8) and (4.9) is as follows:

1 r—l} r—2

(4].1) Max {—2—, m <U<37’Tl.

This is compatible when »=2. Thus by the same argument as the previous one
we obtain Theorem 1.3. Indeed Theorem 1.2 is true in this case.

In the case (2), or (2), the second Jordan’s form is formed with two blocks J,=
Ji(DEBJ.(2), the order of Ji(1) is 2r—1 and the other one is . Different from the case
(2),, we must choose the lower order term B such that N(s)WlBWT‘N(s)“-—-n”““’2”511?,
where the entries of B except for (2r—1, 1)-entry are zezo. So we set e;,=(1—¢)/(2r—1)
and W, is given by W,=W,, .,..(n)Pn¢" V1W,, .(n), then we are led to the similar
system as (4.6). In this case we must take ¢ in such a way that
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1 »r—2 r—I1
(4.12) Max {7, ;_71}<o< Tt
Noting that (4.12) is compatible when =3 we obtain Theorem 1.2 in this case.
In the case (2),, denote that
~ as Arye
K :[ } .
bz br+2

Then from Lemma 2.1 and Lemma 2.2 it holds that A is nilpotent and ¢,,,,=0.
It is easy to see that there exists non-singular constant matrix N, such that N, J=JN,
and the corresponding matrix to KX is a Jordan’s form.

Keeping it in mind, set ¢,=1/# and denote that

W =W, (0)®nW., ()®n'W,, , (n) when K£=+0,
{W,:Wsl,,(n)EBWsl,,(n)GBWS,_,._.(n) when K=0.
Then (2.2)" in §2 becomes
(4.13) n"0sw=in' "M J+i'Byw+ Ag(s; mw ,

where we denoted that w=W,N,w, and B was chosen in such a way that the entries
except for only (r, 1)-entry are zero.

It is easy to see that we can take i and ¢ such that Agz(s; n) can be a remainder
term, i.e., |Ag(s; n)|=o0(n'-¢/7) as n—oo. Actually we take ¢ which satisfies

11 5 r—1
@.14) Max {5, —(r— Z)}<a< .
Note that (4.14) is compatible when »=3. Thus Theorem 1.2 holds in this case.

(Q.E.D.)

4.2. r,=r, ro=r;=r—1L.
Hereafter we assume that r=3. At first we use the same notation of the com-

ponents of A, which is (S)-type with recepect to J. (a,, -+, @3,-o) is the »-th row
vector, (b, -+, bs,_s) is the (2r—1)-th row vector and (¢, -+, ¢3,--») is the (3r—2)-th
row vector.

From Lemma 2.1 and Lemma 2.2 we can see

(4.15) a,=0, @b +as.c,=0.

Observing (4.15) we must divide our argument in the following cases:

(1) larml+lae1#0.  |b]+]c,|#0.
() larml+las 1#0,  [bl+]c[=0.
() larul+lan =0,  [bil+]c|#0.
(V) larul+las =0,  [bl+]al=0,

In the case (1), set ¢,=2¢/(2r—1) and operate W, to (2.2)" in §2 from left, where
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(4.16) Wi=W., (n)®n» W, - (n)DnVDaW, . (n).
Then (2.2)" becomes

(4.17) 0 0=0En'" W J+sAP+n " VPUAM(s; n))+in' W Ay(s s n)W W BW )7,

where #=Wv, and A®(s; n) is actually of the form: A®(s)+n- 21 AB(s)+n " 1A(s)
+n-@aA®(s s n). Assume that s=1and apply Lemma 2.3 to J4sA{®+n" 21 AM(s; n)
whose principal part J+sA{® is nilpotent, then we have

Lemma 4.1. There exists
N(s; m)= NO(s) 4 n-UDANO() 4 5 s N (s)4-n~ /DS N (s)
which satisfies ‘
(i) det N(s)=0.
() N(s; m)(J+sAP+nV29A4(s; n))
=(JiAn WP AB(S)F - AB()+n CPAD(s)+n I AD(s ;s n)N(s 5 ),

where J, is a Jordan's form with one block of order 3r—2, and AN{"(S)NZII‘”(S) are (S)-
type with recepect to J,.
(iii) When we expand C(s; n)=(N(s; n));N(s; n)™! in such a way that

C(s; n)=CO(>s)+n " MDaCO(s)+n " 1C®(s)+n " SP1C3(s; n),

where C®(s; n)=0(1) as n—oo, it holds that C(s) is a diagonal matrix and c{}=0
when i—j>r—1 and ¢{®=0 when i—j>2r—1. Here we denoted the entries of C(s)
and C®(s) by ¢{ and ¢ respectively (1=4, j<3r—2).

Set ?=N(s; n)p then (4.17) becomes

(4.18) no9H=@n""3(Ji+AM(s; n)+n AW (s ; n))
+int NW AW TN NW BW TN 4 (NN,
where A®(s; n)=n-ABa1ZM(s)+n-1 AP (s)+n- 21 J®(s),

Keeping it in mind that A71‘”(s; n) are (S)-type we denote the (3r—2)-th row vector
of A{¥(s; n) by a.(s; n) 1£k<3r—2). Then we obtain

Proposition 4.2. There exists a positive constant C which do not depend on n such
that |@y(s; n)|<Cn “* for large n, where

@2r—3)3Br—k—1)
2r—1

(4.19) ax=Min { 7, 251} for 1<k<3r—2.

Now concerning to the lower order term, we can take it as follows.

Proposition 4.3. There exists a matrix B which satisfies

(4.20) N(s: W)W ,BWT'N(s; n)"'=n<-e1(B(s)+ Ba(s; n),



544 Hideo Yamahara

where the entries of E(s) except only (3r—2, 1)--entry are zero and the non-zero component
can be taken arbitrarily, and Bgr(s; n)=o0(1) as n—co.

Set 62:1—5(:{21)51 and define that Wy=W,, 4, »(n) then (4.18) becomes
(4.21) n"axwz(z’n"El"2(_[,+z‘“§(s)+z’“Co(s))+AR(s P,

where w=W,J and the remainder term Ap is expressed as follows.
Ar(s; n):in“'”lwz(;lf”(s; n)+n““1/~1,‘”(s; n)Ws3!
+z'n"“WZNW,AZWT‘N"W;‘+71""2>‘1W21§RW;‘+n"Wz((N);N“—Co(s))W;‘ .

In the above expression Co(s) is composed with only (3r—2, 1)-entry of C®(s),
where we denote in (iii) of Lemma 4.1 that C®(s; n):é(”(l—}—o(l)) as n—oo,
For the remainder term Ag(s; n) we have

Proposition 4.4. We can take o such that there exist a positive constant ¢, and a
constant C which satisfy

(4.22) |Ag(s; n)| SCnt ez for large n.

Actually we can choose ¢ such that

1 2r—1 r—1
3r—4' 2(r+1)}<"<_;' :

This can be compatible when »=3. Thus owing to Proposition 2.2, Theorem 1.2
in this case is proved. (Q.E.D.)

(4.23) Max {

Secondly we shall step into the case of (II) and (Ill). Since in these cases the
same arguments are developed, we treat only case (II).

We use the same matrix of weight W, as one in the previous case (I). So we
are led to the system (4.17). Indeed the matrices A{”(s), A{(s; n) and A,(s; n) are
different from the previous ones. Recall that Lemma 4.1 played an important role.
Now we propose a similar one.

Lemma 4.2. There exists N(s: n)=NO(s)+n UDAND(s)4n~s N®(s) which satisfies

(i) det N(s)=0.

(i) N(s: n)(J+sA®+n- DI AD(s; n))

=ik nBUAD() £ n AP+ 0GB aAP(s s )N (s 5 n)

where ], is a Jordan’s form with two Jordan's blocks: J,=J,(1)BJ.(2), the order of J(1)
is 2r—1 and the order of J(2) is r—1, and A" and A{® are (S)-type with respect to J,.
(iii) . When we expand C(s; n)=(N(s; n));N(s: n) in such a way that

C(s; n)=CO(s)+n"W2UCD(s)+n " 1CP(s)+n"CDCE (s ; n),

where C®(s: n)=0(l) as n—co, it holds that C(s) is a diagonal matrix, moreover
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=0 when i—j>r—1 and c¢{¥=0 when i—j=0. Here we denote the components of
CM(s) and CY(s) by ¢} and c? respectively (1=<i, j<3r—2).

Thus we obtain the similar system as (4.18). But in this case we must further-
more divide in two cases when 6{’=0 or not, where we denote that, for k=1, 2, the
(2r—1)-th row vector of /71{’”(3) by (b{*, ---, b{¥,) and the last (3r—2)-th row vector
of A®(s) by (&{®, -, ¢®,). Here we remark that the entries of A{’(s) are zero ex-
cept for by, b2, ¢, and &, and the entries of A®(s) are also zero except for 5
and .

When 6{+0 we must proceed our reduction of hyperbolic matrices.

In the case (II),:b60#0, set e,= and operate W,=W,, . (n)D

-9
r—D@2r—1)
n"*W,, ._(n) to the similar system as (4.18) then we have
4.24) n°d P =(in' 17 J,+ A®(s)+ 0~ D2 A(s ; n))
+Woin'* NW, AW TN '+ NW , BW TN+ n°(N).N W )b ,

where D=W,J. Let N(s) be the non-singular matrix which transform jl+,71{°> to a
new Joran’s form J, of order 3r—2. Denote 5=N,(s)J then (4.24) becomes

(4.25) nodd=in' - ot~ 2 AM(s ; )
+NW@Gn' *" NW AW T'NT'+ NW BWT'N-!
+nC(s; MW NT+n(N)NT'Y .
At last we choose the lower order term B which satisfies
(4.26) NW.NW BWTIN'W 3 N1 =n¢ -Qmesec-bey Bi5) 4 Br(s s n)),

where the entries of ﬁ(s) except for only (3¥r—2, 1)-entry are zero and the non-zero
component can be taken arbitrarily, and Bn(s; n)=o(l) as n—oo,

1 ra
Set &= o—(1—77) and define W=V, s,-s(n) then (4.25) becomes

4.27) n7@w=(n' "1 29 i Bls)+i7 Co(s)+ Anls s Mw
where w=W and the remainder term Ap is expressed as follows.
Ap=int-sm-vagy A MW 3t n ¢ -G DeY Bs s )G
W NW o (in' 2 NW, AW TN 40 C(s ; )W NTW 34+ n W (NN W3 .

In the above expression the term C,(s) is the matrix whose non-zero component is
only (3r—2, 1)-one, and it is equal to the same component of N,C(s)N7!, while 5(5; n)
is the remainder of C(s; n).

For Ag(s; n) we also obtain the same inequality as (4.22) and instead of (4.23) we
must impose the inequality

(4.28) Max {Zr—l Zr—l} <r;1.

2r+2' 4r—3
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Indeed (4.28) is compatible when »=3. Thus Theorem 1.2 is proved.
In the case (IT),: h§¥=0, we need not the second reduction which was used in the
previous case (II),. From Lemma 2.1 and Lemma 2.2 it is easy to see that

(4.29) b =b==0.

Observing (4.29) we can choose the lower order term which, similar to (4.26),
satisfies
(4.30) NW BWTIN- =n¢ -5 B(s)+ Ba(s : n)),

where the entries of 1§(s) except for only (2r—1, 1)-entry are zero and non-zero com-
ponent can be taken arbitrarily, and gn(s; n)=o(l) as n—oo,

Set e,=(1—0)/(2r—1) and define Wo=W., ,._,(n)@W., ,_,(n) then, instead of (4.27),
we obtain

(4.3D) ndw=@n"c1-<2( J,+i ' B(s)+Ar(s ; n)w
where w%Wzﬁ and
Ar=in' W (AP(s; n)+n 2 A0(s s W3 +in' 2" W,NW, AW N- W5
+n<T W, By s W, C(s s mW3t.
For this Ap we can regard it as a remainder term when we take ¢ which satisfies

the same inequality (4.28). Thus Theorem 1.2 is proved in this case. (Q.E.D.)

Now we come to the case (IV). Let K be the 2x2-matrix such that

~ ‘br-!-l b2r-
K= ,

Cri1 Cor
then from Lemma 2.1 and Lemma 2.2 it follows that
(4.32) a,=0, and K is nilpotent,

We remark that without loss of generality K can be regarded as a Jordan’s form
of order two with the eigenvalues are zero, that is, there exists a non-singular con-
stant matrix N, such that the corresponding 2X2-matrix derived from N, A,N3' is a

Jordan’s form.
Keeping this in mind, we take the lower order term B such that the entries except

for (r, 1)-entry are zero.
Set e=1/r and define the matrix of weight ¥ as follows.

(4.33) W=W,, .(0)®nW. _,(n)PnIW. ._(n).
Operate W to (2.2)" in §2, then when we denote w=Wv it holds that
(4.34) n’0sw=>Gn""*(J+i'B)+ Ar(s; n)w,
Ap(s; n)=inW(sn "A,+n"2"Ay(s; n))lW1.

For Az we can obtain
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Proposition 4.5. There exist g, & and & in (4.33), a positive constant &, and a con-
stant C such that
|Ar(s; n)|=Cn'~*"%  for large n.

In order that the above inequality holds we must actually take ¢ which satisfies
that

(4.35) Max {5, 73} <o< "2

The above inequality is compatible when »=3. Thus Theorem 1.2 is proved in

this case. (Q.E.D.)

4.3. ri=r, ro=r—1, ry,=<r—2.

Even though we must divide our argument in two cases: one is »,=»—2, the other
is ry<r—2, we only treat the case when r,=r—2. In the case when r,<r—2 the
argument is much easier.

We use the same notation of the components of A, as one in 4.2. Keeping it in
mind that A4, is (S)-type with respect to J, denote that (a,, ---, @s,-s) is the »-th row
vector, (by, -+, by, _3) is the (2r—1)-th row vector and (c,, -+, ¢sr_5) is the last (3r—3)-th
row vector.

From Lemma 2.1 and Lemma 2.2 it is easy to see that

(4.36) a,=0, Arp b, =0,
Observing (4.36) we must divide our argument in the following way.
(I) aru#0
(o) b,#0
(I arsw=0,=0

In the cases of (I)and (II) we can develope the same argument. Set ¢,=2¢/(2r—1)
and define W, in such a way that

W.=W., . (n)Pn> W, (n)Bn W, »_o(n).
Denote =W v then (2.2) becomes
(4.37) n0,0=3En' "1 J+sA®+n"WDus AD 4 p g AP 4 n =GB AB(n))
+in' W, Ao(s ; n)WTHW BW )5 .

Secondly apply Lemma 2.3 to J4+sA{P4n"2agAM 415 AP 4 n- 261543 (n),
then we obtain
Lemma 4.3. Let s=1. There exists N(s; n)=NO(s)+n MDAND(s)4+-n A N®(s)

which satisfies following (i)~(iii).

(i) det N(s)=0.
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(i) N(s: n)(J+sAOFn- DU AW 4 p=1g A® 4= @De1g 4O (n))
=i+ DAY+ n AD(s)+ 0D A®(s : n))N(s; n)

Where ], is a Jordan’s form with two Jordan’s blocks: J,=],(1)®J.(2), where the order
of (1) is 2r—1 and the order of ]\(2) is r—2, moreover ﬁf”(s) and ﬁf”(s) are (S)-type
with respect to J,.

(iii) When we expand C(s; n)=(N(s: n));N(s; n)™* in such a way that

C(s; n)=CO(s)+n-UDaCWD(g) 4 n 10D (s)+n~CIDaC®(g;: n),

where C(s; n)=0(1) as n—oo, it holds that c¢§{y=0 when i—j>r—1. Here we denoted
the entries of CO(s) by ¢ty (14, j<3r—3).

Set ¥=N(s; n)p then (4.37) becomes
(4.38) P =(nt (i n A AW(s) 4 AR (s) 4D A0 (s 5 m))
Fin' P NW AW TN NW, BW TN 4+n°C(s ; n))b .
Here we also apply Lemma 2.1 and Lemma 2.2. Then we obtain
(4.39) b =bs=0,

where, for k=1, 2, we denoted the (2r—1)-th row and the (3r—3)-th row vector of
ﬁf’"(s) by (5%, -+, b)) and %, -, ¢, recepectively. We remark that the entries
of A®(s) are zero except for H¢V,, b§ and &8, and the entries of ﬁ{”(s) are also zero
except for b@.

Now we choose our lower order term.

Proposition 4.6. There exists a matrix B such that
(4.40) NWIBWT‘N“‘:n("‘<9’2”51(B~(s)+§R(s ;n)),

where the entries of E(s), except for (2r—1, 1)-th entry, are zero and ER(S; n)=o(l) as

n—oo,
Set e;=(1—0)/(2r—1) and define that W,=W., ., (n)Pn*W ., ,_.(n) then (4.38) becomes
(4.41) n”a,w=in""'52(]1+i"§(s)+Co(s))w+AR(s; mw
where w=W,D and the remainder term A, is expressed as follows.
Ag(s ; n)y=in'=PaW (A® 4~ ODa IO 4 - AOW3
+in' W NW AW TINW 3 n¢ =W Bo(s s n)W3+n"W,C(s ; n)W3k

In the above expression the term C,(s) is the matrix whose non-zero component
is only (2r—1, 1)-one, it is equal to the same component of C®(s), while C(s; n) is
the remainder of C(s; n).

Owing to Lemma 4.3 and (4.38) we obtain

Proposition 4.7. There exist g, & in the definition of W,, a positive constant &, and
a constant C such that
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(4.42) | Agr(s; n)| < Cn'-e1-f2m%0 for large n.

In order to obtain the estimate (4.42) we must actually take ¢ such that

1 3r—3 r—1
4.43) Max {5, 3;11} <o<T=.
The inequality (4.43) is compatible when »=3. Thus Theorem 1.2 is proved.
(Q.E.D.)

Secondly, in the case (Il), from Lemma 2.1 and Lemma 2.2 we can see further
conditions of A,.

(4.44) a,=b,,,=0, Ayr_10,=0.
Set ¢e=1/r and define that
W=W. (m)@n"W. . (n)BnW. r_on).
Operate W to (2.2) from left, then we obtain
(4.45) n°0,w=in'"(J+i'B)w+ Ag(s; nw,
where w=Wv and Ay is expressed as follows.
Ar(s; n)=inW(sn °A;+n"*"A,(s; n))W'.

For this A we can regard it as a remainder term when we take ¢ in such a way
that

1 2r-3 r—1
(4.46) Max {=, = <o < =2
It is easy to see that »=3 makes (4.46) compatible. Thus Theorem 1.2 is proved
in this case. (Q.E.D.)
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