
J .  M ath . K yoto  U n iv . (JMKYAZ)
29-4 (1989) 529-550
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— A  reduction o f  hyperbolic matrices—
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§  1 . Introduction

This article  is  th e  co n tin u a tio n  o f  th e  p rev ious paper [ 1 2 ] .  W e shall study the
strongly hyperbolic systems (in x m-matrix) in m ore general cases.

L et Q=(— T, T)xliux  a n d  we shall consider the Cauchy problem :

L [u ]= a t u —  A k (t, x)a x k u—B(t, x)u=0 o n  Q ,{
k =1

U(t 0, X )=—  Up(X ) , — T  ‹ t  o < T  ,

w here u(t, x) and u 0 (x ) a re  In-vectors.
W e consider (1.1) in  t h e  C- -ca tego ry . Let L0=6 t — E A k(t, x ) a x , ,  th e n  w e  sa y

k = 1

t h a t  L k i s  a  strongly hyperbolic system  when the Cauchy problem (1.1) is uniformly
C--wellposed fo r any low er order term  B (t, x ). For details see [12].

W hen the coefficients A x (t, x) a re  constant or the multiplicites o f th e  characteristic

roots o f A(t, x ;  e)= A k (t, x )ek  are  constant for an y  (t, x; e)EQ xRH O I, we know
k =1

the  necessary and sufficient conditions for Lo to  b e  a  strongly hyperbolic system  ([3 ],
[ 5 ] ) .  O n  th e  o th e r  h a n d  i f  w e  do no t impose the assumptions o n  th e  characteristic
roots in the case of variable coefficients, the situation w ill be  m uch  more complicated.

In  [12] the  author g a v e  a  necessary condition w ithou t any  assum ptions o f  th e
ch arac te ris tic  ro o ts . B u t ,  in  i t ,  w e assum ed that th e  rank  o f  (21 —A(t, x; e))=m-1,
where det (2I—A(t, x; e ))= 0 . A n d  th e  necessary c o n d itio n  fo r  L o t o  b e  a  strongly
h y p e rb o lic  sy stem  w as th a t th e  multiplicities o f  th e  characteristic roots a re  at m ost
double a t every  point (t, x ;  e).

It seem s that th e  difficulties specific fo r system s w ill be appear w hen w e drop the
a b o v e  a ssu m p tio n  o f  ra n k . A n d  in stead  o f the  above condition, if L o  i s  a  strongly
hyperbolic system  then it w ill hold that the orders (sizes) o f  t h e  Jo rd a n 's  blocks for
any characteristic roots m ust be at m ost tw o at any point (t, x ;  e). W e will prove the
above result in  some restricted c a s e s .  Moreover when the orders of the  Jordan 's blocks
a re  equal to  tw o a t a  certa in  poin t w e can give the  following example.

E x a m p le . Lo=at—A(t)a z ( 1 = 1 ) ,
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0 1 0 0
t2 0 tP 0,4(0= 0 0 0 1 (m=4),

0 0 2t2 0

where p is a positive integer.

For this L o w e  can prove that L o is  a strongly hyperbolic system if and only if
p 2.

Now turoughont this paper we assume that the coefficients A k (t, x ) and B(t, x)
depend only on  time variable t. And instead of (1, 1) we study the Cauchy problem
for the ordinary differential system depending on a parameter C E R :

amt ;  e)-=(iA(t; e)+B(t))12(t ;  e)
(1.2)

ft(to ; e)=fio(e) , — T<to<T

where we denote the Fourier transform of f (t, x ) with respect to space variables x  by

f (t ;  e).
As is well-known, the following theorem is due to I. G. Petrowsky.

Theorem 1.1. ([11]) In  order that the Cauchy problem (1.1) is uniformly C- -well-
posed it is necessary and sufficient that the following ineqaulity holds: There exist con-
stants C and M  independent o f the initial Plane t=t o ,  which satisfy

(1.3)û ( t ; I —5_ (1+ I e I )11 I fio(E) I ,
for the solution û (t;  C) o f (1.2).

Owing to the above theorem our problem is now to find the condition on 4 (t ;  $)

= A k (t)ek in  order that the inequality (1.3) holds for any lower order term B (t) in
k =1

(1.2).
Since our purpose in this article is to give its necessary conditions pointwisely, we

remark that the following assumption is not any restrictions of our situation. (See [4],

[7], [1 2 ].)

(A ) There exist t0 (—T, T )  and $° E R ' H O i  (  I = 1 ) such that the eigenvalues
of A(to ; eo) are equal to zero.

Moreover without loss o f  generality we can take t0 = 0 .  Thus throughout this
paper we assume the assumption (A) with t0 =0 without mention of it.

Let J= J(1)(1)J(2)@ ••• @ J()) be a  Jordan's form similar to A(0 ; $°) where J( i)  is
the Jordan's block of order r, with null eigenvalue (r 1 r2 •••

J ( i ) =

0 1
0 1

1
(ri X ri-matrix)

O
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We denote the largest order o f Jordan's blocks by r, and the number of the Jordan's
blocks of order r is denoted by s. L e t A (t;$°)=A (0; e°)-ktA 1 ± t 2 A 2 (t) (T ay lo r expan-
sion) and denote th e  (i, j)-entry o f  A , by ai ,j . We consider th e  s x s-matrix K  whose
(1, j)-entry is  air.ci-or+i

Now in  order to propose our theorems we must impose some assumptions.

(A.1) T h e  Jordan's form J  does not contain the  Jordan's blocks of order r-1.
(A.2) y is at most 3.

Theorem 1 . 2 .  Assume (A.1) or (A .2 ). I f  r 3  then L o is  no t a strongly hyperbolic
system.

Theorem 1 . 3 .  Assume (A.1) or (A .2 ). M oreover assume that K  is not null matrix .
I f  r 2 then L o is no t a strongly hyperbolic system.

F o r  th e  proofs o f  these theorems we employ a  reduction o f  hyperbolic matrices.
Here we say that a  matrix A (y) depending o n  y e 0 ,  0  being an  open  se t, is  a  hyper-
bolic m atrix in o  w h e n  th e  eigenvalues o f  A (y ) a re  real fo r  any y O. I n  §2  w e
shall explain a  reduction in  general c a s e s .  O wing to this reduction we shall prove
Theorem 1.2 a n d  Theorem 1.3 under the  assumption (A.1) in  § 3. Theorem 1.2 and
Theorem 1.3 under the  assumption (A.2) will be proved in  § 4.

§ 2. A  reduction o f hyperbolic matrices in general cases

W e start with the  system (1.2). Let e=ne°, where n is  a  la rg e  parameter. Then
our system can be written a s  follows.

(2.1) atii=(inA (t)+B )a ,

where A(t) , A (t; V )=A 0 ±tA 1 -Ft 2 A 2(t). As is well-known th e  following proposition is
due to Lax-Mizohata's Theorem ([6], [8]).

Proposition 2 . 1 .  In  order that the Cauchy Problem (1.1) is uniform ly  C - -wellposed
A (t) must be a hyperbolic matrix, i. e., the characteristic roots o f A (t) are real fo r  any t.

L et us take the  asymptotic transformation t=n - Œs, where a  i s  a  c o n s ta n t which
will be determined afterward. A nd denote th e  non-singular matrix which transforms
A o into the  Jordan's form J  by N o ,  then (2.1) becomes

(2.2) ncrag)=.(in(J ili(s)--Pn ' 71 2 (s ; n))+13)v, ,

where v=-N 0û, 51 1(s)=s1V0 A ,N -
0
- 1 , 71 2 (s; n)=s 2 N o A 2 (n - 's)N V  an d  .5=N 0 BN,V.

For simplicity we only denote 2l 1(s), 2 2 (s ; n) an d  fi by A l(s), A 2(s ; n) a n d  B  re-
spectively.

(2.2)' n'a,v=(in(J±n-Q A ,(s)d-n - " A 2 (s ; n))+ B)v

Our starting point is actually (2.2)'. We consider (2.2)' for s 1  a n d  our purpose
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is to choose the  low er order term  B  and the initial data a t  s-=s o ( t= n - "s o )  which lead
th a t the Cauchy problem  is not C- -wellposed.

Definition 2.1 . W e  s a y  a  in Xm-matrix A  i s  (S)-type w ith  respect to  Jordan 's
form  J  w hen all the  components o f  A  excep t f o r  r ,± r 2 + ••• + r 1-th r o w  v e c to r  are
zero ( 1 S i i ) ) ,  w here w e used the notations in § 1.

Lemma 2.1 . L et C (n )= J+ C ,(n ) be a inx m -m a tr ix  which depends o n  a parameter
n , where C i (n )  is  (S )-typ e w ith respect to J  and can be expressed as follows:

C 1 (n )= n — r1 C i + n - '2C 2 +  •••  (mod n - - ) as n-->00 •

where 0 < a r< a 2 < • -• . Then there exist a positive constant so ,  a  diagonal m atrix  W(n),
a constant matrix  ei a n d  a  2 (n )  which satisfy:

(i) W (n)C (n)W (n)'-= n - ' , (J+ 0 ,+ 0 2 (n )),

(ii) C 2 (n)=o(1) as  n--*00.

A pply this lem m a to (2.2)'. L et D'=-- Wv then w e can see

(2.3) n'asP"=(in'o(J-F71I(s)+;42(s ; n))+ki; .

Secondly, keeping in  m ind the change of variable t= n - "s we propose the following

Lemma 2.2. A ssume C (t) is  a  hyperbolic matrix in a neighborhood o f  t= 0  and C(0)
is nilpotent. A nd assume that there exist an interval I , ,  a positive constant s  and a non-
singular m atrix  N (s ; n )  such that

N (s; n )C (n - ' s )N ( s ;  n ) '= n - =(Co(s)+CR(s; n)) f o r s E I „

where CR (s ; n )= o(1) as n - 9 0 0 .

I f  s < a ,  then C o ( s )  must be nilpotent f o r all sE 1 8 .

Thirdly w e em ploy th e  following

Lemma 2.3 . L et C (s ; n )  be a  7nxm -m atrix  given on an open interv al I, and  n  is
a large param eter. A ssume that C (s ; n )  has the following expansion:

C (s; n )= C o (s)d -n - " C 1(s)+ n - a 2 C2(s)-F ••• (mod n - " ),

f o r a l l  sE I s  (0 < a i< a 2 <  ..• ) . Moreover assum e th at  Co ( s )  is nilpotent f o r all s e l , ,
then there ex ist an open interv al I, and a niXm - m atrix  N (s ;  n )  which satisf ies that

(i) det N (s ; n )* 0 f o r all s e l s and  f or large  n.

(ii) N (s ; n )C (s ; n )N (s ; n r= J+ E 'i( s ; h ) ,

where J  is  a Jordan's form  and 0 ,( s ;  n )= o (1 ) .  M oreover 0 1( s ;  n )  is (S)-type w ith re-
spect to J.

O w ing  to  th e se  le m m a s w e  c a n  d e fo rm  (2.3). A t  f ir s t ,  i f  s o < a  in  (2.3) then
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J - 0 1 (s) is n ilpotent. So w e can apply  L em m a 2.3. Set f3=N (s ; n)i) then

(2.4) n 'a ,D = (in '" (L -F ill(s  n))+11+ nc(N (s ; n))N (s n) 1 ) ,

w here 71,(s ; n)=o(1) and P = A N - 1 =NIVB1V - 1 N - 1 .

Comparing (2.2)' and (2.4) w e can repeat a  reduction sim ilar to  above steps. O b-
serving this reduction we shall choose a  low er order term  such  that the Cauchy prob-
lem  is no t C- -wellposed. In  th a t  process, the fact that w e can choose a  c o n s ta n t a  is
a crucial point for our arguments.

O ur purpose is to obtain th e  following proposition.

Proposition 2 .2 . A ssume that there exist a positive constant s i  and a matrix g(s; n)
which is products of  some m atrices of  type W (n) in Lemma 2.1 and N (s; n) in  Lemma
2.3, such that when we set w =S i(s; n)v , (2.2)' turns into

(2.5) astu(s ; 1(ilo(s)+ 76(s ; n))w(s ; n) ,

where 'AR(s; n)----o(1) as  n--(>0.

Moreover there exists s o such that 710 (s 0 )  has at least an eigenvalue whose real part
i s  positive, then the Cauchy Problem (1.1) is not uniformly C- -wellposed.

P ro o f. This proposition i s  a  slight modification of Lax-Mizohata's Theorem (See
[1 0 ].). S o w e exp la in  th is b rie fly . A t first w e can  take  a  c o n s ta n t  m a tr ix  N o su c h
th a t D0

, --N 0 710 (s 0 )N -6' is  a  triangular m atrix  and w hen i < j ,  th e  absolute value of the
l)-component can be taken sm all a s  w e  w is h . S e t fi.;=N o w  then we obtain

(2.6) asc6=n,i(Do+No(710(s)-510(so))NT,i+N.ARNT,N,' •

W e denote the diagonal components o f  D o a s  follows:

JR eal part o f 21, 22, • •• , 2 k  't3 i  (> 0 ) ,

R eal part o f 2k+1, ••• , 2„, 0

A nd w e denote a  energy form  by
k in

en(s) -= feXP ( - 52ns
 1 (S SO)} ( iE j I û ( s  ; n)1 2 —, = . 1 . 1 1a/ j (s ;  n)1 2)

w h e re  w e  d e n o te  th e  com ponents o f  C s ; n) b y  t(ii,„ ••• , i u , ) .  Then w e obtain  the
following inequality :

(2.7) en(s)>= { exp (33 n"(s — so)} en(so) fo r  s so

w here 33 i s  a positive constant.
O n the other hand, in  the C auchy problem (1.2) we shall take the  in itia l data  a.(e)

a t  t=n - cso w h ic h  a ssu re s  0,i (s0 )= 1 .  A ssum e th a t  the Cauchy problem (1.1) i s  C- -
wellposed, then  ow ing to  (1.3) and  the  property o f  N (s; n) we obtain

(2.8) On(s) C,n'"I fo r la rg e  n

w here C, and  M , are constants which d o  not depend on n.
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T h e  inequalities (2.7) and (2.8) are not compatible when s >s o a n d  n  is la rg e . O u r
proof is thus complete. (Q. E. D.)

At the  end  of this section we shall give th e  proofs o f th e  lemmas which a re  used
in  this section.

Proof  o f Lemma 2 .1 .  A t first we shall write concretely the entries o f  C ,( n ) .  Let
C i •i(n )  be t h e  (i, j)-block of  C 1(n) corresponding to J ,  an d  le t th e  last row vector of
C i( n )  be (cf-i, • • •  ,  c ; : • / ) .  Remark that other row vectors a re  n u ll. Denote the order
of c l ( n )  b y  --pp. (When cl.j(n)= 0  then p p =  — c o .)  A nd for a  positive number E,
denote that

q1/(6)=-max (— Pl.i+(ri— k +1)s) fo r  i # 1

qs . i (s)=0

Define a positive number s o in  th e  following way : a o = m a x ,  s 2 1, where
,

{

s,= m ax{e; max E o (e) 0},

S2
=

M a X i a ;  max(—Pl' i -F(r1—k-F1)6) 01,i. k

where it runs through all the permutation of 11, 2, ,  0 .  Then as. , =qt.)(6 0) (i#  j),
(q =0 )  satisfies the  cond itions o f V olev ich 's  Lemma. (See [9 ] .  [1 3 ] .)  Thus there
exist numbers /3i  (1519 i ).,) such that as•i5 191 --13,.

When we take the diagonal matrix o f weight in  th e  following w a y , we can see
easily that (i), (ii) in  th e  lemma hold.

(2.9) W( n)-= n 1W6o ,  i ( n)Cj)n f i 'WE° , r 2 ( n)e) •• • (Dn i3 1117 , ( n )

1
no

where W ,, = (Q. E. D.)

Proof o f Lemma 2.2. Let

det (2I— C(n - as))=2m-l-c i (s ; • - •  ± c ( s ; n)

be th e  characteristic polynomial of C(t)=C(1 - 7 s). Owing to Proposition 2.1 (See also
[2 ].) , we know that c k (s ; n ) = 0 ( n ')  ( 1 _ .k 5 m ) . Assume that C o (s )  is not nilpotent,
then there exists le , (15k 0 m ) such that » k o =k o e  where we denote the  order of
c k (s ; n ) by —Po (1 k ri.). Thus we a re  led to the inequality :  k o a Pk 0 =k 0 e. This
is a contrudiction to our hypothesis. ( Q .  E .  D.)

F or the  proof o f Lemma 2.3, see the  previous paper ( [1 2 ] ) .  (See also [1 ], [ 4 ] .)

§  3 .  Proo o f Theorem 1.2 and 1.3 under the assumption (A.1)

We start with (2.2)' in  §  2 .  Actually A i (s) in (2.2)' is equal to sA i ,  where A , is a
constant matrix of (S)-type with respect to J .  (See Definition 2 .1 .)  F o r  i= 1  to 2.), de-
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note the (r1-Fr2+ •• • ri )-th row vector by (ai.1, a i , 2 ,  • • •  a t i . m ) ,  and define the s X s m atrix
as follows

a1, 1a 1, r -1-1 a i , ( 3 - 1),+ 1

a 2, 1a 2, 7. -1-1 a 2 ,0 - o r + i

a s , la s , r + 1 0 3 , 0 - 1) r+1

w here s  is  the number of the largest Jordan's block of order r.
Note th a t on account of Lemma 2.1 and Lem m a 2.2, K  is  n ilp o te n t w h e n  r 2.

H ere  w e  sh a ll co n sid e r  (2.2)' in tw o  cases, i. e., the case w hen K  is nu ll m atrix  and
the others.

(1 )  The case w hen K*0.
Set s i = a / r  and multiply the m atrix of weight W i of the form  (2.9) to  (2.2)' in § 2

from  le ft. A c tua lly  W, is g iven  as fol lows:

w,=w„,r(n)ED•••ewe i .,.( 1)

EDn ( 1 1 2 ) ( , - , s+i ) aiw
r8 + ,(n )e••• e n ( „ 2)(r_ro.447„,, v (n).

W hen w e set P=W ,v  the system  (2.2)' becomes

(3.1) nri s A f n  n - 'ls AP ) (312)E i sA f 2 ) (n))

n)WT 1 +W iB W V )1̂) •

R e m a rk  th a t f ro m  o u r  h y p o th e s is  th a t K * 0 ,  A P ) is no t nu ll M atrix . N ow  w e
deform J-EsAr )  t o  a new  Jordan 's form.

Lemma 3.1 . L et s , • 1 .  There exists a non-singular matrix  N (s) which satisfies the
following

( j  ) N (s) (J± sA f ° ) )N ( s ) '= J ,  (a new  Jordan's form)

(ii) ( 7 -i s
4  N (s))N (s) - '  is  a diagonal matrix,

(iii) the (i, j)-entry  o f N(s).111' ) N(s) - '  vanishes i f  the sam e entry  o f Af 1 ) vanishes.

Pro o f . W e can construct N (s) in the form /(s)N o , where / ( s )  is  a diagonal matrix
whose entries are powers of s ,  and N o is a constant matrix of the form :
w here g o i s  a non-singular sr X sr-m atrix  w hich is a blockwisely scalar matrix.

It is  easy  to  see  tha t No is  commutative with J and that N o changes K  to  a Jordan's
form k derived from  N o iLli°) NT,i in the sam e w ay. T hus the lemma is proved.

(Q. E. D)

Set i5— N(s)D, then w e see that

(3.2) easi3=(in1-'1(L -F n - 6 1,4f1 )(s)+ n (3/2>e I A f2 )(s ; n))

+in ' - 2 1 N(s)W i A o (s; n)141 7i N(s) - i -FNW ,BW 7N - i-Fn°(N) o N - Vii .

H ere w e rem ark that the largest order of the Jordan 's blocks of the new Jordan's

K =
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fo rm  J ,  c a n  b e  d e n o te d  b y  k i r (k 1 _ 2 ) , and also  rem ark that for 1 i , j 5 s 1 a l l  the
(ik 1r,1+(j-1)k 1 r)-entry  o f  2if' ) (s) are  zero, w here s , is  th e  number o f  Jordan's blocks
o f order k g - .  Keeping in  m ind th e  new Jordan's form  J,  w e divide the  m atrix  71;"(s)
a s  follow s: .71P) =2If" ) ±2lf" ) , w h ere  A l")  is  co m p o sed  w ith  t h e  (i k i r , 2+(j —1)k i r)-
entry  o f  711' ) (s)

F o r th is  ilf" ) (s), similarly to Lemma 3.1, we obtain

Lemma 3.2. L et s_1 . T here  ex ists a non-singular matrix N i (s) which satisfies the
following (i) , (iii):

(i) N1(s).11=f1N1(s).

(ii) (—d---)N1 (s))N ,(s) - 1  i s  a diagonal matrix.ds
(iii) The s,X s i -matrix  whose (i, j)-entry  is eqaul to the (ik 1r,2+(j-1)k 1r)-entry  of

N 1 71f 1 )N7' j5 s1 ) is a Jordan's matrix  w ith null eigenvalue.

In  (3.2) set ii=N,(s)ii and  ii1" ) =N 1 A; 1 ) N 1 then  it ho lds tha t

(3.3) n°,9,D=(ini-"(.11-Fn-e171f"))+NiNW1BWTIN-WV

Ari(in 1 - 2 s 1 (A i" ) (s)±n - ( " 2 ) 1 A 2 ) (s; n))+in 1 - 2 aNW i A 2 (s;

- i- n a (N );N - 1 )N7 1 - kn a (lVi)8NT 1 )1,

Now we choose the  low er order term  B .  On account of the constructions of N(s)
and N i (s) it  is  easy to see

Proposition 3 .1 .  W e can take a constant matrix B which is represented as follows:

N 2 (s)N(s)W 1 BW V N(s) - W 1(s) - 1 =---  n(' - 1 ) s1B(5)

w here all the entries except for the (k i r, 1)-entry are zero, and the (k i r, 1)-entry is equal
to bsa (b is an arbitrary  num ber w e can take and a is  an integer.)

T aking  account o f P roposition  3.1, w e can  in troduce another m atrix  o f  weight
corresponding with J i . L et £2 =(1—o. )1k,r and denote that

(3.4) 14T2=W2,ki,-(n)ein'W,,,kir(n)e) • • • en ( " - " W  k  i r(n)

EDn'si+IW E ,, f s i , i (n)@••• einzs,W

w here w e denot tha t ji=j1(1)ej,(2)03,.•• Ei)j,(i.),) and denote the  order o f Jordan's block
Ji(i) by P t  (s1 - 1- 1 i S i i i ) .  Indeed fo r  1 1'._<s, the  o rde r is  k,r.

W e w ill take E, (s 1 +1._<_i<v i )  in  order tha t our argum ent w orks well.
S e t  w=WJ), then (3.3) changes into

(3.5) ncasw --= (int-"-"(Ji+ i-'ii(s))+ A R(s; ,

w here A R  is  the  remainder te rm , in  our sense, such that
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(3.6) AR _ i n 1-2E1W2 :AVO)W-2 1± i n 1-2eiw 2N 1(71 pi)( s ) + n  -012)EiA(2)( s  ; n D N T IT4,-2_1

-Fin 'W2NINW1A2(s; n)WV1\T- 1 NT1WV

+n ° W i(N ,(N );N 'N 7 1 ±(Ni);NV)W -i i •

The AR (s ; n ) is evaluated as  follows.

Proposition 3.2. There ex ist a, z and t, (s i+ 1 i2 . )1 ) in (3 .4 ), a Positive number
so and a constant C which do not depend on n such that

(3.7) AR(s ; n) Cn' - '1 - 6 2- '0 fo r  lorge n.

Precisely, for (3.6) to  ho ld  a  m ust satisfy the following inequality.

1 si (k 1r-1 )---r k,r-1M a x
2 '(3.8) s,(k,r+h,-1)— r)

< a <

I t  is  e a s y  to  s e e  th a t  w h e n  r_ .2  w e can  take  a  which satisfies (3.7). Owing to
Proposition 2.2 w e obtain Theorem  1.3 in  th is  case.

(2) The case w hen K=0.
A t first, recall that r  is  the largest order of Jordan's blocks of J. In th is case set

61=  07(r - 1 )  an d  w e  use the sam e 117 ,  as one in the previous case . L e t V=W,i) then
(2.2)' in  § 2  becomes

(3 .9) e a sp , ( i n i-s, u + s A10)+ /2),,, A fi)( s  ; o+ in i _ 2

TV,A2(s ; n)WY+I(VIBWV)i% •

Keeping in  m ind the assumption that r 3 , w e can  see  th a t the m atrix J-FsAr )  is
nilpotent (Lemma 2.1 and Lemma 2.2). The follow ing lem m a plays an important role
for our proof.

Lemma 3.3. For there exists N o (s) such that

( i ) d e t  N o(s)#0.
(ii) No (s)(J-I-sAJ")=J i N o (s) where Ji i s  a new Jordan's form.

(iii) —

d

-

s
(No(s))NV is  a diagonal matrix.

The proof of this lem m a w ill be given in  th e  l a s t  p a r t  o f  t h is  section . set 13=
N o (s)V then we obtain

(3.10) n6a071=(ini-"Ch+n-""171(1)(s ; n))

-I-i n 1 - 2 ° N o W i A 2W  N N o W ,BWV N -61 + n'(No)8N -61 )1,  •

Here on account of the construction of No (s) w e can  g ive  the low er order term  B
(constant matrix), which satisfies

(3.11) NoW,BWVATV=n(r-"€ib(s),

where the (r, 1)-entry or the  (2 r -2 , r -1 )-e n try  of M s) does no t van ish  and  the non-
zero component can be taken arbitrarily.
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Observing the above fact set 62 =1/r (1-1-01(r-1)) and define that Wo =W,,,, R i (n )e)
•-• EDWo2 ,R (n), where we denoted the order of the Jordan's block J i (i) of the Jordan's
form ,/1=,/1(1)(1/A(2)9 ••• 9 )1 '1 (1 )2 ) by •••

Let w=W or) then (3.10) becomes to

(3.12) eastv= ini-1-"Ch-F i-1:6(s))w+ A R(s ; n )w , ,

AR=W2(in' - " 1 2 ) €1 7111 ) (s; n)+92 1 - 2 ' NoW,A2(s; n)IVVNT,'+e(Nor81\77,̀ )W-i i .

For the remainder term AR (s ; n ) it holds that

Proposition 3.3. We can take a such that there exist a positive constant so a n d  a
constant C which satisfy

(3.13) AR(s; ,

f or large n  and for sE I , (I, is  a certain open interval.).

Actually we must take a  in such a  way that
f2R i (r -1 ) R 1(r-1)

< a <
r - 1  

.(3.14) Max
12-(2RH-1)' r (R ,+ r -2 )

Taking account o f th e  assum ption r3 w e can take a  which satisfies the above
inequality. Moreover noting that there exists s= s o such that (iJ r -F (s o ) )  has at most
one eigenvalue whose real part is  positive. Thus Proposition 2.2 derives Theorem 1.2
in this case. (Q. E. D.)

Proof of  Lemma 3.3. For our argument to  simlify w e  assume th at J  does not
contain the Jordan's blocks of order less than r-2  and denote the number of the Jordan's
blocks of order r, r - 2  b y  s ,  s ,  recepectively. A lso  w e assume that 2V ) # 0 .  In fact
when Af° ) =0, N (s) is nothing but the identity matrix.

Remark that the components of Af°) are zero except for (ir, 2 -F ( j-1 )r)-en try
j s ) , ( ir , s r+ 1 + (j-1 ) ( r -2 ) ) - en tr y 1_<_j s1), and ( s r+ i( r -2 ) ,  1+(j-1)r)-entry

Let 011, ••• f i n ,--1-q 0-2,1 is one of the Jordan's chains of ( J-Fsill° ) ) such that p,
then the matrix • • •  , +q(r - 2 )1  is given by one of the following figures.

r r - 2  r  r  — 2 • • •r - 2 r  r  —  2  r • •

r - 2

\ 0 \ 0

,

o  \  o
Figure 1)

o\-- 0\
\ ...0, \

\ o
(\)

o

\ o \  o
(Figure:T.2)

r - 2

r - 2

r - 2
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In the above figures the oblique lines are the same numbers.
Observing this we can see that there exist integers a l (1 i prd--q(r-2)) such that

71,=s ' 1iin  where ili°) is  a constant vector. This fact derives that there exist a non-
singular constant matrix N o ) and a diagonal matrix / ( s )  whose entries are powers of
s  such that N o =/(s )N " ) . Thus Lemma 3.3 is proved. ( Q .  E .  D.)

§ 4. Proof o f Theorem 1.2 and 1.3 under the assumption (A.2)

Here we shall only argue in the case when v=3, that is, the number of Jordan's
blocks is equal to  three. In case of v=1 or v=2 , the proof is m uch easier, so  w e
omit it.

Though our argument is already given in § 2 in general cases, when we apply it
we must need more delicate discussion according to cases. We shall give the proof as
follows : The case when r 1 =r 2 =r, r j =r —1 is  in § 4.1, the case when rc=r, r 2 =r 3 =
r - 1  i s  in § 4.2, and the case when r ,= r,  r 2 = r - 1  and 7.3 -_r —2 is  in 4.3, where we
denote that J= J(1)EDJ(2)e J(3) and the order of J( i)  are denoted by r, (i=1, 2, 3).

4.1. r 1 =-r2 =r, 7- 2 =r-1 .
Let us recall our starting point (2.2)'. W e know  that A i ( s )  in  that equation is

actually sA i (A , is  a constant matrix.), and without loss o f generality we can regard
th a t A ,  i s  (S)-type w ith  respect to  J. Keeping it in mind we denote the r-th row
vector of A , by (a1, a 2 /  • • •  a 3 7  - 1 ) .  Also the 2r-th row vector and (3r-1)-th row vec-
tor is denoted by (b1, b2, ••• , b3,1) and (c,, c2, ••• , c 3 _1 ) recepectively.

W ith those notations the 2x2-m atrix  K  which was introduced in § 1 is now ex-
pressed by

[

a, a,.+1

b1

Remark that by virtue of Lemma 2.1 and Lemma 2.2 K  must be nilpotent. To
carry out the reduction which was explained in § 2 w e must divide our argument in
two cases. One is  the case when K#0 and the other is when K=0.

(1 ) The case when K#0.
A t first we assume that r 2  in this case. Let ,F.,= o 1 r  and m ultiply the matrix

of weight W, of the form (2.9) to (2.2)' in § 2 from left, where

W  ,=W

Then (2.2)' becomes the same system as (3.1).
W e can also  construct N (s )  which satisfies (i)--(iii) in  Lemma 3.1, where J,=

i1(1)EBL(2 ), the order of 1,(1) is  2r and the order of J1(2) is  r-1 . T h us w e o b ta in  the
similar system to (3.2). Denoting that D=N(s)W i v , we rewrite this.

(4.1) e a ,V = ( in ' V I - 1- n - G / 2 ) . 1 A10 (s)d-n - " A f 2 ) (s )± n - ( " 2 ) E,71f3 ) (s ;  n))

NW i z-12 ( s ; n)147VN-i+NW1IA7VN-'+n'(N),N-1)i).
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A fter those multiplications .2Q" and A f" are  also (S)-type w ith  respect to  J. We
denote these entries a s  fo llo w s :  T he  r-th row  vec to r o f  70, A f2 ) i s ( c7 f1) ,

(di 2 ) , ••• recepectively, th e  2r-th row vector is (5f 1 ) , ••• 5 ) )  ( 5 2 )

(5f2 ) , ••• b sg )-1) and
th e  la s t  (3r-1)-row i s  (eP ) , ••• • • •  I n  those  row  vec to rs simple
caluculation show s th a t th e  entries o f  71p) are zero except fo r  tig )+1, 5 4 )+1, 'el" and t•,TI ,
and  the  entries o f  Ar) a re  also zero except fo r  (V,2 ) , 52), 52 and

B y virtue o f  Lemma 2.1 and  Lemma 2.2, w h e n  s 1  it  h o ld s  th a t

I 5W+ItT ) =- 0
(4.2)

ag)+A1)±64)+Ic',T1=0.

Moreover from the  sanie lemmas we also obtain

(4.3) 5,(Z), 0

Now we can choose th e  low er order terni B  which possesses th e  similar property
as  explained in  Proposition 3.1.

(4.4) N (s)IV 1BW V N (s)-'= -n('-')'1b(s),

where the  entries o f  13(s) are  zero  except fo r  only (2r, 1)-entry a n d  it is expressed by
b s a .  ( b  is  an  arbitrary num ber w e can take and  a  is  a n  integer.)

Taking account o f (4.4) we introduce another matrix o f  weight corresponding with

J,. L et s2=-(1-6)/2r and  denote that

(4.5) W2=We2.2,.(n)EDW1'V,,--1(n).

Operate W, to  (4.1) from  ieft then we obtain

(4.6) nastv,(in i-s1 -`2 (Ji+ i-113 (s))+ A R (s; n ))w  ,

w here w=-- W,V and

4 R = i n i-s.,w 2( n -0,2)., 174f1)+ n -s1 ̂A(2) + ,,-(3,2)E,Apw _ i i.

+in 1 - 2 "W2 NW,A2W -
I•IN ' W-

2
-1 + el42(N );N - 1 W V.

F or this rem ainder term  it holds that

Proposition 4 .1 . T here ex ist a ,  E in  (4.5), a positiv e num ber s o and a constant C
which do not depend on the param eter n  such that

(4.7) An(s ; fo r  large n.

A ctually  w e take t according to  three cases as follows.

1 3
- - 2--s, ±2rs 2 < 1 < s ,— (r -1 )s , w hen 5V.)+ , *0 .

1 1
re2<s 1 a n d  — —

2
s1 i-rs 2 < Z < -

2
si±s2 w hen 54)+ 1=0,

3 1. when 5 ,= 0 ,
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In order that the above three inequalities hold, w e must choose c such that

3r —1 rr - 1(4.8)
3 r + 3  

< a ,  
r + 2  

< a

 r + 1
< cr.

On the other hand we must impose the condition a < 1 -6 ,-6 2 , th a t is  a  must be
taken such that

(4.9) a< 
2r —1

2r+1

Note that (4.8) and (4.9) are compatible w h en  r2 . T h us o w in g  to  Proposition 2.2
we obtain Theorem 1.3 in this case. (Q• E. D.)

(2 )  The case when K=0.
At first we assume r 3  in this case. Remark that from Lemma 2.1 and Lemma

2.2 it holds that

(4.10)

Observing (4.10) we prove our theorem dividing four cases :

(2), a2r+i + b2r+,1 =0 , 16'11+ c, * 0 .

(2)2 I a2,-.1-1 + I bz, +11 *0 , I c 11 + lc + iI =0 .

(2) 2 a2, +11 ±1b2r+11 , c, + c, + 11*0 .

(2)4 I a2,1-i ± b2r+11 =0 , ei + c,-1, I =0.

In the cases (2) 1--(2) 2 the arguments are parallel to the previous case when K# 0
and in the case (2)4 we need not N (s) and W 3 .  So we roughly explain our proof.

In the case (2) 1, set s1 =--(2/(2r-1))a (different from one in the previous case), and
use the same W 1 . And also use a similar N (s )  having the same property, but in this
case J ,  in (4.1) is formed only one Jordan's block of order 3r —1. Observing N (s) we
can choose the low er order term  B  such  that NW 3BWVAT - 1 = n ( - 1 ) s1/3, where the
entries of B-  except for only (3r-1,  1)-entry are zero and the non-zero component can
be arbitrarily given.

Set e2 =(1—rs1)/(3r —1) and operate 1172 =W 9  2 , _,(n), then we obtain the similar sys-
tem as (4.6). And the corresponding inequality to (4.8) and (4.9) is  as follows :

f 1 r-11 3 r -2
(4.11) Max 1 2 ' r+lf

< a <

 3 r + 1

This i s  compatible w h en  r2 . T h u s  b y  th e  sam e  argument as the previous one
we obtain Theorem 1.3. Indeed Theorem 1.2 is true in this case.

In the case (2)2 o r  (2) 3 the second Jordan's form is formed with two blocks Ji=
i1(1)EDJI(2), the order of J1(1) is  2 r -1  and the other one is  r. Different from the case
(2),, we must choose the lower order term B  such that N(s)W,BWT 1 N (s) 1 =77 ( 1 - 0 /2 ) ) 8 1fi,
where the entries of except for (2 r-1 , 1)-entry are zezo . So we set 62 =(1—a)/(2r —1)
and W, is given by W2 =W, 2 ,_,(n)en ("' - ' )=1W„.,-(n), th en  w e  are led  to  the similar
system as (4.6). In this case w e must take a  in such a way that
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(4.12) Max f  1  r -2 } r-1
2  '  r  — 1  

<a< I.

Noting that (4.12) is  compatible when r_.3 we obtain Theorem 1.2 in  this case.
In  the case (2)4, denote that

K =  
a2a r + 2

b2 br-I-2

Then from Lemma 2.1 and Lemma 2.2 it holds that k  is nilpotent a n d  c24+1=0.
It is easy to see that there exists non-singular constant matrix No such that N o f= J N o

and  the  corresponding matrix to k is a  Jordan's form.
Keeping it in  m ind , se t s4 =1/r and denote that

JW 1=14 7  1 ,,-(n)EDn'W s,, ,-(n)EDn'W e i „._,(n) when /Z 0 ,

WI =W4,, 4( n)EDW4,, 4( n) W4,. r-1(n) when k =  0 .

Then (2.2)' in  §2 becomes

(4.13) n'tastv=in 'c'ir)(Jd-i-iB )w +AR(s ; n)iv

where we denoted that w=W ,N o v , and  13 was chosen in  such a  w ay that th e  entries
except fo r only (r, 1)-entry are zero.

It is easy to see that we can take .-'. and  a  such that A R (s ; n) can be a  remainder
term , i. e., AR(s ; n)1 =0(2 1 - /".)) a s  n — ) 0 0 . Actually we take a  which satisfies

(4.14) 1 1  ( r  5  )1 r —1Max -17 — —4- <  <  —  .

Note that (4.14) is compatible when r 3. Thus Theorem 1.2 holds in  this case.
(Q.E.D.)

4.2. r i =r, r 2 = r 3 =r —1.
Hereafter we assume that r - 3. A t first we u se  th e  same n o ta t io n  o f  th e  com-

ponents o f  A ,  w hich  is (S)-type with recepect to J. (a„• • • , a 3 2 )  is the  r-th row
vector, (b1, •-• , b3,-2) is  th e  (2r-1)-th row vector a n d  (c,, • • • , c3, -2) i s  th e  (3r-2)-th
row vector.

From Lemma 2.1 and  Lemma 2.2 we can see

(4.15) a1=0 , ar + i bi +a 2 r ci =0

Observing (4.15) we m ust divide our argum ent in  the following cases:

( I ) lar+i1+1a2,1*0.

lar+il+la2,1*0,

(111) lar+i 1+Ia2,1=0,

(IV) lar+ i 1+Ia2,I=0,

In  the case ( I ), set £ 1=2a/(2r —1) and  operate W , to (2.2)' in  § 2 from left, where
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(4.16) W1= W ,1 (n )e n ( 1 " ) ' 1W, 1 , r - i (n) .

Then (2.2)' becomes

(4.17) ngasi,= (in i - ' 1 ( J±sAfu-Fn- ( 1 / 2 ) e i A f 1 ) (s  ;  n))-1-ini - 2 6 W 1A 2(s; n)H7 T1 ±w1Bw - i v,

where V=Wv, and Afi ) (s ; n) is actually of the form : AP ) (s)d-n -  (1/2 )s1A (2 )(s )+n -s14 ( 3) (s )

+ n -(312),..
1
A14)(s ;  ‘ .n )  Assume that s 1 and apply Lemma 2.3 to J-FsA +n - " ) siAfi ) (s ; n)

whose principal part Jd-sAf°) is nilpotent, then we have

Lemma 4.1. There exists

N ( s  ;  n ) , _  
N(°)( s ) 4 _ n - 012)e

1
 N(i)( s ) +  n -,,,N(2)( s ) +  n -(312 1

N(3)( s )

which satisfies

(i) det AT(' ) (s) 0.

(ii) N(s; n)(J-FsAl°)+n - " 1 2 )s1AP)(s; n))

=(J1+ n 1 1 2 ) "A f' ) (s)+ n - '17112 ) (s)d- n - " 1 2 )'1:4 ( 3 ) (s)± n - 2 171P(s ; n))N(s ; n) ,

where J, is a Jordan's form with one block o f  order 3r-2 , an d  Af"(s)-- , 20 ) (s) are (S)-
type with recepect to

(iii) When we expand C(s; n)=(N(s; n));N(s; n) - '  in  such a  way that

C ( s  ;  n ) = . .
c ( 0 )(s )±n - 0 1 2 )sic( 1)(s )±n - sic( 2 )(s )±

( 3 1 2 ) ' l C " ) ( s  ;  n )

where C")(s; n)=0(1) as n—>00, it holds that C°>(s) is a diagonal matrix and ci?3 =0
w h en  i— j> r-1  and c? ); = ( )  when i—j>2r-1. Here we denoted the entries o f  C " ) (s)
and C 2 (s ) by c and cIP.; respectively (1._<i,

Set D =N (s ; n)i) then (4.17) becomes

(4.18) 1266,i)=(in'-"(J1+71f1)(s ; n)± n- 2 6 1:4f4 )(s ; n))

+i n' - 2 1  NW i A 2WV F N'W n"(N )sN ')D

where 711"(s ; n)=n - w 2 )s1:4 ( ' ) (s)+n - s 2 )(s)d-n - (3 1 2 )'1,113 )(s).
Keeping it in mind that ilf 1)(s ; n) are (S)-type we denote the (3r-2)-th  row vector

of 7 1 '(s ; n ) by iik(s ; n) (1 k 3 r -2). Then we obtain

Proposition 4 .2 .  There exists a positive constant C which do not depend on n such
that la k (s; n)I_<Cn - "k f or large  n, where

(4.19) ak _ m i n  {  (2r —3)(3r —
1

 k -1 ) a , 2E,} for 1 k .2r—

Now concerning to the lower order term, we can take it as follows.

Proposition 4 .3 .  There exists a  matrix B which satisfies

(4.20) N(s n)W ,BWV N(s ; n"-""(ri(s)- F u(s ; n)) ,
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where the entries o f  (s )  except only (3r-2, 1)--entry are zero and the non-zero component
can be taken arbitrarily, and fi R (s ; n)=o(1) as n-400.

1—(r —1)EiSet s2 = and define that W2=417 ,2,3,-2(n) then (4.18) becomes3r-2

(4.21) e5,ov=(in'1-`2(1,-F-i-Jr3(s)d-i-IC0(s))+AR(s; n))w,

w here w=W 2 i/ and the rem ainder term  A R  is expressed as follows.

A R (s ; 2(71f1)(s ; o+n-ni7if.,)(s n))wv

2 )E 1 W2r3RW -2-1 +72 ° W2VVY,N - 1 — Co(S))147 V •

In  th e  above expression Co (s ) is  com posed  w ith  on ly  (3r-2, 1)-entry of b 3 ) (s),
where we denote in  (iii) of Lemma 4.1 th a t  C ( 3 ) (s ; n)=6'( 3)(1-Fo(1)) a s  n—>00.

For the rem ainder term  A R (s ; n ) w e have

Proposition 4.4. We can take a  such that there exist a positive constant so a n d  a
constant C which satisfy

(4.22) AR(s ; C for large n.

Actually we can choose a such that

(4.23) Max 
f  1 2 r - 1   }

< 6 <
r —

r

1  

.2(r+1)

This c a n  b e  c o m p a tib le  w h e n  r3 . T h u s  o w in g  to  Proposition 2.2, Theorem 1.2
in  th is  case is proved. (Q. E. D.)

S e c o n d ly  w e  sh a ll s te p  in to  the case of (II) and (III). Since in  these cases the
same arguments are developed, we treat only case (H).

W e use the sam e m atrix of w eight W, as o n e in  th e  previous case ( I ). So w e
a re  le d  to  the system (4.17). Indeed the matrices AP ) (s ), Af i ) (s ; n ) and A 2 (s ; n) are
different from the prev ious ones. R eca ll tha t L em m a 4.1 played  an important role.
N ow  w e propose a sim ilar one.

Lemma 4.2. There exists N(s n)= 
N ( 0 ) ( s ) +  n -  ( 1 1 2 ) e  N  ( 1 ) ( s ) +  7 1 - ' ' ( 2 )

(s) which satisfies

(i) det N " ) ( s )  O.

(ii) N (s ; /1)(J-FsAf"-Ficw 2 1AP) (s; n))

=(Ji+n - " 1 2 )"A 1)(s)d-n - '1A( 2 ))s)± n- ( " 2) s1:21f3) (s ; n))N(s ; n)

where J, is a Jordan's form with two Jordan's blocks: J1 = / 1 (1 )e v 1 (2 ) , the order of J(1)
is 2r-1 and the order of J(2) is r-1, and AP )  and 21'f2 ) are (S)-type with respect to J i .

(iii) When we expand C(s; n),=(N(s; n))N(s; n) in such a way that

C (s ; n )=C " ) (s)-i-n - " 1 2 ) ' 1C" ) (s)d-n - e1C( 2 ) (s)A-n - ( 3 1 2 ) e1C")(s; n),

where C" ) (s ; n)-=0(1) as n—>00, it holds that C °(s ) is  a diagonal matrix, moreover
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ci?i =0 when i— j>r- 1  an d  c - =0  when i— jO .  Here we denote th e  components of
C ( "(s) and C 2 (s) by cin;  and  cP. i respectively (1 i ,  j 3r-2).

Thus we obtain the similar system as (4.18). But in this case we must further-
more divide in two cases when 6g ) ----0 or not, where we denote that, for k=1, 2, the
(2r-1)-th row vector of A ( s )  by (5P' ) , ••• , 6 ) and the last (3r-2)-th row vector
of Âf k ) (s) by (EV' ) , ••• , ETLs). Here we remark that the entries of 21f1)(s) are zero ex-
cept for 6 , ,  , P +) and 'a ) , and the entries of 7 1 2 ) ( s )  a re  also zero except for a ?)

and ' .1 2 ) .

When 5g.) *0  we must proceed our reduction of hyperbolic matrices.

and  operate Ws----- 117 s2.2,-1(n)EDIn  th e  case  (11),: 5P ) 0 0 , s e t  e z= ( —1)
nr621V ,_,(n) to the similar system as (4.18) then we have

(4.24) n sD=(i n - " - "(h +71P ) (s) -F n -2 ' 2271f1) (s ; n))

-FW 2(in' - 2 4  NW ,A 2W V N - 1 +N W ,B W V N - ' ± n 6 (n N - 1 )W2)11

where i"---4/V2D. L et N i ( s )  b e the non-singular matrix which transform ,)"1-1-2-4f" to a
new Joran's form Js o f order 3 r -2 . Denote t) , ----N,(s)r) then (4.24) becomes

(4.25) n375=in ,-"(J2+ n -2 2 f 1 ) ( s  n))

-FIV,W2(in' 2 6  NW LA 2 1V7i N1 1 -1-NW ,BW V N - i

±ncC(s; n))W 1 NT 1 -1-0 (N i )is NT 1 )i5

At last we choose the lower order term B  which satisfies

(4.26) N1W2NW1BWVN-1Wi1NTI, n ( r -(3/2))61+2(r - 1 ) 6 2 (ii(S)+ fiR(S ;  n)),

where the entries of L (s) except for only (3r-2, 1)-entry are zero and the non-zero
component can be taken arbitrarily, and ij R (s ; n)---, o(1) as n—)co.

t i1 " 0 "Set Es = 3

1

r _ l v . r _ i  j  and define W s -=- W 5 ,, , , ( n )  then (4.25) becomes

(4.27) n 'a s w =-- (in Co(s))+AR(E ; ,

where w=1473i; and the remainder term A R  is expressed as follows.

owii±n(,-(3,2))s14-2(r-is'2W3LR(s ; n)W y

s ,
3 N 11/1 2 (i n' - 2 ° NW ,A 2 W7 i  I V (s; n))W  N vw n w 3(N 1) N1w-i i

In the above expression the term Cs (s) is  the matrix whose non-zero component is
only (3r-2, 1)-one, and it is equal to the same component of N 1 C 0 )(s)N Y , while 'Cj (s; n)
is  the remainder of C(s ; n).

For A R (s ; n) we also obtain the same inequality as (4.22) and instead of (4.23) we
must impose the inequality

(4.28) Max 
{

2

2

r

r

—

+ 2

1

'  4

2rr

113

}

< a< 
r — r 1  

.
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Indeed (4.28) is  compatible when r 3. Thus Theorem  1.2 is proved.
In the case (11)2: 6g ) =-0, w e need not the second reduction which was used in the

previous case (11),. From Lemma 2.1 and Lemma 2.2 it is easy  to  see  that

(4.29) 5P)=6Ni=t'.4)=0 .

O bserving (4.29) w e  c a n  c h o o se  the low er o rder te rm  w hich , s im ila r to  (4.26),
satisfies

(4.30) NwiBwï1N-1_n(r-(3/2)>E,(13-(s)-E 
R (s ; n)) ,

w here the entries of 13 (s) except for only (2r-1, 1)-entry are zero and non-zero com-
ponent can be taken arbitrarily, and ilR (s ; n)-= 0(1) as n—>00.

Set £2 =(1-6)/(2r —1) and define W2=-- WE2.2,-1(n)EDWe 2 ,,—,(n) then, instead of (4.27),
we obtain

(4.31) ea o w =(in i - " - ' 2 (.11±i' f i(s))± A R(s ; n))w, ,

w here w=-W2V and

A R=in i - 1 W2CA11 ) ( s  n)+77 - 2 ik ) ( s  n))117 -2- 1 +in l - 2 "W2NW1A2WVN'WV

n(r -(312»siw RW V  n'W  2C (s ; n)W  •

For th is  A R  w e  c a n  regard i t  as a rem ainder term  w hen w e take a  which satisfies
the same inequality (4.28). Thus Theorem  1.2 is proved in th is  case. (Q. E. D.)

N ow  w e com e to the case (1V). Let k be the 2x2-matrix such that

i z b + 1

C T  + I C2,-

then from Lemma 2.1 and Lemma 2.2 it follow s that

(4.32) a2=0, and R is nilpotent.

W e rem ark that w ithout loss of generality R. c an  b e  reg a rd ed  as a Jordan's form
o f o rd e r  tw o  w ith  the eigenvalues are zero, th a t is, there  exists a non-singular con-
stan t m atrix  No su c h  th a t the corresponding 2x2-matrix d e riv e d  fro m  No A i N V  i s  a
Jordan's form.

K eeping this in mind, w e take the lower order term B  such  tha t the entries except
for (r, 1)-entry are zero.

Set s=1/r and define the m atrix of w eight W  as follows.

(4.33) W =117  ( n ) e )n `W  r-i(n)EDOWs,, _1(n) .

Operate W  to  (2.2)' in § 2, then w hen w e denote w =W v  it holds that

(4.34) e as w =( in '- '( j± i 'B )+A R (s  n))/u

A R (s ; n)=i nW (s Ao(s ; n))14 .

F o r AR we can obtain
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Proposition 4.5. T here ex ist a, g  and in  (4.33), a positive constant s o and  a con-
stant C  such that

I AR (s ; n) I C n' - ' - e0 f o r large n.

In order tha t the above inequality holds we must a c tu a lly  ta k e  a  which satisfies
that

Max f 1 2r-31 r —1
(4.35) <o.<

2 ' 2 r

The above inequality is compatible w h e n  r 3 .  T h u s  T h e o r e m  1 .2  is  p ro v e d  in
th is case. (Q. E. D.)

4 .3 .  r i = r ,  r 2 = r - 1 ,
Even though w e must divide our argument in two cases :  one is  r 3 =r —2, the other

i s  r 3 < r - 2 ,  w e  o n ly  t r e a t  the case w h e n  r 3 = r — 2. In the case w hen r 3 <r —2 the
argument is much easier.

W e use the sam e notation of the components of A , as one in 4 .2 .  K eep in g  it in
m ind that A I is (S)-type w ith  respect to  J, denote that (a,, ••• , _ 3 )  i s  the r-th  row
vector, (b1, ••• b3 ,_3) is  the (2 r-1 )-th  row vector and (c i , ••• , c3,-1) is  the last (3r-3 )-th
row  vector.

From Lemma 2.1 and Lemma 2.2 it is  easy  to  see  tha t

(4.36) a1--=0 , a r + 1 b1 =0

Observing (4.36) w e must divide our argument in the following way.

( I ) a r + 1 * 0

b1 #0

ar+i=bi=0

In  the cases of (I) and (II) we can develope the sam e argument. Set 61 =-2a7(2r
and define W i  in such a w ay that

W  1=W  .,,,(n)ein"" ) "W . i .r_i(n)(Dn"W  e 1 .r_2(n) .

Denote V=W i v  then (2 .2)' becomes

(4.37) nŒa =(in1-e1(J-EsA (°)-{ -n-"12)sA f1)±n-=IsA (2)-1-n-(312)61sA (3)(n))

± in 1 - 2 W 1A 2(s; n)W 1'+W 1B W T 1 )?:"

Secondly apply Lem m a 2 .3  t o  fd--sA f"d-n - " 1 2 )sisA f"d-n - 'isA l 2 ) -Fn - ( 8 1 2 ) 'isA f s ) (n),
then we obtain

Lemma 4 . 3 .  Let s 1. T h e re  e x is t s  N ( s ; n ) =N ( ( s ) d - n 2 1 N (s ) -1 -n - eiN ( 2 ) (s)
which satisfies following

( i )  d e t  N" ) (s)0 O.
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(ii) N(s n)(14- s A P ) + n - ( 1 " ) s s AV ) -f- n 'sA f" -f- 72-  (3  1 2 ) s s A (8 )(n))

=( J,+ n 1112 ) '1 f "(s)-F  n 1.4 1 2 )(s)d- n - ( 3  2 ) =1 Als) (s ; n))N(s ; n)

W here J 1 i s  a Jordan's form  w ith tw o Jordan's block s: JI=J1(1)0111(2), w here the order
of J,(1) is  2 r - 1  and the order of J,(2) is  T -2 , moreover À ( s )  a n d  f " ( s )  are (S)-type
w ith respect to J,.

(iii) W hen we expand C(s; n) , (N (s n));N (s; n) - '  in such a way that

C(s ; n)= C 10 (s).4- " l C ( 1 ) (s)±  n 1C 1 2 ) (s)d- n -  ( 3 0 ) s 1C ( 8 ) (s ; n)

w here C1 3 ) (s; n)=0(1) as n—+00, it holds that 4 1)3 =0 when i— j > r - 1 .  Here we denoted
the entries o f C( 1 ) (s) by  cIL'ij 5 3 r - 3 ) .

Set ii=N (s ; n)î) then  (4.37) becomes

(4.38) easr),(inl-'1(J,d-n-"I"slA P)(s)-Fn-'1.71 1 2 ) (s)-Fn - m 2 ) '1 54( 3 ) (s ; n))

d-in' - 2 "NW,A2WVN - ' ±NW ,B W V N - ' ± naC (s; OD •

Here we also apply Lemma 2.1 and Lemma 2.2. Then we obtain

(4.39)

w here, for k= 1, 2 , we denoted the (2 r -1 )- th  r o w  and the (3 r -3 )- th  ro w  v ec to r  of
7If k ) (s) by (Ef", ••• , 5VP_,) and (t ) ) , ••• , tg)_,) recepective ly . We remark that the entries
of 71fi ) (s) are zero except for 5,T„ 5g) and -e and the entries of Af 2 )(s) are also zero
except for 5 ( 2

) .
Now we choose our lower order term.

Proposition 4 . 6 .  T here ex ists a m atrix  13 such that

(4.40) NW ,BWV '= ns 1 2 ) =1(f3(s)-F R(s ; h))

w here the entries o f b(s), except fo r  (2r-1 ,1)-th  entry , are zero and 1J ; n)= o(1) as

Set s2=(1— u)/(2r —1) and define that1,17 2=Ws 2 ,2, _i(n)en'1 ,17 -2 ,r21 .( n) then (4.38) becomes

(4.41) ncaow =in'I-'2(J,-k i'f l(s)+Co(s))w +
A R ( s ; )

vn ,

-

w here w=W 2D and the rem ainder term  A R is expressed as follows.

A R (s ; n)=in 1 - ( 3 / 2 ) Z I W 2 ( 7 1 f 1 ) +  n - ( 1 1 2 ) s 1  j i f 2 ) +  n - s a f 3 ) ) W - 2 - 1

± ini - "W ,NW ,A 2W  NW ' n 1 2 ))'3W2,f3" R (s ; n)W -
2
-1 -1-n'W 2 C.4(s; n)W V.

In the above expression the te rm  Co (s) i s  the m atrix whose non-zero com ponent
is  o n ly  (2 r-1 , 1 )-o n e , i t  is  e q u a l  to  the same component of C ( 2 ) (s), w hile e( s n) is
the remainder of C(s; n).

Owing to Lemma 4.3 and (4.38) we obtain

Proposition 4 . 7 .  T here ex ist 17, t in the definition of W 2 ,  a positive constant E 0  and
a constant C  such that
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(4.42) An(s ; n)1.....<Cn' - ei - '2- ' 0f o r  l a r g e  n.

In  order to obtain th e  estimate (4.42) we m ust actually take a  such that

(4.43) a  - -  .M a x  
{ 2

1  

' 3

3

r

r - 3

1

}

< <
r —

r

1

T he  inequality (4.43) is compatible when Thus Theorem 1.2 is proved.
(Q. E. D.)

Secondly, in  the  case  (111), from Lemma 2 .1  a n d  Lemma 2 .2  w e can see further
conditions of A,.

(4.44) a2r_1c1=0.

Set = 1 / r  and define that

W=- W,,,(n)(1)n <1""W ,,-1(n)en 'W e,r_2(n).

Operate W  to (2.2)' from left, then we obtain

(4.45) 71 3w = in '-'(J -1 -i'B )tv+ A R (s; n)iv

where tv , Wv and  A R is expressed a s  follows.

A R (s ; n) , inW (sn 'A1+n 2 A2(s;11))141 - i

F or this A R  we can regard  it  as a  remainder term when we take a  in  such a  way
that

Max 1  2 r -3 1 r - 1
(4.46) < a< .

2 ' 2 r

It is easy to see that r 3 makes (4.46) com patib le . Thus Theorem 1 .2  is proved
in  this case. (Q. E. D.)
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