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L-valued 1-jet de Rham complexes and their

induced spectral sequences

By

Takeshi Usa

§0. Introduciton

In [U-4], we raised several problems on a system of projective equations of a
projective submanifold X. Those problems were heavily concerned with a given
section of a given vector bundle E on X and its induced cohomology classes of the
vector bundle valued cohomology groups HY(X, 2%(E)). Hence, we need a
suitable means to study each cohomology class of HY(X, Q%(E)).

As is well-known, there are many works on geometric explanations of the
cohomology classes of the cohomology groups H%(X, €2%). Nevertheless, in spite
of their importance, we do not have much knowledge on the geometric meanings of
the cohomology classes of the E-valued cohomology groups HY(X, Q%(E)). And
this fact has a lot to do with that, though we have Hodge spectral sequence from
HYX, %) to H?*%(X, C), we do not have spectral sequences from “E-valued”
cohomology groups to some topological cohomology groups. The difficulty for
constructiong such a spectral sequence arises from the fact that in general we can
not let the following sequence:

0— E—> QL®E <> - - s PR E— 0

be a complex by introducing a connection V. Roughly speaking, the obstruction
in making a complex with a connection V is described by the curvature operator
O for the connection V. This curvature operator @ determines the Chern classes
of E which are invariants of E. Hence, this approach has serious difficulty.

Thus, in view of our original purpose, we intend to construct a double spectral
sequence depending on a given section of E by using another method (cf. (4.5)
Theorem). The key idea is to use the sheaves of L-valued 1-jet forms on the
projective bundle P(E), in making a suitable complex with a differential operator
of first order (cf. Added in proof).

We have some applications of our spectral sequences, for which we need
complicated calculation, and we shall publish them elsewhere.
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§1. Jet sheaves (cf. EGA IV §16 [G-2])

Let f: X - S be a smooth morphism of complex manifolds, and F a locally
free Oy-module of finite rank. The diagonal embedding 4: X g X x ¢X
canonically determines a sheaf of ideals I, Put X ;= (1 X|, 0x§x/1"4+1), By Xy
6 X X X to be the canonical closed immersion and p;,, = p;* h,, where p; denotes
the i-th projection. Then we define the F-valued n-jet sheaf J%(F) to be
(P15 (P2)*F. The Oy-module structure of J%;s(F) and a homomorphism jys:
F > Jys(F) are defined by the structure homomorphism p}: p; 'Oy — Ox,éx and
the identity map of F respectively. The following proposition shows an elementary
property of jet sheaves.

(1.1) Proposition. Let f: X ->Y and g: Y- Z be smooth morphisms of
complex manifolds and F a locally free Oy-module of finite rank. Then we have the
Sfollowing exact sequences.

(1.1.1) 0 — §"(Qxpy) ® F — Jyyy(F) — Jiy' (F) — 0,

in particular, putting n = 1,

(1.1.2) 00— Q},Y QR®F — J}(,Y(F) — F— 0.
Moreover,
(1.1.3) 0 _—’f*gi/z@) F— J,IY/Z(F) - J;(/Y(F) — 0.

Proof. For (1.1.1) and (1.1.2), see [G-2]. We have only to prove
(1.1.3). Obviously there is a canonical map J},z(F) — Jy,(F). Using (1.1.2),
an easy diagram chasing shows that the sequence (1.1.3) is exact. O

(1.2) Remark. (i) By the definition, the n-jet map Jxjs: F —— Jys(F)
obviously possesses Os-linearity though it does not Ojy-linearity.

(i) The sequence (1.1.2) does not split in general. The extension class of this
sequence determines the total Chern class of F.

(1.3) Convention. In the sequel, we shall treat only holomorphic objects and
meromorphic objects otherwise mentioned.

§2. The local study of A’J¥s(L)

In the sequel, we use local expressions of 1-jet sheaf with coefficients in a line
bundle L. Hence, in this section, we shall determine the transformation rules
explicitly. Let us take a sufficiently fine open covering of X with systems of local
coordinates and local frames {e,} of L:

(2.1.1) A = {U,|Ae A}, s =dimS, n = dimX —dimS§,

U, =U,,(z},.... 25 v},....1%), e)),
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(such a pair is called “a C.F.-open ser” of L over S),

where f:U;3(z5,... 25, v),...,05) — (v},...05)€S.

Since J}s(L) is a collection of the first order Taylor expansions of the local
sections of L to the direction of the fiber, for a given C.F.-open set U,, we can
uniquely choose a local frame (GY, Gj,...,G}) of Js(L) which satisfies the
following condition: for a local section ¢ of L,
(2.1.2) j)l(/s(a) =0,G3 + .21(601/52‘;) b
(0 =0,e5, 0,€I'(Uj, Oy)).

We call this frame “the canonical local frame” of J (L) on the C.F.-open set U,.

(2.1) Remark. In our tensor calculus, G must be distinguished from other
Gi,....G}.

Now we suppose that we have two C.F.-open sets U;, U,, and the change of
local frames g,;: U;nU,— C* of the line bundle L which satisfies

(2.1.3) e; =e€,gdu

where e; and e, are local frames of Ldetermined by the C.F.-open sets U; and U,
respectively. Then the transformation rules of the canonical local frames on the
C.F.-open sets are given as follows.

(2.2) Proposition. (Transfomation rules of canonical local frames)

(2.2.1) G} = Glgu + Y (0,:/92)) G,

(2.2.2) i= 2 02/02)9, G (= 1....n).
Proof. For (2.2.1), we consider jys(e;). Then (2.1.2) shows:

G} = jxs(ey) =j;(/s(eu 9u1) = 9.1 GY + Z(@gul/az;‘,)Gﬁ.

Hence we see that (2.2.1) holds. As for (2.2.2), we put F in the sequence (1.1.2) to
be the line bundle L. Then it is easy to see that Ker(J}, (L) — L) has a local

frame (G!,....G%) on U,;, which corresponds to the local frame
(dz; @ e;,....dz5 @ e;) through the isomorphism Ker(Jys(L) = L) ~ Qs ® L.
Thus we have (2.2.2). O

Next we study the sheaves of L-valued 1-jet p-forms APJ}c(L). Obviously
{GSV A L. ANGEPI0 £ a(l) < ... <a(p) £ n} is a local frame of APJjs(L) on the
C.F.-open set U,. Hence, every (local) L-valued 1-jet p-form ¢ has the following
unique expression on the C.F.-open set.
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(2.2.3) ¢ = raty,.anGFV A ... A GEP
(Dracty,....am € L' (U3, Ox))

We also require the transformation rules of the coefficients {@,, .} and
{@ub1)..bm) In the sequel. To simplify our computation and the descriptions of
the transformation rules, we shall exploit the following convention as usual.

(2.3) Convention. (i) D(fy,....f)/D(z5Y,...,25®):= det(0f,/025D) ) o=1... k-
(ii) ZT’*“'*a(,)a(,H, g T/ pa@atr )..als) —the summation for all the indices
1 <a(t) < - <al(s) < n (when we admit a(r) = 0, ° will be used instead of ), if
there is no other pair of indices up and down.
(i) YT % ae+1y..am Tk ge@2 T Da6) —the summation for all the indices
1 <a(t),...,a(s) £ n (when we admlt a(i) =0, °Y* will be used instead of Y*), if
there is no other pair of indices up and down

(2.4) Proposition. (Transformation rules of coefficients)

(24 1) ¢u0b(2)...b(p)
=2 {D(Z5® -+ 23")/D(zs® -+ z4")} gl Br0a2)...atr)-
(1=2b(2)<- <blp)=n)
(2.4.2) Dubir)...b0p)
= Z{D(gum Zam"'Zi(p))/D(ZZm‘"Zz(m)} gn. ! ¢10a(2)...a(p)
+ Z{D(Zam Zi(p))/D(Zz(l) - zh ™)} g, Dia(1)...a(p)>
(1=b(l)<--<bp)=n).
Proof. With using (2.2) Proposition, we shall check the above by direct
computation. For 1 <a(2) <. <a(p) = n,
GIAGEH A .o NGYP
= (0,462 + £00,u/02,) GV
A (T 0252 [022) g0 G} A - A {T(0257/028P) g,,, GoP)
= Y*g2, (0253 0252) - (024 [0z P) Gy A GEP A --- A GUP
+ Y *gh i 109,/ 0251) (0252 ) 025 -+ (025 [ 025 ) GEV A -+ A GHP)
= Y g {D(5? - 5P/ D(8P - 2P} GO A GED A - A GEP
+ 392 DGy 242, ...,25P) /DN - 2P} GED A o A GEP)
By the same way, for 1 £ a(l) < --- < a(p) < n, we have:
GV A oo A GEP = Y gP {D(ZD) - 2P) /D (D .. 2EP) L GED A L A GEP,

Hence, for a section ¢ of APJjs(L),

¢ = oz(i)ln(l)...a(p)Gi(” A A G‘;’.(p)
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=2 Pr0az)...atm (1901 {D (5P - 25P) /D (5P - 25P)} GO A GEP A - A GEP
+ Y g2 Y {D(g,s. 2420 284P) [D(z5D ... 2P} GED A oo A G
+ X Braty..am (LG (DD - 247)/D(2hD) - 2P) ) GEV A o A GEP]
= 2IX Broaz)..atm9ha {D(EEP -+ 24P) [D(2hD - 25P)} ]GO A GE2 A - A GEP
+ 21 Brar)...am9ha {D(25D - 25P)/D(5D - 22P) )
+ Y 10a2)...am9iz ' {D(Guss 252+ 25P)/D(ED - 25P)} ] GED A .o A GEP
Thus we obtain (2.4.1) and (2.4.2). O

§3. Construction of L-valued 1-jet de Rham complex

Let us take a global section tel(X,L) and fix it through out this
section. Then the section T corresponds to an effective (not necessarily reduced)
divisor D, on X. The sheaf of meromorphic L-valued 1-jet p-forms of order q:
{APJx;s(L)}(gD,) is defined as follows. For an open set V of X,

TV {APJys(L)}(qD):= {@lif ¢ =% Diat)..atnCi) A -+ A GEP
on ¥nU;, then f{¢,,1). ap is holomorphic on ¥nU, for i€ A},

where f, denotes the function defined by t=f,¢,.

Our aim is to make those sheaves into a complex with defining a suitable
differential operator in three steps. In the first step, we define t-dervation
V. {APJxs(L)}(gD,) = { AP*1Jx,s(L)} (gD,) as follows. For a local section ¢
= 02¢1a(1)...a(p)G‘:1“) A A G‘:l(m of {APJJI(/S(L)}(‘ID:)? we put

(3.1.1) V(@)= OZkZI (0B ra1)...ap/ 021 G5 A GED A oo A GEP

- pOZkZI ¢Aa(1)...a(p)(afl/azﬁ) G’)(. A G‘;.(” A A G‘)l.(p)'

(3.1) Theorem. YV _ is well-defined by (3.1.1). (cf. Added in proof)

For the proof of this theorem, first we give the following lemma, which simplifies
our calculation.

(3.2) Lemma. Let f,,....f, be functions on a open set U with a system of local
coordinates {z°,...,z”,...}. Then the following equality holds.

3.2.1) ,i(_ 1 0/02' [D(fy...f,)/D(° ...z = O

Proof. We show this by induction on p. In case of p =1,

8/02°(8f, /0z") — 8/0z* (8f,/92°) = 0.
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Now we assume that the equality (3.2.1) holds for p — 1. Then:

(— 1y0/02'[D(fy...f,)/D(°...;...2°)]

e

= 3 (= O3 L (= 1P00,/02 (DU f)/DE i)

t

b Y (= 1PN O D f)/ Dt 2P ]

s=t+1

0

with using Leibniz rule,

P

(= 1¢*1af, /o x [ Y. (= 1)719/0z'{D(f,...f,)/D(°...5...;...2")}

t=s+1

ey

+ jg(— 1Y0/0z'{D(f,...f)/D(°...;...5...2P)} 1.

By our induction hypothesis, the inside of the brackets in the last expression is
zero. Thus we obtain the equality (3.2.1). O

Proof of (3.1) Theorem. By the symbol V (1) (¢), we denote the image of ¢
through the map V., defined by (3.1.1) with the canonical local frame
(GY....,G%). Using the expression of (3.1.1), we can rewrite the coefficients of
V (4> (¢) as follows.

(3.2.2) For 1 Za(l)< - <a(p) =n,

(3.2.3) For 1 <a(0)< - < a(p)

p

V LAY (D)ra0)...am) = Z (= fPT x a/az‘}l,(l)(¢Aa(0)...;...a(p)/f}{,)'

t=0

lIA

n7

In the expression above, we must take notice of the difference of the range of the
index t. Now we start our proof of well-definedness. As for “the order of poles”,
it is easy to see that f§ V (1) (¢)ic0). .« is holomorphic for indices 0 < ¢(0) < ---
< c¢(p) £ n by using (3.2.2) and (3.2.3). Hence we have only to show:

V<A (¢)Aa(oy..a(p) =V {uy (¢)Aa(0j..‘a(p)*

for indices 0 < a(0) < --- < a(p) £ n. First we shall treat the right-hand side of the
above. In case of 1 < a(0), with using (2.4.2), our computation proceeds as
follows.

V (D aao...am =Z V U (D)uo,p1)...000 G {D(g;,,,. Z:’;m -~-ZZ“”)/D(Z‘1‘°’ : "Zi(p))}
+ 3V B0 bm 9 AP @D 2P D (5P 2P},

applying (3.2.2) and (3.2.3),
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P
=Y (D@1 2V -2 PYD(25 25"} g5, { ; (= D A2 10/02," (Do bary...4o b/ i)}

P
+ Z{D(ZZ‘O""Zfi””)/D(Z‘i(O""Z'i“”)}gﬁ’,f1{;0(— D' f2%10/02," (Buncon...oim/ D)}

= (1/p)Y*(the first rerm) + (1/(p + 1)!) Y *(the second term)

p
=(1/pHY* Zlf1’+ 19, D@, G 23V 2PN/ DO 257}
=

X {D(z", 2 ... 28 P) /D (25 - 257} 0/02; (Puvcoy...0...o0m 1)
=(1/(p — DY 9D, gays 2P 25P) [ D25 257) }

X a/azz(l)(¢u0b(2)...b(p)/f;7) + (I/P!)Z#ffﬂ{D(ZZ(O)“‘Zz(p))/D(Z‘i(o)"‘Zﬁ(p))}

X 6/822(0)(¢ub(l)...b(p)/f:)'

Hence we obtain:

(324) v < H > (¢)}.a(0),..a(p)
= fo+ lgul {D(¢u0b(l)...b(p— 1)/f;':’ Gau» Z;b;m"'zz(p_”)/D(Z%O)‘“Zi‘m)}
+ Zf/{Hl {D(¢ub(l)...b(p)/. f:~ zzm"'Z;bz(p))/D(z‘i(O)"’Z‘:l(m)}-

Also in the case a(0) = 0, we can get the following by the similar computation with
using (2.4.1) and (3.2.2).

(3.25) V <.u>(¢)}.0,a(l)...a(p)
= - fo“ {D(¢u0,b(l)..‘b(p— 1)/f£’ zzm"‘z,b‘(p_l))/D(le)"'Zi(p))}

Next we shall express V {4 (#):40)...a(p in terms of {¢,, .}. In case of 1 < a(0),
our computation is carried out as follows. By virtue of (3.2.3) and (2.4.2),

P
\ <l>(¢)la(0)...a(p) = IZO(_ 1y f+1a/az'im(¢).a(0)...?...a(p)/ff)

P
= _0(— 1)'ff+la/az‘;"’(fl_P[Zgi’”"q&wbmmb(p_”

t

X {D(gsur 251 25P7 V) /D240 5. 257}

+ Y 95, Pub0)..bp- 1) P ...ZEP V) /D (25 ;.. 2587 1 ])
P
= g2 ST (Duobiry...om- /DL ZO(— 1Y9/6z0
=
{D(gsn 20+ 2B D)D) 5. 257} ]

+ 0T8T LY, (= D4/ Guonar.o- 11D}
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X {D(g > ZZ(I)...ZZ(p- ”)/D(Z‘}‘O)...;...Z'}_‘p))}]

+ Zfz” 1(¢u0b(1)...b(p— 1)/ff) [,Zp:o( - 1)’(69‘11/02‘,’{")

X {D(Gay> 221+ 2P )/ D(25O. 1. 257} ]

+ LI Bunor.op- /LY, (= 1/0/280

{D(5® 24P~ D) /D5 ;... 2P} ]

+ TAILY, (= 101050 Bunonp- 1D}
X {D(@ 250~ ) D(HO 4. 2P} ].

Among the five terms above, (3.2) Lemma shows that the first term and the fourth
term vanish. Hence we see:

the expression above
= gu;.ZprH {D(Duovr)...oo- 1/ 8> Gaus Zz(l)"'zz(p_ ”)/D(Z‘;.(O)”'Zi(p))}

+ Zfi”1(¢u0b(1)...b(p—1)/f:) X {D(g;m Gaus Z,l:m"‘zﬁ(p_”)/D(Zi(o"“zi(m)}
+ Zf;{J+ ! {D(¢ub(0).‘.b{p— 1)/f;fv ZZ(O)'”Zz‘p_ ”)/D(zi(o)“'zim)}~

Since g,;°9;, =1, the second term above also vaishes. Comparing this with
(3.2.4), for 1 £ a(0), we obtain that:

VB (Diaor..amy = V LA (Baaco..ap -

Also for the case a(0) = 0, the similar calculation of V (1) (¢),0a1)..apy With using
(3.2) Lemma shows:

Vu) (¢)J,0a{l)...a(p) = V<A (¢)10a(1)...a(p)
after comparing that with (3.2.5). Q.E.D.

Let us study an elementary property of t-derivation V.. We can obtain an
exact sequence:

0— Qs ® L —> APJys(L) — Q%' @ LF — 0
from the sequence (1.1.2) with putting F = Land taking the canonical filtration of
its p-th wedge. Since Q%5 ® L? ~ Q% s(pD,), thes sequence gives:

ap ﬂp _
331) 00— Qg{/s(sz) I {APJ)I(/S(L)}((’" -p)D) — Q§/31 (mD,) — 0.

With relation to this sequence (3.3.1), t-derivation has a fine property as
mentioned below.
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(3.3) Proposition. The following diagram is exact commutative.

0— QmD) 5 {APJ'L)}(m—pD) > QP mD) — 0

dX/sl v‘l —dx/sl

0 — Q7" Y((m + 1)D) — {AP*1JHL)}((m — p)D) 7— Q"((m + 1)D) — 0,

where D = D, Q7 = Q% s, J'(L) = Jys(L) and dy,s = the exterior derivation over S.

Proof. The problem is local. Hence we shall check the above with taking an
arbitrary C.F.-open set U, and its canonical local frame as in §2. First we show
that a,,, dys= V, a, Let us take a local meromorphic p-form:

Y= zwla(l)...a(p)dzi(l) A A dz‘,{“’),

namely, a local section of Q% (mD,). Then, it is easy to see:

(3.3.2) W) = XSV sa1).am G5 A o A GEP,
ff‘/’xa(l). a(p) if a(l) 21
hich = -
which means % (V) 2a(1)....atp) {0 if a(0) = 0.

Hence, by (3.2.2) and (3.2.3), we get:

ABEAUEDN/ o ZO(— 1Y0/02" Waacoy...iv.atp) X GLO A oo A GEP.
R

On the other hand,

Thus we obtain:

Op+1 'dX/s(w)

=X +1{Zo(— 1)0/025° W sag0.....p)} X GEFO A+ A GEP
£

=V a,().
Next we see that —dys f,=p,+1'V, We take a local section ¢
= OZd’Aau)...a(p)Gi(l) A NG of {/\pJ}(/s(L)} ((m — p)D,). Then,
(3.3.3) ﬂp(¢) = Zfz_p'¢ao,a(2)...a(p) x dz‘;.m A= A dZ‘;',(P),
namely, Bo(Daatry...ap-1) =S3 °- ¢10a(1)...a(p— 1)

for 1 fa(l)< - <alp—1)<n,

which implies:



142 Takeshi Usa

p

(- dX/s’ﬁp(fﬁ))Aau)...a(p) = ,Zl(_ l)ta/aziw(ffp¢,10a(1)..f.,.a(p))-

On the other hand, using (3.3.3) and (3.2.3),

)4
Bo+1° Ve Niaqry...am = A_p_l't;(— 1Y fP*10/025(Pa0acry...iv..aw/ f1)-

Hence we get:
—dys By =Bp+1° V. O

As the first step for our aim, we constructed t-derivation V. in the above. In
the second step, we shall define another derivation k as follows, which will be
called “Koszul operator”.

(3.4.1) k=0, 1B, { APJLs(L)} (mD) 22 Q2il((m + p)Dy)

N {/\"'IJ}(,S(L)}((m + 1)D,)
For a local section ¢ =°Y i1y aG3 A -+ A G5 of {APJys(L)}(mD,), the
local expression of x(¢) is:

(342) K(¢) = Z(d)AOa(l)‘..a(p—l)/fl) X G‘;.“) /\ /\ Gi(p—l)’
ie. k(¢ _ d’lOa(l)...a(p-l)/f}. if a(1) 21
A Aa(l)...a(p—1) 0 |f a(l) _ 0

Then V, and k have good properties as mentioned below.

(3.4) Proposition.

(3.4.3) V.- V.=0
(3.4.4) V.ok+KkV,=0
(3.4.5) K-k =0.

Proof. By (3.3) Proposition and the construction (3.4.1) of Koszul operator,
(3.4.4) and (3.4.5) obviously hold. Hence we have only to show that (3.4.3) is
valid. Let us take a local section ¢ of {A?Jx(L)}(mD,) and prove that the
coefficients of the local section (V.- V (@) of { AP*2J% (L)} (mD,) are zero.

(vr ’ vt(¢))10a(1)...a(p+ 1)

p+1
= ; (— l)’ff+20/6z‘1")(f[”"lvr((ﬁ)mam._.;ma(ﬁ1))

t—1
= 1(— l)tff+2a/azim{f,1_p_l Zl(_ 1)Sf/’1’+1 6/5271(3)(¢10a(1)...s‘...i...a(p+1)/ff)

pt1

+fi7" ! (— 1y lff+ ! a/azi(S)(d)AOa(l)...f.‘.sA.,.a(p+ 1)/f51’)}

s=t+1
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= SZ:’(_ l)tﬂf/{ﬁz (az/azimazﬁ(s))(¢‘/10a(1)...£...f...a(p+ 1)/ff)

- z (— 1)s+‘ff+2 (62/623(”023.(8))(¢10a(1)...f...§...a(p+ 1)/ff) =0.

s>t

Also for a(0) = 1, the similar calculation shows that

(Ve VA D)ia)...ap+1) = 0 O

Based on the result of (3.4) Proposition, we can make sheaves of meromorphic
L-valued 1-jet forms into a sheaf of complex as follows, which will be called “L-
valued 1-jet de Rham complex”.

(3.5) Theorem. Let f: X — S be a smooth morphism of complex manifolds with
relative dimension n, L a line bundle over X, and m a non-negative integer. Take a
global section te I'(X, L). Then, there exists a sheaf of double complex Z%f(m, 1)
as follows.

{APT9Jxs(L)}(m+q)D,) ifnzZp=2g=20
0 otherwise

Exf(m, 1) = {

V. Efiim, 1) — Z%50(m, 1) (t-derivation cf. (3.1.1))

K Z%&(m, 1) — ER&T(m, 1) (Koszul operator cf. (3.4.2))
For the index m, {Z%k(m, 1)} forms an inductive system by canonical inclusions
depending on “the order of poles” along the divisor D,. Put Z%f(x, t) to be the
inductive limit of the inductive system. Then Z%f(x, 1) induces a sheaf of simple
complex Z%s(t)(L-valued 1-jet de Rham complex) by giving total degree and total
derivation A, = V., + k. Moreover, this sheaf of complex =% 5(t) is naturally quasi-
isomorphic to the usual meromorphic de Rham complex with poles only along D..

Qis.
Q’f(/s(*Dc) - 53"(/3(”

Proof. It is obvious by its construction and (3.3) Proposition. O

§4. Spectral sequences induced by L-valued 1-jet de Rham complexes

Let M be a compact complex manifold, E a holomorphic vector bundle of
rank r over M and L= Op (1) the tautological line bundle of the projective bundle
f:P=PE)=(EY —{0}/C*)> M. Then we have the following lemma, which
gives a key for construcing spectral sequences from “E-valued” cohomologies to
topolgical cohomologies.

(4.1) Lemma. In the situation above, there is a canonical Op-linear
isomorphism :

4.1.1) ®: f*E = Jhp(L).
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Hence we see also that

ANPEQS™E)  if m20
4.1. APJ} ") =
4.1.2) (AP Tpy (L) @ L) {0 if m<0,
(4.1.3)
0 if 0<g<r—1
ROf, (AP Thp(L)) @ L) = ‘0 Mg=r=1m>-r
ST EY) @ det EYQ APE if g=r—1, m< —r.

Proof. If we can prove (4.1.1), then (4.1.2) and (4.1.3) are obvious by
projection formula. Hence we have only to show (4.1.1). Let us take an open set
U of M and consider:

I'(U,E)~TU.f,L)=TI(f""(U), L) B, p(r-y, Thm(L)).

where j},, denotes 1-jet map introduced in § 1. Since jp ) has O-linearity, we can
get an Op-linear homomorphism @:= f*(jp): f¥E — Jp(L).  We shall show
that this @ gives a desired isomorphism. Because our problem is local, we may

assume that E = @ 0,Z* and M has a system of coordinates (v!,...,v™). Then,
k=1

rank Jp (L) = 1 + rel-dim P/M = rank f*E. Hence we have only to show the
surjectivity of @. Let us choose an arbitrary point x of P. We can regard the
free basis {Z',...,Z"} of E as a system of homogeneous fibre coordinates, suppose
that the point x is included by the open set U, which is defined by Z° # 0. Then
we have a system of local fibre coordinates ((Z'/Z%),...;...(Z"/Z%) on U, of f: P
- M. Put(G?, G}....;...,G}) to be the canonical local frame of J},(L) on the
C.F.-open set (U,, (Z'/Z°),...4...(Z"]Z%; v*,...,v™), Z°) of the line bundle L over
M, and {f*Z',....f*Z"} the free basis of f*E induced by {Z'...Z"}. Then:

D(f*Z% = (Z2*/2°) G + G* if k # a,
D(f*Z% = G?.
By these equalities, we can easily see the surjectivity of @. O

(4.2) Remark. (i) Let us recall the sequence (1.1.2) with putting F to be L
=0p(l) and f: X > S to be f: P = P(E) > M. Then Lemma (4.1) shows us that
this sequence is nothing but Euler sequence of the sheaf of relative 1-forms of the
projective bundle:

4.3.1) 0— Qb — fFEQ L —— 0, —> 0.

(i) The map @ of Lemma (4.1) does not coincide with the composition of the two

maps jb: L— Jb (L) and v: f*E - Lin the above.
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With placing f: X = S to be f: P=P(E)> M and F to be L= 0p(1), let us

consider the sequence (1.1.3) tensored by LY :

4.3.2) 0— f*Qy — JHL) QLY — Jpu(L)® LY —> 0.

After taking k-th wedge of the above, we find that A*{J}(L) ® L"} has a natural
filtration {F®} such that

4.3.3) AJIMLYQ® L) =FY2...2F¥%, =0,
FPIFE  ~f*24 ® {Ak_a(JP/M(L ® LY)}.
Now we sppose that a global section 7 of E is given. Then this section can be
canonically regarded as a global section of L= Op¢, (1) and defines a divisor D, of

P = P(E). Hence the filtration (4.3.3) induces a filtration {F?(m)} of Z&%(m, 1)
~ {AP79(Jp(L)® LY)}((m + p)D,) such that

(4.3.4) E%i(m, 1) = F@P'(m) =2 ... 2 F("L")+1(m) =0,
FPO(m)/FP8 (m) ~ f*Q4 & { AP %(J (L) ® L)} ((m + p)D,).

These filtrations behave well towards the action of t-derivation and Koszul
operator as follows.

(4.3) Proposition.
(4.3.5) V(FPO(m)) < FP* 19 (m).
(4.3.6) K(F 9 (m)) < FiPa™ D(m).

Proof. Let us take an arbitrary C.F-open set U = (U,(w!,...,w"; v},...,1%),e)
of L=0pg(1) over M (cf. (2.1.1)) and the canonical local frame
(G°% G',...,G*, G**1,...,G"*?) of J}(L) with regarding the C.F.-open set U as a
C.F-open set over the point Spec(C), where u =rankE — 1, b=dimM, and
{G**1,...,G"**"} corresponds to {dv' ®e,...dv' ® e}. Then, the subsheaf FP9 (m)
is “generated” by the local sections {G*" A --- A G*?~9} which contain some of
{G“*',...,G"**} more than or equal to a as factors. By local expressions (3.1.1)
and (3.4.2), we can see that V. and x never decrease the number of
G“*',...,G***. Hence {F**(m)} is closed under the action of t-derivation and
Koszul operator. O

Based on the result above, we define subcomplexes of EZ%(m, t) and those of
L-valued 1-jet de Rham complex E¥(7) = Ind';llim Z§(m, 1) as follows:

@.3.7) F (m) = @ F®9(m) = Z%(m, 1),

(4.3.8) F,= Ind';'lim F,(m) € E¥(1),
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-n

where E%(m, 1) = (E§(m, 1), V. + k) and Zp(m, 1) denotes P Zpi(m, 7).
ptqg=n
To make a spectral sequence from “E-valued” cohomologies to topological
cohomologies, we need a preparation of homological algebra, namely Leray

spectral sequence for hypercohomologies as mentioned in the sequel.

(4.4) Proposition. Let f: X — Y a continuous map of topological spaces and C*
= {C"=0.1... a sheaf of complex bounded below on the topological space X. Then
there is a spectral sequence:

(4.4.1) E2e = HP(Y, RIf,(C*)) = HP*9(X, C¥).

Proof. To simplify our terminology, we shall use “complex” and “bi-
complex” in the sequel instead of “sheaf of complex” and “sheaf of bicomplex”,
respectively. Let us take an injective Cartan-Eilenberg resolution {I**} of the
complex C* such that the sequence: 0 — C* — I** is exact for all integers a. Then
we can make an injective Cartan-Eilenberg resolution {M***} of a double complex
{f(I**)} on Y. Hence the sequence:0—f, (I*")—> M*>* is exact. By
{s(f,(I**))}, we denote the total simple complex of the double complex
{f.I**)}. Through a suitable canonical bigrading, {M***} can be regarded as a
Cartan-Eilenberg resolution {,,s(M***)} of the complex {s(f,(I**))}. Next we
shall consider the functor T:= I'(Y, —) from the category of abelian sheaves on Y
to the category of abelian groups. Then there is a right hyperderived functor
R*T(—), which satisfies:

RAT(s(f, (I**))) = HA(I'(Y, s(;,5(M***)))) = H(s(I'(Y, M***))),

where s(I'(Y, M***)) denotes a simple complex of abelian groups induced by the
tricomplex of abelian groups {I'(Y, M***)} with total grading. Since the sheaf
f(I*?) is flasque, the sequence:

0 — I(Y, 1)) —> (Y, M*+%)

is exact for all integers a and b. Hence R*T(s(f,(I**))) >~ H*(s(I'(Y, f,.(I**))))
~ H%X, C*). On the other hand, we take the sheaf of cohomologies
H % (f,(I**)) in the second index. Then {H {,(f,(I**))} forms a complex by the
first index. In this situation, the result of E.G.A.IIl (cf. [G-1] Proposition
(11.7.2)) gives us a spectral sequence:

OEL = RPT(H §,(f,(I**))) = HP(Y, Rf,(C¥))
= RPFITs(f, (1*¥)) ~ HPP4(X, C*). O

Now our preparations are finished. Let us go back to our first situation of
§4. Since D, is f-ample and M is compact, for a sufficiently large m, we get:

Rif (Z(m 1)) =0  (¢9>0).

Then, with applying (4.4) Proposition to our case, the spectral sequence (4.4.1)
degenerates and shows us that
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(4.4.2) H"(M, fE¢(m, 7)) ~ H"(P(E), Z¥(m, 1))

for a sufficiently large m. Moreover we may assume that the sheaf of complex
foZE(m, 1) has a filtration {f,(F,(m))} which satisfies:

4.4.3) [ (Fm) = D f (FF(m),
[ Z59m, 1) 2f(F§P(m)) 2 ... 2 f, (F#) . 1(m) =0,
Fo O/ f S m) ~ 24 ® A1 "E® S"7(E),
(for m > 0).

After taking the inductive limit of the right hand side of (4.4.2) for the index m,
(3.5) Theorem shows us that

(4.4.4)  Indlim H"(M, f, E%(m, 1)) ~ H"(P(E), % (1))
~ H"(P(E), Q*(+D,)) ~ H"(P(E) — D,, ©),

where we used Hironaka’s theorem on resolution of singularities to show the last
isomorphism for D, with general singularities. As for admitting nilpotent structure
for D, the cofinality of inductive systems for D, and for (D,),.; brings us the same
results.

Next we shall show that H"(P(E) — D,, C) ~ H"(M — Z,, C), where Z, denotes
the zero locus of T on M as a section of E. In fact, for a point x of M, the point x
is contained by Z, if and only if the fibre f~!(x) = P(E) is included by the divisor
D.. Hence we have a commutative diagram:

P(E) <= P(E)— D, =:V
fl L/o=f|v
M o> M-2Z

Since f,: V- M — Z_ is an A"~ !-fibre bundle, Leray-Hirsch theorem shows the
desired isomorphism. Thus, using (4.4.4), we obtain:

4.4.5) Ind.lim H*(M, f, Z%(m, 1)) ~ H'(M — Z,, C).

On the other hand, for a sufficiently large m, f,=§(m, ) has the filtration
(4.4.3). Then the filtration {f,F,(m)} canonically induces a spectral sequence:

4.4.6)  EP9 = Indlim HY(M, Q% ® f, Ef(m, 1)) = HP* (M — Z,, C).

Moreover, hypercohomologies have a canonical spectral sequence. Hence we
obtain a double spectral sequence as follows.

(4.5) Theorem. Let M be a compact complex manifold, E a holomorphic vector
bundle of rank r over M and L= Opy,(1) the tautological line bundle of the projective
bundle f: P = P(E) = (E¥ — {0}/C*) > M. Take a global section t of E. Then
there exists a double spectral sequence:
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Ecl,(a,b) = Ind.lim @ Hb(M, ‘wa ® /\a(l)-—a(Z)E ® Sm+a(2)(E))

™ a(1),a(2).b
(a(l)+a@)=a,r—12a(l)za(2)20)
= E{**? = Ind lim H***(M, 24 ® f, Z¥m(m, 7))

=>Ha+b+c(M _ Zv C)
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Added in proof. One started from the fact (4.1.1) in the case M = {pt} and came
to a suitable definition for the t-derivation as a generalization of the Koszul
derivation over the affine space. Recently, one noticed that a long time ago, Ogus
also introduced a nice derivation dog =d: P*(m) = {A°J},s(L)}((m — a)D,)
- P*" i (m) = {A** 1 Jys(L)}((m —a—1)D,) in [O] for another purpose. His
derivation dy¢ is the same as ours except a slight difference in handling the order
of poles (cf. (3.3) Proposition). Moreover, without any violent calculation, his
derivation dy is naturally derived from the exterior derivation of a logarithmic de
Rham complex depending only on the line bundle L, and not on the section
7. Nevertheless, by two reasons, one still think that it may be worth presenting
this topic in such a rough style. One reason is that the order of poles must be
adjusted as ours with using the section t for the compatibility with the
meromorphic de Rham complex. The other one is that up to the present, one is
not sure to accomplich forthcoming applications of this work without using the
explicit formulae such as (3.1.1).



