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L-valued 1-jet de Rham complexes and their

induced spectral sequences
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Takeshi USA

§0. Introduciton

In [U-4], we raised several problems on a system of projective equations of a
projective submanifold X .  Those problems were heavily concerned with a  given
section of a given vector bundle E on X  and its induced cohomology classes of the
vector bundle valued cohom ology groups H q (X , Q (E )) . H ence , w e need  a
suitable means to study each cohomology class of H q(X , Q (E )).

A s is well-known, there a re  many works o n  geometric explanations of the
cohomology classes of the cohomology groups Hq(X, Q ). N evertheless, in  spite
of their importance, we do not have much knowledge on the geometric meanings of
the cohomology classes of the E-valued cohomology groups Hq(X, Q ( E ) ) .  And
this fact has a  lot to  do  with that, though we have Hodge spectral sequence from
H q(X , Q ) t o  HP + q (X , C ), w e d o  n o t  have spectral sequences from "E-valued"
cohomology groups to some topological cohomology groups. The difficulty for
constructiong such a spectral sequence arises from the fact that in  general we can
not let the following sequence:

0 E S21( ) E Qnx E 0

be a  complex by introducing a connection V. Roughly speaking, the obstruction
in making a  complex with a  connection V is described by the curvature operator

for the connection V. T h i s  curvature operator e determines the Chern classes
of E  which are invariants of E .  Hence, this approach has serious difficulty.

Thus, in view of our original purpose, we intend to construct a double spectral
sequence depending o n  a  given section of E  by using another method (cf. (4.5)
Theorem ). The key  idea  is  to  use the sheaves of L-valued 1-jet forms on the
projective bundle P (E ), in  making a  suitable complex with a  differential operator
of first order (cf. Added in  proof).

W e have som e applications of o u r  spectral sequences, fo r  which we need
complicated calculation, and  we shall publish them elsewhere.
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§1. Jet sheaves (cf. EGA IV §16 [G-2])

Let f: X  —> S be a smooth morphism of complex manifolds, and F  a locally
free O s -m o d u le  o f  finite rank. T h e  d ia g o n a l em bedding zl: X X x s X
canonically determines a  sheaf of ideals / A. Put X (fl) : =  XI, O s x s //"A

+ 1 ), h(fl) : X ( n)

g  X  x ,X  to be the canonical closed immersion and 1),( 0 = p i •h(„) , where pi denotes
the i-th projection. T hen  w e  de fine  the  F -va lued  n -je t sheaf J 1 (F )  to  b e

(P  1  ( n ) ) * (P  2 (n ) ) * F .  The 0,-module structure of  J 1 (F ) and a homomorphism ?x i s :
F —> fnx i s (F ) are defined by the structure homomorphism  :  p,- 1 0 x —>0,„ x  and
the identity map of F respectively. The following proposition shows an elementary
property of jet sheaves.

(1 .1 ) Proposition. L et f: X —> Y  an d  g : Y—> Z be  sm oo th  morphisms of
complex manifolds and F a locally free Ox -module of finite rank. T hen  w e  have the
following exact sequences.

(1.1.1) 0 Sn(f26) C) F  -->  J i (F) — + J7y i  (F )-->  0 ,

in particular, putting n = 1,

(1. 1.2) 0 - 4 Q i/y 0  F J liy (F )-->  F O.

Moreover,

(1.1.3) 0 —> f*S21.7 z  F J l i z (F ) 4 )(F ) - 4 O.

P ro o f . F o r  (1 .1 .1 )  a n d  (1 .1 .2 ) , s e e  [ G - 2 ] .  W e  h a v e  o n ly  to  p ro v e
(1.1.3). O bviously  there  is a  canonical map Jju z (F) — > Jk o ,(F). U sing (1.1.2),
an  easy diagram chasing shows that the sequence (1.1.3) is exact. 0

(1 .2 ) Remark. ( i )  B y  th e  definition, th e  n - je t  m ap  A I, : F  -->  J 15 (F)
obviously possesses O s -linearity though it does not O s -linearity.

(ii) The sequence (1.1.2) does not split in genera l. The extension class of this
sequence determines the total Chern class of F.

(1.3) Convention. In the sequel, we shall treat only holomorphic objects and
meromorphic objects otherwise mentioned.

§2. The local study o f  A° Jks (L )

In the sequel, we use local expressions of 1-jet sheaf with coefficients in a line
bundle  L . H ence, in  th is section, we shall determine the transformation rules
explicitly. Let us take a  sufficiently fine open covering of X  with systems of local
coordinates and local frames leA l  of L:

(2.1.1) 91 = {U e /1}, s = dimS, n = dim X —dimS,

= (L/ A,(z1,...,4; v1,...,v;,), eh),
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(such a  pa ir  is called "a C.F.-open set" of L over S),

where f : [1,1,  (Z1 , llsA) (vi,... V sÀ) e S.

S in c e  4 ,(L )  is  a  co llec tion  of the  first order Taylor expansions of the local
sections of L to  the direction of the fiber, fo r a  given C.F.-open set U ,, we can
uniquely choose a  lo c a l  fram e (G, G1,...,G1) o f  J17 5 (L ) which satisfies the
following condition: for a local section a  of L,

(2. 1. 2) fis(a) = E (acr,daz iA)GZ,

(a = crAeF(U)., Os )).

We call this frame "the canonical local frame" of J. 1 (L) on the C.F.-open set  U .

(2.1) Remark. In  our tensor calculus, G,?, m ust be distinguished from other
G i

n

Now we suppose that we have two C.F.-open sets U , ,  U  and the change of
local frames gp., : U  n U . C .  of the line bundle L which satisfies

(2.1.3) eA=

where eA and e  are local frames of L determined by the C.F.-open sets U ,  and Up

respectively. Then the transformation rules of the canonical local frames on the
C.F.-open sets are given as follows.

(2.2) Proposition. (Transfomation rules of canonical local frames)

(2.2.1) G° = G
°
 g +  E (Og"10?)G k

PA- Ftk= 1

(2.2.2) G iA  =  E (Ozi
AlOzk

o)g I GI'm( i  =  1 , . . . , n ) .
k = I

P ro o f . For (2.2.1), we consider Ac is (e).). Then (2.1.2) shows:

G,? = jl i s (eA) = jl is (em g ")= g "G p
°  +E(O g"lez kOGk

y .

Hence we see that (2.2.1) holds. As for (2.2.2), we put F in the sequence (1.1.2) to
be  the line bundle L. Then it is easy to see that K er( 4 , s (L) L ) has a local
f r a m e  (G1, o n  U w h ic h  corresponds to the l o c a l  frame
(dz1 e,,...,d4C ) e ).)  th rough th e  isomorphism Ker(4,(L)— > L ) .(21 15 C) L.
Thus we have (2.2.2).

Next we study the sheaves of L-valued 1-jet p-forms AP4 i s (L). O bviously
{UV ) A ... A G;', ( P) 10 a(1) < <  a(p) n} is a local frame o f  AP Jl is (L) on the
C.F.-open set Hence, every (local) L-valued 1-jet p-form  4  h a s  the following
unique expression on the  C F .-open set.
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( 2 . 2 . 3 ) E Con ... a(P) G `:1( 1 ) A . . .  A GI ( P)

(4) ,I.a(1) ..... a(p) Fe (U  Os ))

W e also  require  the transform ation ru les of the coefficients 1. a(1)..a(p)}6 and
{0,Lb(1)...b(p)} in  the  sequel. To simplify our computation and the descriptions of

X . 

the transformation rules, we shall exploit the following convention as usual.

( 2 . 3 )  Convention. (  i ) D (f det(Ofp/3z1(q)) =1
(ii) E T '* . . . * th e  summation fo r  a l l  the indices*•..*a(t)a(t + 1). ..a(s) * . *7-•••*••.* a(t)a(t + 1)...a(s) : =  

1 _< a(t) < • <  a ( s )  n  (when we admit a(t) = o, 0E will be used instead of E), if
there is n o  other pair of indices up and down.
(iii)E# := th e  summation fo r  a ll  the indices
1 < n  (when we admit a(i) = 0, °E# will be used instead of E#), if
there is n o  other pair of indices up  and down.

( 2 . 4 )  Proposition. (Transformation rules of coefficients)

(2.4.1) ii0b(2)...b( p)

= E {D  (42) ... z aA,(111 D (4(2) 4(p))
g aP a(2)...a(p) •

(1 b (2) < ••• < b(p) n)

(2.4.2) 00(1)...b(p)

= EtD(g 4 2 )  • • • zax(p))/ D (z b4(1) z bi,(p))} U d, 
).0a(2)...a(p)

+ E { D (4 1 )  • • • zai ( P) )I D(z b
4

( 1 )  • • • z mb(P))} gfa(k,u (i)...a(p),

(i b(1) < • • • < b(p) n).

P roo f. W ith using (2.2) Proposition, we shall check  the  above  by  direct
com putation. For 1 a(2) < ••• < a(p) n ,

G!? A G a» ) A •  • •  A Gl (P)

=  {g „AE ( a g  4,1 1 az bin G buo)}

a z bt,(2)) g 4 x G bip pA 1E (aza,(2)/ ; A • • •  A {E(az,,,(, )/az,,b(, )) G ,,b(p)}

=  E #  L.10 3 4 2 )  a zbip ) ) ,  (a z l(P) / a z bm(p)) G o,  A G b,i( 2 ) A • • • A G b ( P )

i ( a a z bii( i ) ) ( a z 1 (2) / z bm( 2)) (azfp)/(3z154(p)) Gbm(1) A • • •  A Gb, ( P)

= E g f,A I D ( 4 2 ) . . . z ax(p) )/ D (z mb (2 ) . . . z t,b(p))}  G o A  G „ b (2 )  A • • •  A Gb,( P)

E g f,x-  1 {Do m A , z ax(2) zblip))}A  •  • •  A

By the same way, for 1 a(1) < •• • < a(p) n ,  we have:

GI" )  A • • •  A Gax ( P)  =  E g f,A{D (zax(1) • • • zfP))I D(z o
b ( 1 )  • • • zo

b ( P))1 G 1  A • •  •  A Gomm.

Hence, for a section of A PJI /s (L),
= 0 v Ga(1) A • •  •  A 0 " )

Aa(1)...a(p)

k  •
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=1Co.(2)...a(p)[Egfap(4(2) • • • z a,t(p))1D(z on(2) • • • z pb(p))} Go A  GbiL(2) A ••• A Gb( P)

+ Egri iTi { D(g, A , zaA(2) • • • zaA(P))ID(z b
ow • • - 4(p))1Gbt,(11 A ••• A G bol

+  /0 ,t0 1 ) ... .(p ) [E 4 A  {D e) • •• 4(p))1D( z ob(i) • • • z bi,(p))). G  obo.) A ••• A Gb(m]

— E[E OA0a(2)...a(p)grIA {D(4 2 ) • • • e P ) ) /D (Z b, ( 2 ) • • • • • • A Gb( P )
z bm(p)) 1]  G o A  G bu.(2) A

14

+  1  E E  0,1a( 1)...a(p)gf, A 11 ) (4 ( 1 )  • • • ZTP ) )/ D (Zb
/P • • • Z u.

b ( P ) )}

+Y 0A0a(2)...a(p)4A- 1 ••• Gb( P ){D (g i a ,  z a,(2) • • • z a,(p))/D (4(1)
A  n i A As ' I L

• • . zb(Phi 1 r-'1,( 1 )
A

Thus we obtain (2 .4 .1 )  and (2.4.2).

§ 3 . Construction of L-valued 1-jet de Rham complex

L e t  u s  ta k e  a  g lo b a l se c tio n  r e F ( X , L )  a n d  f ix  i t  th ro u g h  o u t  this
sec tion . Then the section T  corresponds to  an effective ( n o t  necessarily reduced)
divisor Dr o n  X .  T he sheaf  o f  m erom orphic L -v alued 1-jet p-f orm s of  order q:
{AP.115 (L )} (q a)  is defined as fo llow s. F or an  open  se t V  of X,

F(V , {  A P Ji ls (L )}  (qD,)):= { ø f  =  °E0Aa(1)....(p)GV) A ••• A Ga,(P)

o n  Vn U ,  th e n  1'16 Act(1)... a (p ) i s  h o lo m o rp h ic  o n  Vn UA for AGA},

where h  denotes the function defined by T =fA•e
O ur aim  is to m ake those sheaves into a  complex with defining a  suitable

differential operator i n  th re e  s te p s . I n  t h e  f irs t  s tep , w e define  T-dervation

V :  {  A P Jl is (L )}  (qD ,)— > {  A P' is (L)}  (qD.,) a s  fo llow s. For a local section
= °E0,4,(1)....(p) GaA(1) A  • • • A Ga,t

(
P
)
 o f  { A P fl is (L)}  (qD.,), we put

(3.1.1) V ,( ) :=  
°

E  E 002.(l)..a ( p) 104)h0"1 A G " ) A  ••• A GI(P)

k =1

P°E E Ca(1)...a(p)(af  az `)G I"1 A G lo ) A ••• A GI ( P )

k= 1

(3.1) Theorem. V , is well-defined by (3.1.1). (cf. Added in  proof)

For the proof of this theorem, first we give the following lem m a , which simplifies
our calculation.

(3.2) Lem m a. Let f 1 , . . . , f p be functions on a open set U  with a system of local
coordinates { z ° ,...,z P ,...} .  Then the following equality holds.

(3.2.1) ( — 1)`010z `[D (f ,...f p)1D(z ° = 0
t=0

P ro o f . W e show this by induction on p. In case of p = 1,

alOz ° (af 110z 1) — Olaz i (Of t 'Oz ') = 0.
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Now we assume that the equality (3.2.1) holds for p  —  1. Then:

(— 1) / Z E D  
t = 0

= (— iya/aziE E (— 1)sa f i la z s {14 f 2 ••• f p ) ID (z ° •• 4 ••4 •••z P)}
t=o s=o

+ (— laz s ID ( f 2 •• • f p ) /D ( z ° . . . i • . . . ; . . . e ) } ] ,

with using Leibniz rule,

= E (— ly+ a f i /azs x E E (— a/az {D(f2 ...fp)/D(z° ... zP)}
s 0

+ El (— 1)za/azt ID(f2...fp)/Dlz
°
 • • • • • ;. • • zP)1] •

0

By our induction hypothesis, the inside of the brackets in the last expression is
zero. Thus we obtain the equality (3.2.1). Cl

Proof of (3.1) Theorem . By the symbol V < > (0), we denote the image of ck
th rough  the m a p  V , d e f in e d  b y  (3.1.1) w ith  the canonical local frame
(G13 , . . . , G D .  Using the expression of (3.1.1), w e can rewrite the coefficients of
V <A > (0) as follows.

(3.2.2) For 1 a(1) < ••• < a(p) n,

/ f<A> (0 ) A0a(1 )...a (p ) =  E (— olfr 1 x  5/04 )̀(0,0a( ;.‘1).......a(p)/ J Al
t = 1

(3.2.3) For 1 a(0) < •-• < a(p) n,

<A> ( 0 )A a (0 )...a (p ) =  E (— o'ff,+1 x  Olazae(e6-r Aa(0)... La (p )/  f f)•
t = 0

In the expression above, we must take notice of the difference of the range of the
index t. Now we start our proof of well-definedness. As for "the order of poles",
it is easy to see that n y  <A> (0) A, ( 0 ) . . . , ( p ) is  holomorphic for indices 0 c(0) < ---
< c(p) n  by using (3.2.2) and (3.2.3). Hence we have only to show:

V < = V  < 11 > ((k) Aa(0)...a(p),

for indices 0 a(0) < •• • < a(p) n. First we shall treat the right-hand side of the
a b o v e . In case of 1 a(0), w ith using (2.4.2), our com putation proceeds as
follows.

V > ( 0 . 1 a (0 ) . . . a ( p ) —  E <11> ( 0 0 , 6 ( 1 ) —
b(p) g 4 1 (g 4 (1 ) • • • zb

o
(P))I D(za,,w ) • • • 4 (1' 1)1

+ E <  >0419(0)...19(p)g5,-,'1 I D ( 4 ° ) • • • 4 " ) ) / D ( z r ) • • • z a,i(P))1,

applying (3.2.2) and (3.2.3),
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= I { D ( g z pb(1 ) • • • z i i
b(P))1D (za,1( ° )  • • •za,t (P))1 ( — 1) t + a I az ,,b(f ) ( 4 0 ,b ( 1 ) . . . p. . . b ( p ) 1 f if)}

t= 1

+  E ID ( z r ) • • • zb( P))I D(za ( ° )  • • P• ZA j g A p+  1 1 (_  iy  ix+ , ozb(t) i

t = 0
/ gb(0) .P. hod fin}

= (l/p!)I#(the first rerm) + (11(p +  1 )! )  E#(the second term)

( 1  p DE# f e + 1 g n i ,,b(t) ,b(1) ,b (p h  D  (zap) _a(p
j

)■
A A ' 'g • • • t • • " g  1 / ZA 

= 1

X  a la Z ,b(t) ( 4 0 .b (p ) /  f  f i)  + ( 1 AP + 1)!)E # E g +  1
= 0

x  { D  (z ',, z b
p

( ° )z b p (P))1  D  ( z a,"  •  •  z aP )) )1 a 104" ) (4) f fi )

= (1/(P —  1)!)E 'ff + 1 g "  ID (z b
A

(1 ) , g 4 2) • • • z ,,b(P))1  D (z r ) • • • zTP))1

x 0/az b»
)
(65 

p 0 b ( 2 ) . . .

b(p)/g )  + (1 / p E#ff ± 1 fD (z  pb(o)... z  pb(p)) D (za,1( ° ) • • • za,,(P))1

x  I azb, ( ° ) ( 41,(1) ..b(P)I f ft ) •

Hence we obtain:

(3 .2 .4 ) V <11 > (0),ia(0)...a(p)

=  E f rig , ,A I D ( 0 A0b(1)...b(p — 1)/g, g,,,„ z b,,( 1 ) •••z b,i
( P- 1 ) )/D (z a,P ) ••• 4 , ( P) )1

+  Ef,PtID(0,6(1)...b(p)/g5 z b,(1) • • • zb„(P))/D (zaxo) • • • zaA(P))1 .

Also in the case a(0) = 0, we can get the following by the similar computation with
using (2.4.1) and (3.2.2).

(3 -2 .5 ) V < ( ) Aomi)...a(p)
_ n b(1) b(p — 1)■ a(

W it0,6( 1 ). ..b(p — 1)/
/

 J f p
g  Z •  "  Z )/ ‘,Z )2 1 •  •  •  ZaA( P ) }

Next we shall express V </1>(0)A ,,( 0 ) . . . „( p ) in terms of In case of 1 a(0),
our computation is carried out as follows. By virtue of (3.2.3) and (2.4.2),

V  < > (0) ).a(0)...a(p) =  E  —  otif 8/04̀)(0.1a( 0) ...7..a(p)/fn
= 0

=  E  _  iyff + 1  I  aza,l (t) (f  P EE9 P4-  1  (150b(1)...b(p- 1)
t =

x {D(g4, z bp 0) . . .  z bp (p- D ( z ,r ) zaA(p))}

+
1)1D(zmb (0 )...4 0 ,-EgPAii CI)  gb(0)...b(p — D (4 ° )  .

=  g f +  1 (4)  gOb(1). ..b( p — „uf,)[ E ( — 1 ) 1 a I ad'
1=0

ID (g 4 1) • • • Zb,,,P  " V D (Zar ZaA(P))1]

g gA E f f  E E 1)1 la /aZ aP ) ( 0g0b(1)...b(p — 1)/ IN
= 0



140 Takeshi Usa

x  ID(g ZbA(1) z b(p — 1))/ D (z aA(0) zat(p))1]

+ Eft + 1 (0,0 0 )...b(p—i)/fDEE(— ly(ag„iaza»),  ,  

x ID(g zri ( 1 ) • • • bz 4(p- 1))1D (z apn e.,,,o4)}]

+ Eff. + 1 (',b ( 0 ) ...b( p_ 1 ) 1 ffi)EE (— 1 ) t a/aer
= 0

I D ( z bm(o)... z bm(p — i ) )/ 1)(4 °)
2 T P ) ) 1 ]

+ Elf + 1 [ E (— {a/azI(̀ )(0„b(0)...b(p_ 1) /g)}
t = 0

x  { D (z bAo:n... z bm(p — 1))1 D(z aA(0) el(p))1 ]

Among the five terms above, (3.2) Lemma shows that the first term and the fourth
term vanish. Hence we see:

the expression above

= gpAEff + 1  { D (4),206(1)...b(p—  047:, z4b(p— D (Z T ° )  Z T P))1

+ EL°. (0 p0b(1)...b(p — 1)/ g) X ID(g g , zbA(1) z bii(p — 1))/ D (z 11(0) z aA(p))}

+ Eff+'{D(Oitb(0)...b(p- 1)/ 
g  4 ( 0 )  z bm(p — 1))/ D(z i(0) z cl(p))}

Since g,,•g 4  = 1, the second term  above also  vaishes. Comparing this with
(3.2.4), fo r 1 a(0), we obtain that:

<1,1 > (0.(o)...a(p)= V  < A> (45)2a(0)...a(p) •

Also for the case a(0) = 0, the similar calculation of V < > ( 0 ) A 0 a(1 ) .. .a(p )  with using
(3.2) Lemma shows:

<11 >(0).l0a(1)..a(p) = V
 <A>

 (0) A0a(1)...a(p)

after comparing that with (3.2.5). Q. E. D.

Let us study an elementary property of r-derivation V . W e  c a n  o b ta in  an
exact sequence:

Q ik s  ®  LP A P J l i s ( L ) V s' 0  L P — >  0

from the sequence (1.1.2) with putting F  Land taking the canonical filtration of
its p-th wedge. Since 5415  C) L P  f ll.k1 s (pD,), thes sequence gives:

(3.3.1) 0 Qfkis(mDt) { AP Jlis(L)} ((al — P)I),)  121=  f21;c7 1 (m1),) - -  0.

W ith  relation to  th is  sequence  (3.3.1), r-derivation h a s  a  f in e  property as
mentioned below.
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(3 .3 ) Proposition. The f ollow ing diagram  is exact commutative.

0 S2P(mD) { A P  (L)}  ((m —  p)D) S 2P 1 (mD) 0

dx fs i v r i —dx t s I
O—  S2P + 1 ((m  + 1)D) { A P ' .11 (L)}  ((m —  p)D) OP ((m  + 1)D) — > 0,

P p  t

where D = D„ ,QP =J 1 .11 1,(L )  and (15 1 s  =  the ex terior derivation over S.

P ro o f .  The problem is local. Hence we shall check the above with taking an
arbitrary C.F.-open set U , and its canonical local frame as in § 2 .  First we show
that a p + 1  • dx / s  =  V t •a p . Let us take a local m erom orphic p-form :

= tfrola(1)...a(p)d4 1 ) A  ••• A dzaA(P) ,

namely, a local section of S 4 1 s (m D „ ) . Then, it is easy to see:

(3.3.2) ap(0) =  E f f , 0 Aa(1). .a(p) Gaz") A •• • A

which means (L111p., ,A a(1)...a(p)
{ fr II ' Aa(1)...a(p) if a(1) 1

0 if a(0) =  O.

Hence, by (3.2.2) and (3 .2 .3), we get:

v t . a p ( o )  _  E f t n  A ,.(0 ‘ ,1,kwAa(0)...t.'. . . , (p )  X )  A • •• A GaA( P) .
t =0

O n the other hand,

d x 1 s ( 0 )  = E{ E (— l Y /  OZa " ) (11./A A a(0)...î...a(p))1 X  de,r
) A  ••• A dza( P) •t=0 A 

Thus we obtain:

I p +1 . d ( i )

— Eft+ { (— 1)1 0104'OP Aa(0)...L. ( p)} x G aa( ° )  A ••• A GTP)

t=o

= Vt•czpOP).

N e x t  w e  s e e  t h a t  — dx i s  • fip  =  fi„ + 1  • V .  W e  t a k e  a  lo c a l s e c t io n
=  .E 0 A a (1 ) ...a (p) GaP) A • • • A G̀ I( P) o f  { AP f l i s (L)}  ((m — p)D t ). Then,

(3.3.3) flp(o) — fA P .  OA O,a(2)...a(p) x del ( 2 ) A ••• A dza,l ( P) ,

namely, p(0)Aa(1)...a(p—  1) —  JA P  0A 0a(1)...a(p—  1)

fo r  1 a(1) <  ••• <  a(p —  1) n,

which implies:
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( d X IS . 13  p(0)).1a(1)...a(p) =  E (— ota/azr(L - P4),0a(1)...L..(p)).
t= 1

O n the  other hand, using (3.3.3) and (3.2.3),

(fi p+ 1 V  T( ))Aa(1)...a(p) =L  PE  ( )t ff +  l a/„ i s
1W').0a(1)...L.a(p)/ff) •

t =1

Hence we get:

dxis . flp = 13p-Ei• r 0

As the first step for our aim, we constructed T-derivation V, in the a b o v e . In
the second step, we shall define another derivation K  a s  follows, which will be
called "K oszul operator".

(3.4.1) K  =  pŒ _ 1  13 p :{ AP JA7 s (L)} (mD r) Qi171((m + p)D,)

{  A P ' J i l s (L)} ((m + l) D)
OE„ _

For a local section =  0 E 0 , a ( i ) . . . ( p ) U1( 1 ) A  ••• A G aA( P ) o f  { APJ1 15 (L)} (mD,), the
local expression of K(0) is:

(3.4.2) K(0) =  E(Coa(i)...a(p-1)/f,) x G a») A ••• A

COa(1)...a(p— 1)/ LI
i.e. K (0,1a(1)...a(p - 1) = t o

if a(1) 1

if a(1) = O.

Then V , an d  K  have good properties as mentioned below.

(3.4) Proposition.

(3. 4. 3) Vt• V, = 0

(3.4.4) Vt• K K =  0

(3.4.5) K  ' K  =  O.

P ro o f . By (3.3) Proposition and the construction (3.4.1) of Koszul operator,
(3.4.4) and (3.4.5) obviously h o ld .  Hence we have on ly  to  show that (3.4.3) is
v a lid . L e t u s  take a local section 4) o f  { A P 4 5 (L)} (m a )  a n d  prove that the
coefficients of the local section (7 ,•  V ,(0 ))  of { A P ' i l i s (L)} (mD r)  are zero.

7 ,(0))A0a(1)...a(p+ 1)

p+ 1
=  E  ( iYff + 2 0/az u;s( f) y ( 0 ) , I o a ( i ) . . .L .0 ( p + o )t=1

p+1 1-1

=  E (— off,Pt + 2 3/azr{fA- P - ' E  (—  f r + l a la z a,C) (Coaci)...;...L.a(p+ l a f t )
t 1 s 1

p+  1
_F L I—p — E ( _  l lf r  1 a/a z al (s)id.,

l`PA0a(1)...L.L.a(p+ 1)/ f f)1
s=t+1
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( 1) t + sff + 2 09 2 / a 1r) a  a  \ 1,0,
(14 UZ A(s)) + 1)/ fr)

s<t

E ( o s - F t i l+  2 092/04034.0)(0
s>t

+ 1)/ f  =  O.

Also for a(0) 1, the  similar calculation shows that

( V, • 7 ,(0)),1.(0)...a(p+ 1) =

Based on the result of (3.4) Proposition, we can make sheaves of meromorphic
L-valued 1-jet forms into a  sheaf of complex as follows, which will be called "L-
valued 1-jet de  Rham complex".

(3.5) T heorem . Let f :  X  S  be a smooth morphism of complex manifolds with
relative dimension n, L  a line bundle over X , and m  a non-negative integer. Take a
global section t  e F(X , L ). Then, there exists a sheaf of double complex F_17s (m, 7)
as follows.

{  AP  - q  JI/s(L)} + q)D,) if p > q >13
Ers(m ,  =

0 otherwise

V  7 (• P ' '1 M .  ' I ' ) ^ 7 ) + 1  (
• -/ Z.X/S t)

q +  I
K  : x P A ( M ,  t )

—73 1i t s  kM ,  t )

(t-derivation cf. (3.1.1))

(Koszul operator cf. (3.4.2))

For the index  m , {E rs (m, t)}  f irm s  an inductive sy stem  by  canonical inclusions
depending on "the order of  poles" along the d iv iso r D . Pu t E rs (*, t) to  be  the
inductive limit o f  the inductive system . Then Eljks (*, t) induces a  sheaf  of simple
complex E t s (t)(L-valued 1-jet de Rham complex) by  giv ing total degree and total
derivation A T =  V T +  K . Moreover, this sheaf of complex 15 (t) is naturally quasi-
isomorphic to the usual meromorphic de Rham com plex  w ith poles only  along D.

QX*  /S(* Dr) EXIS(T)

P ro o f . It is obvious by its construction and (3.3) Proposition.

§ 4 .  Spectral sequences induced by L-valued 1-jet de  Rham complexes

Let M  be a com pact complex manifold, E  a  holomorphic vector bundle of
rank r over M and L = 0 , (E ) (1) the tautological line bundle of the projective bundle
f : P = P(E) = (E V — {0} IC*) —> M .  Then w e have  the  following lemma, which
gives a  key for construcing spectral sequences from "E-valued" cohomologies to
topolgical cohomologies.

(4 .1 )  L em m a. In  th e  s i tu at io n  ab o v e , th e re  is  a  canonical O r -linear
isomorphism:

(4.1.1) f *E  2= 4 .11",(L ).
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Hence we see also that

{0APE C) Sm(E)
(4. 1.2)f ( (  A P im (L)) Lm) =

(4.1.3)

if 0

i f  m < 0,

0 if 0< q <r —1
f,( (A P  J6 (L ))C )  L m ) =  0 if q=r —1, m> —r

S ' " ( E v )  C ) det E  C ) APE if q=r —1, —r.

P ro o f . I f  w e can prove (4.1.1), then (4.1.2) and  (4 .1 .3 ) a re  obvious by
projection formula. Hence we have only to show (4.1.1). Let us take an open set
U  of M  and consider:

F(U, E) F ( U ,  f  * L ) =  F (f F ( f J 6 ( L ) ) ,

where ji, i m  denotes 1-jet map introduced in § 1. Since j1,/m  has O m -linearity, we can
g e t a n  Op-linear homomorphism cJ := f * ( j 0 ,1): f*E  4 1, ( L ) .  W e shall show
that this 0 gives a  desired isom orphism . Because our problem is local, we may

assume tha t E  =  e om zk and M  has a  system of coordinates (y',..., en). Then,
k= 1

rank./ /m (L) = 1 + rel dim PIM  =  rankf*E . H ence  w e  have o n ly  to  show the
surjectivity  of 0 . L et us choose an  arbitrary point .x of P .  W e can regard the
free basis of E as a  system of homogeneous fibre coordinates, suppose
that the point x is included by the open set Ua which is defined by Z .'  0  0. T h e n
we have a system of local fibre coordinates ((r / Z a ) , . . . , -, . . . ( T /Z a)) on  Ua of f : P

M .  Put (G2, Ga
l , . . . s . . . ,G ra)  to  be  the canonical local frame of .4 /m (L) on the

C.F.-open set (U a , ((r/ Z a ) , . . . s . . . , (T / Z a ) ; • en), Za) of the line bundle L over
M , and  { f*Z 1 , . . . , f* Z " }  the free basis of f* E  induced by {Z' ...W }. T h e n :

0(f* zk) (zk I L. )G2 + G if k 0  a,

0(f*Z ") =

By these equalities, we can easily see the surjectivity of 0 . 1=1

(4.2) Remark. (i) L et us recall the sequence (1.1.2) with putting F  to  be  L
= Op(1) and f :  X  —> S to be f :  P  = P(E) -4 M .  Then Lemma (4.1) shows us that
this sequence is nothing but Euler sequence of the sheaf of relative 1-forms of the
projective bundle:

(4.3.1) 0 ‘26 f*E C) L" Op 0.

(ii) The m ap  0  of Lemma (4.1) does not coincide with the composition of the two

maps A im : L-4 .11,1m (L ) and y: f*E -+ L in  the  above.
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With placing f : X —■ S to be f : P = P(E)—■ M and F  to  be  L = 0 ,(1 ) , let us
consider the  sequence (1.1.3) tensored by Lv

(4.3.2) 0 f *C21, JA L ) C) LV —> 4,/m (L) C) 121O .

After taking k-th wedge of the above, we find that A k { JA L ) ® } has a  natural
filtration {PM  such that

(4.3.3) Ak( J (L) C) Lv) = P;` )F r ) „  = 0,
paky.pakl_ f * Q am  0  { Ak - a( ./1./m(L) C) L")} .

Now we sppose that a global section t  of E is given. Then this section can be
canonically regarded as a global section of L  = 0 , (, ) (1) and defines a  divisor D, of
P  = P (E ) . Hence the filtration (4.3.3) induces a filtration {P aP.q) (m)} of L1-7,p(m , t)

{ AP-  q(.11,(L) L")}  ((m + p)D,) such that

(4.3.4) ;EV(m, r) = P cf' q ) (m) D D Ppm 2,+ 1 (m) = 0,

F (P q ) (n)/PaP
-r'q (m )  f*Qam 0 { A P — q — a( 4 /m ( L ) L")}  ((m + P)Dt).

These filtrations behave w ell tow ards th e  a c tio n  o f  r-derivation a n d  Koszul
operator a s  follows.

(4.3) Proposition.

(4. 3. 5) 7 ,(Par" ) (m)) O E P I +  Lq) (m).

(4.3.6) k(PaP4 ) (m)) OE Pam ± '(m ).

P ro o f .  Let us take an arbitrary CF-open se t U = (U , (14, 1  , , w " ; y 1 , ,  v b ), e)
of L = 0  p (, ) (1) o v e r  M  (cf. (2.1.1)) a n d  t h e  c a n o n ic a l local frame
(G o, G . ,  G .+1 , . . . ,  G .+ )) of J ( L )  w ith regarding the C.F.-open set U  as a
C.F-open se t  over th e  p o in t  Spec(C), where u = rank E —  1, b = dim M , and
{G.+ ... , G14+191 corresponds to Idy l C) e,... dv i  .  Then, the subsheaf Pam ) (m)
is "generated" by the local sections {Ga" ) A • • A Ga( P- q) } which contain some of

more than  or equal to a as fac to rs. By local expressions (3.1.1)
a n d  (3 .4 .2 ), w e  c a n  s e e  t h a t  V ,  and K  n e v e r  d e c r e a s e  t h e  num ber of
Gu+1,...,Gu+b• Hence {Pa" ) (m)} is closed under the action of r-derivation and
Koszul operator. 0

Based on the result above, we define subcomplexes of r) and those of
L-valued 1-jet de  Rham complex E11(r) = r )  as follows:

(4. 3. 7) F0(m) = (-) Pa" (m ) :=1,(rn, 2),
P,9

Fa = Ind.lim F
a (m) g er),m (4. 3. 8)
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where 11(m, r) = ( 7-211(m, r), V, + ic) and ,1711(m, r) denotes ,c) t).
p+q=n

To m ake a spectral sequence from "E-valued" cohomologies to topological
cohomologies, we need a  preparation o f  homological algebra, namely Leray
spectral sequence for hypercohomologies as mentioned in  the  sequel.

(4.4) Proposition. Let f: X —> Y  a continuous map of topological spaces and C*

= { C} t= a sheaf of  complex bounded below on the topological space X . Then
there is a spectral sequence:

(4.4.1) = HP (Y , Rq f,(C*)) HP ± q (X , C*).

P ro o f . T o sim plify  our term inology, w e shall use  "com plex" and  "bi-
complex" in  the  sequel instead of "sheaf of complex" and "sheaf of bicomplex",
respectively. L e t u s  take  an injective Cartan-Eilenberg resolution {/**} o f  th e
complex C* such that the sequence: 0 —> Ca —> I"•* is exact for all integers a .  Then
we can make an injective Cartan-Eilenberg resolution {M***} of a double complex
{f* (I**)} o n  Y  H e n c e  t h e  sequence: 0 f_)  * (Ia,b) m a , b , *  is e x a c t . By
{s(f* ( /** ))} , w e  deno te  th e  to ta l s im p le  com plex o f  th e  d o u b le  complex
{f* (/**)}. Through a  suitable canonical bigrading, IM***1 can be regarded as a
Cartan-Eilenberg resolution { 12s(M***)} o f the  complex {s (f* (/ * * ) ) } .  Next we
shall consider the functor T:= F(Y , —) from the category of abelian sheaves on Y
to  the  category of abelian groups. T hen  there  is a  right hyperderived functor
R*T(—), which satisfies :

R alls(f * (1**)))= Ha(r(Y , s(12s(m ***))))= Ha(s(F(Y , 1 4 * **))),

where s(F(Y , M***)) denotes a simple complex of abelian groups induced by the
tricomplex of abelian groups {F(Y, M***)} with to ta l grading. Since the  sheaf
f * (/a

)
 i s  flasque, the sequence:

Op u a l ) ma,b,*)

is  exact for all integers a  a n d  b. Hence RaT(s(f* (1**))) H a(s(F(Y , f * (1**))))
Ha(X, C * ). O n  t h e  o th e r  h a n d , w e  t a k e  t h e  sh e a f  of cohomologies

H 7,(f* (I**)) in the second index. Then {H 11 ( f * (1**))1 forms a  complex by the
first in d e x . In  th is  situation, the  result o f E .G .A .III (c f . [G -1 ] Proposition
(11.7.2)) gives us a spectral sequence :

(c) 3.q = 'flH  L (f * (I**))) = HP(Y , Rq f* (C*))

RP - Fq 71s(f* (I**))) HP+ q(X , C*).

Now our preparations are finished. Let us go back to our first situation of
§ 4 .  Since Dr is f-am ple and  M  is compact, for a sufficiently large m, we get :

Rq f,,(4 (m , 1- )) = 0 (q > 0).

Then, with applying (4.4) Proposition to  o u r  case, the spectral sequence (4.4.1)
degenerates and shows us that
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(4.4.2) Fan(M,f (m, r)) a (P(E), Ef)1(m, T))

fo r a  sufficiently la rg e  m . Moreover we may assume tha t the  sheaf of complex
f * "4(m, r) has a filtration {f,,,(Fa (m))1 which satisfies :

(4.43)3) f  * (F a (m)) = f  * (f lam ) (m)),

f*Er(m, T)P- f*(Pom ) (0 ) = 0 ,
f * Pa"(m)1 f * PaP_M (m ) Q am  0  AP-  q-  a E 0 Sm + q-1 a(E),

(for m » 0).

After taking the inductive lim it of the right hand side of (4.4.2) for the index m,
(3.5) Theorem shows us that

(4.4.4) Ind.lim Hn(M,f,31(m, T)) li" (P(E), sp( r))

Bin(P(E), Sn(*D„)) a lin(P(E) —  D„ C),

where we used Hironaka's theorem on  resolution of singularities to show the last
isomorphism for D, with general singularities. As for admitting nilpotent structure
for D,, the cofinality of inductive systems for DT and for (D)r'red brings us the same
results.

Next we shall show that 1-1"(P(E)—  D ,
 C) fin(M — Z T , C), where Z T denotes

the zero locus of "C on M as a section of E .  In fact, for a point x of M, the point x
is contained by Z , if and only if the fibre f  - 1 (x) P ( E )  is included by the divisor
D . H e n c e  w e  have a commutative diagram:

P(E) P(E)—  D, = :V

f I Ifo= f l y

M M — Z,

Since f o : V—> M — Z, is  a n  A '-fib re  bundle, Leray-Hirsch theorem shows the
desired isom orphism . Thus, using (4.4.4), we obtain:

(4.4.5) Ind.lim Bin(M,f14(m, r))  1-1"(M —  Z„ C).
rn

O n  th e  o th e r  h a n d , f o r  a  sufficiently large  m, f* EP(m, r) h a s  the filtration
(4.4.3). Then the filtration { f * Fa (m)}  canonically induces a spectral sequence:

(4.4.6) E';'" = Ind.lim Hq(M, Sni . f * Elkm (m, T)) . HP+ q(M —  Z„ C).

Moreover, hypercohomologies h a v e  a  canonical spectral sequence. Hence we
obtain a double spectral sequence a s  follows.

(4.5) Theorem . Let M  be a compact complex manifold, E a holomorphic vector
bundle of rank r over M  and L = Op (E) (1) the tautological line bundle of the projective
bundle f: P = P(E) = (Ey —  1011C*) — > M .  T ak e a global section "C o f  E. T h e n
there ex ists a double spectral sequence:
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ET(a, 6) Ind.lim C )  Hb(M, Qem 0  A '41) a ( 2 )  E  0  S in +  a ( 2 ) ( E ) )

m a(1),a(2),b

(a(1) + a(2) = a, r — 1 a(1) a(2) 0)

E r  b =  Ind.lim  H a + b ( M ,  Qc, T))

Ha + b + c o l (c).
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Added in proof. One started from the fact (4.1.1) in the case M = {pt}  and cam e
t o  a  suitable definition fo r  th e  -c-derivation a s  a  generalization o f  th e  Koszul
derivation over the affine space. Recently, one noticed that a long time ago, Ogus
a lso  in tro d u c e d  a  n ic e  d e riv a tio n  do ,  = d: Pa(m) {  A a 4 ,(L )}  ((m — a)Dr)
_> pa + 1 (0 1., { A  a + 1Ji isIL M ( 111 — a — 1)/),) i n  [ 0 ]  f o r  another purpose. H is
derivation do G  is  the same as ours except a  slight difference in  handling the order
o f  poles (cf. (3.3) P ro p o sitio n ) . Moreover, without any violent calculation, his
derivation do G  is naturally derived from the exterior derivation of a logarithmic de
Rham complex depending only o n  th e  line bundle L , a n d  n o t on the section
T. Nevertheless, by two reasons, one still think that it may be worth presenting
this topic in  such a  rough style. O n e  reason is that th e  order of poles m ust be
adjusted a s  o u r s  w ith  u s in g  th e  s e c t io n  T  f o r  t h e  com patibility w ith the
meromorphic de  Rham co m p lex . T h e  other one is that up to  the present, one is
no t sure to  accomplich forthcoming applications of this work without using the
explicit formulae such a s  (3.1.1).


