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A  stochastic equation based on a  Poisson system
for a class of measure-valued diffusion processes

By

Tokuzo SHIGA

§  1 . Introduction

Measure-valued diffusion processes a r e  o f  a  typical class o f  infinite dimensional
diffusion processes, which arise  in  various fields such as mathematical biology and
filtering theory. Above all, measure-valued branching diffusions in population dynamics
and Fleming-Viot diffusion models in population genetics have been studied extensively
by many authors from points of large time behaviors based on analysis o f  th e  distri-
bution at fixed time t__>_ 0, (cf. [13], [1], [2], [6], DU, [ 4 ] ) .

In the present paper we are concerned with probabilistic structure of sample paths
f o r  a  class of measure-valued diffusion processes including measure-valued branching
diffusions and Fleming-Viot diffusion m odels. For this purpose we will formulate a
stochastic equation based on a Poisson system associated with excursion laws of one-
dimensional continuous state branching diffusions, which gives an intuitive and corn-
prehensible description of a class of measure-valued diffusion processes and makes the
sample path structure clearly observed. Furthermore, by solving the stochastic equation
we can provide a  new interesting class of measure-valued diffusion processes.

L et S  b e  a basic space that is a  locally compact separable metric space, B(S) be
the Borel field of S, M (S) be the set of bounded measures on S , and M i (S) be the set
of probability measures on S . M ( S )  and M i (S ) are  equipped with th e  usual weak
topology. We denote by Cb(S) and Co(S) the set of bounded continuous functions on S
and the set of continuous functions o f S  vanishing at infinity, i f  S  i s  non-compact.
In  this paper we will discuss diffusion processes on the state spaces M (S) and M i (S),
which we call measure-valued diffusion processes.

Let us consider the following operator L  acting on a class of function on M(S):

LF(P)=-1
32F(P)p ( d  x ) A (

3 F   

)(x)2  astt(dx) ap(x)2 s 3p

where A  is a  generator of a Markov process on the state space S  w ith  th e  domain
D(A ), and 3F(p)/(3p(x)=1im 4 o (F(p+63,)— F(p))/ e (if ex ists) . For example i f  F(P)=
f(<1.2, 0), then 3F(te)/(3p(x) , ---95(x)n < p ,  0 ) .

The domain of L  is given by

(1.2) D(L)--- = {R ia)= f(<te, ••• <P , O k ›): k >= 1, vSi D(A ), and fEC U R k )} •
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Here ax stands for the Dirac measure at x S , a n d  C (P )  denotes th e  s e t  o f  C2 -
functions on l e e  that are bounded together with derivatives of order _<2.

In particular, if S  is a  finite set {1, 2, ••• , n}, then L  of (1.1) turns to

,92 n n aL =  Ex +z  E x im » .)2  = i
,

i = i  j = i oxi

which generates an n-dimensional continuous state branching diffusion w ith  type
transition rates (m 0 ).

For the operator (L , D(L)) of (1.1) it is know n that there is a unique diffusion
process (Q , F, F t , Pp ; Xt )  on the state space M(S) such that for every FED(L) and
pGM(S)

F(X t ) - - ro LF(X s )d s

is an ((Ft ), PO-martingale. Then the distribution of Xt is determined by the following
relation :

(1.3) Ep(exp(—at, 0))-=exp( — <p, t i t > ) for every non-negative OE Co(S)

where ut =u t (x) is a  mild solution of the equation

au,
= A u t - -

1(1.4) at 2

u0=-0 •

The diffusion process (Q, F, F 2 , Pp; Xt )  is called a measure-valued branching diffusion
(abbrev. M BD process) driven by (A, D(A)), (cf. [ 1 3 ] ,

 [6]).
We next introduce the following operator acting on a class of functions on M,.(S):

( x

F
) (6 P

P
(

)
y ) s

p(dx)A( 3 F   )(x)1 r(1.5) EF(p)=-7,-1 P(dx)(6.(dY)—P(dy)) 
3Psxs ap

where (A, D(A)) is the same as (1.1) and we take D(E)=D(L) a s  th e  domain of Î .
T hen there is a unique diffusion process (D, P, P t , Pp; fet) on the state space M i(S)
such that for every FED(E) and pEM,(S)

t
F(17 0 1  LF(Y s )d s0

is an ((Pt), P,,)-martingale.
The diffusion process (D, P, P t, Pp; Y 2 ) is  ca lled  a Flem ing-  Viot diffusion model

(abbrev. FVD process) w ith  mutation operator (A, D(A)), which arises in the theory of
population genetics, (cf. [4]).

Concerning their sample path properties the MBD processes and the FVD processes
have a common picture. Suppose that S= Rd , and A = —(-4)a/ 2 (0 < a  2 )  (the generator
o f  th e  symmetric stable process o f  order a). Then it is known that if d=1 and
1 < a ,  both random measures Xt and Y 2 are  absolutely continuous with respect to
the Lebesgue measure on for all t> 0  and their densities X 2(x) and Y 2(x ) are jointly
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continuous in t>0 and x ER 1 almost surely w. r. t. Pp  and P for every pEM(R 1 ) and
p E m ,(R i )  respectively. Furthermore the density processes X (x )  and Y (x )  satisfy the
following stochastic partial differential equations (abbrev. SPDE):

aX,(x)(1.6) =AXtx)-1-A/Xt(x)W (x)at
al7 (x)t(1.7) =A Y  t(x)-1-.VY t(x)Wax)—( .VY t(Y)W(Y)dY)Y t(x)at

where W (x )  i s  a  space-time white noise on R ' that is a  centered Gaussian field on
[0, 00] x R ' with covariance

E(W (x)Tny))=3(t — s)(3(x —y)

where 3 is the Dirac 3-function, and the equations (1.6) and (1.7) should be understood
a s  continuous processes taking values in the space of Schwartz distributions S'(R 1),
(see [8 ] ) .  On the other hand if  either d=1 and O < a 1  or d 2 ,  then both random
measures X t and Y t are  singular with respect to the Lebesgue measure on R d for all
t >0 almost surely w. r. t. Pp  and Pp for every ttEM(Rd) and pEm l (Rd), (see [9]).

Also, suppose that A is a  bounded generator o f  a  Markov process o n  th e  state
space S. Then the corresponding FVD process Y t indeed takes values in the set of
of atomic measures on S  for all t>0, Pr -almost surely for every pEM,(S), (cf. [3]),
and the same fact should hold for the MBD process.

In this paper we are interested in the last case . In  particular we would like to
give probabilistic construction of sample paths for a class of measure-valued diffusion
processes taking values in the set of atomic measures. For this we will formulate a
stochastic equation based on a Poisson system associated with excursion laws of con-
tinuous state branching diffusions on [0, 00). For such a Poisson construction associated
with an excursion law of a  continuous state branching diffusion w e  mention Pitman-
Yor's paper [10], where they constructed a  two parameter process X(t, c),

1 such that for each c, Xc(t)= X(t, c) is a diffusion process o n  [0, 00) generated
by

d 2d  G=2y -Fcdy2d y  (0 is reflective),

and further that X(c)= {X(t, c), t-__()} is a CEO, 00), CO, 00))-valued process with independ-
ent increments using a Poisson system associated with an excursion law of a  continu-
ous state branching diffusion on [0, 00) generated by

(1.9)
d2

G=2y 
 d y 2  

(0 is trap.)

Noting that X(t, c) is non-decreasing in  c ,  one can  regard i t  a s  a  measure-valued
process, in fact it is equivalent to an MBD process with immigrations governed by
the following generator :

L F ( p ) = 2 E 0 , i 3 1 . 1 ( d x )
3
6: tiF(x(P)2)  

+ 0 , 1 3
d.x6F(P)(1.10) bp(x)

(1.8)
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Moreover it follows immediately from the Poisson construction that th e  MBD process
lives in  th e  se t o f  atomic measures for a ll t >0, even though the process starts at a
non-atomic measure.

Developing this method one can formulate a  stochastic equation, a n d  by solving
th e  equation w e obtain a  new class of measure-valued diffusion processes, of which
essential state space coincides with Ma(S), the set of atomic measures on S.

This paper is organized as follow s. In  § 2, we establish a relation between a class
o f  M(S)-valued diffusions and a class of M i (S)-valued diffusions, which will enable us
to reduce problems for M i (S)-valued diffusions to those of M(S)-valued diffusions.

In  § 3 we construct a  class of MBD processes w ith immigrations (abbrev. MBDI
processes) by making u se  o f  a  P o isso n  system  associated w ith excursion laws of
continuous state branching diffusions.

In  § 4 and § 5 we formulate a  stochastic equation based on  the  P o isson  system.
It will be shown that every solution of the stochastic equation defines an Ma(S) v a lu e d
continuous process in  the  sense of total variation norm in  t >0.

Finally, in  § 6 w e translate these results into the context of M I(S)-valued processes
through the relation established in  § 2, thus we obtain an  interesting class of diffusion
models in population genetics, which generalizes th e  Fleming-Viot diffusion model.
W e will also prove a  strong ergodic theorem for a simple FVD process by construct-
ing a  coupling process base on a Poisson construction of MBDI processes.

Acknowledgement. T h e  au thor is  deep ly  indeb ted  to  H . T anaka  f o r  helpful
com m ents. In  particular, the  form ulation of the  stochastic equation (4.5) is due to
h im . H e  is also grateful to A. Shimizu for many enlightening discussions.

§ 2. M (S)-valued diffusions and M i (S)-valued diffusions

In this section we will establish a  kind of skew  product relation between M(S)-
valued diffusions and M i (S)-valued diffusions, namely, M(S)-valued diffusion can be
obtained by a  skew product from M i (S)-valued diffusions. This idea w as first given
by H . Tanaka (private  communication) in the case where the M(S)-valued diffusions
is  the direct product of finitely many independent diffusions on [0, 00) generated by

d2 d  .
X

d x 2  
+(î x ) d x  w ith a constant 7>0, (S is therefore a  finite set).

Suppose that w e are given a  bounded, uniformly positive and measurable function
p(x) defined on S .  Generalizing the operators of (1.1) a n d  (1.5) le t  u s  consider the
following two operators L and f , on M(S) and M i (S ) respectively.

a2F(„) 6F  )
(2.1) LF(p)=-1sp(dx)p(x)  a t t ( x'32 +A (p , ( M ( S ) )att

52F( ,h )
(2.2) EF(p) =1sp(dx)(13(x)3x(dy)+(<p, 13>--13(x)--19(y))p(dy))  a p ( x ) ;3; / ( y )  

3F(p) 
- - F  

-/ 6.F  \
i sP(dxX —. -  -I- A v<P, is> 18(x)) a p (x ) , )ap (P A41(S))
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where D(L)-=D(E) are defined by replacing D(A) by D in (1.2), where D i s  a  sub-
space of Cb (S), A(p, 0): M (S)xD--q iu and Â(P, 0): MI(S)XD—+R 1 a re  measurable, and
for each p E M (S ) and p i l l i (S), both A (p , •) and A(p, •) are linear functionals defined
on D.

Let W=CŒO, 00), M(S)) be the set of all M(S)-valued continuous paths w : [0, co)
— M(S), which is equipped with the usual filtration (F t (W )), and denote by X ( w ) = w ( t )
the coordinate function at time t O.

Let p E M ( S ) .  By the (M(S), L, p)-martingale problem we mean to find a probability
measure P on W  such that

(i) P(X 0 =p )=1,

(ii) F (X t )-1 LF(Xs)ds is an ((F e), P)-martingale for every FED(L).0

Let define C=inf {t 0 : <Xt , 1>=0} or =00 if •1 is em pty. A probability measure
P  on W  is called a solution of the (M(S), L, p)-martingale problem up to C, if ( i ) and
the following (ii)' are fulfilled,

tAc
(ii)' F ( X t A c)-- LF(X8)ds is an ((Ftnc), P)-martingale for every FED(L).0

For p M ,(S ), (m,(s), î, p)-martingale problem is also defined in the same fashion.
We suppose that L  and Î  s a t is fy  the following conditions :

(2.3) 1ED, and A(p, 1) is bounded in pEM (S),

(2.4) A(p, 0)— A(p, 1)<p, 0>=:4(p, 0) for every OED, pEM (S)\{0}

and p l f f i (S ) with p=<p , i».
Then we have

Theorem 2.1. Assume (2.3) and (2.4). Let tt M (S )\ {0 }. If P  is a solution of the
(M(S), L, p)-martingale problem  up to C, then

C d s f t d s  
(i) <X„ 1>

= 00 P-a. s., hence C t =  
< X „  1 >  

def ines a hommeomorph from

CO, C) to  [0, 00).

(ii) Let D t : [0, 00)-3[0, C) be the inverse function of Co  and set Y e=X D ,/<Xpt , 1>
fo r  O t< 0 0 . Then Y t i s  an M i (S)-valued continuous process.

Furthermore the probability  law o f  (Y  P )  is  a solution of the (M i (S), _E, p)-martingale
problem with p-=pgp,

P ro o f .  1 ° .  Let r t -- , --- <Xt, l > .  Since for every f GCg(1?')

f(<Xtnc, 1>)-10
tAc <X,2, 10>  fll(<x s , 1>)+A (X „1)fV X „1>)}d s

is a ((F t ), P)-martingale, there is a  ((F t ), P)-martingale M t satisfying

tAC
)2.5) rtAc—r0=MtAc+ A(X8,1)ds
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and the quadratic variarion process of M t is

tAc
(2.6) <A4>tnc= <Xs, 13>ds.0
Set

et = rD ,  a n d  N e =

cDe d M8 for O t< c cJ. r s

Then N t i s  a local martingale w ith the quadratic variation process

(2.7) <N>e=Ç<XDs' 13> ds0 r D s

and $t satisfies that for 0t< C c,

(2.8) e8--0=otesdNs+ÇoesA (X D8,1)ds ,

hence it holds that for 0.<t<Cc
/ 1(2.9) et = 0 exi:V\Tt — -<N>8.-F o A(XD s , 1)ds).

Note that <N>t(supP(x))t by (2.7) and for some Browmian motion Bt , Nt=B D ,, which
implies that limt-cc et exists and is  positive almost surely on the event [Cc<+00], so
th a t  limt _c r t also exists and is  positive a. e. on [Cc<co]. Hence by the definition of
C we see that C=00, limt — rt ex ists  and is  positive a. e . o n  [Cc<00], which implies
P(Cc=00)=1.

2 ° . B y the first step Y e is well-defined for a ll t 0 a s  a  continuous Mi (S)-valued
process. For an F(t4=1 .(<ti, Oi>, ... , <p, 0 k>) w ith 951 GD a n d  f E cg(R k ), s e t  P(p)=
F(p) w ith p=pgp, 1> if  pEM(S)\{0}. Then a  straight-forward calculation yields

LP(p)

1 k k
<te, 1> ..1 ./ .1 D1D1f(<P, 561>, ... , <P, Ok>) s P(dx)P(x)(02,(x) — <P, yii>)(01(x) — (/), 0,>)

1
< p , 1> 

k 
Dif(<P, pi>, ... , <P, Ok>)(<P, Poi>— <P, 13><P, sbz>>

1
-I- < la , 1>  

k

2 ..1 Dif (<p, 01>, ••• , <p, 0 k>)(A(p, p i ) -

. EF(p) 
<p, 1> •

Thus one can easily see that for every F D (L )

A(p, 1)<p, 95i >)

t ,...,
F (Y t )-5 LF(Y s )ds0

is a martingale, hence the probability law of (Y e , P ) is  a solution of the (Mi(S), _ 1 .ri, p)-
martingale problem.
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Theorem 2.1 can be rephrased in the following way.

Corollary 2 .2 .  Let (Q, F, F t , P,,, Xt, 0<t<C) be an M(S)-valued diffusion process
satisfying that

(i) <X,1>=0} or =00 i f  { -}  is empty,
tAc

(ii) F (X t A c)j  
0

LF(X.,)ds is a martingale for every FED(L).

Then the process Yt , 0 t< 0 0 ,  defined in  Theorem 2.1 f o r  p *O , i s  an M i (S)-valued
diffusion process starting at Y o =p1<tt, 1> satisfying that

—
F(Y t )-1

t

 LF(Y s )ds is a martingale f or ev ery  FED(E).0

Thus w e have obtained an  Mi (S)-valued diffusion process governed by 1 o f  (2.2)
from  a n  M(S)-valued diffusion process governed by L  of (2.1) by w ay o f a  normali-
zation and a  random time change . Accordingly most of sample path properties of the
M(S)-valued diffusion inherit those of the  Mi (S)-valued diffusion.

Next we would like to assert that the uniqueness of solutions for the (M1, E, p)-
martingale problem is also reduced to that for the (M(S), L, p)-martingale problem up
to  C for some pEM(S)\{0} w ith p--=<p, 1»  under additional mild assumptions :

(2.10) A(p, 1) is continuous in  pE M(S) and for some C >0

I A(p, 1)1 <C<p, 1> for every pEM(S).

(2.11) D  contains a  countable subset C such that for every çS D the re  is  a sequence

{0}  from C satisfying that O n converges to çb uniformly and limn—A(p, On).=

A(te, 0) for every pEM(S).

Theorem 2 .3 .  Assume (2.10) and (2.11) in addition to (2.3) and (2.4). I f  th e  uni-
queness of solutions holds fo r  th e  (M(S), L, p)-martingale problem  up to fo r  some
p*OEM(S), then so does it for the (M i (S), L , P)-martingale problem p=pgp,1>.

For the proof we first prepare several lemmas.

Lemma 2 .4 .  Let M i (t), 1 i n, be continuous martingales defined on a probability
space (Q, F, Ft, P )  w ith f iltration, and let mi l t ) ,  O i ,  j n  be (Ft)-adapted bounded
functionals defined on (Q, F, F t , P ) .  Suppose that {m (0 } ,  O i ,  j_< n  i s  a  symmetric
and non-negative definite (n+1)X(n+1) m atrix  for ev ery  t O  a. s. and the quadratic
variation processes of M 1 (t),1 i n are given by

<Mi , M i Xt) 4 :m i j (s)ds for

Then there exist stochastic processes M ( t), O i n  and m ( t ) , 0 i , defined on a
probability  space (Q ', F', F ,  P ' )  w ith  f iltration such that 11/1;: ( t ) , O i n  are ( I ') -
martingales with quadratic variation processes
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<M , ;>( t ) =Ç o mWs)ds f o r  0 i ,  j n  ,

and the p ro b a b ili ty  la w  o f { A n t) ,  1 i n ,  m ( t ) ,  O i ,  j  n }  co in c id e s  w ith  th a t  of
{M i (t), j n}

P r o o f .  1 ° .  Let B i (t), O i n be an (n+1)-dimensional Brownian motion independ-
e n t  o f  M i (t), 1 i n a n d  mi j (t), O i, j n .  (W e m a y  assum e B i (t),1 i n  i s  an
(F t )-Brownian motion defined on (Q, F, Ft, P ) . )  For s> 0  define a i ,E(t), 0 i n  by

(mii ii )a i ,(t)=mio(t)1
for 1 i<n ,

i =

a i , ( t ) a i ,E(t)(mi i (t)-Fsbi i )--1-(a,,,,(0) 2 =m00(t).
i=1 i=1

Since lin i 1 (t)d-s3 1 1 l, 1 i, j n i s  a n  invertible matrix, a i ,E(t), 1 i n a r e  uniquely
determined an d  bounded (F t )-adapted functionals. S in ce  imi i (0 1 , O i, j n  is non-
negative definite it is easy to check

a1,s(t)ai.(t)(m i j (t)d - E3i;),j=1

hence a o ,,(t) also is well-defined as an (F t )-adapted, bounded and non-negative functionals.
Let define

Mi,e(t)=Mi(t)-F-ViBi(t) for 1 i n ,  and

Mo , e( A ota i , ,( s )d M -1-i,E(s) ot a o ( s ) d B 0 ( s ) .

By (2.12) and (2.13) M i ,E(t), 0 i_ n  are continuous martingales with quadratic variation
processes

<Mi, „ M , e X t) q ( m i i (s)+ sa i i )d s for

E, Mo,eX t)=Yo mio(s)ds for

Since it is obvious that M a t ) ,  1 i n  a n d  <M1,„  M i ,EXt), 1 i , j n  converges to
M i (t), 1 i n  and <Mi , M i X t), 1 i, j n  almost surely and that the probability laws
o f  a  fam ily o f  continuous processes {Mi ,„ <A,„ 1111 >, O i, j_n}  , s > 0  a re  tight,
accordingly there exist (F )-adapted continuous processes {M ( t), mWt), Oi, j n} on
a  probability space (Q', F', F ,  P ')  w it h  filtration s u c h  t h a t  M ( t), 0 i < n  are
martingales with quadratic variation processes

M 'i X t) =ro m (s)ds for O i ,  j 7 2

(2.12)

(2.13)

a n d  th e  probability law o f  {M ( t), 1 i n, m i (t), O i, j 7 2 1  coincides with that of
{M i (t), j_<n} , completing the proof o f Lemma 2.4.
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Lemma 2.5. L et Pp be a solution of  the (M,(S), p)-martingale problem for a
pEM ,(S ). Then there exist an  M1(S)-valued continuous (F t )-adapted process 17 ; and a
continuous martingale M; on a probablity space with filtration (Q ', F', F;, P') such that
the probability law of  the process n  coincides with Pp and that f o r every OED, setting

(2.14)
t

Mo(t)=07 ;, 0> — 07  9 5 > j MCI s, PO>+<Y Ig><Y;, 0>)ds ,0

Mo (t), OED are m artingales and their quadratic variation processes are

(2.15) <M0 , M>(t)

40 (<rs, /9950 — <rs, P95><rs, W>— <rs,0><Ps, P0+07 . 0><Ps, p>)ds,

<M' 11190(t)= 0
t (<1"s, go>—<rs, 0>)ds,

<M'Xt)=1:<rs , Pds.

P roo f. For C = {0 , n 1} o f  (2.11) set

t —
Mn (t)=<Y t, On>—<Y0, On>j (AO 8, 95.)—a 8, PO.>+(Ys,PX) r  8, 0,,>)ds.0

Since Pp  is a solution of the ()WS), E, P)-martingale problem, W O ,  n 1  are P .
martingales with quadratic variation processes

<Ma , Mm>(t)

=-10
t (<1 s,n > — < Y 8 ,  POn><1 s, 0,0 - 0 s, PO.><Y 8,95.>+<1 7  8, is><Y 0,,><Ys, 0,0)d s

for n 1  and m1. Define mn.(t) for n1 , m 1  by

<Ms, Min)(0---=1:m..(s)ds,

mon,(0=m.0(t)=<Y t, 1995.>—<1 t, 19><Y,, On>,

mo o (t)=(Y, 19>

Then for each N1, {Mn(t), 1 n N, mi,m (t), O n, m ATI satisfies the assumption of
Lemma 2.4. Repeating the same argument as the proof of Lemma 2.4 one can show
that there exists an M i (S)-valued, (n-adapted continuous process Y; an d  a  sequence
of martingales M (0 ,  n1  defined on a probability space (Q', F ',  F  1̀3 ') with filtration
such that the probability law o f  {n , M,z(t), n 1} coincides with that o f  {Y t , W O,
n>_1 and that
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(2.16)

<A l M

••=1 (<17's, 13045.)—<rs, 180n>0"8, 0.>— <rs, Py5.><rs, On>+<rs, pxY-8, 00<rs, Om>)ds,0

for n 1  and 77/ 1,

<M  M D (t)q (< rs , PO.>— <Y , pxrs, 56.>)ds

<MD(t)=Ço<Y's , p>ds ,

where

M'n(t)=---- 0 7 ;, On>—<Yô, 95.>j:(74(rs, On) — <rs, pon>+<rs, p>0"s,95,1>)ds•

Denote W (t) --, --M (t ), and for O D  set

M(t)=<Y, 95> — <r), 0>— (A(rs, 0) — <rs, 130>+<rs, p>0"8, 0>)ds •

Then using the condition (2.11) and (2.16) we see that M'sb(t), OED are martingales
and their quadratic variation processes are the desired ones.

Lemma 2 .6 .  L et M t b e  a continuous square-integrable martingales on a probability
space (Q, F, F t , P) with filtration and let b(x, t)=(b(x, t: co)) be a (F t )-adapted precesses
th at are  bounded and  continuous functional in  (x, t)ER 1 x[0, 00) a.s.. Consider the
following stochastic differential equation:

(2.17) dxt=xtdMt-Fb(xt, t)dt.

Then f o r every xER 1 there  are stochastic processes x't , M't an d  b'(x, t) on a probability
space (Q', F', F 't , P') with filtration such that

(i) x(co') is an (F;)-adapted continuous process,

(ii) M (w ') and b'(x, t, co') are (F )-adapted, and the probability  law  o f  (M(w'),
b'(x, t, c o ' ) )  coincides with that o f  (Mt (w), b(x, t, co)), and

Ct

(iii) s)ds
Jo JO

holds almost surely w.r.t. P'.

Since the proof is essentially the same as in  the classical case  o f  Ito's stochastic
differential equations, we will omit it.

Proof o f  Theorem 2.3. Let Pi, be a solution of the (m,(s), E, p)-martingale problem.
By Lemma 2.5 we have an M i (S)-valued continuous and (I')-adapted process Y; and
a continuous martingale M; defined on a probability space (Q', F', F;, P) with filtration
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such that th e  probability law o f  Y ;  coincides with Pp ,  and (2.14) and (2.15) hold.
Furthermore, by Lemma 2.6 we may assume that there is a  continuous (F)-adapted
process z t defined on (Q', F', F;, P ') satisfying

(2.18) dzt=ztd111;+ztA(ztfl, 1)dt

zo =<p, 1>.

We note that z t > 0  for all t>._0 almost surely, because z t satisfies

(2.19) 1
zt=zoexp{M C-- 02

<AP>t+ A(z s r s , 1)ds}

Noting that Dt =r z s ds is a hommeomorph from [0, 00) to [0, Doe), we define

(2.20) Xt =z E r E t f o r  0  t < Do e .
where E t denotes the inverse function o f  D t . Using th e  Ito  formula together with
(2.18), (2.14), (2.15) and (2.4) we see

(2.21) z t<rt,

=zo<Yô, 0>Az8<rs, 0>dAred-l oz ,dMo(s)-4 ,z,A(zs rs , 0)ds.

Here recall that W O  is defined by (2.14). Hence it follows from (2.20) and (2.21)
that for every F D ( L )  and r>0

tA D ,
F (X IA D r ) - 10 L F ( X 8)ds

is a martingale, in particular for every fE Cg(R 1 )

tAD
f(<XtADr ,1>) j  r ( f ' (<X s, 1>)A(Xs, 1)+ -1

2'1 ."(<X8, 1>)<Xs, P>)ds0

is a martingale. Accordingly one can construct a standard Brownian motion Bt such
that for every t>0 and r>0

AD  AD
(2.22) <XtADr, 1>—<t, 1)-7-1 f3>dB,-1-i r  A(X„ 1)ds

Using (2.10) we have

EVXtAD r , 1>)--5.<p, »et for every t O and

tAD r 
hence for any fixed t>0, /1/ r = -V<x8, 13)clBs

Jo
i s  a  uniformly integrable, so that

limr —Mr  exists a. s. for a l l  t  O .  This implies that lim t - D œ a t , 1> exists a. s. on the
event [Dœ<00]. Since

1>=1imt-œzt a n d  .D.= z, s ,0
limt _D œ a t , 1>=0 holds a. s. on [Dœ<00].
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Hence Do0=C holds a. s., therefore the probability law of (Xe , 0 t< )  is a solution
of the (M(S), L, p)-martingale problem up to C, which is uniquely determined by the
assumption. Let define Ct by

çc ds
C t =  30 <X8 ,1>

f o r  O t<C.

By Theorem 2.1, Ct i s  a  hommeomorph from [0, C) to  [0, 00), and as easily seen, the
inverse function coincides with D .  T hus w e see

y ,t = 
<XD,, 1> for all t .

Therefore the probability law of ( Y ,  () t < co ) is uniquely determined, which completes
the proof of Theorem 2.3.

§ 3 .  Poisson construction of a class of MBDI processes

In this section we will construct a  class o f  measure-valued branching diffusions
with immigrations generated by L  of (3.1) by making use of a Poisson system associ-
ated with excursion laws of continuous state braching diffusions on [0, 00) following
the method in [10] :

1 (32 F (a) 
(3.1) LF (p ).— jsp (dx )13 (x ) „  „ s (p(dx)7(x)+V(dx))

3 F ( p )

otAx) bp(x)

where 163(x) is a  bounded, uniformly positive and measurable function defined on S, r(x)
is a  bounded measurable function defined on S, and V  is a  bunded measure on S.

We first introduce excursion laws of continuous state branching diffusions on [0, 00).
For each P>0 and p itr ( y , dz) denotes the transition probability of a diffusion
process (Q, F, F t, PV , Y t ) on [0, 00) generated by

(3.2) APJ,  P
2 d y 2
y  d 2  -Fry 

 d y

d  w i t h  0 as a  trap.

Such a diffusion process is called a continuous state branching diffusion (abbrev. CB-
diffusion).

An entrance law for the diffusion process is given by

(3.3)

(3.4)

Then (21 .r) >0 satisfies

2fitir(dz)=er t Ciexp(—zCt) f o r  z>0

2IA{0 })= - Foo.

Ct=27/P(er t -1 ) if TOO

=2/fit if r= 0 .

(3.5) moo 28 .r(dy)pfit ir(y, dz)=214.1.8 (dz) f o r  t>0 and s>0.
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Such facts can be easily verified using the following expressions:

(3.6) caz p lir(y , dz)=exp(—ArP•r(t, a)) f o r  a ,

(3.7) WP.r(t, a)=-- ert aC t/(a+C t) .

(See [10] for the details.)
Denoting by W+ the space of continuous fnuctions w: [0, 00)-÷[O, 00) satisfying

(i) w(0)=0, a(w)=inf {t>0: w(t)=0}>O,

(ii) w(t)=0 for t ow), if a(w)<00.

We denote by B(147 ,)(B,(W .0) the a-field generated by cylindrical subsets of W + (up to
tim e t). (For a general topological space X , we also denote by B (X ) the topological
Borel field.) Then there is a unique a-finite measure QM' on W, such that for every

0<t1<t2< ••• < t a , and Ei BCO, 0 0 ), co)

QP. r(w : w (tD EE D  w (t 2 ) E 2 , w ( t ) E )

21

1

3tJ (c1YOPPtir-t i bli, dY n).

The following is a direct consequence from (3.4) and (3.6).

Lemma 3 .1 .  L et 0 < s < t  and le t 0 8 (w ) be a  bounded 138 (W .)-m easurable function
on W+ . Then

(i) Q Pir(dw )w (t)n=ertn!C T "' forw,

(ii) +Q49.7(dw)(w(t)-6,tw (r)dr)=1,

(iii) QPir(dw)(w(t)—w(s)-71:w(r)dr»,(w)=0,

(iv) Q49•7(dw)(w(t)—w(s)—rr,w(r)dr)208(w)--=w÷QP.r(dw)(1638w(r)dr)0,(w).

In order to construct an MBDI process generated by L  of (3.1) w e  f ix  an initial
point X o = p E M ( S ) .  Let N P(dx dw ) b e  a Poisson random measure on S X W+  w ith
intensity measure

(3.8) ,c2C2(dxdw)=p(dx)QP(x)•r(s)(dw).

(See e. g. [5 ] p. 42 for the definition of the Poisson random measure.)
Let define an M(S)-valued process X2 by

(3.9) .X2(dx)=wi.w(t)NP(dxdw) f o r  t >0 .

W e will first show tha t .X2 is  an M(S)-valued diffusion process starting at p  generated
by
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(3.10) 6F(p) L0 F (p ).-n s tg(dx)13(x) 5
6

2
t i
F

( x
( P

)2
) -1- sp(dx)7(x) 

a p ( x )  
•

We will often use the following basic properties of Poisson random measures.

Lemma 3 .2 .  L et (S, B(S), A ) be a  a-finite meausre space, and  le t N  be a Poisson
random  m easure on  (S, B(S)) with intensity  m easure A  def ined on a probability space
(Q, F, P ) .  W e denote Si=N—A Then f o r non-negative measurable functions 0 and  T.

defined on S
(i) E(exp(—<N, 0>))=exp(—<A, 1—e - 0 >),
(ii) E(<N, W>exp(—<N, 0>)) , <A, Te - Ø>E(exp(—<N, 0>)),
(iii) E(<N, V>2exp(—<N, 0>))=(<A,T 2 e- ( l>+<A, Te - 4 >)E(exp(—<N, 0>)),
(iv) E<R, 0>4 =<A, 0 4>+3<A, r > 2.

Denote by F2 the a-field generated by {NP(ExF): EeB(S), FBt(14 +)} for each
t 0 . Then

Lemma 3 .3 .  ( i )  The support of  X2 is a f inite set f o r  a l l  t>0, X2 is continuous
in  t>0 in the total variation norm , and X2 converges to te weakly as t-40 P-a. s.

(ii) For 95EC b(S) define M O ) by

<rt, 0>=--<p, 0>+m2(0)A t <x:, rOds

Then M O ) is  an (I)-m artingale w ith quadratic variation process

<M°(95)>t = i ,t <n I30 2 >ds.

P ro o f . By (3.3) and Lemma 3.2

E(N{(x. w): w(t)>01) -A s p(dx)211( x) .T( 90, 00))<00,

hence the support of X2 is a finite set and is non-increasing in t>0 P-a. s. Also, for
0 e Cb(S)

E(exp(—<X2, 0>)).------- exp (J s p(dx)QP(x ) .7(x) (dw)(1—e - 0 (x) " ) ) )

--> exp(—<p, 0>) a s  t--÷0,

which yields (i).
For (ii) let 0<r< t. Note that 11 is generated by the following form of functionals ;

Hr (w)=exp(-10,(x, w)NP(dxdw))

where Or (x, w): SXW+—+[0, 00) i s  B(S)XL(W + )-measurable for e a c h  r 0 . U s in g
Lemma 3.2, Lemma 3.1 and
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(3.11) M2(0)—M(?).(0 )=s.w  (w (t)— w (r)-7(x )r, w(s)ds)0(x)NP(dxdw),

w e have
EC(1112(0)— M )-(0)) 1 1 ,)

=<pQ, (w(t)—w(r)1:7(x)w(s)ds)0(x)exp(— (x, w))>E(H r )

and
E((M2(0)—M(0)) 2 H r )

=<pQ,(w(t)—w(r)—Yr r(x)w(s)ds) 20(x) 2exp(-0,-(x, w))>E(1-1 7.)

(w(t)—w(r)—Ir(x)w(s)ds)0(x)exp(-0,(x, w))> 2 E(.1-1,)

=<pQ , Y7 9(x)w(s)dssb(x) 2exp (-0 7-(x, w))>E(1-1,)

=E(Ç<)0, P0 2 >d51-1,)

Therefore, M2(0) is an  (n-martingale and its quadratic variation p rocess is  o f the
desired form.

Corollary 3.4. X2 is an M(S)-valued diffusion process starting at p  such that for
every FE D(L°)=D (L),

F(X2)—ot L°F(X)ds

is an (n-martingale.

P ro o f . The martingale property follows from Lemma 3.3. A lso , it is  know n
that the uniqueness of solutions holds for the (M(S), L°, p)-martingaje problem (see e. g.
[8], Appendix.) Hence X2 is a diffusion process.

In order to incorporate an im m igration factor t o  th e  M13D process we prepare
another Poisson system independent of NP(dxdw).

Let N p (dtdxdw) be a Poisson point process on S XIV+ with characteristic measure

VQ(dxdw)=V(dx)QP(x ) ir(x) (dw),

(see [5 ] fo r  th e  definition of Poisson point process), in other w ords, it is a Poisson
random measure on  [0, 00)X S x W, with intensity m easure dtVQ(dxdw). N ote that
we are assuming the independence of NP(dxdw) and Np(dtdxdw).

Let define an  M(S)-valued process X t by

(3.12) X t (d x ). w(t)NP(dxdw)-1-- w(t—s)Np(dsdxdw) for every t>0.
co, t3 x w+
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The meaning of this expression would be intuitively c lea r . In  th e  MBD process gene-
rated by L° of (3.10) each mass at a point x  of S fluctuates according to an excursion
path of the CB-diffusion with coefficients (13(x), r(x)). Moreover immigrants enter the
space S at random times. Then the spatial distribution of immigrants follows V(dx).
A fter that the  m ass o f each immigrant fluctuates according to an excursion path of
a CB-diffusion with coefficients depending on the place where it immigrates.

Denote by X2 and X i the first and the second term  o f  th e  right hand side of
(3.12) respectively. It is easy to see that the support of X1 is a  countable set for all
t>0 a. s., and X (E )>0  a. e. holds whenever V(E)>0 for every fixed t>0.

Let F  be the a-field generated by such events

IN (IX E x F ): Ie B [0 , 7-
] ,
 EeB (S ), F e S t - r ( W + ) , 0 r < t }  .

Then we have

Lemma 3 .5 .  For O Cb (S) define M1(0) by

<Xh 0> ---=-1111(0)A t (<XL,TO>+<V, 0>)ds.

Then M i(0) is an (F )-martingale with quadratic variation process

<11/11 (0)>,=Ço (<XL POW s.

P ro o f . By Lemma 3.1
t-

Al
s

i(0)= (w(t—s)— r(x)w(r)dr)0(x)g p (dsdxdw)
( 0,t]xs.w+

where
gp(dsdxdw)=Arp(dsdxdw)—dsVQ(dxdw).

Let 0<r<t, and let

11,-(w)=exp(j w(r—s)0(x)Np(dsdxdw)).
(0,7-3xsxw÷

For covenience we use the convention : w(t)=0 f o r  t O f o r  w e1V+ . Using Lemma
3.2 and Lemma 3.1 one can easily see

E((M1(95) — MgSb))Hr)

= E 6

( 0 , t p < S x l v +
(w(t—s)—w(r—s)4  r(x)w(v—s)dv)9 115(x)R,(dsdxdw),)

dsV(dx)QP (x) .7( x)(dw)(w(t—s)—w(r—s)
( 0,t3xsxlv÷

7-(x)w(v — s)dv)0(x)(e -
w ( r - " ' - 1)E(Hr)

J r

=0.
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Since the quadratic variation process can be calculated in  the same w ay , it is omitted.

Denote by F t th e  a-field generated by F2 and F1, i .  e . F t =F2VF1.

Theorem 3 .6 . (  i  )  X, is an M(S)-valued diffusion process starting at p  satisfying
that for every FED(L)

F(Xt)-1: LF(X 3 )ds

is an (Ft )-martingale, hence X t is equivalent to an MBDI process starting at p , which is
uniquely determined by (L, D(L)) of (3.1)

(ii) X t is continuous in t>0 in the total variation norm, and  X - ->p weakly as t--q)
P-almost surely.

Proof. ( i )  The martingale property follows from Lemma 3 .3  a n d  Lemma 3.5.
U sing th e  function v 9 .7 (t , a )  o f (3.7) we define ut(x)=V 9 ( x) . 7 ( ' ( t , 0 (x ) ) . Then ut (x)
satisfies

6u(x)1 8 ( x )  
=7(x)ut(x) ut(x)2 a n d  u0(x)=0(x).at 2

Then it is easy to see that if  0 r<t
t - r

E(exp(—<X, 0>)1F7-)=exP( — <X, ut_r>—i, < V , u s )ds),

which implies that the probability law o f  Xt is  the unique solution for the (M(S), L, p)-
martingale problem. Hence X t i s  an  M(S)-valued diffusion process. (ii) will be proved
in  Theorem 4.1 o f §4.

4 . A  stochastic equation, I

Let us consider the following operator L  acting on D(L ) o f (1.2):

62F( „)
A s p(dx)/3(x) 3 1 2 ( ; ) 2 s

1
(4.1) L F(p ), (p(dx)r(x)+V(p, dx))

3 F ( p )  

ap(x)

where 13(x) and 7(x) are the same as in  (3.1), a n d  V(p, d x )  i s  a  measure kernel on
M(S)xB(S), that is

(i) for each pE.AAS), V(p, .) M(S), and
(ii) for each EEB(S), V( •, E) is measurable in  p.

W h en  V (p , dx) is independent o f  peM(S), w e  in  § 3  constructed a n  M(S)-valued
diffusion process governed by L  by making use of a Poisson system associated with
excursion laws of CB-diffusions. Developing this idea w e w ould like to form ulate a
stochastic equation describing an  M(S)-valued diffusion process governed by L of (4.1).

Biologically, th e  resultant diffusion process should be called a generalized MBDI
process, in which the immigration distribution depends on the present configuration of
population.

In this section we restrict ourselves into the following case:
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(4.2) p (x ),P  and 7(x)=7 are constant functions.

For simplicity we also assume

(4.3) V(p, S) is bounded in f_t M(S).

So, w e w ill drop the superscripts p and r, i .  e . QP.r=Q, ••• etc.
Since V(p, dx) corresponds t o  a spatial distribution of n e w  immigrants and it

depends on the present state p, we prepare an auxiliary function A(p, u) with distri-
bution V(p, •) just as in the theory of stochastic differential equations for  jum p type
Markov processes as follows.

L et (U, B(U), m ) be a  a-finite measure space, and we add an isolated point A to
S .  Let A(p, u): M(S)XU---6U{A} be a measurable mapping satisfying that for pEM(S)

(4.4) 110(A(p, u))m(du)-A V (p , d x )0 (x )

for every bounded measurable function çb w ith  0(A)=0.
Suppose that w e are now given an MBD process X 2  generated by L° of (3.10)

under th e  assumption (4.2), and a Poisson point process Np(dtdudw) on UX W+  w ith
characteristic measure mXQ on a common probability space (Q , F, P ) su ch  th a t X2
and N p are independent. H ere the initial state may be chosen arbitrarily unless
specified.

Let F° and F2 be the a-fields generated by { 2(2: t_0} an d  {rii: 0<s_<t} respec-
tively, and let F 1 and  F l be the a-fields generated by Np and IN,(/X A X F): I E 7 - 1
A B (U ),  F E B ,, (W + ), 0 < r < t }  respectively. W e  d e n o t e  F t =-- F 2A F 1, th e  o . -field
generated by F2 and

Based on {X2, NO let us consider the following stochastic equation:

(4.5) x i =  x 2 +  
, t3 xy w(t — s)I saAcx 8 , o Np(dsdudw)

Here ax  stands for the Dirac measure at X,S, is  the characteristic function the set
A , and for a funcion sb on  S u  L }  w e  use the notation (030(dx)=0(x)(3,t(dx), so that
for OECb(SU{A}) w ith 95{A}=0,

<Xt, 0>-=<)(2, w(t—s)0(A(X„ u))Np(dsdudw).
( 0,t3 xuxiv+

The equation (4.5) clearly is a  generalization of (3.12) under the condition (4.2), in
w hich  A(X s , u ) shows the location where a  new  immigrant enters depending on the
present situation X s .

An M(S)-valued stochastic process X t defined o n  (Q , F, P ) i s  a solution of the
equation (4.5) if

(i) X (w ) is jointly measurable in (t, (o) and (F t )-adapted, and
(ii) the equation (4.5) holds for all t O P-a. s.

W e first prove some regularity of solutions of the equation (4.5). Recall that Ma(S)
is  the set of atomic measure on S, namely, every element p of Ma(S) has a countable
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subset of S as its support. Then we have

Theorem 4.1. Let X t b e  a solution o f the equation (4.5) under the conditions (4.2)-
(4.4). Then

(i) X t EMa(S) for all t>0, P-a.s.
(ii) X t is continuous in t>0 in the total variation norm P-a. s.
(iii) X t converges to X o weakly as t-*0 P-a. s.

P r o o f. 1°. R ecall Q=QP.r. We first claim that

w(t—s)Np(ds, U, dw)
( 0 at3.w.,_

is continuous in t_1(‘) with Y 0 =0, P -a .s. R ecalling  that w(t)=.0 for t O and using
Lemma 3.1 one can show that for every k

(4.6)
0 ,00) xw+

 (w(t—r)—w(s—r)) k drQ(dw)

for every t O and sO , w here C k  is a constant. Since

E(Y t —Y0) 4 __5: 8E0(w(t—r)—w(s—r))grp(dr, U, dw)Y

+80(w(t—r)—w(s—r))drm(du)Q(dw)) 4

by Lemma 3.2 and (4.6) w e have a constant C>0 such that

(4.7) E(Yt—Y8)4„<.C(It—s12-1-It—s14) for every t O and

Accordingly, by Kolmogorov's theorem there is a  continuous process rt such that
Yt -=Y;, P-a. s. for  all t O , hence it holds fo r  every rational t O, P -a .s. N otin g
further that Y t is lower semi-continuous, we see

(4.8)Y Yt holds for all

Let F n  b e  an increasing sequence of subsets o f  W., satisfying Q(Fn)<0.0 and UnziFn=
W+ , and set

Y7t1= w(t—s)Np(ds, U, dw).(0,tp<Fn

Clearly rti is  a  continuous process, and the above calculation yields that fo r  some
constant C >0

(4.9) E(Yli — Y7.1)4 C (I  t—s1 2 -1-It—s1 4 )

for every t 0, s O and

Accordingly, by Kolmogorov's theorem the distributions of (Y;', are tight, hence
so  are those of ( f l — f l ,  t 0). Furthermore, it is obvious that any finite dimensional
distribution of (Y — Y ,  t O ) converges t o  the D irac measure at the origin, from
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which it follows

(4.10) lim P( sup I 17 ; — fl2 I 6 )= 0 for every s >0 and T>0 .
ostsT

By (4.8) and the definition o f r t'

sup I r— Y sup ir t — rtz
ostsT ostsT

therefore from (4.10) it follows that Y C=Y  t f o r  a ll t O s.
2 ° . Denote

(4.11) w(t— s)IsbA (x,..)Np(dsdudw).
( 0,t 3 xuxw÷

Plearly

IIXI— Xnlvar f lw(t— s)— w(r— s)INp(ds, U, dw),
( 0,t 3 xw+

where II Ilvar stands for the total variation norm. Let us denote f t (s, w )=w (t— s). Since
Y t is continuous in  t O P-a. s.,

f  t(s, w)Np(ds, U, f r(s, w)Np(ds, U, dw).
t - j  , , , o 3 x W (0 , œ3xW

Also, t(s, w )--.0 a n d  lim t-rf  t(s, r(S , w ) f o r  every  (s, w), which im plies that
If t ( s  w ) }  t ,  is uniformly integrable with respect to  N p(ds, U , dw ). Hence it holds

I f t(s, w)— f  r ( s  w )IN p(ds, U, dw )=0.
t - j  , œ 3 x W

Thus we have shown limt....4X1—Xnlvar=- 0 for all r 0,  P-a. s.
3 ° .  By Lemma 3.3 a n d  Corollary 3.4 w e  k n o w  th a t X2 satisfies th e  desired

properties. Therefore, X t =-- 20-I-X1 also satisfies (i), (ii) and (iii).

W e next assert that every  so lu tion  o f the  stochastic equation (4.5) solves the
(M(S), L)-martingale problem.

Let 0(t, u, co): [0, 00)X UX f2--->R be jointly measurable. 0 is called (F t )-predictable
if for e v e ry  u  U, 0(• , u, •) is an  (F t )-predictable process, (see [ 5 ] ,  P. 21). Note that
any (F t )-predictable functional 0(t, u, (0 )  can be approximated by such functionals

E  0,.(0))/A  (u)/(8. 3(t)
i = i z +1

where A B (U ) and 0 3 i (w) is an  F s i -measurable random variable.

Lemma 4.2. For a bounded (1')-Predictable f uncional 0(t, u, co) set

(4.12) t= w(t— s)0(s, u, •)1V ,(dsdudw).(0,t]xuxw+

Define M t by
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(4.13) Y t =M t -F-7T Y  s dsd - r m (d u )0 (s , u , •))d s  .0 0 u

Then A  is an (F t )-m artingale with quadratic variation process

(4.14) <Mt>=13:0(0, r 3 x U x i v +
w ( r — s ) 0 ( s ,  u, •) 2 Np(dsdudw))dr .

P ro o f .  1 ° .  We will first show this assuming (t, u, co)=IA (u)I c a,b3(s) w ith  A E
.13„(U ) and 0 a < b .  Using Lemma 3.1(ii), (4.12) and (4.13) we see

(4.15) M t= (w(t— s)-7r w(r— s)drY gp(dsdudw).
( o.t3xux 4. sT v

For 0< r< t let

H r = e x p ( J f (r— s, u, w )gp(dsdudw )),
co. r3xv-xw+

where f (t, u , w ): [0, 00)X UX W.,--[0, co) is a  jointly measurable function and for each
t O, f (t, • , •) is  B (U)X B t (W + )-m easurable. Note that such random variables generates
the a-field F l .  Then by Lemma 3.2 and 3.1 we see

E((Mt— Mr)Hr)

,E0 
( 0, tp<UxW + r

(w t  —s)—w(r —s)—r t  w(v—s)dv)IA(u)Ica,b3(s)gp(dsdudw)

-exp(—  ff ( r— s ,  u ,  w ) N p ( d s d u d w ) ) )
(0, r3xUxW +

dsm(du)Q(dw)(w(t— s)— w(r— s)— il t  w(v— s)dv)IA(u)I (a. b3 (s)
( o.t 3 xuxw+r

. ( e _ f ( 7 .  -s , u, w)____ i)E(Hr )

=O.
and

E((Mt— Mr) 2 11,)

=E ((
( 0,t3xuxw +

t
(w(t —s)—w(r— As)- w(v—sxv)IA(u).1 ( a,,,(s)Stp(dsdudw)) 2

r

•exp(j f(r— s, u, w)Np(dsdudw)))
( o,r3 xuxw+

dS M (dU)Q(d1V )(W t — s) —  w(r — s) - A  w (v — s)d v )
2

 /A(u)/(a,b)(5)
( 0, tp<UxW + r

• e
_ w)E(Hr)

=6 dsm(du)Q(dw)(Ar w(v — s)dv)IA (u)I (a , b 3 (s)e
( 0, t3xUxW + r

-f ( r -s, u , w )).E (H r)
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,E0 B  w (v— s)dv)i,i(u )1 (a ,b ,(sw ,(dsdudw )11 ,)0, t p , U . W S  
t

Hence it follows that Alt i s  an (F )-martingale with quadratic variation process

<M>t=606(0,7-3xuxw+w(r—s)/A(u)/(a,u(s)Arp(dsdudw))dr .

However since F ° and F 1 are independent and Ft=F2VF1, A  i s  an (F t )-martingale.
2 °. We next assume 0(s, u, co)=O s (co)/A(u)/( a,b](s) with an  F a -measurable random

variable Oa , A B (U ) and 0<a<b. Denote by AC the martingale discussed in 1°, then

M t= 0 .M ; if  t< a , and M =O  otherwise,

hence Mt i s  an (F t )-martingale with quadratic variation process

<,M >t=0 2a,<M '>t if  t > a , and < M > = O  otherwise,

which shows (4.14).
3 °. Finally for a general (F t )-predictable functional 0(s, u, -) it is a routine task

to show it by approximating the functional by linear combinations of such functionals
treated in 2°. Therefore the proof of Lemma 4.2 is complete.

Theorem 4.3. Let Xt be a solution of the stochastic equation (4.5) based on {XL NO
under the assumption (4.2)-(4.4). Then fo r every F D (L )

F(Xt) A tLF(Xs)ds

is an (F t )-martingale.

P ro o f. For 95 C b (S U {A }) with 000=0, set

<X1, çb>= w(t—s)0(A(X3, u))AT,(dsdudw).
( 0,t ] xuxw,

Note that 0(A(X8,u)) is (F t )-predictable, because Xt i s  a  continuous process by The-
orem 4.1. Accordingly, by (4.4) and Lemma 4.2

<XI, 0>=A41(0)+6:<XL 95>dsA t Os V(X8 , dx)0(x))ds.

w here M1(0) is  an (F t )-martingale w ith quadratic variation process

<M1(0)>t=18.ç:<X1, 02 >ds.

On the other hand it is easy to  see

00, 0»=<X, 0>- 1- 11/2(0)±7- Ço<Xcsi , Ods,

w here M2(0) is  an (11)-martingale w ith quadratic variation process
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02 >ds ,

and using the independence o f X2 and Np one can see

<M°(0) ,  ilv(0)>t=0,
hence Xt=X2-I-X1 satisfies

<XL , 0»=<X, 0>+ m,(0)A t (r<xs, O d i s V(X s , dx)0(x))ds ,

and M (ç )  is  an  (F t )-martingale with quadratic variation process

<m(0)>t _A t p<x,, 02>ds.

Therefore, using the Ito formula w e have the desired martingale property.

Theorem 4 .4 .  Assume the conditions (4.2)-(4.4). Suppose that for every peM(S)
and IX2, NO with X=12, the stochastic equation (4.5) has a unique solution. Then the
solutions X t defines an M(S)-valued diffusion process (D , F, Ft, P; Xe).

P roo f. It suffices to show the strong Markov property for (D, F, F t , 13 ; Xe).
10 . Let z  be  any  (F t )-stopping time satisfying r<00 P- a. s ., and set

(0 ,t ] . U .W +
 w(t—s)I(0,r)(s)3A(r s ,u)Np(dsdudw).

For every bounded measurable function ç5 on SU {A} w ith 0(460=0, set

(4.16) M2(0)=---(X2, 0—<X8, q5>--7<X?„ Ods,

and

(4.17) Ali(0)=<Z, Ods-1:-/-(0,,](s)043V(X„ dx)0(x))ds.

Since /(0,,](095(A(Xt, u)) is (F t )-predictable, by Lemma 4.2, M O )  and  M1(0) a r e  (Fe)-
martingales with quadratic variation processes

(4.18) <M°(95)>t = 4: <XL 02 >ds ,

<11/1 1 (0)>t= fi t
o <Z s, 02 >ds ,

and using the independence o f (X2)ta0 and Np  w e  have

(4.15) ofo , M '> = 0.

Let Y2=X2+,+Zt+r, then by (4.16)-(4.19)
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(4.20) <Y2, 95>=<xt,0>-1-7it
o<rs), Ods+m2*(0),

where M2*(0) is  an (F t „)-martingale with quadratic variation process

<M°*(0)> t =-13 0
t <11, 0 2 >ds.

Hence (172)ta0 i s  an MBD process generated by L ° o f (3.10) s ta r t in g  a t  X  u n d e r  the
condition (4.2). In particular, (Y2, P ( • I F r)) a lso  is  an MBD process generated by L°
of (3.10) starting at a  non-random point X r w. r. t. P (. I F i ).

2 ° .  Let Y t =X , + t for t 0. C le a r ly  w e  have

(4.21) Yt = 1 7 2+ fW ( t  - S)IS 3 A(Y, U)N rp(dsdudw) ,
( 0,e]xuxw+

where N(dtdudw)=Np(dt+r, dudw).
3 ° .  W e next claim that N rp  is  a Poisson point process o n  UX W . w ith  th e  same

characteristic measure mx Q  which is independent o f  (11)ta0. Denote by F l  be the  a-
field g en era ted  b y  {N ( I x A x F ) :  /e./3[0, t ], A B(U ), FEB(W +)}, a n d  s e t  F t =
F °V .F 2 . Since r  i s  a  (Fn-stopping t im e  a n d  N p  i s  a  stationary (FP)-Poisson

point process in  t h e  sen se  o f  [5], p. 60. N  a l s o  i s  a  stationary (F + )-Poisson
point process o n  UX W . w ith characteristic m easure m X Q  which is independent
of F ,  (see  E n , T h eorem  5.1). N ote th a t (n t a o  i s  F°-measurable and r  is  F',"-
measurable, hence (172)ta0 i s  fl`-measurable. Therefore we have shown th e  independ-
ence o f Nrp  an d  (Y2)t 0.

4 ° .  S in c e  b y  (4.21) Y t i s  a  s o lu t io n  o f  th e  equation (4 .5 ) associated with
Nrp l ,  the uniqueness assumption implies that the probability law o f (Yt)tao under

P(- I F r) is uniquely determ ined by X r ,  from  w h ich  it  fo llow s th e  strong Markov
property o f  (Q , F, Ft, P; Xe).

Now  w e give a  sufficient condition for the uniquely existence of solutions for the
equation (4.5).

Theorem 4.5. In addition to (4.2)-(4.4) suppose that there is a constant K  > 0 such
that

(4.22) (7/(A(au, u)* A( g' , u))m(du)5-1( j p— ,

for every p  and p ' of M ( S ) .  Then for every {X2, NA there exists a unique solution
for the equation (4.5).

Proof. Define a  sequence o f approximating solutions of (4.5) by

wu—svs3A(n,u)Np(dsdudw) forco. tjxuxw+

Denote
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(
0.t,xuxw, w(t— s)I(A (X , u)# A (X ;' - ', u))Arp(dsdudw).

Clearly

(4.23) 11)Cri—X1111var 2Y1'.

By Lemma 4.2

E(17 1)=rÇo E(Y  )ds-i-Ço E 0 u I(A (X 7,1 , u)* A (X 1 , u))m(du))ds ,

hence by (4.22)

(4.24) E(177t)_<qer(t--"E(IIX;i—Xrillvar)ds.

Thus it follows from (4.23) and (4.24) that

(4.25) EllX11+' — Xiloar2KerTEliXisi — Xrillvards,

which implies that there exists an M(S)-valued measurable and (F 5)-predictable process
Xt such that

11m EI1X11 — Xtlivar=0.

Obviously X, is  a solution of the equation (4.5) for given  {X2, N } .  A l s o  the unique-
ness can be proved in a standard manner.

Corollary 4.6. In addition to (4.2) and (4.3) suppose that there exists a  a-finite
measure V  on S  such that f o r  every pEM (S ),V (p, dx ) is absolutely continuous with
respect to V(dx) and its density v (p, x ) satisfies that for some K >0,

(4.26) x)— v(p', x)1V(dx) K lIp-

holds for every p  and p '  o f  M(S). Then there exist a  a-finite measure space
(U, B (U), m) and a jointly measurable map A (p, u): M (S )X U-6U{ A }  such that the
conditions (4.4) and (4.22) are fulfilled. Accordingly for every {X 2, NO there exists a
unique solution for the equation (4.5), which defines an M(S)-valued diffusion process.

P ro o f. Let U=- --[0, 00)X S and m(du)=drV (dx) for u=(r, x) [0, co)X S, and define
A (p, u) by

A (p, u)=x  if u=(r, x ) and 0<r_v (p , x ), and A (p, u)=A otherwise.

Then it is obvious that (4.4) and (4.21) h o ld . Thus Theorem 4.5 is applicable. Further-
more, the solution defines an M(S)-valued diffusion process since it satisfies the strong
Markov property by Theorem 4.4.

§ 5. Stochastic Equation, II

In this section we will discuss a  spatially inhomogeneous case :
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1 3' F (p) 5F(p)(5.1) LF(p)=-IS'sp(dx)13(x) 3 / 1 ( 4 2  --1-1(p(dx)r(x)+V(p, dx)) 3  p ( x )  ,

where 16(x): S-->I? is bounded, uniformly positive and measurable, 7(x): S--->I? is
bounded measurable, and V(p, dx) is a  measure kernel o n  M (S)xB(S) satisfying the
conditions (4.3) and (4.4).

Intuitively th e  corresponding stochastic equation should be formulated in the
following w ay. L et X2 be an MBD process generated by L °  o f  (3.10). We prepare
an independent system of Poisson point processes 14 7 : p>o, 7,  R I  on  UX 147 .4., where
( U, B(U), m) be a  a-finite measure space and N P  is a Poisson point system on  Ux W+

with characteristic measure m(du)QP.r(dw). We also assume the independence o f  X2
and M r  : p>0, TER'}. Then the desired stochastic equation would be

(5.2) Xt(dx)= X2(dx)-F w(t—s)/s(x)3,t(xs, . ) (dx)N (dsdudw)
(o,t3xu.w+

where N(dsdudw)=NPx ) .r(x ) (dsdudw), ax  stands for the Dirac measure at

xGS, and / A (x)=1 if  x  A, IA(x)=0  otherwise.

However we do not know how to give a  precise meaning to the second term of the
right hand side of (5.2) because of the independence o f  {NT, : x  S}.

If w e impose the following restrictive assumption :

(5.3) 49(x) are 7(x) are of the form

œœ
16 ( 4 =  E  Pnis (x ),  a n d  7 ( 4 =  E rnis (4

n=i n n=i n

where (Sn)nz1 is a measurable partition of S, (j3n) is a bounded and uniformly positive
sequence, and (7 n )  is a bounded sequence, then the equation (5.2) clearly makes sense,
which turns to

(5.4) Xt(dx)=X2(dx)--F E w(t — s)/s  n (x Atcxs , . ) (dx)N 7,(dsdudw):1 ,Ç (0, Q.UxW +

where N(dtdudw)=NPiirn(dtdudw).

In fact, we can prove the corresponding results to Theorems 4.3, 4.4, and 4.5 for the
stochastic equation (5.4).

In order to treat the M(S)-valued diffusion process governed by (5.1) with general
j9(x) and r(x) we here take another strategy. We first consider the following case :

(5.5) r(x)---_-=-0 .

For a general 7(x) one can reduce it to this case by using a suitable drift transformation.
In  order to formulate a  stochastic equation we assume that there is a  measurable

mapping B(p, u): M(S)X U -6U  {Al satisfying that for pGM(S)

(5.6) içuO(B(p, u))m(du)-1 s V(p, dx)(0/ 13)(x)
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for every bounded measurable function çS defined o n  S U {}  with 0(.6)=0.
Suppose that we are given an MBD process X2 generated by L ° of (3.10) and a

Poisson point process Np on UX W., with characteristic measure m X Ql.° on a common
probability space (D , F, P ) such that X2 and N p  a r e  mutually independent. The
initial state X S=X ° may be chosen arbitrarily unless specified.

Based on {X2, N O  let us consider the following stochastic equation :

(5.7) Xt=x2-1-
0 , t 3 . U . W +

w(t—s)101.013(x8..)Np(dsdudw),

so that for every bounded measurable function ç defined on SU {A} with 000=0,

<X„ 0>=<X2, 0-1-f w(t—s)(Pg5)(B(Xs, u))Np (dsdudw).
J (0, t3xU xW +

The a-fields F2, F1, F t and the notion of a solution for the equation (5.7) are defined
in the same manner as the equation (4.5). Then by th e  same proof o f  Theorem 4.1
one can see that every solution X t of the equation (5.7) satisfies the following property :

(5 .8 ) P(X t EM a(S) for all t>0, X t is continuous in t>0 in the total variation norm,

and weakly continuous at t=0)=1.

Theorem 5 .1 .  For giv en {X2, N } ,  le t  X , be a solution of the equation (5.7). Then
fo r  every FED(L),

F (X,) j o LF(X s )ds

is  an (F,)-martingale.

P ro o f . For OE Cb(SU {A}) with 000=0, set

< x i ,  0 = f w(t—s)(1995)(B(Xs, u))Np(dsdudw),
J t j x U x W +

and

All(0)=-<X1, 0>— N s V(X 3 , dx)0(x))ds

Then, by Lemma 4.2 together with (5.6), M1(0) is an (F t )-martingale with quadratic
variation process

<WO» ,. 0 6  
r j x u x w

 + w(r-- s)(130) 2 (B(X„ u))Np(dsdudw))dr

1302>ds.

Since it is easily seen that M2(0)=<X2, 0>— <XS, 0> a lso  is  an  (F t )-martingale such
that their quadratic variation process satisfy

<MAO), M 1(0 )> t= 0 , a n d  <11/P(0)>t-A .
t <X (,), P02>ds,
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we obtain

(5.9) <XI , 0>=<X2, 95>A t6s V(X3, dx)0(x))ds+Mt(0),

w here W O ) is an (F t )-martingale with quadratic variation process

<M(0)>=<X, POWs,

hence the desired martingale property follows from (5.9) together with the Ito formula.

Furthermore, by the same arguments as Theorems 4.4 and 4.5 w e have

Theorem 5 .2 .  In addition to the conditions (5.5) and (5.6), suppose that there is a
constant K >0 such that

(5.10)
u
I(B(p, u)* B(p' , u))m(du)_<KII p—u'

for every p  and p ' of M (S ) . Then for every 1X 2, Np l there exists a unique solution
X , fo r the  equation (5.7), which defines a diffusion process taking values in M(S) such
that for every F D (L ) ,

F(X t)— :1,F(X s)ds

is an (F 1)-martingale, and further that the property (5.8) holds.

Corollary 5 .3 .  In addition to (4.3) and (5.5), suppose that there is a a-finite measure
V (dx) on S  such that fo r every pEM (S), V (p, dx) is absolutely continuous with respect
to V (dx), and iJs density v(p, x ) satisfies

(5.11) I v(p, x)— v(p', x)IV (dx) KIIP— P'llvar

fo r every p  and p ' of M (S ) . Then there are a-finite measure space (U, B(U), m) and a
measurable map B(p, u). M(S)xU—>SU {A} such that the conditions (5.6) and (5.10).

P ro o f .  I t  is  c le a r  th a t  V '(p, dx )=(1/ 13(x))V (p, dx) satisfies the condition (4.26),
hence Corollary 4.6 and Theorem 5.2 imply Corollary 5.3.

In order to treat a n  L  of (5.1) with a  general 7(x) w e consider a  d r i f t  transfor-
m a tio n . L e t  (Q, F, F t , Pp ; X t ) b e  a n  M(S)-valued diffusion process governed by
(L, D(L)) of (5.1) w ith r(x)--70, which has been obtained in Theorem 5.2. Then,

A lt=oct, riP—oco, r/13>j o
t68 v(X8, dx)(r/ 19)(x))ds

is an ((F e), Pp )-martingale with quadratic variation process

<M>,=-Ço<X8, 72/13>ds.
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Let Nt b e  a multiplicative functional defined by

1
Nt=exp(Mt--y<M>t)•

273

A s easily seen, E (N )= 1  for every t>0 and pEM (S), and Nt satisfies

Nt =1-1- 0Ars dM8 .

Then a new probability measure Pp on the measurable space (Q, F, F t ) is well defined
by the following formula : for every

P p (A)=E p (Nt : A) f o r  AGF t .
Then we have

Theorem  5.4. (Q , F, Ft, Pp; Xt ) is an M(S)-valued diffusion process such that for
every FD (L,),

F (X t )j o
t LF (X8 )ds

is an ((F t ), Pp )-martingale, and further that

(5.12) :15 p (Xt eM a (S )  f o r a l l  t>0, X t in  continuous it t >0 in the total variation norm,

and Xt  is weakly  continuous at t=0)=1.

P ro o f . Note that for a bounded measurable function ç5 defined o n  SU{A} with
0(A)=0,

Mt(g5)=<Xt, 0> — <p, 0> j o
t Os V(X8, dx)0(x))ds

is an ((F t ), P)-martingale with quadratic variation process

<M(0)>t= o
t <X8, g02 >ds.

This implies

(5.13) <M(95), N>tqNsd<M(0), M>8=---Vs<X8, TO>ds,

because of Mt=Mt(T/P), hence using the Ito formula together with (5.13) we see that

A (0 )=<X , >— </1, 0>4 0 (<X8, TO>+LV(X8, dx)0(x))ds

is an ((F t ), P)-martingale with quadratic variation process

< (0)>t A t <X,, 1302>ds.

Therefore the desired martingale property follows. The property (5.12) and the strong
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Markov property o f  (Q, F, Ft, Pp ;  Xt )  a r e  in h e rited  fro m  th e  d iffu s io n  process
(Q, F, F t , Pp ; X t )  and (5.8) by the general theory of Markov processes.

As a conclusion of this section we have obtained

Corollary 5.5. Consider the operator (L , D (L )) o f  (5.1) w ith general coefficiets
P (x ) and 7(x). Suppose that V(p, dx) satisfies the assumption of Corollary 5.3. Then
there exists a diffusion process (Q, F, F t , Pp; X t )  tak ing values in M(S) such that for
every FED(L),

F(X,)--1:LF(X8)ds

is an (F t )-martingale, and f urther that the property  (5.8) holds.

§  6 . Construction of a generalized Fleming-Viot diffusion model

In this section we will construct a  class of Mi (S)-valued diffusion processes as an
application of the stochastic equation discussed in  the  previous two sections.

Let us consider the following operator acting on a class of functions on Mi (S):

c 32F(p)(6.1) riF(P)= 
2

3
s
P(dx)((x)as(dy)+(<P, P>---13(x)—A(Y))P(dy)) 

 3 P ( x ) 3 P ( y )

3F (p) 3 F ( P) ) )i l s p(dx)OsM(P, dY) ( 3 p ( y )  a p ( x ) //

-}- iç s P(dx)(a(P, a(P , .»)
3 F ( p )

 a p ( x )

where the domain D (E )= D (L ) which is defined in  (1.2) w ith  D(A)=Cb(S), 16(x): S—>
(0, co) is bounded measurable and uniformly positive, M(p , x, dY). M i (S)XSxB(S)—>
[0, co) is a  bounded measure kernel, and a(p, x): M i (S)XS—>l? is bounded measurable.

We interpret an  Mi (S)-valued diffusion process governed by of (6.1) as an infinite-
allelic diffusion model in  the theory of population genetics. Genetically, S is regarded
as the set of alleles, each pe1111(S) means a gene frequency of alleles, g(x) corresponds
to  variance of the number of offsprings that depends o n  th e  allele  xeS, M(p, x, dy)
i s  a m utation transition kernel depending o n  th e  gene frequency and a(p, x ) is a
haploid selective intensity o f  th e  allele x e S  w hich is a lso  depends o n  th e  gene
frequency.

In particular, if M(p, x, dy) and a(p, x ) a r e  independent o f  p i t i i (S ), a n d  13(x)
i s  constant, th e n  1  of (6.1) is the generator of the Fleming-Viot diffusion model. In
this case it is know n that (E, D(E)) generates a unique M1(S)-valued diffusion process
(Q, F, F t , Pp; Y,) and further that for every p EMi (S), and

(6.2) 1 ) ,(Y,E M?(S) for all t>0, and Y , is continuous i n  t> 0  in  the  to tal varia tion

norm and weakly continuous at t=0)=1, (cf. [3]).
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W e w ill here  construct an  M i (S)-valued diffusion process governed by (E , ME))
and to  show the property (6.2) as an application of the stochastic equations. It should
be emphasized that the mutation kernel M (p, x, dy) and the selective intensity a(x, p)
in  E of (6.1) depend on peM i (S).

Theorem 6 .1 . Suppose that the following conditions are fulf illed:
(i) a(p, x)=M(p, x, S)+cP(x) with some cEI?',
(ii) there exists a a-finite measure V(dr) on S such that for every (p, x)E.M i (S )xS ,

Af(p, x, dy) is absolutely  continuous w ith respect t o  V(dx) and its density  m(p, x, y)
satisfies that fo r  some constant K>0,

(6.3) (sup m(p, x, y))V(dy) K f o r e v e ry  pEM,(s),s  xes

(6.4) ,s17/2(/), x, y)—nz(P', x , y)IV(dY)-5_KIIP — P'llvar

fo r  every pEM i (S), p'EM i (S ) and
T hen there is an M i (S)-valued diffusion process (S2, F, F t ,  P p ;  t )  such that for

every FE D(E)

i s  a  Pp -m artingale  f o r ev ery  p e M ,(S ) and f u rth e r t h a t  the diffusion process
(D, F, F t , 13 , ,Y  t ) satisfies (6.2).

P ro o f . For simplicity we will prove the theorem assuming c= -1 . O the rw ise , it
can be easily reduced to this case by using a drift transformation by  a  natural multi-
plicative functional as in  the  proof of Theorem 5.4.

Define a  measure kernel V(p, dx): M(S)\{0}xB(S)—>R, by

v(p, u)-4 9 p(dy)m(p, y, x )  a n d  V(p, dx)=v(p, x)V (dx) with p =p /<p , 1>.

A s in the proof of Corollary 4.6 le t  U=-- [0, 00)X S, B(U)=B[0, 00)XB(S), and m(du)=
d rV (d x ) f o r  u=(r, x)e[0, 00)X S ,  a n d  s e t  B (p , u )=x  i f  OS_r_v(p, x)/p(x) and
B(p, u)=A o th e rw ise . T h en  B(//, u): M i (S)\ {0} X U--*SU {A }  i s  a  measurable map
satisfying (5.6). Moreover by (6.4)

(6.5)f
r i
m(du)./(B(ifi, u)* B(p' , u))5_.KIIP — P'llvar w ith p= pgp, 1>

and p '=a'/<a', 1>.
For each 3>0 define

Ba(p, u)-=x  if  u -= (r, x ) a n d  0rmin{(<p, 1)/6) 2 , 1}v(p, x)/13(x),

Ba (p, u )= J  otherwise.

Clearly N i t ,  u)=B(p, u) if  <p, 1>=_>= 5, and using (6.3) and (6.4) one  can  easily  check
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that there is a constant K5 >0 satisfying that for every p  and p ' o f  M(S),

(6.6)
u
nt(du)/(B3(p, u)*Ba(p',

Let pEM i(S) be fixed, and let X2 be an MBD process starting at Xg=p generated
by

(6.7)
1 432F („ )

L 'F (p )= - 2 1 s p(dx)p(x)  a t t ( ; ) , .

Let N  b e  a Poisson point process o n  Ux147, with characteristic measure mxQi.o,

that is independent o f  X 2 sy ste m . S in c e  B 5  satisfies (5.10), by Theorem 5.2 there
exists a unique M(S)-valued solution Xi 5 ) of the following stochastic equation:

(6.8) xia)=x2- p(Bap), —s)Ish(xP)..)N,(dsdudw).(0,t]xUxIV+

L e t  C5 =infit_0: 1> 61. S in ce  Ba(p , u )=B (p, u )  i f  <p, 1> 3 ,  Theorem 5.2
implies that Xi 3 )=Xi 5 ') holds for O tC 6A C 3

, ,  hence there  ex ists a unique solution
X t for  th e  equation (6.9) up to time C=lima,o)Ca,

(6.9) w(t — s)18/s3/3(xs . 0)Np(dsdudw).(0,t]xuxiv+

Furthermore, it is easy to see that ( X t ) o t < c  h a s  the strong Markov property since so
does (Xia))0 , t , c (s) for each ô O by Theorem 5 .3 .  Accordingly, by virtue o f  Corollary
2.2 w e h a v e  a n  M1(S)-valued diffusion process (Q, F, F t, Pp  ;  t) such that for every
F D ( î )

F (Y )—  .1 F(17  s )d s0

i s  a  P p -m artingale for every  p i l l , ( S ) .  A lso, the property (6.2) is obvious by (5.8)
and Theorem 2.1.

Finally we apply the Poisson construction for MBDI processes to prove an ergodic
theorem for  a  sim p le  FVD process. L et us consider the following operator on D(E)
= D (L ):

6 2 F (p )  ÎF (p )= - - a p ( x ) 4 ( y )2 sxs

p(dx)M(dy)
( 6 F ( p )  (3F ( p ) \

sxs 3P(Y ) 6P(x) ) '

where M (dx) is  a  finite measure on S.
We denote by (Q, F, F t, Pp ;  Yt) the Mi (S)-valued diffusion process governed by
D(E)) o f  (6.9), that is a simple Fleming-Viot model in  which the mutation kernel

Al(p, x, dy) is independent o f  pEM ,(S) and x E S , i .e .  M(p, x , d y )= M (d y ). Then it
is  e a s y  to  s e e  th a t  the diffusion process (Q, F, F t , 13 , ,  Y t ) has a unique reversible
stationary measure R(dp) such that for every finite measurable partition (S i , S2, ••• , S.)

(6.10)
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o f  S , the distribution of (p(si), pcso, ••• p(so) under R  is  a Dirichlet distribution (or
a  beta distribution) with parameters (2M(S 1), 2M(S2), ••• , 2M (S .)), nam ely its density
function is

r(±  2m (s 1 ))
•••

-i \  n
Y n - i

n

> = 0 , E  y 1) H y roso-i
i=1 i=1r (2M(S i ))

w here y=1— y—  '•• — Yn-i, and r(a) is  Gamma function.
For the FVD process (Q, F , F t , Pp; Y )  we can construct a  nice coupling process

by making use of the Poisson construction in § 3 and Theorem 2.1.

Lemma 6.2. 1) There exists a diffusion process (Q*, F * , F t ,  P ( p i, p 2) ; (17 1, 17 1)) taking
values in 11/11(S )x M 1(S ) such that fo r  every ( p i ,  P 2 )EA 1(S )X .ill1(S)

(i) the probability  law of the process Y 1 under P ( pi,p2) coincides w ith that o f  Y t
under Pi,

(ii) the probability  law  of  the process Y i u n d e r P i, p 2 )  coincides w ith that o f  Y t
under P p 2, and

(iii) Y i holds eventually P ( p i, p 2) -almost surely.

P ro o f . Let any (P 1 , P 2 ) M1(S)X M i (S ) be  fixed . W e prepare a  P o isso n  system
IN°, N p l satisfying that

(a) N ° i s  a  P o isso n  random measure on  S X S X  W ., w ith intensity m easure
plxp2xQ1.°,

(b) AI, is  a Poisson point process on  Sx W., with characteristic measure MX Q",
and

(c) N ° and Np  a re  mutually independent.
Let define three M(S)-valued processe by

U1=-1
w(t)6,N°(d xd y dw) ,sxsxw +

w(t)(3,N°(dxdydw),sxsxw,

V w(t — s)3x N p (dsd xdw) ,
( 0,t]xsxw +

and set
X1=-- U 1-E V , and X1=-UH -V t .

Then by Theorem 3.6, both processes XI and X i are MBDI processes starting at pl

and p2 generated by

(6.10) LF(p)-=--2- op(x)p ( d x )  „  2 M(d x)
a p ( x )

1  ç 32F(p) 6F(p) 
s

1 ) T. G . Kurtz also constructed a sim ilar  cou p lin g  p rocess  b y  a  d ifferen t m eth od . (Oral com-
munication).
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Clearly, 1>=<II2, 1> holds for all t 0 a. s., and the process r2=<U1, 1> is equi-
valent to a CB-diffusion (Q, F, F t ,  P ie ,  y t )  generated by

y  d 2

(0 is  a trap.)

hence C°=inf{tO : r2=0} <00 a. s., which implies that X1=-X7 holds eventually a. s.
Also, noting <Xi, 1>=<X7, 1> for all t O a. s., w e set r t =<X1, 1> and

ct=r 
 d s  

Jo  r s

Then, by Theorem 2.1, its  inverse function D t is  w e ll d e f in e d  o n  [0, 00), a n d  both
Mi (S)-valued processes

1DX3.71, X
 t  a n d  17 2,

rp tr p t

are equivalent to the FVD processes starting at p 1 a n d  p2 respectively, and it is obvious
that the property (c) holds. T hus the proof of Lemma 6.2 is complete.

The following theorem is a direct consequence of Lemma 6.2.

Theorem  6 .3 .  Let (Q , F, F t , P p ; Y ) b e  the FV D p r o c e s s  g e n e r a t e d  b y  (E, D(E))
of (6.9). Then fo r  e v e r y  pE M i (S),

lirn  P p ( 1 t  •  ) =0 .t-..
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