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Non-existence of positive eigenvalues of the
Schrodinger operator in a domain
with unbounded boundary
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Takco TAYOSHI

Introduction

In this paper we shall concern ourselves with the solution of the differential
equation

0.1) (—d+q—Du=0

in a domain DC R*(n=2), where 4=3(0/dx,)*, 2>0, and ¢ is a complex valued func-
tion. Define a domain D, of R™ by ’

0.2) D,={x€R"|x,>|x|cos(ar/2)},

where 1<a<2, |x|=(x*+---+x,%"2. We shall prove the following theorem.
Theorem 0.1. Assume that D is larger than the half space x,>0 in the sense that

there exists a constant ¢ with 1<c<2 such that

(0.3) DDD.,

and assume that q can be written as g=q,+q, such that the following conditions (0.4)~
(0.6) are satisfied.

(0.4) ¢, is real valued, of class C'(D), and
a(x)=o0(1)  (lx|—oc0 in D).
(0.5) IVgi(2) |+ g(x) [ =0([x]7")  (lx|—>e0 in D).
(0.6) There exist constants d and 6>0 such that 1<d<c, and
[Vgi(x)| +1g(x)| =0(| x| ¥9=%)  (|x|—o0 in Dc—Dy).

In addition assume that q is such that the unique continuation property holds for equation
(0.1), i.e. if a solution u of (0.1) vanishes in an open set of D, u vanishes in all of D.
Then if a solution u belongs to L*D), u vanishes identically : u=0.

Here it should be noted that in the hypotheses of the theorem we assume no con-
ditions on the values of the solution u on the boundary oD of D.
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The above theorem is a consequence of a more general result, Theorem 0.2, which
we shall state soon after the preparation of some notations. Define real valued func-
tions £.(x) and 7.(x) (x€D,) by

0.7) Ea(0)Fina(x) =x+iy(x)  (P(x)=(x"++x.2)"%, i=v—1),

where we agree that we choose the argument of &.(x)+in.(x) such that

0.8) 0<arg@a(x)+ina(x)<5  (x€Da).

Define, in addition,

(0.9) pa(x)=(a(x))*  (xED,).

Notice that p.(x)<|x| and that p,(x)=|x| when x is on the positive x,-axis. We set
(0.10) Do(s)={xE Dy | pa(x)>s}.

Further define
(0.11) Ou(x)=8a(x)/(Eal(x)+1a(x)?).

Theorem 0.2. Assume that there exists a constant ¢ such that 2>c¢>1, and the condi-
tion (0.3) is satisfied. Moreover assume that q can be written as ¢g=gq,+q, such that the
condition (0.4) and the following (0.12) are satisfied.

(0.12)  There exist a constant ¢’ and a function f(t)=o(l) (t—o0) such that c¢>c¢'>1,
and for any a with ¢>a>c’

0412 |9g, | +10:] S(Oapa'+02°) f(0)  (in Da().

Then for a solution ue L¥D) of (0.1) there exists T>0 such that u=0 in the domain
D (T).

The theorems will be proved in Section 2 after the preparatory Section 1, where
some technical lemmas are proved. Section 3 is devoted to calculation of some quan-
tities which are used in the discussions in the preceding sections. For some results
previously known we refer to Konno [2], Mochizuki [3], Murata-Shibata [4] and
Tayoshi [5].

Here we collect more notational conventions to be used in the following sections.
Da(sy, s2;5 $5)={xE Dal$1<0a(x)<5s, Nalx)<8s},

Do(s1, $2)={xE Dol $1<pa(x)<5,},
(0.13) Sa(s; D={x€Ds| pa(x)=s5, na(x)<t},

Sa(s)={xEDe| pa(x)=5},

[ o(s1, so; s)={xEDal|5:<palx)< 82, Nalx)=15,}.

Denoting the standard flat metric 3}(0/0x,)®(d/dx;) by G (we use the contravariant
representation), we write Vf=33(df/0x;)(0/0x;) (f : a function), 4f=divVf, G(df, dg)
=30f/0x;)-(0g/0x;)(df : the differential of f) |df|*=G(df, df)=I|Vf|* etc.. The
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following function appears in various places in the paper:
(0.14) au(x)=1dpal®  (x€D,).

The volume element dx,A---Adx, is denoted by Q. If volume integrals over a domain
B and surface integrals over its boundary dB appear in an expression, we choose the
surface element 2 of @B such that 2=nA2 where n is the outer normal covector to
0B. The contraction of a vector field V with a 1-form w is written as w(V). We
set i,=|dpa|"'dp.. We use the expression

(0.13) [SSNZ)—SSa(sl)]---ﬁa(V)E
for

S ---ﬁa(V)Z—S i)
S (82) Sqa s

We let C, C,, Cy, -+, T, Ty, T, -+~ etc. denote positive constants, and let I(S), I,(S), --
and J(B), J«(B), - etc. denote some quantities given by certain surface integrals over
an (n—1)-surface S and volume integrals over a certain n-region B. We shall specify
the meaning of these notations wherever ambiguity may be caused, while the same
letters with the same subscripts do not necessarily mean the same things if they appear
in different contexts.

1. Some Lemmas

Throughout this section we let g, denote a real valued function of class C(D),
and put g,=¢—gq,, where ¢ is as in (0.1). Let BCD a domain. Take a function ¢
C>=(B) and set

(1.1) v=gu

in equation (0.1). Then we have

(1.2) —Av+2¢7'G(d¢, dv)+(Q+g¢,—Av=0  (in B),
where we have put

(L.3) Q=—2¢"1dg|*+¢"'dp+q..

Lemma 1.1. Assume that DDD(T) (2>3a>1, 3T>0), and that g is bounded in
Dy(T). Let ¢, p=C=(Da) be positive functions. Let B be a bounded subdomain of Du(T)
with piecewise smooth boundary 0B. Let Z be a real smooth vector field in a neighbor-
hood of the closure of B. Let u be a solution of (0.1), and further let v and Q be as
in (1.1) and (1.3). Then the following identity holds:

(L4) [, ¢{ReLLo-Gn, du1— 5 (19014 - DIvHm(2)} £

--SBRe[LZa-G(z(%)dqswgb, av)]e
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+]
B

+,

—SB¢ Re[q.L,5-v]2=0.

div(¢Z){|Tv[2+(Q—D)|v]*} 2

SIS T

{P(L2GXdD, dv)+d(LzQ)|v[*} 2

Here n is the outer normal covector to 0B, and Ly denotes the Lie differentiation with
respect to the vector field Z.

Remark. Here and in the following we interpret the values of v and Vv on a
piecewise smooth (n—1)-surface S (S=0B in the above lemma) in the sense of trace,
which is meaningful because v is a solution of the elliptic equation (1.2) ([5], Section
6) and because we use traces of v and Vv only when S is laid in a domain where ¢
is bounded.

Proof of Lemma 1.1. Multiplying (1.2) by ¢L,0, we have
(1.5) ——gbLZz‘;-Av-l—Z%Lzﬁ-G(dgb, dv)+¢ Lo+ (Q+g,—Dv=0.

Let us write this as V,+V,+V,;=0. Integrating —Re[V,] by parts over B, we have
(1.6) —SBRe[VJQ:SaB(/)Re[Lzz')-G(n, dv)]Z—SBRe[G(d(gbLzﬁ), dv)1Q.

We write the right-hand side of (1.6) as [,,(dB)+/J(B). Using partial integration
again, we have

—

JiB)y=—5) La(¢IVv|HQ

1

+ {5 (LA9CNdD, dv)—Re[L;5-G(dgh, dv)1}2

ey

RINARIOAP

0B

+

ST T

SB(div(g{;Z)) V| 22+ —lz—ch,b(LzG)(dﬁ, dv)2

—SBRe[LzD-G((hp, dv)1Q.

Let us write this as

(1-7) J!(B):Ilz(aB)-l'_jll(B)+j12(B)+]13(B)'
We set
(1.8) jz(B)z—ReSBVZQ=SB{—2%Re[LZﬁ-G(d¢, Q.

Integrating —Re[V;], we have
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(1.9) —{ RelV,10=—{ ¢ Relq:L,5-010— 5| $@—DL(1v190
1
— 5| p@-vlrn2)z
1 .
+ 5| V@@ 012

+5, 915010120~ g RelnL5-110,

We write the last member of (1.9) as I(0B)+J:.(B)+J:o(B)+J:(B). Collecting (1.6)-
(1.9), we have

(1.10) {1,,(0B)+11:(0B)+150B)} +{J(B)+ J1s(B)}
F{J1u(B)+Jau(B)} 4 {J12:(B)+ J 52 B)} + J 5(B)=0.
This gives (1.4). Q. E.D.

Lemma 1.2. Assume the hypotheses of Lemma 1.1. Let ¢, ¢, v, Q, Z and B be as
in Lemma 1.1. Further assume that there exist a constant 0>0 and smooth positive func-
tions a(x), =(x) such that

(1.11) 201de|(ZQZ)—aL,G=20rG  in B.
Let E be a real smooth function. Set

(1.12) F=div(¢Z)—2E.

Define the vector field W by

(1.13) W:2§V¢+VF=¢‘ZV(¢2F)).

Then we have the inequality

(1.14) SSB{Re[<¢LzD+ gﬁ)G(n, dv)]—%( Vo2 +(Q— )| v H)n(Z)— % |vI*n(W)}5

+{ {#(S 1014 10u1) Lovi—Re[ L0 G(L dg+ag, av) ]}

¢

JL{e
+{,( LS R
+S

S L0+ EQ—D+ 5 §1.|— 5 Reloa)+ +-divw} o]0

B

II\/

Proof. Let us write the identity (1.4) of Lemma 1.1 as

(1.15) 1@B)+J(B)+J o B)+J o B)+J ( B)=0.

Then J,(B) can be rewritten as follows:
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L
¢

—SBgRe[G(qu, dowlQ

+XBE|VU|2'Q+SB{E(Q_Z)_ gRe[(]z]}lvlz.Q .

W18 JuB=] 3 F{IT1+2Re[5G(dg, dow]+(@+Relg.]-DIvI}2

We write the right-hand side of (1.16) as Ju:(B)+ Joo(B)+ J2s(B)+ J24(B). Taking equa-
tion (1.2) into consideration, by the Gauss-Green formula, we have

(L.17) ]21(B)=SBB%Re[Fﬁ-G(n, dv)]Z’—SB%Re[z‘)-G(dF, dv)]1Q.

Let us write this as [/, (B)=1,1(0B)+ J..;(B). In view of the definition of W ((1.12)),
we see that

gRe[DG(dqﬁ, dv]+ 5 Rel5- G(dF, dv)]z—;—Re[z‘z-va].

Consequently, by partial integration, we obtain

(118 JuBI T By=—{ 3 Rels- Ly]@

= —Sm% | 2n(W)Z'+SB%div(W)[v|2~Q.
We write the last member of (1.18) as [3,(0B)+J2.:(B). Then we have
(1.19) Jo(B)=1:1(0B)+ Jouu(B)+ J2o(B)+ [ os(B)+ J 24( B)
=1,0B)+120(0B)+ Jox(B)+ J ol B)+ Jos(B) .
By assumption (1.11),

w20 [ @2idortLare-{ g 1o+ FuL0lrez ),

which we write as
(1.21) Ja(B)+J s B)+ Juo( B)Z Jo(B).

Finally let us write the obvious inequality

[, 3ol 1 L0+ g1l 10102 (B)

as

(1.22) Jau(B)+Jo(B)=J(B).

Collecting (1.19)-(1.22), and comparing them with (1.15) we see that
(1.23) {I(0B)+1::(0B)+122:(0B)} +{ ] B)+ Js:(B)+ J (B}

H1{Jes(B)+Js2(B)} +{Joen(B)+J 2o B)+ J oo( B)+ J o B)} 20.
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This proves (1.14). Q.E.D.

Lemma 1.3. Let 2>a>f8>1. Then we have

| x|

(1.24) fgxﬂpa—(x)— =(cos(Bn/2a))"*,
(1.25) ,ié‘lfﬁ 6 .(x)=(cos(Br/2a))*.

Proof. From (0.2), (0.7) and (0.8) we see that arg(&.(x)+in(x).)<Bn/2a if and
only if x=Ds. Combining this fact with the definition of p, and 6. ((0.9), (0.11)),
we obtain (1.24) and (1.25) through straightforward calculation. Q. E.D.

Lemma 1.4. Let 2>a>1, and h.=(a—1)/a. Define

(1.26) X.=a3'Vp,.
Then
(1.27) 2h,aa(Xa®@Xa)—paLlx ,GZ2h.0.G (in D,).

If the space dimension n==2 we have the equality in (1.27).

The proof of Lemma 1.4 will be given in Section 3.
To proceed further we introduce more notations. Let m, y and 7, be real numbers.
Let us put

(128) Ea=7’o@a97a_1 ’
Moreover in the definition of Q, F and W ((1.3), (1.12) and (1.13)) let us set
(129) ¢:P;n’ ¢:Prm E=an Z=Xa-

Let the functions and vector field thus obtained be denoted by Q., F, and W,. Strictly
speaking we should label these quantities not only by a but by m, 7y and 7, also.
However, such omission will cause little fear of confusion. Using the fact that dp7=
mpz'dp and that 4(p7)=m(m—1)p7*G(dp., dp.)+mpZ~'dp, we have from (1.3)

(1.30) Qo=—(m*+m)pz*aa+mpz'4pa+q;.
We shall show in Section 3 that

divX,=2h(O,—1)pz'+a5'dp. ((3.22) in Section 3).
Using this we have from (1.12)
(1~31) Fa: {T—Zha+2@(ha—To)}PTa_I—P"aaElAPa .

Furthermore, from (1.13) and (1.31), after rather elementary but somewhat cumbersome
calculation we have

(1.32) Wa=p""V(pi"F.)
=C2m+r—I1{r—2ho420(ha—70)} P’V pa+2(ha—T70)p'x VO

1 _ 1
+ Z(2m+?‘)(dpa)p7a Woa+p00V (;: Apa) .
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Lemma 1.5. In relation to p, we have the following (1.33)~(1.35).

(1.33) 1V0al(=dpa|*=2,)=65"<1.
(1.34) aidpazow;l) (0a— o0 in Da).
(1.35) Ly, (dp)=0(0z%)  (pa—> o0 in Dy).

F,, |W,| and div W, are bounded in D,(s) for each s>0. Moreover, if we choose
m=0, there exist positive constants C,, C, and C, which depend on 7, but not on m=0
and 7 such that in Dq(1) the following (1.36)~(1.38) hold good:

(1.36) [Fal <(I71+DC1p":".
(1.37) [ Wal <(m+171+D(71+1)Cep72.
(1.38) |div Wa | <{2a.my*+Cy(m|7|+1)}p'z°.

The proof of Lemma 1.5 will be given in Section 3.

Lemma 1.6. Assume that DDD.(T)2>3a>1, 3T >0), and that q in (0.1) is bounded
in Du(T). Let uc LY D) be a solution of equation (0.1), and m be any real number. Set
v=pzu. Then we have ve L (D,(s,, s,)),

(1.39) IVv| € LY Da(sy, 52)) (T<5,<85,<0)
and
(1.40) ve L¥S.(1)), |Vv|e L¥(S.(¢)) (T<t<o0).

If we assume ve L¥Dy(sy)) (s:>T) for a fixed m, we have
(1.41) [Vv| &€ L¥(Da(s1))
for the same m.
Proof. The assertion that ve L¥(Du(s,, s,)) is obvious because p, is bounded in

D,(sy, s5). We may assume s,<t<s,. Let us choose s, such that T<s,<s,;. Note
that v is a solution of equation (1.2) with ¢=pZ, i.e.

i’" G(dper d0)+@Qutqr—Aw=0  (in Do(T),

(1.42) —dv+

which is uniformly elliptic. Hence we can apply the theorem on a priori estimates of
solutions of elliptic equations to obtain

(1.43) {14v1*+1W0212<C. lv]°Q,

Sl)a(sl,sz; $3) Dy (8g, Sg+1; 83+1)

where s;>1 (see e.g. [1], Theorem 6.3.). In addition, from (1.43) and the theorem
concerning the traces of functions in the Sobolev spaces we have

(1.44) | {0+ 0} D C, lv}22.

Sqti sg=1)" SDa(Jo-«?zH: 83+1)
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([1], Theorem 3.10.) Notice that, in view of lemma 1.5, the coefficients of equation
(1.42) are bounded functions, and that

inf{|x—x'||xEDa(s1, S2; $3), X' E R*—Dy(se, s2+1; s3+1)} >0.

Noting that S.(f) is close to a cone near infinity, it turns out possible to choose C,
and C, in (1.43) and (1.44) such that they do not depend on s, and s,. Passing to the
limit for s;—oo we have (1.39) and (1.40). If ve L%(D.(s,)) is assumed, in (1.43) we
can pass to the limit for s,—oco after the limiting procedure for s;—oo to obtain the
final assertion (1.41) of the lemma. Q.E. D.

Lemma 1.7. Assume that DDD,(T)(2>3a>1, 3T >0). Assume that q, g, and Lx g,
are bounded in Du(T). Choose 7, such that h,>7,>0. Let m=0, and let 7 be real.

Further let ue L*D) be a solution of (0.1). Then for v=pFu we have the following
inequality:

(1.45) (0.0t Nl fael Laoi= 50 W01+ @ =210 D e X

+’%aa Re[ﬁ' LXav]ﬁa(X)—% |v|2ﬁa( Wa)]z

ot {=2mtha—7+ 5 s faa | L 010

SDa (81, 82)

'Ol —hat7:} V022

SDa(sl. 39)

[pf;’aa{(1—ha+<ha—ro)9a)m2+cm}

SDa(‘l-Sz)

+ 0 {21080+ 55 | Lx s 4700001+ £ 1,1}

_Fa
2
=0 (5:>8,2T).

Relg,]+ div(Wa) |Iv1*2

Here C is a positive constant not depending on v and m.

Proof. As a consequence of Lemma 1.4, the condition (1.11) in Lemma 1.2 is
satisfied if we assign p., h., O, and X, to ¢, d, 7 and Z. In the inequality (1.14) of
Lemma 1.2 let us set ¢, ¢, E and Z as in (1.28) and (1.29), and put

(1.46) B=D,(s1, s2; $3) (T=s5<s:<00, 0<s5,<0),
and write the inequality thus obtained from (1.14) as
(1.47) I(Sa(s1; $9)USa(s2; ss)\Ia(sy, S2; S))

F+J(Da(s1, s25 S))+Jo(Dals1, S2; Sa))+ Jo(Dalsy, S2; S3))
=0. |
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On the set Su(s:; s;) we have n=ii, and G(n, dv)=a,Lx,v. In addition we have
n=—7ia on Su(sy; s;), and n(X,)=0 on [',(s,, s,; s;). Consequently we have

(1.48) Ii(Sa(s1; s)\USa(se; s M a(sy, S23 S3))
[l o oo Loyt = 5190 @ D11}

+ %aa Re[- Ly, v]7ia(X)— % 10| 71a( Wa)]Z

F, _ 1
T 5 _t . 2
grawz; ss){Re[(p Lz d+-53)G(n, du)] LR LA
Let us write the right-hand side of (1.48) as I,,(Sa(ss, $3))+112(Sa(s1, Sa))+I1s(la(s1, S23
s3)). Here I,; is estimated as follows:

1 1
(L.49) I i(la(sy, s23 33))§S {(p’a|anvl-I-?IFavl)IVv]-I—Z-Ivlzn(Wa)}Z’.

T (31082; 83)

Let us write the right-hand side as Il a(sy, Sz s5)). Because of the setting (1.29),
we have d¢=mpZ} 'dp. and d¢=7p’z'dp., which implies

p’;‘{—2m+ha—7+ Pa ]q2|}’aa|LXav|2'Q-

(L50)  Ji(Dalsu 503 s)=| 2

Dy (8. 82; 83)

We write the right-hand side of (1.50) as J,i(Da(s:, sz2; ss)). Recalling that we have
set E=E,=7.,0""'0,., we obtain

(L.51) Tu(Da(ssy 523 ss»zg 0O {—hat7o} |T0|°Q,

Dy (81,825 83)

which we write as [,.(Da(s1, $2; S5)). To estimate J, we have to calculate (1/2)¢L,Q
+E(Q-2) with Z=X, and Q=@Q,. Using (1.30) and the equality Ly, a,=2h,a,(1—
O.)p3z" (see (3.8)), we have

(1.52) %pfanaQaJr EoQu—)=(m+m)(1—ha(l—0u)—Ouyo)asp"™*
1 m
+m(—7+@aro)p’ﬂpa+ o Pl Lx,(4pa)

1
F(=2+40700 ' Oat 5 pTa L x (91

Combining this with (1.34) and (1.35) of Lemma 1.5 together, we have

(1.53) Jo(Da(s1, 23 ss))ég o' {(l—=hat(ha—70)0)m*+Cm}

Dy (81,895 Ss)l:
+ (= 24001 8at B Ly i + 52 10,1}

_Fa
2

Relg.]+ - div( wo)vle.
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Let us write the right-hand side of (1.53) as [ (Da(sy, S2; s3)). Form (1.47)~(1.51)
and (1.53) we see that

(1.54) I(sy, so; sa)+JI(sy, 2, Sa)+ Ll a(s1, 25 $4))20,
where
(1.55) I(sy, 825 S8)=I(Sa(s2; $)+11(Salsi; S3)),

(1.56) J(s1, 825 $O)=J1(Da(S1, S25 Sa)FJar(Dal(S1y 23 )+ Jai(Dalsy, S2; 83).

Using the facts |[X,|=[|dp.|'=0¢ " and |dy.|=a '(§i+n2)" */* (see (1.26) and
(3.7)), we have from Lemma 1.6

[Lxvlldnal 21 Xal VoI 1dnal=a'8a"*|Vv| & LY Da(sy, s2)).

Accordingly we have

(1.57) S”[Sra(w; 7 Lol 7o) Z]dﬂ

0

o' Lx vl |Vv||dy|2<co.

SDa(SJ? $2)

By Lemma 1.5, |F,| and | W,| are bounded in D,(s,, s;). Hence (1.57) shows that
LI a(sy, s2; s3)) tends to 0 as sy—oco along a suitable sequence. As a consequence
of Lemma 1.6 and the assumptions we have imposed on ¢, ¢, and Ly g, we see that
I(sy, sz, s;) and J(s;, s;, ;) remain finite when s,—oo. Thus in (1.54) we can pass to
the limit for s;—oco along a suitable sequence, which proves the inequality (1.45).
Q.E.D.

Lemma 1.8. Assume DDD(T) (2>3a>1, AT >0), and assume
(1.58) g,=0o(1) (|x|—=o in D,).
In addition assume that there exists a function f(s)=o(1) (s—o0) such that
(1.59) | Ly, g1l +1q:1 £(Oapa'+03") f(p)  (in Da(1)).
Let ue LY D) be a solution of (0.1) such that
(1.60) [,y lul?@<o0 (¥m20).

Then there exists T\>T such that u vanishes identically in D.(T,).

Proof. Set v=pZFu. Let us notice that (1.60) and Lemma 1.6 imply p(|v|+|Vv|)
€ L Dy(1)) (Vi=0). Integrating the inequality a.|Lx (ps™*v)|?=0 over Du(T) we
have

[, ., (087aa] La,pl*+vm o3t 72, Re[o: Ly,0]
a(l)

+%mp;2”ﬁaa |v|2}2=0.

Then partial integration gives
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(L61) [,  ptmac Lyl

+SDa(UP;2+«ﬁ{_%aam+%Vﬁ(aa —Pa diV(aaXa))} lo[2Q

—%—Ss P T TV M e X) 2 20.

In (1.45) of Lemma 1.7, let us choose
(1.62) r=14++vm.
In addition, let us choose ¢ and 7, such that

(163) e< b To<he, L—heet(ha—700u<

which is possible if we take e and 7, such that 1/2—e and h,—7, are sufficiently small.
Because of (1.58) and (1.59) the assumptions on ¢ in Lemma 1.7 are satisfied. Further
(1.60) allows us to pass to the limit for s,—o in the inequality (1.45), where we put
s;=t. Adding the inequality thus obtained to (1.61) multiplied by 4me, we have

(1.64) gs (t)[Pé”’”{aalanvlz——(lvvl +(Q«—D|U|2)} o(Xa)
+2p“”"‘em\/m|v|2ﬁa(X +—= F —5—a.Re[7- L x v1iia(Xa)
R AUAL

+gDa(t)Pém{ (2—4e)m+h—1— |a“|LXav]}

+SD (L)Pém@a{_ha‘H’B} Vv |*Q
—I-SD U)[p‘“""‘a {(l ho—et+(ha—70)O)m*+Cm
_ _Bi .
+2em «/m( — a, dlv(aaX,x))}»
F,
ot {(— 24010+ £ | Ly 01|+ 12 }— - Relg:]

1. \
+ V(W) 1012
=20 @¢=7).
We write this as

I(Sa@)+J (D) +T Do)+ To(Da(t)Z0  ¢>T).

From the assumption (1.59) and (1.33) of Lemma 1.5, we see that p,|g.|/a.=o(l).
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Using this and ¢<1/2 ((1.63)), we have

(1.65) Ji(DN=0 (mz3IM,z=0, t=3T.>T).
Obviously
(1.66) J(Do(N=0  (@>T).

From (1.36), (1.38) of Lemma 1.5 and (1.62) we have

1 - — —
(1.67) 7 | FaRelga]| S 3™ (Cot V) 92| S o3+ Copa}laal,
(1.68) % \div IV, | gaa,o;“"ﬁ{%mz—i—cam vin+1}.

Here C,, C, and C, do not depend on m. Using inequalities (1.67) and (1.68), we see
that the integrand of J, is bounded above by the function

(1.69) [p;“"ﬁaa{(l—hu—s+(ha—70)@a+%)mz'i-(C'HOa g2 1)m
+2em «/E(%— +1—%Apa)}

— a 1
o0 {(— 2010t G | L, qil + (5 +C)palal | 1017

(Here we have used div(a,X.)=4p,). In view of (1.34) of Lemma 1.5, the assumption
(1.58), (1.59) and the choice (1.63), we see that (1.69) is non-positive for sufficiently
large m and f. Thus we have

(1.70) JDa(N=0  (mzZ3IM;>M,, t23T,>T).

Now let us prove the lemma by reductio ad absurdum. If the assertion of the lemma
is false, for any solution u of (0.1) and for any T,>0, there would exist t>T, such
that the function obtained by tracing u onto S.(¢), which function we write u again,
does not vanish as a function in L% S,(¢)). Let us estimate I(S,(t)) in (1.64) for such
t. We may assume t>T,>T, Let us recall v=pZu. Then, after some calculation,
we see that

AT ISu=t e om{omt|  ag[u AT +m v mC Dm0

where (---)’s are functions of ¢ not depending on m. This shows that I(S.(t)) is
negative for sufficiently large m, which, in view of (1.65), (1.66) and (1.70), leads us
to an absurdity because the left-hand side of (1.64) should be nonnegative. Q. E. D.

2. Proof of the theorems

To prove Theorem 0.2 we prepare one more lemma.

Lemma 2.1. Let us assume the hypotheses of Theorem 0.2. Let ¢ and ¢’ be as in
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the hypotheses of Theorem 0.2. Take a and B such that cza>B>c’. Assume that u
is a solution of (0.1) satisfying

(2.1) (I4+p)"us LX(D,) (Im=0).
Then
2.2) (4™ Duc LYDy),  (1+pg)™ 4 |Tu| & L Dp).

Proof. From (0.11) and | X.|=|dp.| '=0% */ (see (1.26) and (3.7)) we have
(2.3) Ly g1l +1q:1 S 1 Xa| V1] 4+ 1921 S(Oapa’+03%) - f(0a)  (in Dy).
From Lemma 1.6 and (2.1) we see that
(2.4) IV(1+p)"ul € LX(D,).

Now let us set v as in Lemma 1.7. Because of (0.3) we may take T=1 in (1.45) of
Lemma 1.7, where we further set y=1 and fix s,=¢t>1. Then (2.1) and (2.4) allow
us to pass to the limit for s,—co along a suitable sequence. Thus inequality "(1.45) is
rewritten as

@5) — IS0+ T DO+ JoDultD T Dult)20.
Here
@6 —IS)=—{_  [pufaal Lr o1~ 5T+ @u=DIv 1D} X0)

A Re[o Lx 01X~ 10703

@7 JDt)={, {-2m+he—1+L g, faul Lx o170,
2.8) JADut)={,  Oul—hatrs} 012,
(2.9) JDt)=|, | pz2el=hat(he—10080)m*+ Cm}

+{"‘zro@a+£21 | LX,,Ql | '*'7'o@a¢(]1+£2i |42|}

Ce Relga ]+ Fdiv(W)]1v1°2.

We have chosen y=1. Hence by Lemma 1.5 we have
|Fo| <M,

(2.10) | We| EM,ip3?,
[div W, <M, p2%,

where M, is a constant depending on m. Furthermore, taking (2.3) into consideration,
we can choose 7,>0, #>0 and T,>1 such that the following inequalities hold good :



Schridinger operator 481
To<hm _ha+7'o<——li:

(2.11) { —2m+h,—1+

pala: <0 (in D(T),

a a Fa .
—2148at £ | L 01 +7080gi+ 5 192 — 5 Relg:]<— £ 6403 (in Do(T).

(Here we have used a,=02%'=6#,.) From (2.10), taking sufficiently large M,>0,
we have

(2.12) ~HSAMS |, 5 pelIT0I*+(@u-+Relg.]— Do (XS

1
. o AMITO 4 01— 5 pu Relg:1 1012} (XS
In addition, by (2.10) and (2.11), we obtain
(2.13) Ji(DNE0  (>T),

(2.14) JADL)+TADNEM | p3*l01°2

_# . .
2SDA<,,@¢'{|W| +v|* 2 (>T)).
Using (2.12)~(2.14), we obtain

@1 [, 0o 170 17H@ut Relga] = DlvI*}(Xe)Z
+SS (t){M( [Nv|2+ |v|2)_paRe[q2] |2} (X )E
+MSD (t)pzzlvle

zpl,  OWol 002 (¢>T).

Here M depends on m, but not on t>T,. Integrating the first surface integral of the
left-hand side with respect to ¢ over the interval [¢,, ¢t,] (t,,0T,), we have a volume
integral over D(t,, t,), which is calculated as follows. By use of equation (1.42) and
the Gauss-Green formula we have

2m
Pa

pe{ 17017+ 2, Re[7- L v]+(Qu+Relg:1—D|v[*} 2

Sna(tl,zz)

—ng a0 Re[?- Lx,0]Q

Doty ty

:[Ssa(m_gsaul)]p"a“ Re[7- Ly vl(Xa)2

~| (2m+1)a, Re[o- Ly, v]2.
Da(tyite)d
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Therefore integrating (2.15) with respect to ¢ over the interval [¢,, t,] ({,>T,), we have

(2.16) [Ssauz)—gsa(m] 0s20 Re[D- Ly v]i(Xa)3

{—(@2m+1)a.Re[D- L x v]1+M(IVv|*+ [v]®)-—pa Re[ge]|v[*} 2

SDa(h, to)

+M{, | (oamt )o@ v "R E—tOM | 03?v]2
alll a

=

(Pa—1)Ou(IV|*+ [v]H)2

SDa(h.lz)

+y(tz—t,>§ BTV 102,

Dgct

Because of (2.1) and (2.4), the left-hand side of (2.16) remains finite when we let ,—cc
along a suitable sequence. Thus we see that

(2.17) O pT* M Pye L (D,),  Oup2+ P |Vu|e LY (D,).

On the other hand, by Lemma 1.3, we have

(2.18) Ou(x)>c1,  ppx)Scalx|Scypalx) (xEDp)

ey, ¢, cg>d). From (2.17) and (2.18) we have the assertion (2.2) of the lemma.
Q.E.D.

Proof of Theorem 0.2. Choose a sequence {a;} (y=0, 1, 2, ---) such that ¢>a;>
a1 >¢’. We have ue L*D,,) by the assumption of the theorem. Applying Lemma
2.1 successively, we see that p’Zjue L¥ D)) (j=1, 2, ---). Thus we have pflue L*(D.r)
(Vm=0). This together with Lemma 1.8 gives u=0 in D.(T) (3T >0). Q.E.D.

Proof of Theorem 0.1. Let ¢, d and 6 be as in the statement of Theorem O0.1.
Let us choose ¢’ and ¢’ such that

2.19) 5>5">0, c>c’>maX<—2—_§iT, d).

Let us show that the conditions (0.5) and (0.6) imply (0.12). To this end it suffices to
show that there exists C>0 such that

(2.20) O.0'2Clx|! (in Dg) (c>Va>c'),
and
(2.21) 0.0 =C | x| 2O (in Do()) (c>Va>c').

By (2.18) (in which we replace 8 with d), (2.20) is obvious. Furthermore we see that
(2.22) Oa(x)oz'=|x| ML/ 2 x| (in Du(1)),

which together with (2.19) shows (2.21). Therefore we have from Theorem 0.2 that
any solution ue L% D) of (0.1) vanishes in an open set D.(T) (3T >0), which with the
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assumption of the unique continuation property for (0.1) implies that u» vanishes iden-
tically in D. Q. E.D.

3. Calculation of quantities related to G

Let G, a, Do, ¥, &4, Mo €tc. be as in the Introduction. In what follows we shall
drop the subscript a if it does not raise any fear of confusion. From x,+iy=(§+i9)"
we have

3.1 { dxi=a(§+n") H(x:E+yn)dé+(xp—y8dn},
dy=a(§+7*)" {(y§—x1m)dé+(x.6+yn)dn}.
and
(3.2) G(d§, d&)=G(dy, dn)=a (& +7°)'"".
Let us introduce the coordinate systems (w!', ---, w") defined as follows. When n=2

we set the coordinate neighborhood of (w!, w?) to be D,, and define
(3.3)a w'=§, wi=1n (x.20), wi=—n (x.£0).

When n=3, let us take integers % such that 2<k<n, and consider the domains D, .
={xeD,|+x,>0}. In each D, , or D, _ let us define,

(3.3 w'=§,  w'=y, w=x;./y BZjSk),  wi=x;/y (k<j=n).

Although the domains D,,. do not cover the x,-axis, the results computed in the follow-
ing can be extended to the positive x,-axis by continuity. Writing g’*=G(dw’, dw*),
we see that

(3.4) gl=gP=a Y&+,
3.5) gr=gh=0 (=1 2; k22; j£hk),
(3.6) gf’*zg“=$<6”—wfw*> (, k23).

For @(x) and a(x) defined in (0.10) and (0.13), we have from (3.4)

3.7) a=G(dp, dp)=""*(§+7%)" “=0°".

Recalling that the vector field X=X, is defined by (1.26), we have

3.8) Lya=a"'G(dp, dO)=2ha(1—0)p™* (h=(a—1)/a).

Proof of Lemma 1.4. In the system (3.3) the vector field X has the components

3.9 X'=a g7, X'=0 (j=22).

The components of the tensor LG are given by
(LxG)”=ZSI(X‘ag’"/3w‘—g”’6Xf/6w‘——g”6X"/8w*).

Through direct calculation we have
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(3.10) (LxG)'=2a°¢ *(&+n*) @
=2a"(a—1p ' (1-0)g",

@3.11) (LxG)Y*=—2a"(a—1)p"'0g®,

(3.12) (LxGYW=0 (jz2), (LxG)¥=0 (j=3),

(3.13) (LxGY*=—2y=%(0"* —w'w*)§"*(§y—nx1)/(§+7")

=—20""[1—(9/8)x:/9)10g’*  (j, k=3).
From (3.9)~(3.13) we have
(3.14) 2ha(X®X)—pLXG=2h@G+2(a"—K)@j kzzsgwa/awf)@(a/awk).

Here

(3.15) K=(0/8)-(x:/9).

Set

(3.16) b(x)=arg(¢-+in)=—arg(x+i).
Then

(3.17) K=(tan b) (cos ab)/sinab.

In D, we have 0<b(x)<m/2, hence we have
(3.18) K<l/a in D,.
Combining (3.14) and (3.18) we have Lemma 1.4. Q.E.D.

Additional calculation is necessary before we proceed to the proof of Lemma 1.5.
Let us set g=(det(g’*))"*. Then we see that
(3.19) g=(&4p?ye-ty?n i ],

Here [---] is a factor not depending on the first and second coordinates w' and w?.
Direct calculation shows

_ 1 dvgg")
(3.20) fg=—= S

=a  (n—=2){§—n(x./yIHE+n*) 7,
which gives

(3.2 dp=ala—1)§*"*G(d§, d&)+as* 4§
=ap ! {h+(n—2)0(1—K)}.
Here K is as in (3.15) and (3.17). From (3.20) we have
(3.22) divX=div(a'G(dp))=—a a—1)0*2G(dO, dp)+6' *dp
=2n(O—1)p '+a 'dp
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=p H{—h+20h+(n—2)X1—K)6},

which was used in Section 1 in the computation of Fl,.

Proof of Lemma 1.5. From (3.7) we have (1.33). Using (3.16), (3.17), (3.20) and
©=(cos b)* we see that

1 sin2b cos ab )}’

L=t — ) costh—
(3.23) ;Ap——p{h—}-(n 2)(cos®— 5 —

which shows (1.34) and (1.36). The assertions (1.35), (1.37) and (1.38) are obtained
through elementary but lengthy calculation from the facts that the first and second
derivatives of sinb/sinab with respect to b are bounded on the interval 0<b<m/2
and that |db]=a '|x|"'. Q.E.D.
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