
J .  Math. Kyoto U niv . (JMKYAZ)
31-2 (1991) 419-466

Logarithmic Enriques surfaces

By

De-Qi ZHANG

Introduction

Normal projective surfaces w ith  on ly  quotient singularities appear i n  stud ies of
threefolds and semi-stable degenerations of surfaces (cf. Kawamata [5], Miyanishi [6],
Tsunoda [1 1 ] ) .  W e  have been  in te rested  in  such singular surfaces with logarithmic
Kodaira dimension — 00 (c f . M iyanishi-Tsunoda [8], Zhang [12, 13]). I n  th e  present
paper, w e shall study the case of logarithmic Kodaira dimension 0.

Let V  be  a normal projective ra tional surface w ith  only  quotient singularities but
w ith  no rational double singular p o in ts . L e t K w b e  th e  canonical divisor of V  as a
Weil d iv iso r. W e  ca ll V  a  logarithmic Enriques surface if 1-P(V, O p)= 0 and  K v  i s  a
trivial Cartier divisor for some positive integer N .  The smallest one of such integers
N  is called the index of Kv and denoted by Index(K.v) o r  sim ply  by  I. Since IK I7 is
triv ia l, there  is a  Z//Z-covering : /7--->V, w hich is unique up  to  isom orph ism s and
é ta le  outside  S in g V . T h e n  U , ca lled  th e  canonical covering o f V , is  a  Gorenstein
surface, and the minimal resolution of singularities o f  V  i s  a n  abelian  surface or a
K3-surface.

Let f  be a minimal resolution of singularities of V  and set D :=f - 1 (SingV).
W e often confuse V  deliberately w ith (V , D ) or (V, D, f ).

§1 is a preparation and contains a proof of an  inequality (cf. Proposition 1.6) which
plays an important role in  the  whole theory ;  in particular, if / 3  th en  c:=#(S ingV )

K v )<c-1— (1q), a n d  it t h e n  c <-3 (K 1
2,). In § 2 ,  i t  is  p r o v e d  th a t  if a

positive integer p  is  a factor of I  th e n  17/(z/pz) is  a  logarithm ic Enriques surface,
a s  w e ll. W e also  p rove  tha t I66 ; th is resu lt is  o rig ina lly  due to  S. Tsunoda. M ore-
over, If,-1. 19 if  I  is  a prime n u m b e r . §§ 3-5 are devoted to the  proofs of the following
three theorems :

Theorem 3 .6 .  Let V  or synonymously (V , D ) be a logarithmic Enriques surface with
Index(Kv)=2. Then there is a logarithmic Enriques surface W  or (W , B ) w ith Index(Kw)
= 2 and #(SingW)=1 such that V  is obtained from  W  by  blow ing up all singular points
o f B (i. e., intersection points of irreducible components o f  B )  and then blowing down
several (-1)-curves on the blown-up surface.

Moreover, #(Sing /7)= # (S in g V  # {irreducible component o f D I  10 (cf. Lemma 3.1).
The case w ith #(SingV)=10 occurs (see Example 3.2) and, in this case, there is a (-2)-
rod o f Dynkin type A 1 9 on U (cf . Cor. 3.10).
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Theorem 4 .1 .  Let (V , D ) be a logarithmic Enriques surface such that the canonical
covering U is an abelian surface. Then  Index(K )=3 or 5 , and the configuration of D
is explicitly given.

Theorem 5 .1 .  Let (V , D) be a logarithmic Enriques surface such that I(=Index(Kv))
is a prime number and the canonical covering U is a K3-surface. Then  13. Moreover,
the singularity  type o f V  is ex plicitly  giv en. In particular, (D, K-

17)=c — 1—(K,27).

In § 6, we consider the remaining case  w here  th e  canonical covering U o f V is
singular. Possible types of singularities o f V and V are given when / :=Index(Kv)=3
or 5. A s a  corollary, we see that if  there is a  singularity of Dynkin type E k (k=6,
or 8) on  U then 1=5, 25, 7, 11, 13, 17 o r 19. It remains to consider possible combina-
tions of singularities on V . We obtain the following theorem (cf. Proposition 6.6 and
Lemma 6.14):

T heorem  L e t (V , D )  b e  a  logarithm ic Enriques surface such that I  i s  an odd
prime number and S in a l*  0 .  Then c := #(SingV )5_ Min {16, 23 —I} , #(Sing F/) - (24 — /)/2
and -1 p (V )- c 4, w here  p (17 ) is  the Picard number o f  V . Moreover, i f  c=16 or
p(V)-c =4, then 1=5 or 3, respectively and SingV is precisely described in Proposition
6.6 (cf. Examples 6.12 and 6.8); Particularly, (D, Kv)=c - 1 — (K , ).

Example 6.11 gives a  logarithmic Enriques surface (V , D )  w ith  (c, /)=(15, 3).
Moreover, there is a  (-2)-fork o f  Dynkin type D ,, on the minimal resolution U  of
th e  canonical covering U o f  (V , D). B y contracting P  on U  w e get the canonical
covering U' of a  new log Enriques surface (V', D ') .  In particular, U  is a  K3-surface
w ith p(U )= 20. Such a  K3-surface is probably new . N ote  that U' can not be a quartic
surfaces of P 3 (c f . Kato-Naruki [4]).

The author heartily thanks Professor M . M iyanishi f o r  careful reading o f the
present article and giving valuable advice. He also thanks Professor S. Tsunoda who
kindly rem inded him  th e  reference [1 0 ] for the proof of Lemma 2.3 and suggested
Lemma 2.2.

Term inology. W e refer to [8;  §§ 1.1-1.5] or [9 ;  §  2 ] for the definitions of (admis-
sible rational) rods, tw igs and forks, and the definition o f B ° fo r a  reduced effective
divisor B .  A  (—n)-curve on  a  nonsingular projective surface is a  nonsingular rational
curve of self-intersection number — n . A  (-2)-rod (resp. fo rk )  is  a  rod  (resp . fork)
whose irreducible components are all (-2)-curves.

N ota tion . L e t V  be a  nonsingular projective surface and le t D, D , a n d  D , be
divisors on V.

KT,: Canonical divisor of V,
K(V): Kodaira dimension of V,
R(X ): Logarithmic Kodaira dimension of a non-complete surface X,
p(V ): Picard number of V,

h i (V , D ): =dimHi(V, D),
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# (D ): The number of all irreducible components of Supp(D),
f*D : Total transform of D,
f 'D :  Proper transform of D,

D1
,--D 2 : Di  a n d  D2 a re  linearly equivalent,

D, and D2 a re  numerically equivalent,
e(D): Euler number of D,
E 7, : Hirzebruch surface of degree n.

§ 1 . Preliminaries

We work over the  complex number field C . Let V be a normal projective algebraic
surface defined over C  and let f :  V—>V be a minimal resolution o f S ing (7 ). Denote
by D  the reduced effective divisor whose support is  f  - 1 (SingV).

Definition 1.1. V is said to be a log (=logarithm ic) Enriques surface if the follow-
ing three conditions are satisfied :

(1) V has only quotient singularities and Sing(7)*
(2) NKr, is a trivial Cartier divisor for some positive integer N,
(3 )  q(V):=dimili(V , 0 0 = 0 .

Let 4  b e  a  connected component of D .  Then 4 is an admissible rational rod or
an admissible rational fork, which are defined in [9 ; §2 ]  (cf. Brieskorn [2; Satz 2.11]).
f (4 ) is a  rational double singular point if and only if 4  is  a (-2)-rod or a (-2)-fork.
We can define the direct image f * F for each divisor F on V  as  in  th e  ca se  where f
is a morphism between nonsingular surfaces. Then the property of linear equivalence
"--," between divisors on V  is preserved under f * . By [8; Lemma 2 .4 ], there exists
a positive integer P such that for each Weil divisor F on  V, PF is linearly equivalent
to a Cartier div isor. Let F, and F, be two Weil divisor on V, we define the intesec-
tion number of F, and P, by (F1, F2):=- (1/P2 )(f*(PF1), f *(P F2)).

We often identify V with (V , D, f )  or (V, D).

Lemma 1.2. L et V  be a log Enriques surf ace . Then the following assertions hold:
(1) q(V)=0.
(2) W e have f * K v = K v .  There exists a Q-divisor D" o n  V , such that f*(NK,7) -

N(.13°+Kv ) and SuppD SuppD and that i f  a i  i s  the coefficient in ID° of  an irreducible
component D i  o f  D  then 0 a < 1 .  H ere, N  is a positive integer such that NKv is a
Cartier div isor. In Particular, we have D "+K v =-0 . Moreover, Supp(D)—Supp(D) con-
sists of  exactly those connected components o f  D  w hich are contracted to rational double
singular points on V.

( 3 )  L et N  be a positive integer. T h e n  NKv is a Cartier div isor if  and only i f  ND''
is  an  in te g ral d iv iso r. I f  th is  is  th e  case, then f*(NKv)--N(D--1-K v )  and
f * N (D ' K v ).  Hence N K r-4 if  and only i f  N(D"-FK v ) O.

Pro o f . ( 1 )  Since V has only rational singularities, we have q (V )=q (V )=0 . For
(2), we refer to [8; § 1.5 ez § 2.5].
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(3 ) Suppose that NKR is a Cartier divisor. Then E :=4*(NKv)—NK v  is a Cartier
divisor and supported by SuppD. B y  the assertion (2), we see E—ND*' - - 0. Since
SuppD5 USuppE is contained in  SuppD which has negative intersection matrix, we
must have NE 5 = E .  Hence N D* is an integral divisor and f*(NKR)=N(D 5 +1(v ).

Suppose that N D* is an integral divisor. Since (N(PL-I-Kv ), Dt)=(f*(NKv), D z)=0
for each irreducible component D i  o f D , N(D*-I-Kv )  is linearly equivalent to a  divisor
J  w h ich  is  disjoint from D  (c f. Artin [ 1 ;  C o r . 2.6 ]). Note that NKv=f*NKv=
f*NUYLkKv)--f*ZI which is a Cartier divisor. Hence NKr: is a Cartier divisor.

Q. E. D.

Proposition 1.3. L et (V , D) be  a lo g  Enriques surface. T hen  , c (V ) i (V —D)=0.
Moreover, i f  K(V)=0, then V has only  rational double singular points and either V  is a
K3-surface or V  is an Enriques surface.

P ro o f . By virtue of [8; Lemma 1.10], we have h°(V, n(D+Kv ))=-- h°(V, n(zEP-FKv))
=1, for each positive integer n satisfying n(IP'H-Kv )--'0 (c f . Lemma 1.2). Therefore,
k(V -D )= 0 .

Suppose that K(V)=0. Then there exists a positive integer N  such that ND* is an
integral divisor and NK v  is linearly equivalent to an effective divisor J. S ince 0 -.-
N(D*.d-Kv ).--ND*4-4, we have D5 =4-=0. D 5 =0 means that D  consists of (-2)-rods
and (-2)-forks (cf. [ 8 ;  § 1.5]). Namely, V has only rational double singular points.
Note th at V  is  a minimal surface, for NK v -- 0. By the classification theory of non-
singular surfaces and by the hypothesis that x(V )=q(V )=0 , w e see  th a t V  i s  a  K3
surface or an Enriques surface. Q. E. D.

Let (V , D) be a log Enriques surface. Denote by I) the reduced divisor SuppD5 .
Then D—D consists of exactly those connected components of D  which are contracted
to rational double singular points on V . Therefore, (V , D ) is also a log Enriques
surface with the same index as (V , D )  (cf. Definition 1.4 below).

In view of Proposition 1.3 and the above argument, we assume, until the end of
the present article, the following two conditions :

(1) K(V)= — 00, hence V  is a rational surface,
(2) Supp(D")=Supp(D)* Ø.

Definition 1.4. L et V  b e  a  lo g  Enriques surface. We denote by Index(KR) or
simply by I ,  the smallest positive integer such that IKv is  a Cartier divisor.

Actually, /KR-0 which is proved in the following lemma.

Lemma 1.5. (1 ) (K 14 -1 , and I(D*-1-Kv ) , , -, 0.
(2 )  L et N  be a positive integer. T h e n  h°(V, —NKv )#0 if  and only if  I is a divisor

of N .

P ro o f . (1 )  Since K v —D", SuppD5 =SuppD* (Z) and D  has negative definite in-
tersection matrix, we have (1( 1

27) —1. If 1 =1, then V is Gorenstein. Hence K v=f*K r
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and because V  has only rational singularities. This contradicts the assumptions
that Sing(V) 95 and SuppD4 = SuppD . Hence ./> 2 .  N ote that I(D 5 -kKv )-=0 . Hence
I(Ir 5 ± K v )--0 and /Ki7, 0 by the  additional assumption that V  is rational. In particular,
h°(V , — IK v )#0.

( 2 )  Suppose th a t h°(V , — NKv ) * O .  Then —NKv  is linearly equ ivalen t to  an
effective divisor 4 .  Note that N.D°— + K v ) = - 0 .  Since D 5  has negative definite
intersection m atrix , w e have N11)5 = 4 .  Hence N D'' is an  integral divisor. So, NKv
is a Cartier divisor by Lemma 1.2. Then, N  is divisible by I  by the  definition of I.

Q. E. D.

The inequality (**) in  the  following proposition is very helpful in proving Theorem
5.1 and Proposition 6.6.

Proposition 1 . 6 .  L et (V , D) be a log Enriques surface and le t c  be the number of
connected components o f  D .  L e t p  an d  q  be integers satisfying 15q<1,- --z
Index(Kv)). Then we have:

K v ) <
2c(1)--9)2±(P—P2XICT24 

(P— O P - 1- 4- 1)
and

(**) (D, K v )5c-1— (1Q) if

I f then c <-3 (K T
27). I f  c =1  then 1=2 and D has the  configuration to be given in

Lemma 1.8 below. (T he case c =1  has been treated in f110; Proposition 2.2]).

P ro o f. Let p, q be the  same as in the statement. We claim first that hz(V , (p—q)D
h °(V , — (1) - 9)D— (1) - 1 )K v )=0 . Indeed, suppose th a t h° (V , — (13.- 4)D— (1)—

1)Kv ) # 0 .  Then h°(V , — (p-1)K v )#0. Hence I  i s  a  divisor o f  (p -1 )  and —1 by
Lemma 1.5. This contradicts the  assumption

N ext, w e claim  that h°(V, (1) - 9)D-EPK v)=-0. S uppose , on  the  contrary, that
h°(V  , (p— q)D+pKv)#0. Then h °(V , [PD ']+PK v )=- 10(V , PD-i-PKv)#0 (cf. [8; Lemma
1 .1 0 ]). Here, [PD 5 ]  is  the maximal effective integral divisor such that NY —[pDs, ]
is effective. Let 4 be an effective divisor such that [PD *]+PK v --4. Then P(D'±Kr)
—4-F(pD 4 —CPD5 1). Since D5 -kK v

- - 0 ,  w e have  4 , 0  a n d  PD*'=[PD"] which is an
integral divisor. Hence I  is  a factor of p  and i p .  T h i s  contradicts the assumption

Write D = E D , where D ,'s are  irreducible components of D .  Note that D consists

of rational trees. Hence we have 1.1, (Di, 1). )=n— c. Therefore, 2p a (D)-2=(D, D+K v)

=11(1)!)+E(Di, Kv)+2 E (Di, D i)= (2P (D 1)-2 )+ 2(n — c)= -2c . Hence, p a (D)=1—c.
Applying the Riemann-Roch theorem, we obtain :

1
0  — 121(V (1) - 9)D±PK v)= -

2  
[(15

 — OD+ PKv] Up —  OD+ (P — 1)Kv] } +1

(*)

Hence we have :
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0 >[(1, - - 9)D - FPKv][(1) - 4)D - KP - 1)Kvi

= (p — 9)2(132)- F (2 P — 1 )(1)—  OD, K O - K Y  —  g )

=(P - 4)2 C- 2c — (D, Koi--1-(2pœ1)(P-9)(D, K ) - KY  — P)(1g)

= —2c(p — 0 2 - 1- (p — 9)(P +4-1)(D, K ) - F(Y — P)(Kin.

Thence follows the second half of the inequality (*). Setting p=2 and q=1, we obtain
the inequality (**).

Since Supp/Y=SuppD, each connected component Zl i  o f  D  contains a n  irreducible
component D i  w i t h  (D 7 )  — 3. H ence (4 i , K v )(D z , K )= — 2— (M )1. Therefore,
(D, Kv).-c.

Suppose /_4. Setting p —_3 and q=2 in the inequality (*), we obtain c<(2c-6(Kr7))/4,
i. e., c<-3 (K ,27).

Consider th e  c a se  c = 1 . S u p p o se  /_ 3 . T h e n  (D, K v ):<_—(Kr,) b y  th e  inequality
(**). H e n c e  (D -1P, K v )=(D ±K v , K v )0  b e c a u se  D*H-Kv --.0. Since D — D 0  by
Lemma 1.2, we have (D — W , K )=0 . Hence D — W , w hose support coincides with
SuppD by Lemma 1.2, consists of (-2)-curves. Hence D#=.0, SuppD=SuppD"-= 0 and
S i n e =  0 .  This is a contradiction. Q. E. D.

In the subsequent Lemmas 1.7, 1.8 and 1 .9 , w e shall prove that c.- -3(K rz) even
when I  (=Index(Kw))=2 or 3 , where c  is  the number o f connected components o f D.

Lem m a 1.7. Let (V, D ) be a log Enriques surface. W rite D =  D i  and D " = a i D i ,

where D i 's are irreducible. T hen w e have:
(1) g. c. d. (Ict i , •  • •  , /a )= 1 . In Particular, if al= ••• =a., then  a 1 =1/I(1 i_<n).
(2) cr1f;*1/2 fo r  at least one index i.

P ro o f .  ( 1 )  Denote by s=g. c. d.(/ai, ••• , l a ) .  Since (K 4 = ( 1 " 2 < 0 ,  th e re  is  a
(-1)-curve E  on V .  Note that 1= — (E, K v )=(E , D ')=s /IE ( Ia 1 ls)(E, D z ). Hence / / s

is  an  in teg e r. On the other hand, (II s)D"=E(Ia i / s)D, is an  integral divisor. Hence,

w e have s=1.
( 2 )  Suppose th a t  a 1 >1/2(1.<i n). L e t  E  b e  a  ( - 1 ) - c u r v e  o n  V . T hen  0=

(E, DO> — 1+(1/2)(E , D i ). Hence E(E, D,)..<1 and 0=(E,

—1-Fmax { a, ••• , a n } <0 by Lemma 1.2. This is  a contradiction. Q. E. D.

L em m a 1.8. Let (V , D ) be a log Enriques surface and let J  b e  a connected com-
ponent o f  D .  Suppose that each irreducible component of 4  h as  the same coefficient in
1Y , say  a. T hen either 4 consists of a  s ing le  curv e w ith self-intersection number
—21(1—a), or Z1 is a linear chain such that two tips o f  J  have self-intersection numbers
(a-2)/(1— a) and the others have self-intersection numbers —2.

Suppose th at D =aD . T h en  a=1 /I, 1 =2  or 3 and c=— (Kr,) or — 3(KA  accordingly.
Moreover, D"=(1/3)D if and only i f  D  consists o f isolated (-3)-curves.
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Rem ark. (1 ) If  1=2 then D*L=(1/2)D (cf. Lemma 1.2).
(2 ) If  D"=(1/3)D, we shall prove in Corollary 5.2 that c=3  or 9.

P ro o f . We claim that 4 is a  ro d . S u p p o se , o n  th e  con trary , that J is a  fork.
Then one of three tips of LI, say  D1 ,  is a  (-2)-curve. Since (D„ 4— D 1 )=1 ,  we have
(D,, D 4 H-Kv)=a+a(D)-F(D1, K v )•=a-2a= —a#0. This contradicts D4 +K v =-0. There-
fore, J is a  r o d .  Then the first assertion of Lemma 1.8 follows from the  observation
that the intersection number of with each irreducible component of J  vanishes.

Suppose that D ° =aD . Then a =1 / I  by Lemma 1.7. P ut n1 := —2/(1—a) and n2:
=(a-2)/(1— a). Since n , o r  n , is  the self-intersection number o f a  tip o f a  connected
component d of D , w e see that n , o r  n2 m u s t be an  integer. Hence 1=2 or 3. Let
t  b e  th e  number of all isolated irreducible components o f D .  Note that K v -- -_—/)° -=
— aD . Hence, —(Kr7)1a , (D, K v )= t(-2+2/(1— a))+2(c— t)(-2+(2— a)/(1— a))=2acl
(1— a). Hence c=(a-1)(K 1

2,)/2a 2 . S o , we obtain c=— (K ,) o r  —3(K T
27) according as

1=2 or 3. If 1 =3, then D consists of isolated ( -3)-curves. Conversely, if  D  consists
of isolated (-3)-curves, then IP=(1/3)D because (13*-F-Kv , D.)=0 fo r  each component
D i  o f  D. Q. E. D.

Lemma 1.9. Le t (V , D ) b e  a  lo g  Enriques surface w ith 1= 3 .  Then c -3(K ,4,
and the equality holds if and only i f  D=(1/3)D.

P ro o f . If  h°(V , (p-q)D+pK v )=0 for p=3 and q=2, w e have c < - 3 ( K )  by the
same proof as in Proposition 1.6. Suppose h°(V , D+31i-

v ) 0. Then D+3K v  is linearly
equivalent to an  effective divisor J .  The hypothesis Supp/Y=SuppD implies that 0 ‹
3./Y —D-•-•-31(1, — D - - - 4 0 .  Hence 4=0 and D°=(1/3)D. By Lemma 1.8, w e  have
c =- 3 ( 1 q ,) .  So, c - 3(K,). I f  c = - 3 ( 1 “)  then h°(V , D-F3K v )* 0  a n d  Do=(1/3)D.
If  D4 =(1/3)D then Lemma 1.8 shows c =-3 (K i

2,). Q. E. D.

We end this section by proving the  following lemma.

Lemma 1.10. Let (V, D) be a log Enriques surface. W rite D =1,1  D i  and .1Y = E a i D„

where D'i 's  are irreducible components o f D.
(1) Let E  be a (—m)-curve on V  which is not contained in D . T hen  m 2 , and  m=2

if and only i f  E n D =0 .
(2) T ake r irreducible com ponents o f  D ,  say D 1 , ••• , D r  (r_<n). Def ine rational

numbers Y i 's by  the condition:

( i D;)=0 (15_ j r).

Then, 13- _p1 _a1 <1
(3 ) Furtherm ore, w e assign a v irtual curv e B i  to each i (1.<_i<r), so that (D7)_

(M ) 5 - 2 ,  (B 1, Kv )=-2— (/31) and (B 1 , .131 )=(D 1 , D ; ) (j4=i). Define Ti b y  the condition:

r i B i +K v , 1+ 0

Then, 0_<Ti p i 5 a i  (15iZ .r).
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P ro o f . (1 ) results from the observation:

0=(E, ./Y +K v )=(E,

(2) Since E D i  has negative definite intersection m atrix , w e have i31 a because

( A(cr i —p i )Di , (OL1:

Indeed,

=
- (

( (ai—pi)Di, D 5 )— (E  a i Di , D 5 )— (±  p i D i +K v ,i=1 i=1 i= r + 1 i= 1

E D;)_<0, if
i= r+ 1

We also have j9 O (1 i r) because

D ) — (K,

(3) Note th a t  E B i  has negative definite intersection m a tr ix . W e  have

because:

.B ;)=(:»3iB id-K v , B 5 )— ( i r i B 1 +K v , .135 )

-- =(A 13 iB i+K v , B )=(A p iD id - Kv, D5)+3 5 (B,)-13 5 (D1)

—2— (BD+2 +(MY-,  (1 — /3; )((/).1)—(E3)).s-_-  0 (15_ j5 r) .

We also have r i -L » 0  (1 i r )  because

r i B i ,  B 5)=-(K v ,13;)=(/33)±2.0 (1S j r). Q. E. D.i=1

§ 2 . Canonical coverings of logarithmic Enriques surfaces

Let V  (or synonymously (V, D , f )) be a log Enriques su rface . D enote by V ° the
smooth p a r t  V—(SingV)=V—D. B y  the re la tion C(ID*) . - 0(— K )®' (/ :=Index(KO)
and a nonzero global section of 0(1.1Y ), we can define a  Z//Z-covering f t:  0 . -1/ such
tha t 0  is  normal and the restriction 2r° o f it to  U° :=ft - '(V°) i s  f in i t e  and  k a le . B y
Lemma 1.7, U  is connected . A ctually , ft - J(D )  is contrac tib le  to  quotient singular
poin ts on  a  norm al pro jective  surface  -13 (cf. [13; Cor. 5.2 ]). Let r :  U - 4 1-7 b e  the
finite morphism induced by ft. Note tha t ft° is  induced  by  the relation I(—K0)---.M
and U is the normalization o f V  in  the  function field C(U°). Note that Kuo--,7:°*(Kv o+
(/-1)(—Kv0))--, 27e*Kvo--2Kuo a n d  Ku o-A .  Hence Ku--,0  and there are only rational
double singular points on U . Let g: U--÷U be a minimal resolution of singularities of
U . Then Ku - 0 .  Hence U  is an  abelian su r fa c e  o r  a  K3-surface. N ote th a t U=U
when U  is  an abelian surface.

Definition 2.1. The surface U (resp. the  map 2r : U--, V ) defined above is called
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the canonical covering (resp. the canonical map) o f  V.

Assume /=pq with p<i and q < I .  Set V1 =U/(z /pz ) where Z/pZ is considered
a s  a  subgroup of Z//Z which acts on  U .  Then V=U 1(Z/ IZ )=U 1/(Z IqZ ) where the
action of Z/qZL=(Z//Z)/(Z/pZ) on  V , is induced by the action of Z//Z on  V .  Let

: U, and 72 : U,, V be th e  natural quotient morphisms. L e t U?=-Tril(V°),
ziluo and 72=7 21 u7. Note that 7? and 7(2' are étale and ir is constructed by means of
th e  re la tio n  q(— pK v 0)- 0 .  W e h a v e  Ku1 ,--4*(Kvo—(q-1)pKv0)^(P+1)72*Kvo"-(p+
1)Ku ?. Hence pKu 1'--0  and pK0 1- 0 .  Note also  that r  is constructed by means of
the relation p(—Ku?)-0. Let g 1 : U 1 —U1 be a minimal resolution and let B = g -i-i(Sing0 1 ).
A s in  Lemma 1.2, we have p(B *4-K u i )--gt(pK u i )- 0 .

Lemma 2 .2 . L et J  be a positiv e integer. T hen JK01 is  a C artie r d iv iso r i f  and
only  i f  p  i s  a  div isor o f  J. M o re o v e r, U , i s  a  rational log Enriques surface with
Index(Kad=p. I f  U is nonsingular then 2 is not a divisor o f  I.

Pro o f . We have proved that pK v , is a trivial Cartier divisor. Conversely, suppose
that JKu i  i s  a  C a rtie r  div isor. In order to show that p is a  divisor of J , we have
only to show that qJKv is a  C artie r divisor, o r  equivalently that a  divisorial sheaf
0(qJKv) is invertible.

Consider the case where q is  a prime number. L e t  y  b e a  singular point of V.
Then 7c-ii(y ) consists of one or q points because 72 is a finite Galois morphism of degree
q  between norm al surfaces. Moreover, i f  7V(y) consists of q points {x i }, we have
6 17,, 6u i , x i , where "A" means the  completion. Hence J.Kv is  a  C a rtie r  divisor near
y .  Now we assume that z i'(y ) consists of a single point x .  Let e be a  generator of
CUlfu i ) a t  an affine neighbourhood N  of x .  Note that x  is fixed under the ZlqZ-
action. We may assume that N  is stable under the action of Z/qZ by replacing N  by
n g N  where g  moves in  Z / q Z . Since K0?=-7tKvo, there is a  natural Z/qZ-action on
OC/Ku) compatible with the action of Z/qZ on Ou i . The action extends naturally to
a n  a c tio n  o n  O(JKu i ). N ote  th at f o r  each gEZ1qZ, g ()=X (g )e with a unit X(g).
Note that 0(qJKu 1)  is  an invertible sheaf over N  which has a generator eg and on which
Z lq Z  also  acts. Set n=Hg(), w here g  moves in  Z / q Z . Since 72=ue 2 w ith  a unit

u, 72 is a  generator of 0(qJKL71 ) over N .  Since 72 is  Z/qZ-invariant, .y) is viewed as an
element of [ '(7 2 (N)—y, 0(qJKvo))=1"(7r2(N'), 0(qJKv)). We claim that 22 is  a  generator
of 0(q/Kv) over rc2 (N ) .  For any aEr(7r 2 (N), 0(qJK,7))=P(7r 2 (N)—y, 0(qJKv o ))c .P (N -
x, 0(qJKu7))=r(N, 0 (4.1Ku1 )), a  is written as a = y ,  with a section y of O N .  Since a
and 7) are  Z/qZ-invariant, y  i s  Z/qZ-invariant. Hence y  comes from a section of
0, 2 ( u ) • T herefore 7) is a  generator of 0(qJKv) and e(qJKv) is invertible over 72(N).

In  a  general case, let q, be a prime divisor of q . We consider the natural morphism
:=1711(Z/q,Z) instead o f th e  morphism 7 2 . By the  same arguments as above,

we can prove that q,J.Ku, is  a Cartier divisor. Continuing this process, we see that
qJKv is a Cartier divisor.

Hence p(=//q) is  a  divisor o f J  by the definition of I. In particular, K a, is not
a Cartier divisor. Hence V , has at least one singularity of multiplicity greater than 2



428 De-Qi Zhang

a n d  B " * O .  S o , K(U1)= — co  because  P(B'±Ku 1)--,0. I f  U , i s  a  ruled surface with
q(U1) 1 , there  is  a  P'-fibration :  U 1—*C w ith  a  nonsingular curve C o f genus equal
to  q(U1). Hence B  is contained in  singular fibers of P .  L e t  L  b e  a  general fiber of
0 .  T h e n  —2, (L, Ku 1)=- (L ,B 4*-FKu 1 )= 0 .  T h is  is  ab su rd . S o , U, is a rational surface
a n d  U1 i s  a  log  Enriques surface.

Suppose th a t 2 is  a  divisor o f I  a n d  V  is nonsingular. Let V 1 :=C //(Z /2Z ). Then
U1 h a s  o n ly  ra tio n a l double  singu lar points and KE71 i s  a  C artie r d iv is o r . T h is  is  a
contradiction. Q. E. D.

In  view  o f the  above lem m a, w e assum e th a t  I  (=Index(Kv)) is  a  p rim e number
in  order to  obtain the inform ation about V , e. g ., th e  singularity  ty p e  o f V .  Possible
d iv isors of I  a r e  g iv e n  in  th e  follow ing lem m a. T h e  idea o f  th e  proof is found in
[10; p .  1081.

Lemma 2.3. L et V  be a log Enriques surface. Then ço(I) b2(U)— p(U).21, where
ço(I) is the Euler function and b 2(U) is the second Betti number. Hence each prime divisor
o f  I is not greater than 19 and the following assertions hold true.

(1) I f  J1 I  w ith J=13, 17 o r 19, then I=-2 i •J(i=0 , 1).
(2) I f  1111, then /=2 1 -11 (i=0, 1, 2) or 2i.3.11(i=0, 1).
(3) If  711, then I=2 i •7 (i=0, 1, 2) or 2i •3•7 (i=0, 1).
(4) If  511, then /=2 i •5(0 - i 3), 2 i •52(i=0, 1) or 2 1 . 3 . 5 ( 0 i 2 ) .
(5) I f  there are no Prime divisors in  I other than 2 or 3, and if  311, then /=2'.3

(0_<iS4), 2'.3 2(0 < i2 )  or 2 i .33(i=0, 1).
(6) I f  I=2 i then 1_‹-i<5.
In particular, 2 1.---L:66, and if  I is not a prim e number then 211, 311 or 511.

P ro o f . W e use  the  sam e notations as set before Lemma 2.2. Note the Z / /Z  acts
o n  U  biregularly b e c a u se  it  a c ts  o n  U biregularly and  U  is  a minimal resolution of
singularities o f  U .  Hence Z / /Z  acts o n  H:=11 2 (U;Q)IN S(U)OzQ and dimH=b 2(U)—
p(U)<-- 21 because b2(U)=6 i f  U  is  an  abelian surface and b2(U)=- 22 if U is a K3-surface.

C laim . Z lIZ  ac ts e ffec tive ly  o n  H , i. e., th e  natural m ap 77 Z/IZ— >GL(H) is
injective.

D e n o te  b y  G2 =Ker7) a n d  U1=U1G 0 . N o te  t h a t  G , a c ts  tr iv ia lly  o n  H E W ,

H°(U, K u )e f / 2(U, Ou)eH i (U, Q,-,)/NS(U)Ø 5 C and  hence  ac ts  tr iv ia lly  o n  H ° (U, K ) =
H°(U, Ku)=H°(U°, K u 0)---- - 'C . H ence H°(V .,, K 1)=- H ° ( / / , K u ?)-L--,'H°(U°, Ku o)#0 and  Ku,
is  lin e a r ly  e q u iv a le n t to  a n  effective divisor.  T h is ,  toge ther w ith  1G0 Ku i 3O (cf.
Lemma 2.2), implies B y  the  same Lemma 2.2 w e  h a v e  G0 =-(0). T h e  claim
is proved.

N ote th a t a  generator A  o f  72(Z //Z) satisfies the  equation T 1 —1=0 a n d  th a t ,  as
a n  element o f  G L (H 0 0 C ), A  is conjugate to a diagonal matrx [e i , ••• , e h ]  w h e re  h =
dimH. T h e n  ef = 1  ( 1 < i h )  a n d  w e  m a y  assume th a t 6, is  a prim itive /-th root of
the  un it b y  th e  same a rgum en ts as in  the  p roo f o f  t h e  a b o v e  c la im . L e t  f (T )  and
g (T )  b e  th e  m in im a l polynomials o f  A  a n d  e l  o v e r  Q, respec tive ly . T hen  f(A )=0
implies f ( e ) = 0  (1 5 i_ <h ) . Hence g(T )If (T ) in  Q [T ] .  In  p a rticu la r, ço(I)=degg(T)
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d e g f(T )d im H . T he  first asse rtion  o f Lemma 2.3 is  now  p roved . T h e  remaining
assertions follow by a  straightforward computation. Q. E. D.

T h e  following two lemmas will be used in  th e  subsequent sections.

Lemma 2 .4 .  Let V  be a log Enriques surface. Let /:=Index(Kv) and let c and e
be the numbers of all connected components of SingV and 7r- 1 (SingV), respectively. W e
use the notations 7r: 1.7—W and g: U—>F_T as set at the beginning o f § 2 .  Then we have:

e(U)H-p(V)— p(U) e."=-I(p(V)— c+2),

where e(U) is  the Euler number.
Suppose further that L =c (this hypothesis is satisf ied i f  I  i s  a prim e number) and

that U  is a K3-surface. Then we have:

c 21-Fp(U)—p(U).<21 and p(V)—c+2:23/ .

Pro o f . L e t  y„ ••• , y e b e  a ll s in g u la r  points of V. T h e n  e(g - 1 rc- 1 (Singri))="(+
p(U)—p(U) because g 1(Singt7) consists o f rational trees. Since D  consists o f rational
trees, we have e(D )=c+# (D ), where #(D ) signifies the number of all irreducible com-
ponents o f  D .  By noting that 7  is étale over V°, we obtain :

e(U)—e(g - '7 - '(SingV))=I(e(V)—e(D)).

B y  Noether's fo rm ula , w e  h a v e  e(V)=12—(K 1
27 )= p (V )+ 2 = p (V )+ # (D )+ 2 . So, the

first assertion of Lemma 2.4 follows.
Suppose that e= c and  U  is a  K3-surface. B y  t h e  first assertion  o f Lemma 2.4,

we have:
1  c= (2I + I p(7)-1- p(U)— p(V)-24)

/-1

1  
=2 + (I p(7)-Fp(U)— p(C)-22)

/-1

1
5_2+ (Ip(C )-Fp(U )— p(U)- 22)/-1

=2-ho(U)—p(U)±p(V)d- 1  (p (U )-2 2 )/-1

<22±p(V)—p(U).

W e also  h a v e  I(p(7)—c+2)=24+p(V)—p(U)—c1- 24+p(17)-20—c=(p(7)—c+2)+2.
Hence we obtain p(V )— c+2_21(I-1 )>0 . O n the  other h an d , w e have p(V)—c+2=
(24+ p(U)— p(U)— c)//.< 23/I.

Consider the  case where / is a  prim e number. Then r - 1 (y , ) consists of one  o r I
p o in ts . If 7r- 1 (yi) consists o f  I  poin ts {x,.,} fo r some i, then 6u ,x -=6 ;7 . Hence y i

i s  a  rational double  singular point. T h i s  contradicts our assumption. Therefore,
7 - 1 (y 1 ) ( 1 < i c )  consists of a  single  poin t and  "e=c. Q. E. D.

Lemma 2 .5 .  Let V be a log Enriques surface. Suppose that V  is nonsingular and
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I (==Index (K)) is a prime num ber. T hen fo r  each singular point y of V , 7r- '(y ) consists
of a  s ing le  smooth point, and 6,7. CE[X, IOE/C 1 , ,  w ith  a  cyclic subgroup C 1 ,, of
G L(2, C), where 1_.q.<1. - 2  and g. c. cl. (q , 1 )= 1 . The action of C 1 ,, is given by:
eX and gY =eq17 , where g  is a generator o f  C 1 ,, and e is a primitive I-th  root of the
unity.

P ro o f . T h is  follows from  the argum ent a t  t h e  e n d  o f  t h e  previous lem m a, the
smoothness o f  U  an d  th e  assum ption that y  is  no t a  rational double singular point.

Q. E. D.

§ 3 .  The case where the hi-canonical divisor is triva l

L et V  (or synonymously (V, D )) b e  a  l o g  Enriques su rface  w ith  Index(Kp)=2.
T hen  D=(1/2)D and the configuration of D is described  by  L em m a 1.8. L et Gi (1-1:-:

be all connected components o f  D an d  se t n ,= # (G ,). Let r :  I7---4V b e  th e  blow-
ing-up o f all singular points of D (intersection points of irreducible components o f  D).
D e n o te  b y  D t h e  proper transform  o f  D .  T h en  D consists o f  isolated (-4)-curves.
Since 2(IY+K v )=D+2Kr-• , 0, we have b+2K-, , , -, 0 .  Hence ( (7, b) is again a log Enriques
surface and if 1: '17—>17* is  the contraction of D then  Index(Kv .)= 2 . As in § 2 , u s in g
the relation A-- —2Kp, w e can find a  finite morphism 0,17, w h ic h  is  é ta le  over

-D  and  totally ram ified over D. T hen  CI' is nonsingular and  (7.ir- ) '(G 1 )  consists of
272,-1 (-2)-curves which are contractible to a  rational double singular point of Dynkin
type Indeed, i f  7r : U-47 is  th e  canonical covering a n d  if  f :  V—>V a n d  g :
U—>U are m inim al resolutions, then I-1-=U and rog=foroFt. Note that U is a K3-surface
because there a re  rational curves on  U.

Lemma 3 .1 .  Let (V , D ) be a  log  Enriques surface w ith  Index(Kp)=2. Then the
minimal resolution U  of the canonical covering U.1 of (V , D ) is a K3-surface. Moreover,
#-(D)_10, and if G i (1 < i< c ) i s  a  connected component o f  D  w ith ni :=#(G i ), then
7r- 1 (f(G 1 )) is a singular point of Dynkin type A 2 n 1 _ 1  on U  and Ir'( f (G i) )  (1 5 i< c ) ex-
hausts all singular points of U.

In particular, #(Sing FJ)= #(Singr7) e_<#(D )- --, 10.

P ro o f . W e have only  to  show  th a t # (D )  10. By Lemma 1.8, w e have  —(Ki,) 2 -=
# (b )= # (D ).  N ote  th a t  20 ._p(0) ....•>_p(17)=10—(K17)2 = 10+ # (b )= 10+ # (D ). So, #-'-(D )_
10. Q. E. D.

T h e  upper bound 10 fo r  * S i n e )  i s  th e  best possible one in view of the following
example :

Example 3 .2 .  Let 7 r :  2" 1—>P1 b e  th e  P'-fibration o n  a  Hirzebruch surface X ,  let
L  be a  general fiber an d  le t M  be the (-1)-curve of E 1.  Take a nonsingular irreducible
member A  i n  12M +2L1. T h en  th e re  a re  exac tly  tw o  ramification points P, (i=1, 2)
for a double covering 7 1A  :  A -4 3 '. L e t L , be  th e  fiber w ith  P,E L , an d  le t L3(7=- 1, 1,
L 2 ) be an a rb itra ry  fibe r. T hen  A  m eets L 3 i n  tw o d is tin c t p o in ts . Since dirn1 M+L I
=2, there  is a n  irreducible member C in  1M-1- L  so  th a t P1 , P2 E C .  D enote by P3:-=
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Mr1L 1 and P4 := C n L 3 and denote one of the points A n ti, b y  P ,.  Let r i  : V 1—>2' 1 be
the blowing-up o f five points Pz 's and set E,:=7T 1 (13 ,0 ( j= 1 , 2 ) . Let r2 : 172—>171 be
the blowing-up of two points () 3 :=r(4 )(1E1 and Q 4 :=ri(A)(1E2 and set E,, k )
(k=3, 4). Let 73 : 17 .-17

2 be the blowing-up of two points z- z-;(A)P,E, and .z- r;(A)nE4.
Set r  :=z- 1 or2073 , E'k:=r(Ek), L 'i,:=1-'(L,), A' :=1-'(A), M ' : =

e (M ) and D :=  ± ,E ± L '„ H -A '-F C '± M '.  Then D  is a rod with two (-3)-curves as
n = i p = 1

tips and eight (-2)-curves in between. By noting that L p + A ± C ± M ---2 K 11,  we
1

can check that D - - 2 K .  H ence (V, D ) is a log Enriques surface w ith  Index(Kf)=2
and with #(D )=10. L e t  : — > V  b e  the blowing-up of all nine singular points of D
and and let b  :=  ( D ) .  Then (fl, b ) is a  log  Enriques surface such that D + 2 K -0
and fi consists of ten isolated (-4)-curves.

Now we are going to state and prove Theorem 3.6 which is a main result of the
present section. For this purpose, we need several lemmas.

Lemma 3.3. Let (V , D ) be a log Enriques surface such  that Index(Kv)=2 and D
consists o f isolated ( -4)-curves. L e t 0: V— J ) 1  b e  a P'-fibration. Suppose that S is a
singular f iber containing at least one component o f D  and that D . (1 u r-F1) are all
components o f D  contained in  S .  Then either r=0 or there are ( -1)-curves
such that (E,, D5,,1)= 1 .  More precisely, one of the following cases occurs:

Case (1). W e have r = 0 .  There are integers s 1, a 4 O and irreducible components
C i (j) ()I< j ai ) o f S such that C i (0) is a ( -1)-curve and C i ( j )  is  a ( -2)-curve

i f Moreover, (1-Fai)=4, (D1, Ci(0))=(Ci(i), C4(j+1))=1(0 j< a i)  and Supp,S=-

i =
Di+EC JD.

Case (2). W e have r 1. There are integers and irreducible
components C i (m) (1<il<s; 0-.< m a i )  an d  C s , ; (n) (1 t; 0 " . n5b . i )  o f  S  such that
C 5 (0) (1 1) s ± t )  i s  a  ( -1)-curve and C ( q )  i s  a  ( -2)-curve i f  q 1 . M o re o v e r,

(1+a)= ±(14-b;)=2, (D 1 , C•(0))=(Dr + ,, C8+;(0)) -=(C 5 (q), C n (q+ 1 ))=1  and SuppS=

ED,L +E E „±  E C 5 (q) fo r  all possible i, j,  p  and q.
P q

Case (3). W e have r = 2 .  T here are ( -1)-curves F„; (1 i 3 ) such  that (F i , D i )=1
and SuppS= ED.+ E.E,-1-EFi .

Case (4). W e have r = 3 .  T here are ( -1)-curves F ,  (i=1, 2) such  that (F1, D1)=
(F2 , D3)=1 and SuppS=E D .+E E „+E F i .

P ro o f . L et E, and  C.,  (1 /S n )  be all ( -1)-curves and ( -2)-curves in
S, respectively. Then SuppS=ED„-I-E.E z -FEC, by Lemma 1.10, (1). Note that (E„
E k )=0 (i-iL-k) and the dual graph of S is a  connected tree. We shall show that ED.+
Z E , is a  connected tree. We have only to consider the case where there are (-2)-
curves in S .  Let C be a  connected component of E C ,. Noting that (C, D)=0 by (1)
of Lemma 1.10, that S is connected and that E C, has negative definite intersec-
tion m atrix, w e can find a  ( -1)-curve in S, say E l ,  such that is  a rod, ( E1,
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ED„)>_1 and (E,-I-C, Et)=(E1+C, C1)=0 for each i= 1 and each C h 5: EC,— C .  Hence
C  looks like a  twig in  S .  Therefore, ED y + E E , is a  connected tree. So. S  is as in
the case (1) of Lemma 3.3 if  r=0, i .  e ., if  there is only one component o f D  in  S.

Suppose r > 1 .  Take (-1)-curves in  S , say  E„ (1_•<v <r'), such that E D „± E E , is
connected while ED.+ E Et , is not connected for every 1 We shall prove that

v*k

r i= r  and Ey 's  satisfy the requirement of the f irs t  assertion  o f Lemma 3 .3 .  Suppose
th a t  ED.+E.E, i s  n o t  a  ro d . T h e n , there is a  (-4)-curve in  S , say DI ,  such that
D , meets three (-1)-curves, say E k  (k =1, 2, 3) because S  is contractible to a nonsingular
rational curve and (Di, D,)=0 j ) .  By our assumption, ED.+ E E„ is not connected.

v#k

Hence E k  meets a  component H k  o f  E D .. T hen , Supp S  (--SuPP(Di+ETIk +E E k ))
is  no t con trac tib le  to  a  nonsingular curve. W e reach a contradiction. Therefore,
ED.+EE, is a  rod . N ote  that (E 1 , ED.)=2 (1 -._ k 5 r') ,  for otherwise (E 1 , ED.)=1
and ED.+ 11, Et , is connected, which contradicts our assumption. Hence r '= r  and EE,

vok

meets ED„ as described in  Lemma 3.3.
If each (-1)-curve other than Ey 's  in  S  meets only D , o r D ,  among Dy 's ,  then

S  d ro p s  in  th e  c a se  (2) of Lemma 3.3 by the above arguments. Suppose that there
are (-1)-curves F k  (1 k <s) , other than E n 's, meeting one of D2 , ••• , D .  T h e n  s=1
and F, meets only one component of Supp S— F, because ED.+EE.+EF k  has negative2 

definite intersection matrix and S  is contractible to a  nonsingular curve. Thus S drops
in the case (3) or (4) of Lemma 3.3. Q. E. D.

Lemma 3.4. Let (V, D) b e a log Enriques su r fa ce  w ith  Index(Kv)=2. T hen P 2 i s
a  r e la t iv e ly  minimal m odel of V.

P r o o f .  Since (K i
27)=— c<9 by Lemma 1.8, c  being th e  num ber o f  all connected

components o f  D, there is a  birational m orphism  : V- 4 E .(0 < n 4 ) by Lemma 1.10,
(1). Let 7r: E . — >P' be a  P'-fibration of E . and let M  be a  minimal section of 7r.

Consider first the case where 77'(M ) is not a  component of D . Then —2- (72'M) 2

(1112 )= — n 0  by Lemma 1 .10 , (1 ). Lemma 3 .4  is  c lea r if  n = 1 . Suppose n=0 or 2.
Since (K,;)..<7, there is a  blowing-up : V1-÷E. of a point P in  a  fiber L  o f  7  and
a  birational morphism V--.171 such that 72=72 1 .722 .  If  n= 2, then P is not contained
in  M  for w e must have (7,2'M ) 2 . — 2. Let 723 : 171 - 4 1 2  b e  the  blowing-down o f  7)1 '(L)
and 771 '(M ) .  T hen  w e  ob ta in  a  birational morphism  3 °72: I f  n= 0, let :
V1- 4 :"  be the blowing-down o f 771 '(L ) and 271'(M1) w here  M 1 i s  the minimal section
w ith P E

Assume 72'(M ) is a  component of D .  If  n 1, Lemma 3 .4  can  be  proved  by  the
sam e argum ent as a b o v e . S o , we assume n  2 .  Let y :  17--17  b e  the blowing-up of
all singular p o in ts  o f  D .  S e t  b : • ' ( D ) a n d  /a :=r.'7)/(M). T h en  W , b )  i s  a  log
Enriques surface and b' consists of isolated (-4 )-cu rv es . Set 0  :=7r.77 a n d  0 :

^1 7 - 4 '.  T h e n  /a  is  a  cross-section o f  0 .  L e t S 1 , • •• , S k  be all singular fibers o f 0
and let g t :-=r*(S t ).

Suppose k 3 .  Then, there are blowing-up : .17
1---+E y  o f  three points P, o f 77(Sz)

(1=1, 2, 3) and a  birational morphism ny V — + V 1 such that 72=72 1 .772 . Note tha t —4
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(r)W ) 2 _<(M 2 )= — n - 2 .  L e t n'=—(72;M) 2 . L e t 723 : 171—>P2 be th e  blowing-down of,
n '-1  (-1 )-cu rv es  contained in  EnTly)(S t )  and m eeting 721 '(M ), 4—n' (-1)-curves con-
tained in  Ey2T'72(S,), not meeting 771 'M  and disjoint from th e  previous (-1)-curves, and
then th e  curve n i ' (M ) .  Thus we obtain a  birational morphism n3.172: V - 9 2 .

Suppose k .<2 . I f  S i  contains a  component o f  D , then g , looks a s  in  o n e  o f  th e
cases (1)-(4) o f Lemma 3.3 and  r contracts no  (-4)-curves of I f  S i  contains no
components o f  D , then S i  i s  a  rod consisting o f several (-2)-curves and  two (--1)-
curves E , an d  E , a s  tips with (E i , r(:11))=1 by (1) o f  Lemma 1.10 and  because (r(/*).
S ,)=1 . We have 8= (K 4 )= (K T

27)+E (# (S 1)- 1 )  a n d  E (#(S 1 )-1 )= 8 + c _ 9 . Note that
—4<(r(ft)) 2 _< -2 . Note also that i f  k=1 and S i  contains components o f  D , then gi
i s  in  th e  c a s e  (2) o f Lemma 3.3 with #(g1) #(S1) 10 and /l7/ meets a  (-1)-curve of
g i w ith  coefficient one in :Si . T herefore, in  the  case  k=1 , w e can find a  birational
morphism 721 : V-4111 such that (7211- ( .1)) 2 = —1 because #(S 1);?.10. This implies Lemma
3.4. Suppose k = 2 . It is impossible that both g i a n d  :5, belong to the  case (1) of
Lemma 3.3 by virtue o f th e  inequality E (# (s i ) - 1) 9. So, in the case k=2, by using
th e  above inequality, we can find a  birational 72, : V—>E i such that (7 2 1 1- (A-1 ))2 = — 1 and
conclude Lemma 3.4. Q. E. D.

Lemma 3 .5 .  Let (V , D )  b e  a  lo g  Enriques surface w ith  Index(Kv)=2 and c (=
#{connected component o f D}). 2. Let 72: V—>P2 b e  a birational morPhism . Then there
are exceptional curves E, (1 v. c — 1) o f  n  such that E, is a (-1)-curv e and the dual
graph o f D +Z E , is a connected tree.

Pro o f . L e t E i  (1<i-L---- m) be all exceptional curves o f  72 such that E i  is  a (—J)-
curve on  V .  L e t C;  (1 .j n) be all exceptional curves o f  n such that (C1).< —2 and
C;  is not contained in  D .  By (1) o f  Lemma 1.10, we have  (C 1 )= -2  a n d  (C i , D)=0.
N ote that (E1, E k )= 0  ( i* k ) .  Since (E1, D)=(Ei, —2Kv )=2>0, we have  n ( E1)E72(D).

We assert that n - '72(D)=D+1,1 E 1 +E C ;  a n d  that D-HZE i +EC .; is connected if
and only i f  so is D-FEE i . L e t C  be a  connected conmponent o f  EC .i . Since (C, D)
= 0  a n d  ZE i +EC i  i s  a n  exceptional divisor o f  n,  there is a  curve among E i 's, say

such that C +E , is a  rod and  (C +E i , E i)=(C +El, C k )=0  fo r  each i#1 and each
C k <E C J — C . Thus, n ( c ) , r ) ( E i ) E n (D ) and  C  looks like a  tw ig in  D-1-f2E 1 -FEC i .
T h is  proves our assertion.

We now claim that D-FEE I is connected. Suppose the claim is false. Then D +
ZE i -FEC i (=72'72(D)) and  .72(D) a re  not connected. S o , th ere  is  a  u n io n  J  o f  con-
nected components o f  D  such that n (4 ) consists of a single point,  , ( D -41)7= 0  and
7)(4)nn(D - 4)=0 because p(P 2 )= 1 .  Hence )2- '72(4)(1,7 - 'n(D — J)= 0. So, if we write
n-7) (4 )= 4 -P E E H -E ,C ; and )2- 'n(D— .4)=D-4-1-E.01±EC'j with E , E {E 1 ; 1 <i‹
ml and {C.i; then E.E--FEE ,i = z E i  a n d  l 'C './ H -E C ",'=E C ,. Since
72(J ) is a  smooth poin t o f P 2 ,  there a re  (-1)-curves Fp's i n  {E;; } such that J+211F,
is a  linear chain while J+E F — F 2  is not connected fo r each Fq 5 E F „ . Let 72, : V—>i7
b e  th e  c o n tra c tio n  o f  E F ,,  l e t  D=72 1 (D ) a n d  le t  3=7 (J). Then ( , D) is a log
Enriques surface with D4-2Kv , 0, a s  w e l l .  Clearly, 7) is factored a s  .7) ---72,07) ,  with a
birational morphism 72 2 : '17 —*P2 . Since n2(3)---)2 (J)  is a  smooth p o in t  o f  P 2 ,  there is
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a  (-1)-curve d r i n  {771(E)} or {721(C;)} such that 3)::_>_1. Then (5 „
= 2  a n d  i t  i s  im possible that 7)2(4)=7)2(34-d r ) is  a  smooth point of P 2 . Therefore,
th e  claim is true.

Restrict E i 's to a  subset {E;r e l a b e l l e d  suitably, where r m, so that
D + E E . is connected while D + E E„ is not connected f o r  each  l <  j < r .  We shallV1
show  that r= c - 1  a n d  Ev 's satisfy th e  requirement o f  Lemma 3.5. If  (E ,, 4 )=2  for
some jf _ :r a n d  some connected component J  o f  D , then (E ) , D— J+ E E2 )=0 for

(E ,  D )= 2 . Then D + E E„ is connected, which contradicts our assumption. Thusvt,
each E „ meets exactly two connected components o f  D .  Hence there a re  n o  three
components o f  D-FEE,, passing through one and  the  same point because D  has only
sim ple  norm al crossings a n d  (E„ E,)=0  j ) .  Therefore D-FEE„ has only simple
normal crossings. Suppose D-FEE„ contains a  lo o p . Then there a re  (-1)-curves, say
E k ( 1 <k <s ; s <r) ,  and  rods 4 k  such that J,, D and (4 k _1, Ek)=(Ek, ZIk)=1(40:=48)
because D  contains n o  loops. Then (E l , D — SuPP(41+ZIO+ 272 E v )=--0 and  D + E E„ is

VO1

connected. T h is  contradicts our assumption. Therefore, th e  dual graph o f  D + E E„
2= 1

is a  tree. By noting that (E1 , E,)=0 ( i# j)  an d  E t , meets exactly two connected com-
ponents o f  D , we have r=c - 1 . Q. E. D.

Theorem 3.6. L et (V , D ) be a log  Enriques surface such that Index(1(v)=2 and D
consists o f  exactly c iso late d  ( -4 ) -c u rv e s . T h e n  th e re  are  ( -1 ) -c u rv e s  F 1  (J.< j<
c - 1 )  o f  V  such that D +EF ;  i s  a  linear chain. M ore precisely , w e can w rite D=I'D i

with irreducible components D i 's  o f  D  such that (D, FJ )=(F, D J + 1 )=1 ,1 <j<c . H e n c e ,
i f  yo: V--->W i s  th e  blowing-down o f  Fi 's, then ço(D) is a  rod consisting of  two (-3)-
curves a s  tip s  an d  c -2  ( -2 )-c u rv e s  an d  (W, ço(D)) i s  a  l o g  Enriques su rf ace  with
Index(Kw)=2.

R em ark . Let (V , D ) be an  arbitrary log Enriques surface with Index(Kv)=2. Let
(V, D) be the  log  Enriques surface which is associated with (V , D ) and defined at the
beginning o f § 3 . Then we can apply Theorem 3.6 to (V, D) and obtain Theorem 3.6'
which is stated in the Introduction.

P ro o f . Suppose that there a re  (-4)-curves P, (1 i r) o f  D  a n d  (-1)-curves F,
( 1 <j<r- 1 )  of V such that (F,, ,)=(F,, P ) +1)=1. Let o :  V—>X be the  blowing-down
o f F,'s an d  le t G =a(D ) . Then (X , G) is a  lo g  Enriques su rfa c e  w ith  Index(Kx)=2.
S et R ,:=a ( k )  and R = R , .  T h e n  R  is a  rod and  (M ) =- 3  if i.-=1 or r and (R)= —2
otherwise. T h e  divisor G  consists o f  R  and several isolated (-4)-curves. Denote by
I  th e  s e t  o f  all morphisms a  o f  th e  above t y p e .  Then X is not empty. Indeed, by
Lemma 3.5, there a re  (-1)-curves E , (1 <j<c -1 )  o f  V  such that D -FE E , is a  tree.
T hen , the  blowing-down o f  E i belongs to I. Theorem 3.6 is equivalent to asserting
that there  is  a c c X  such that a(D) contains no  isolated (-4)-curves. It suffices to
prove th e  following :
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CLAIM 1. For an y  G E E  su ch  th a t u(D) contains at least one isolated (-4)-curve,
the re  is  a rE T  such  that r(D ) contains less isolated (-4)-curves th an  u(D).

W e shall prove the claim  1 b y  u s in g  the fo llo w in g  th re e  le m m a s. W e  use the

above notations o : V — X ,G =o (D ) and R = E R.

Lemma 3 .7 .  I f  there is a (-1 )-cu rv e  E  o f X  such that E  m eets one isolated (-4)-
curv e of G and one (-3)-curv e o f  R , then the claim  1 holds w ith a  m orphism  r  which
is  the composite of a and the  blowing-down o f E.

P ro o f .  Obvious.

Lemma 3 .8 .  I f  there are tw o disjoint (-1)-curv es E , and E , of X  such that (E 1 , R1)
=(E ,, R r )=(E 2 , R 2 )=(E2, G 1)=1 f o r  some and som e isolated (-4)-curve G1
o f G , then the claim 1 holds.

P ro o f .  Blowing down E , and E 2  and b lo w in g  u p  one of the intersection points
of tw o divisors R , and R R , .  W e obtain a new  surface Y from X .  Evidently, there
is  a birational morphism  r :  V—>ir such  tha t r  E .  T h en  r  satisfies the condition of
the claim 1. Q. E. D.

Lemma 3 .9 .  I f  there  is a (-1 ) - c u rv e  E  o f  X  su ch  th at (E , G 1 ) = 1  for
s o m e  3 q r  —2 and som e isolated (-4)-curv e G , o f G  then the claim  1 holds.

P ro o f .  Relabelling R== R  a n e w  if necessary, w e m ay assume q _ r— q +1 . Let
S o -=2(E+R (2)+R q _1-1-R,+ ,  and (P : X - 1 ° 1 the PI-fibration defined b y  !S o l. T h en  R q - 2

and R „, are cross-sections.
Assume r = 5 .  T hen q = 3 .  Since (1(1)< 0,  there is a singular fiber S( S 0 ). Then

there  is  a (-1)-curve F , in S  such  tha t (F1 ,  R 1 )=1  (cf. Lemma 1.10, (1)). Since (F„ G)
=2, F 1 meets a (-4)-curve in G  or R , .  Accordingly, the claim  1 follows from Lemma
3.7 w ith  E :=F ,  or Lemma 3.8 w ith  E, := F , and E ,:=E .

Assume r_ 6. Let S i  b e  the singular fiber of 0  containing R „,+•••+ Suppose
th a t S 1 con ta ins a t least one (-4)-curve of G .  As shown in the proof of Lemma 3.3,
the divisor consisting  o f a l l  (-1)-curves in  S ,  and all components of G  in S , is  a
connected  tree . Suppose fu rthe r th a t th e re  is  a (-1)-curve F , and a (-4)-curve H , in
S , such  that (F,, H1)=(F1, R 2)=1 for some qd-3-1-t r. S ince  S ,  is  c o n tra c tib le  to  a
nonsingular rational curve, t =q +3  or r .  W e have t = r  because (R , , ,  S 1 )= 1  and R q +3

has coefficient one in S i . T h u s  the claim 1 follows from Lemma 3.7 w ith  E :=  F , .  If
the re  is  no such a (-1)-curve F , as above connecting a (-4)-curve and a linear chain
.12,±3+•••+R„ then S i  con ta ins a linear chain R i  - F R 2 _3 and  th e re  e x is ts  a (-1 )-
curve F, connecting a (-4)-curve H i and the linear chain R,+•••4-12 2 _,. T hen  w e  are
done by the same argument as a b o v e . So, w e m ay  assume th a t  S , contains no (-4 )-
curves.

If q. 4 , w e m ay assume th a t  R 1 +  + R 2 3  is  n o t co n ta in ed  in  S,. Indeed, since
the divisor consisting  o f  a l l  (-1)-curves in  S ,  and all components of G  in S , is  a
connected tree (cf. Lemma 3.3), in the case w here  R i +•••d-R ,_, is contained in S i ,  we
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can find integers 1 S s q -3  and q + 3 t r  s u c h  th a t  th e re  is  a  (-1)-curve F, in  S,
sa tisfy ing  (F„ R ,)= (F i , R e )= 1 .  By Lem m a 3.8 w ith  E i := F i  a n d  E2 := E ,  we may
assume th a t (Fi, Ri+ R,) - 1. In the case (F i , R 1 )=.0, we have 0 ._5 and s=q -3  because
S i  is contractib le  to  a  nonsingu la r cu rve . T hen  R2 _3 h a s  coefficient g rea ter than  one
in  S i . T h is  is  a contradiction to  (R 2 _1 , S1)= 1 .  Sim ilarly, we a re  le d  to  a  contradic-
tion  i f  (F i , R „ )=0 . So, w e  assume th a t  R i +•••d-R2 _, is not contained in  S i .

N ow  w e a re  reduced to considering th e  c a se  w here S i  consists  o f one  (-3)-curve
R , and several (-1)-curves and  (-2)-curves. Such a  degenerate fiber S i  is described
in [12 ; L em m a 1.6]. I f  the re  is  on ly  one (-1)-curve F1 i n  S i  th e n  F, has coefficient
greater than  tw o in  S i . T h is  is impossible for the 2-section G i  o f  0  m e e ts  o n ly  F,
i n  S i  b y  L e m m a  1.10, (1). S o , S , con ta ins a t least tw o  (-1)-curves. Suppose that
there  are m ore th an  tw o  (-1)-curves F t 's  in  5 1 , th e n  tw o  o f  th e m , s a y  F, and  F2,
m eet R , .  W e m ay  assum e t h a t  (F 1 , R2 _2 )= 0 .  T h e n  F , m e e ts  a  (-4)-curve i n  G
because (F i , G )= 2 . T hen  th e  claim 1 follows from Lemma 3.7 w ith  E := F i . Suppose
th a t  th e r e  a re  ex ac tly  tw o  (-1)-curves F, and F 2  in  S i . T hen one of them , say  F,,
m eets R r . Since (F1, G)=2, F i  m ee ts  the  cross-section R2_2 o r a  (-4)-curve o f  G .  If
F, meets a  (-4)-curve o f  G  then  w e a re  done  by  L em m a 3.7 w ith  E: -= F i . So, we
assum e th a t  (F,, R2 _2 )-- -1. H ence (F2 , R2 _2 )= 0 , F i  h a s  coefficient one in S, and  F2

meets one component o f  R,,,d-• • • + R „. Applying th e  sam e argum ent to  F2 ,  w e m ay
assume th a t (F2 , R r )= 0 .  T hen w e can  show  th a t r=q+5, (F 2 , Rr_1)=1 and S1=2(F2+
R2 4 .4 )+ F i d-R2 + ,d -R ,,,. I f  q=3, in  p a r t ic u la r , th e  c la im  1  follow s from  L em m a 3.8
w ith E 1 :=F 1 and E 1 :=E . S u p p o se  q _ 4 .  L et S 2  b e  th e  singular fiber o f  0  containing
R i +.••-FR,_,. Applying th e  same argum ent for S i  t o  th e  fiber S2 ,  w e can prove the
claim  1 except fo r  th e  following case : q=6, r=11, #(5 2 )=#(S0=5 and S i  and S, have
th e  same configura tion . In  the  exceptional c a se , w e  h a v e  # (G )1 2 , w hich is a  con-
tradiction to Lemma 3.1. Q. E. D.

W e resum e t h e  proof o f  th e  claim  1 .  C onsider th e  c a s e  w h e re  G  contains a t
least tw o isolated (-4)-curves. By Lemma 3.5, th e re  a re  (-1)-curves E,'s o f  X such
th a t G-FEE, is  a  co n n ec ted  tree . In  view  o f  Lemma 3.7, w e m ay assume that there
a re  tw o  (-4)-curves G i  a n d  G2 a n d  tw o  (-1)-curves, say E, a n d  E 2 , such that one of
th e  following two cases occurs.

Case (1). ( G d , E 2 ) = ( R 2 ,  E 1)=1 (i=1, 2) fo r some 2 < q r -1 .
Case (2). (G i , E,)=(R,, Ei)=(Rp, E 2 )=1  (i=1, 2) fo r some 2,q_-‹p — 1 .
A ssum e the case (1) occurs. L abelling  R =E R , anew if necessary, we may assume

q_r— q+1. If q 3, the claim  1 follows from Lemma 3.9 w ith  E := E „  Suppose q-=2.
Blowing down E i  a n d  E, and blowing up the  po in t R1 nR 2 , w e obta in  a  n e w  surface
Y  f ro m  X .  C le a r ly , th e re  is  a  birational morphism r :  V—>Y such that r X a n d  r
satisfies the condition of the claim  1.

A ssum e the case (2) o c c u rs . L et S o := E i d-R2 +•• • H-R,±E2 and TD:  X--4--) 1 b e  the
P 1-fibration defined b y  IS01. T h e n  R2 1, Rp + 1 , G i  a n d  G, are cross-sections of P .  By
th e  sam e  a rg u m e n t  a s  in  Lemma 3.9 applied to a  singular fiber S, o f  0  containing
R1 -1---F R 2 _1 o r  a  singular fiber S y  containing Rp+2+—H-R,-, it suffices to consider the
case w here q=5 and S, :=2(F2 + R 2)+F i +  R s  i s  a  s ing u la r f ib e r o f  0  w ith tw o
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(-1)-curves F , a n d  F2 su ch  th a t (F1, Ri) -=(F,, Rp+1)=(F2, R 2 )= 1 . Then (S 1 , G 1 )=1
implies (F1, G 1 )= 1 .  T h is  leads to (F1 , G) 3, a contradiction.

Next, we consider the  case  where G = R + G , with a unique isolated (-4)-curve Gi.
By Lemma 3.5, there is a  (-1)-curve E  such that (E, G i )= (E , R 4 )=1  fo r  some 1
In  view o f Lemma 3.7, we may assume 21<q‹r — 1. Labelling R = Z R , anew if neces-
sary, we may assume q--:-r—q+1. In  view o f Lemma 3.9, it suffices to consider the
case q = 2 .  In  this case, we have

Assume r --2- 5. Let X --.P 1 b e  th e  P'-fibration such that f 0 :=3E+3R2+2R3+
R i -FR, is a  singular fiber o f 0 .  Since (K I ) = - 2 < 4 ,  there is a  singular fiber f ,  other
than f .  B y  (1) o f Lemma 1.10 and  since ( f i, G 1)=3, there is a  (-1)-curve E, in f ,
such that (E,, G i )= 1  o r 3 .  Since (E,, G)=2, we have (E,, G1 )= 1 .  Moreover,
(E 1 , R 0 )= 1  fo r some 5 p r .  By Lem m a 3 .7 , w e m ay assume p * r .  L et S0 :=E-1-
R 2 +•••±Rp+E1 a n d  0 :  X—>Pl t h e  P'-fibration defined by I S o l. Using th e  same
argum ents as in Lemma 3.9, we can prove th e  claim 1.

Assume r = 4 .  We shall show  that there is a (--1)-curve E, of X such that (E i, R4)
= (E „  G1 )= 1 .  T h is  will imply th e  claim 1 by Lemma 3 .7 .  Indeed, le t  ei: x -->x , be
th e  blowing-down o f  E, R 2 , R, an d  R,, le t  e 2  X.,—>Y b e  t h e  blowing-down o f e1(R4)
and set Then e(G)=e(G1) and  it has only one  singular point P .  Note that
(K i;)= (1-(1 )+5= 3< 9. Hence there is a  nonsingular rational curve 1 o f  Y  such that
P E / a n d  (/2 ).5 0. By noting that K y ) ,  w e have (1, Ky )= -2 ,  (/2 )=0
a n d  (/, e(G0)=4. Hence (e(l), el(G1))=(M1), el(G1))—(e,(R4), i(G1))=(1, e(Go)-3=-1.
So, e1, (l) does not pass through the unique singular p o in t  o f  e l( G o . N o te  also that
(e(/), e1(R4))=1. Hence E 1 :=e'(1) satisfies th e  requirement.

To complete t h e  proof o f  th e  claim 1, it remains to consider the  case  r = 3 .  Let
e: X—>Y be th e  blowing-down o f  E a n d  R 2 . Since (K fl= 0 < 9 , there is a  nonsingular
rational curve I such that (12 ). 0  and I contains the point e(G i )ne(R i )n e (R ,). We have
(1, Ky )= -2 ,  (/ 2 )= 0  and  (1, e(G1-1-R1 d-R 3 )) = 4  because 35(/, e(GI-FR1-FR3))=(/, e(G))=
(1, —2K3-). Interchanging t h e  roles o f  R, an d  R , i f  necessary, we may assume that
(I, (R 3 ))= 1 .  Since (K i;)< 8 , there is a  singular fiber f ,  o f  th e  P'-fibration 0 11 , :
P ' .  Then there is a  (-1)-curve f i  i n  f  sech that (Ê 1 , e(R 3 ))=1  (cf. Lemma 1.10, (1)).
Since (P,, e(G))-=2, we have (Pi, e(G i+ R I))= 1 . Then E i  : = e '( f i )  i s  a  (-1)-curve of
X  w ith  (E„ R 3 )= -(E ,, G i+R ,)=1 . Then t h e  claim  1  follows from Lemma 3.7 with
E :=E , o r  Lemma 3.8 with E, :=E , and E.

T his completes th e  proof o f Theorem 3.6.

C o ro llary  3 .10 . L et (V , D ) be a lo g  Enriques surf ace w ith Index(K i7)=2 and le t U
be a m inim al resolution o f  singularities of  the  cauonical covering El o f  V . T hen  there
i s  a  (-2 )-ro d  R  on U w ith # (R )= 2 (# (D ))-1 . In Particular, U  is  a K3-surface with
p(U)>= 2 (# (D )). Moreover, i f  #(D)=10 then p(U)=20 and U  is a  singular K3-surface.

Pro o f . Set E := # (D ). If  E.'= 1 , then the inverse im age of D  is a  (-2)-curve on U.
Suppose i!.>.2. Let r :  'I7 -47  b e  t h e  blowing-up o f  all singular poin ts of D  and let

:=Ti(D) with the  no ta tion  a t  t h e  beginning o f  § 3. Then (17, B) is  aga in  a  lo g
Enriques su rface  satisfying t h e  hypothesis o f  Theorem 3.6. Hence, there a re  (-1)-
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curves Pi, _-<'e —1) of Ç such that i i+ E P , is a  lin ear ch a in . N o te  th at t h e  ca-
nonical coverings o f  (V, b") and (V , D ) have  the  same (up to isomorphisms) minimal
resolution U .  Then the inverse im age of b + E P ;  is  a  (-2 )-ro d  o n  U  satisfying the
requirement o f Corollary 3.10. Q. E. D.

§  4 . The case where th e  canonical covering is a n  abelian surface

We shall prove th e  following theorem in  th e  present section.

Theorem 4 .1 .  Let (V , D ), or synoymously ( V, D ), be a log Enriques surface whose
canonical covering U is an abelian surface. T hen I (=Index(Kv))=3 o r  5. More pre-
cisely, we have:

(1) Suppose 1 = 3 . Then p(U )=p(V )=4 and D consists of nine isolated ( -3)-curves.
Hence 17 is a singular abelian surface.

(2) suppose 1 = 5 .  Then p(U )=p(V )=2, and D consists of five connected components
each o f which consists of one ( -2)-curve and one ( -3)-curve.

P ro o f . By Lemma 2.2, 1 is not divisible by 2. By Lemma 2 .3 , w e  h a v e  ço(/) .

b2 (17)— p(V)=6— p(C)55. Hence 1 =3 o r  5, and we have p (U )2  if 1 =5 an d  p(U)_4
if 1 = 3 .  By Lemma 2.4, we have î '=c  and

p (7 )= c -2 — c/ I a n d  /lc,

where c=#(Singt7)=# {connected component o f  D }. B y noting that p(V) p (C )4 ,
we obtain :

c=/(p(V)+2)/(/-1)6+6/(/-1)5 9.

Therefore, (c, /)=(3, 3), (6, 3), (9, 3) o r  (5, 5). Here (c, I) (3, 3) fo r  p (V )1 .
We consider these cases separately. Employ th e  same notations q,$ ,C ,,,, etc. as

in  Lemma 2.5.
Case (c, /) , (6, 3). Then q=1, D consists of six isolated (-3)-curves and D"=(1/3)D.

Hence — (( 1
2,) ,  c /3=2 by Lemma 1 .8 . O n the other hand p (7 )= p(V)— #(D)=10— (Iq) —

6= 6, while 9 (7 )= 2 . T h is  is absurd.
Case (c, /) , (9, 3). Then q=1, D  consists o f nine isolated (-3)-curves and 4>_p(C)

>_ p(V)= c —2 — c/ 1=4. Hence p(U )=p(V)=4.
Case (c, /)= (5 , 5 ). Then p(U) p(V)=c - 2 —c/I=2. Since we have shown p (U )2 ,

we see p (U )= p (V )= 2 . By replacing th e  generator e  o f  CL ,  by a  new one and in-
terchanging th e  coordinates X and  Y  o f C2 i f  necessary, we may assume that q=1 or
2. L et a  be th e  number o f  all singular points of V  with q = 1 . Then D consists o f  a
isolated (-5)-curves D,'s and (5—a) connected components J's, each of which consists
of one (-2)-curve B 1 , and one (-3)-curve B2 ,  Note that
2B2 ) andand (K ) , (D ') 2 = —9a/5-2(5 —a)15= —2 —7a/5. Thus, a= 0  o r 5. I f  a= 5  then
p(17)=10—(K 1

27)—#(D)=10+9-5-=14#2. T h is  is a  con trad ic tion . Hence a=0.
Q. E. D.

For the case  1 = 5, we can not find any example y e t. F o r  th e  c a se  1=3, we have
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the  following example.

Example 4 .2 .  L e t  E=C/(Z-1-Zco) b e a n  elliptic curve, where w  is a primitive
third root of the unity. Then E  has complex m ultiplication and the P icard number
of the  abelian surface U := E X E  is 4. Since G := {1, w, w2} acts on E  by the  natural
multiplication, we can consider the diagonal action of G  on U .  Denote by [x , y] a
point of U represented by two complex numbers x  and y .  T hen all fixed  points of
G  are  as follows :

[ 1, 1 ] , [1 , ( 1 - 0 ))/3 ] ,  [ 1 , (2 - 2(0)/3], [(1—w)/3, 1],

[(1 - 0))/3 , (1 - 0))/31 [( 1 - 0 / 3 , (2 - 2(0/31 [(2-20))/3, 1 ]

U2 - 2 (0/ 3 , (1 — (0)/3], C(2- 2(0)/3, (2 - 2(0)/3].

Hence there are exactly nine singular points on V :=U /G . More precisely, if f: V -- , 17

i s  a m inim al resolution of SingV  then D := f '(S in g l7 )  consists of nine isolated ( -3 )-
curves D z W e  a s s e r t  t h a t  V  i s  a  rational su rface . Indeed, since Kr--0,
3K v is  a trivial Cartier divisor. Hence 3 ( D ° ± K v ) ^ - 1 * ( 3 K v ) , - 0 ,  w here EP , (1/3)ED,

(cf. Lemma 1.2). Hence K (V )= -0 0 . By the argument in the proof of Lemma 2.2, we
see that V  i s  a  rational su rfa c e . Hence (V, D ) is a log Enriques surface fitting the
case /=3 of Theorem 4.1.

§ 5. The case where the canonical covering is a  K3-surf ace

Employ the notations as set a t the  beginning of §  2 .  I n  th e  present section, we
consider log  Enriques surfaces V  satisfying that the canonical covering U is a  K3-
surface and the index I  of Kv is  a prime num ber. Since U  is nonsingular, we can
apply Lemma 2 .5 .  Let ml , ••• , ma  be integers such that the following three conditions
are  satisfied :

(1) 1=m 1 <m 2 <•••<m a < 1 -1 ,
(2) the singularity (C 2/C,,„ i , 0) is not isomorphic to the singularity (C 2/C/ ,.,, 0)

if
(3) for each I< the  singularity (C / C ,,, ,  0 )  is isomorphic to a singularity

(C 2/C ,,,,,, 0 ) for some m , with mz <k.
(m1, m2, ma) is uniquely determined and easily found (cf. [2; Satz 2 .1 1 ] ) .  Let

nz b e  th e  number o f  all singular po in ts  o f V  which have the same singularity as
(C /C / ,,,,, 0). By our assumption that V has no rational double singular points, we
have E n ,=- c(= # (S in gV )). A  precise description of (n 1, n2, • ,  na ) is  g iven  in the
following theorem :

Theorem 5.1. W e use the above notations. Let V , or synonymously (V , D ) be a log
Enriques surface. Suppose that the canonical covering V is a K3-surface and the index
I  o f KR is a prime num ber. T hen p(V)=c-2H-(24—c)/I, and one of the following cases
occurs, where E n i= c :

(1) (c, / )= (3 , 3 ) . Then (m1, ••• m a)=(1), c=-- n 1 = 3  and p(V )=11. Hence D consists
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o f three isolated (-3)-curves.
(2) (c, /)=(4, 5). Then (m i , ••• , m a)=(1, 2), (n1, n2)=(1, 3) and p(V )=13.
(3) (e, /)=(3, 7). Then (m 1 , ••• , ma )=(1, 2, 3), (n i , n 2 , n 3)=(0, 1, 2) and p(V )=12.
(4) (c, /)=(2, 11). Then (m 1 , ••• , ma )=(1, 2, 3, 5, 7), (n1, ••• , n5)=(0, 0, 0, 1, 1) and

p(V )=11.
(5) (e, /)=(13, 11). Then (m i , ••• , m a )=(1, 2, 3, 5, 7), (n1, ••• , n 5)=(3, 4, 0, 0, 6), (4,

1, 1, 0, 7), (4, 2, 0, 1, 6) or (5, 0, 0, 2, 6) and p(V)=47, 48, 49 or 51, respectively.
(6) (c, I)=(7, 17). Then (m i , ••• , in a) 2, 3, 4, 5, 8, 10, 11) and (711 , , n 8 )=(1,

0, 1, 1, 0, 0, 2, 2), (1, 0, 0, 1, 1, 0, 3, 1), (0, 2, 1, 0, 0, 0, 3, 1), (0, 2, 0, 0, 1, 0, 4, 0), (1, 1, 1,
0, 0, 0, 0, 4), (1, 1, 0, 0, 1, 0, 1, 3), (1, 0, 1, 0, 0, 1, 4, 0), (2, 0, 0, 0, 0, 2, 1, 2), (1, 2, 0, 0, 0,
1, 0, 3), (1, 1, 0, 2, 0, 0, 0, 3), (1, 1, 0, 1, 0, 1, 2, 1), (1, 0, 0, 3, 0, 0, 2, 1), (0, 3, 0, 1, 0, 0, 1,
2), (0, 3, 0, 0, 0, 1, 3, 0) or (0, 2, 0, 2, 0, 0, 3, 0).

(7 ) (e, I)=(5, 19). Then (m1, ••• , ma)=(1, 2, 3, 4, 6, 7, 8, 9, 14), (n1, ••• , 729 ) = (1, 0,
0, 0, 0, 1, 0, 1, 2), (1, 0, 0, 0, 2, 0, 0, 0, 2), (0, 1, 1, 0, 0, 1, 0, 0, 2) or (0, 2, 0, 0, 1, 0, 0, 0, 2)
and p(V)=29, 29, 24 or 26, respectively.

In particular, (D, K v )= c - 1 - ( K 1
27).

Conversely, i f  V  is  a log Enriques surface of which the singularity  ty pe belongs to
one of the above cases, then the canonical covering V  is a K3-surface.

Finally , fo r  each prime num ber I w ith 3 /S19  and I # 1 3 ,  there is a log Enriques
surface V  such  that I is  the index of K v  and the canonical covering V  o f  V is  a  K 3 -
surface (cf . Exam ples 5.3-5.8).

P ro o f .  At first, we show  the  converse  part. L e t V be a  log  Enriques surface of
which th e  singularity type  belongs to one of the cases of Theorem 5 .1 . Every singular
p o in t x  o f  V  h as t h e  same singularity as (C 2/ G ,  0) with a  cyclic subgroup G., of
GL (2, C) o f order I. Since th e  canonical covering 77: U->V has degree /  a n d  is an
éta le  cyclic covering outside SingV , we see that U is nonsingular. Then U  is a  K3-
surface in view o f Theorem 4 .1 .  Now we shall prove a  m a in  p a rt o f  Theorem 5.1.

By Lemma 2.4 , we obtain the first assertion and that c 2 1 . In particular, I I (24-c).
By Lemma 2 .2 , we have I 3. H ence c . - 2  by Proposition 1.6.

Consider the case 1 = 3 .  Then (m i , ••• , ma)-=(1) and  D consists o f  c  isolated ( -3 ) -
curves D ,  ( 1 i c ) .  N o te  that D5 =(1/3)D a n d  (Kri)=(Ds) 2 --.--- c / 3 .  Hence we have
c /3 +1 0 =p (V )=p (V )+# (D )=c -2 +(2 4 -c ) /3 -Fc . T h is  implies c= 3 and p(V )=11.

Now we assume / > 5 . Since 2 c<21 and  /1(24-c), we see that (c , I)=(4 , 5), (9,
5), (14, 5), (19, 5), (3, 7), (10, 7), (17, 7), (2, 11), (13, 11), (11, 13), (7, 17) o r (5, 19).

Consider the  case 1 = 5 .  Then (m i , ••• , m a)=(1, 2). A s  in  Theorem 4 .1 , we have
(K f ,)=(IY ) 2 =-(9 (c -n 2 )± 2 n 2 ) /5 . Hence 10+9c/5-7n2/5=p(V)=p(V)+#(D)=(4e+14)/5
+ (e -n 2 + 2 n 2 ). T h is  implies n 2 = 3  a n d  n 1 = c - 3 .  We shall prove c - 4 .  Indeed, by
Proposition 1.6, we obtain :

3(c-3)-1-3=(D, K v ) 5 c - 1 - ( K i” = c -1 + (9 c -2 1 )/ 5 , whence c S 4 .  Since c 4  when
1= 5, we have c=4, (n 1 , n 2 )= (1, 3) and p(V)-=13.

Consider the case 1 = 7 .  Then (m i , ••• , m a )= (1 , 2 , 3 ). N ote that D consists of the
following c  connected components :

( 1 )  isolated (-7 )-cu rves Ai
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(2) rods B (n 3 +1 ^ jn 3 ± n 3 ) ,  each of which consists of one  ( -2)-curve B, 1  and
one ( -4)-curve B3»

(3) rods C,, (n i + n , + 1 k n i +n z +n 3 =c), each  of w hich  consists of tw o (-2)-
curves C,,,, C 3 ,, and one ( -3)-curve C 3 ,, w ith (C,,,,, C,, 3 ,,,)= l  (b=1, 2).

T hen  D -(5 /7 )A I+(2 /7 )(B iJ+2B i1 )+(1 /7 )(C ik +2C ,k +3C 3k )  and -(25(c- n 2 -
n3 )+8n2+3n 3)/7 = (D) 2 =(K ) = 10-p(V ) = 10-p(V) - (D )= 1 0 - ( c - 2 + (2 4 - c ) / 7 ) - ( c -
n 3 - n 3 +2n 3 -F3n 3). T h is im plies  5 + c = = 2 n 2 + 3 n 3 .  N ote  tha t c=n1+n3+n,,=3,  10 or 17.
Hence all possible pairs of (n 3 , n 3 , n 3 ) are as follows:

(0, 1, 2), (5, 0, 5), (4, 3, 3), (3, 6, 1),

(9, 2, 6), (8, 5, 4), (7, 8, 2), (6, 11, 0).

On the other hand, by Proposition 1.6, we have:

5n3+2n3+n3=(D, K v )<c-(K ')=c+(25n 1 +8n 3 +3n 3 )/7.

Therefore we have c=3, (n 1 , n 3 , n 3 )=(0, 1, 2) and p(V)=12.
Consider the case 1 =1 1 . Then (m 3 , • - •  ,  ma )=(l, 2, 3, 5, 7). N o t e  t h a t  D  consists

of the following c  connected components:
(1) isolated ( -11)-curves A 4 (1 ^ i^ n 1),
(2) rods B  (n 3 + 1 j n 3 +n 2 ), each of which consists of one  ( -2)-curve B 1 1  and

one ( -6)-curve B3»
(3) rods C ,, (n i+n 3 +1 k n 1 +n 2 +n 3 ) ,  each of which consists of one  ( -3)-curve

C 1 ,, and one ( -4)-curve C,,,,
(4) rods D, (n1+n 3 +n 3 +1 rn 1 +• • • +n , ,) ,  each of w hich consists of four (-2)-

curves Di r , , D , ,  and one ( -3)-curve  D i r  w ith  (D ô r , D,, 1 ,,)=1 (1 b 4),
(5 )  ro d s  E , ( n 2 +• +n 4 +1 s n 1 +» • +n 5 =c ) ,  each  o f w h ich  consists  o f th ree

(-2)-curv es E 1 3 , E 2 3 , E 4 ,  and one ( -3)-curve E 3 ,  w ith (E,,,, E 3 1 ,,) = l  ( 1 b 3 ) .
Then D (9/11) A 4+(4/11)(B 1 1 +2B, 1 )+(1/11)(6C i ,, +7C 2 )+(1/11)(D i r +2D z r

+3D g r +4D 4 r +5D 6 r )+(1/11)(2E i ,+4E,,+6E 3 3 +3E 4 s ), a n d  - ( 8 1 n 1 +32n 3 +20n 3 +5n 4 +
6n 5 )/11= -7ni-3n2-2n3--n,,+(--4n1+n

3 +2n 3 -5 n 4 +5n 5 ) / 1 1  ( D ) 2 = (Kb) = 10-p(V )=
1 0 -  p(V) -  #(D) = (108- lOc)/11-(n 2 +2n 3 -F2n,+5n,,+4n,). I n  p a r t ic u la r ,  w e  h a v e
11I( - 4n3+nzH- 2n3 - 5n,,-j-5n,). H e n c e , i f  c = 2  th e n  (n 1 , . . . ,  n,,)=(0, 0, 0, 1, 1) and
p(V)=11.

Now we suppose that c=13. W e shall show that (n 2 , . . .  ,  n 5 )= (3, 4, 0, 0, 6), (4, 1,
1, 0, 7), (4, 2, 0, 1, 6) or (5, 0, 0, 2, 6). Hence,  p(V )=47, 48, 49 or 51, respectively. By
the above com putations of  (D) 2 ,  we deduce 0=-22+70n 1 +10n 3 -2 n 3 -50n 4 -38n 5 = -
22+ lOc+60n1 -  12n 3 -60n 4 --48n 5 and thence the following equality:

(1)5 n 4 + 4 n 5 = 9 - n 3 + 5 n 1 .

O n the other hand, by Proposition 1.6, w e obtain  9n1+4n2+3n3+n,,+n5=(D, K )
1 3 - 1 - ( K ) - 1 2 +2 +n

i +2n 3 +2n 3 +5n 4 +4n, and hence 0 14-8n 1 -2 n 3 - n 3 +4n 4 +3n 5 =
14-2c -6n1+n,+6n,,+5n,. Using the equality (1) to eliminate n 3 in the later inequality,
we obtain an inequality:
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(2) 3+n 1 _<n4 H-n 5 .

This, together with the  equality (1), implies 0=n 4 +4(n4+n 5 )-9d-n 2 -5/2 1 1 3 -n 1 -Fn 3 +
n 4 3 - n 1 . Hence 721 3 and n4-1-n 5 _ 3+n 1 _>.6. If  124 --1-n5 9 , then n1=13-(n2+•••±n5)

a n d  36 5124 -1-4n 5 = 9 -n 2 d-5/21 2 9  b y  th e  equality (1). T h is  is  a contradiction.
Therefore we have 6 . 724 -1-n5

. 8.
C ase  n4 +725 = 6 .  Then n 5 ±n 2 +722 = 7 and n 1 <3 by the inequality (2 ). Hence n 1 =3,

and 24-En 4 =24-72 2 b y  the  equality (1 ). Thus n 3 =n 4 = 0 and ( n , ,  •• , n5)=(3, 4, 0, 0, 6).
C ase  n4d - n 5

= 7 .  Then n 1 -l-n 2 +72 3
, 6  a n d  2828H-n 4 = 9 -n 3 +57/ 1 9±5n 1 b y  the

equality (1). Hence Thus, by the  inequality (2), we have n ,= 4 . Hence 722 - 1- n 3

=2 and 28+n 4 = 29-n 2 . Therefore, (n,, ••, n5)=(4, 1, 1, 0, 7) or (4, 2, 0, 1, 6).
C ase  n4 d-n 5 = 8 .  Then n 1 ±n 2 +n 3 = 5  a n d  3232d -n4= 9-n 2 -1-5n 1 9+5n 1 b y  the

equality (1). So, n 1 = 5 and (n 1 , ••• , n5)=(5, 0, 0, 2, 6).
Next we shall prove that th e  c a se  (c, /)=(11, 13) i s  im possible. Indeed, if the

case (c, /)=(11, 13) occurs, then (m1, •••, m)=(1, 2, 3, 4, 5, 6), p(V )=c - 2+(24 - c )//=1 0 ,
and D  consists of the  following eleven connected components:

(1) isolated (-13)-curves A i (15i.<n 1 ),
(2) rods B , (ni+1-<--f<ni+n2), each of which consists of one (-2)-curve B 1 5 and

one (-7)-curve B ,,,
(3) rods C k (n1± n2± 1k flii-n2+ 123), each of which consists of two (-2)-curves

C 1 5 ,  C 2 5  and one (-5)-curve C 2 5  w ith  ( C 5 5 ,  C 5 + 1 ,5 )
=1  (b=1, 2),

(4) rods D r  (7214-n24-n 2 +15r5n1+•••±2/4), each of which consists of three (-2 )-
curves Di r , D2,, D ,  and one (-4)-curve 1 )4 ,  with (Dkr, D5+1.,)-=1 (1 b 3),

(5) rods E ,  (ni--F-••• + n 4 ± 1 s5 n ,+ •••+ n ,), each of which consists o f one  (-2 )-
curve E 1 1 a n d  two (-3)-curves E 2 s  and E a ,  with (Ebs, E5+1,1)=1 (b=1, 2),

(6) rods F t  ( n 1 +• • • +n 5 +1 tn 1 +• • • ± n 6 =1 1 ) ,  each of which consists of five ( -2 )-
curves F11, ••• , Ftt and one (-3)-curve F 4 1  w ith  (Fkt, F 5 + 1 ,0

= 1  (1 b_. 5).
Then D° =-(11/13)EA i ±(5/13)E(B i i + 2B 2 ,) + (3/13)E(Cik +2C25 +3C3k)+(2/13)E(Di

+2D 2 , +3D 2 , +4D4,)+(1/13)E(4E1 8 -1-8E22 +7E 3 2 )±(1/13)E(F11+2F21+3F41-F4F41±5F21+
6F,,) and -(121n,±50n 2 -1-27n 2 +16n 4 +15n 5 +1672 6 )/13=(D') 2 =(K 1

2,)= 10-p(V )= 10-p(V )
- # (D )= - (h1+2n2 - 1- 3n 3 - 1- 4 n 4 +3 n 5 +6 n 6 ). T h is  implies 0= -9n1-2n2+723±3n44-2n5+
6n 6 =c - lOn i - 3722 ± 2 n 4 - 1- n 5 ± 5 n 6 =11 - 10n 1- 3 n 2 +2 n 4 +n 5 ± 5 n ,. On the other hand, by
Proposition 1 .6 , we obtain 11n1-1-5n2±3n3+2n4±2n5±n2=(D, K v )<11-(1C12,) =11--kni+
2n 2 +3723 -1-4n4 ±3n 5 + 6 n , a n d  hence 0<11-10n 1 -3 n 2 +2714 4-n 5 -1-5n 6 . T his contradicts
the above equality. Therefore the case (c, /)=(11, 13) is  impossible.

Consider th e  c a se  (c , I )=(7 , 17). Then (m i , ••• ma) --=(1, 2, 3, 4, 5, 8, 10, 11). Note
that p(V )=c - 2+(24 - c ) I I =6  and D  consists o f  seven connected components of the
following type:

(1) isolated (-1 7 )-cu rv e s  A,,
(2) rods B ,  (n2-k1 j n1-Fn2), each of which consists of one ( -2 )-c u rv e  1315 and

one (-9)-curve B 2 5 ,

(3) rods C I, (n1-En2+1_<_k n1-Fn2--Fn 3) ,  each of which consists of one (-3)-curve
C 1 5  and one (-6)-curve C 2 5 y

(4) rods D r (n1d-n2+ n3+ 1< rn1+ •••± 174), each of which consists of three ( - 2 ) -
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curves D1 ,, D 2 , ,  D b ,  and one (-5 )-cu rv e  D 4 ,  with (Db ,, D b + , , , ) =1  (1< i).3 ),
(5) rods E , (n 4 +•••±-n 4 + 1 5 sn 4 + •••+ n 8 ) , each o f  which consists of one (-3 )-

curve E 4 3 ,  one (-2 )-cu rv e  E 2 4 and  one  (-4 )-cu rve  E b ,  with (E b „ E5+1.8)=-1 (b ---=1, 2),
(6) rods F, (n 4 +•••+n 5 -1-1 t n 4 +•••+n

6
) , each of which consists of seven ( -2 )-

curves F7 3 , ••• , F7 3 and one (-3 )-cu rv e  1413 w ith  (F53, F6A-4.3=1 (1.<b 7),
(7) rods G„ (n 4 +•••+n 6 -1-1 u n4+•••+n 7 ) , each o f which consists of three ( -2 )-

curves G1 „, G2,,, G 4 ,, and one (-4 )-cu rv e  G b .  with (Gb,, (1 b 3),
(8) rods H , (n 1 +•••+n 7 +1 2 , 5-: ni+•-• +n 8 = 7 ), each of which consists of five ( -2 )-

curves H15 , ••• , 114v, He y  and one (-3 )-cu rv e  115 ,  with (115 5 , H5+1,,)=1
Then D"=(15117) A id-(7/17)E(B4 ) +2B 2.,)+(1/17)E(10C4k +13C20+(3/17)E(Dir+

2D 2 r -1-3D3 r  +4D4r)+(1/17)E(9Eib +10E2,+ 11 Ebb) + (1/17)E(F14+ 2F23+3F83+4F43+5F51+
6F84+7F74+8F84)±(2/17)E(2G45±4G25±6G3.+3G4.) (1/17)E(2H1 5 -F4H2v  --1-- 61/36-1-8H48+
10H5 5 +5H8 5 ). N ote th a t —(225n4-1-98n2+62n 8 +36n4+31n 8 4-8n 6 +24n 7 +10n 6)/17=(D) 2

=(K 1
2,) =10—p(V)=10—p(V)—#(D)=4—(n 4 -1-2n 2 +2n 3 +4n 4 +3n 6 +8n 6 H-4n 7 +6n 8). This

implies 0 = 17+5212 4 -1-16n 2 +7n 3 -8 n 4 - 5 n 5 -32n 8 -11n 7 -2 3n 8 = 17-5c+57n,± 21n 2 +12n 8

—374-27n 6 -6 n 7 -18n 8 . Hence we obtain:

(3) 19/24±7n2+4n8=6-1-n4+9n8+2n7+6n8.

In particular, E 724 1. On the other hand, by Proposition 1.6, we obtain 15n4+7n2+
t53

5n 8 +3n4+3n6d-n6±2n7±n8=(D, -Kv)_7-1— (1(127)=2+n4+2n2+2n3+4n4+3n5+8n 6 +4n ,
+67/8 . By using the  equality (3), we eliminate n 4 in  th e  above inequality and obtain
4+271 6 ±n 8 .<5n4+2n2-1--n 8 . Multiplying both sides of the later inequality by 4 and using
the  equality (3), we obtain 16-1-8/284-4n8.<ni-l-n2+(10n4+7n2+4n3)=6+ni±n2+n4--1-9n8
+2/2 7 4-6n 8 an d  hence

(4) 1O n3d-n2-Fn4H-n6-F2n7+2n8<c±n7-1-n8.

So, 3=10—c_n 7 +12 8 :Sc—(n 4 -Fn 2 ±n 3)<6.
C as e  n 7 +72 8 = 6 . Then E n 4 =1 and 19n 4 -1-7n 2 ±4n 8 =18-En 4 ±9n 8 +4n 8 .>_18 by virtue

t5G

of the equality (3). This leads to (n„ ••• , n 6)=(1, 0, •-• , 0) and 19=18+4n 8
- 0 (mod 2),

a  contradiction.
C ase  n7 +728 = 5 .  Then E n 4 = 2 and 19n4±7n2+4n 8 =16+12 4 ±9n 6 +4n 8 _>_16 by the

equality (3). I f  E n 4 1 ,  then (n 1 , n 2 , n 8)= (1 , 0 , 0) a n d  3=n 4 +912 6 4-4n 8 . Hence we
i53

m ust have  (n4, n6, n8)=(3, 0, 0), which contradicts E n 4 = 2 .  Therefore, E n 4 = 2 and
i5 6 i5 3

n4 =n 8 =n 6 = 0 .  Then the equality (3) becomes 15n 4 +3n 2 =8-1-4n 8 .  Hence n 1 d-n 2 1 and
4l(n1+n 2) ,  contradicting 1.; n i .= 2 . So, it is  impossible that /27±n8-=5.46 3

C as e  n 7 +7 4 =-4 . Then E n 4 = 3 and n 3 +n 2 -1-124 +n 6
_ 2  by th e  inequality (4). On

i5 6

the  other hand, we have /24-1-n2±n4±n 6 =-14+20n4+8n2±4n 8 - 8 n 6 - 4 0  (mod 2) by
the  equality (3). Hence n1±n2±n4±/2 8 =2, n 8 H-n 6 = 1 and 3 4 — n3±n8=5n4-1-2n2-2n6.
All seven solutions of (n 1 , ••• , n 8)  are given in the assertion (6) of Theorem 5.1.

C as e  n 7 +n 8 = 3 .  Then E n 4 = 4 and n3±n 2 ±-n 4 d-n c . 4 by the inequality (4 ) . Hence
i5 6
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n1+72 2 +n s +n 6 = 4  and n3 =n 5 = 0 .  By virtue of the equality (3), w e have 1 2 4 - 2 n 2 +
274 , 5n 5 - n 8. In particular, n 1 3 and 21(n5+n 8 ). W e  c a n  show  that (711, /28)=(2, 2),
(1, 3), (1, 1), (0, 2) o r (0 , 0 ) . All eight solutions of (n,, ••• , n , )  a re  given in  the asser-
tion (6).

Consider the case (c, /)= (5, 19). Then (m,, ••• , m a )=(1 , 2, 3, 4, 6, 7, 8, 9, 14). Note
th a t  p ( V ) =c - 2 H - ( 2 4 - c ) / I =4 , a n d  D  consists o f  five connected components of the
following type:

(1) isolated (-19)-curves A 2 ( l i <ni),
(2) rods B , (n1+ 1j< 7/1-H 2), each o f which consists of one (-2 )-cu rv e  B i ,  and

one (-10)-curve B25,
(3) rods C  k  (n5+n2+1 - k<n5+n2-1-n 3) , each of which consists of two (-2)-curves

C 1 5 ,  C 2 5  and one (-7 )-cu rv e  C 3 5  w ith (C55, Cb+1.k)=- 1  (b=1, 2),
(4) rods D , (n1+n2H-n3--1-1 r n1+•••-kn4), each of which consists of one  ( -4 )-

curve D i ,  and one (-5)-curve D 2,,
(5) rods E s (n,+•••+n4+1<s=cn,+•••+n5), each of which consists o f  five ( -2 )-

curves E15, ••• , E2s and one (-4 )-cu rve  E s ,  w ith (E55, E5+1, 5)=1
(6) rods F 5 (n 1+•••+72 5 + 1 .< t‹n 1+ •••+ n ,), each  o f  which consists of one ( -2 )-

curve F15 .  one (-4 )-cu rve  F 2 5  and one (-3 )-cu rve  F3 5 w ith  ( F 5 5 , F 5 +1 ,5 )
= 1  (b=1, 2),

(7) rods G .  (n 1 +•- •+n s +1 5 u S n 1 +•••+n 7), each of which consists o f tw o ( -2 ) -
curves G1„, G ,,, and tw o (-3)-curves G 2 „, G ,„ w ith (G5,,, G 5 + 1 .0 = 1  (1 b 3 ),

(8) rods H , (775 +•••+n 7 + 1 _ v n 1 -l-••• +n 8 ) ,  each of which consists of eight ( -2 )-
curves H ,„ •-• H ,, and one (-3 )-cu rve  119„ w ith (H55 , H5+1,5)=1 (1Sb_<8),

( 9 )  rods J,,  (n 1 +--•+n 8 + 1 < w n 1 +•••+72 9 = 5 ) , each  o f  which consists o f  five
( -2)-curves T17,01 T2W ,  3 W P  J 6 , , ,  6 w  and one (-3 )-cu rve  J,„„, w ith ( h u l l  j 5 +1 ,2 5 )

=
1  (1__

Then

17 8 5
D*L-,  i- E A ,+ - E(815+2B 25)+,79- E(C15+2C21,+3C35)

1 2
+ -

1 9

E (13D  + 14D 20)+ -
1 9

E(E5 8 +2E25+3E 38 +4E4 8 ±5E5 5 +6E 51 )

1 1
+ -

1 9

E(7F12+14F2 ,+11F22)+ -
1 9

E(6Gia+12G2.-1-11G 3 a +10G., a )

1
-I- 19 2-i(11.15+2H25+31/32+4H,„-F5H55+6H,,,-1-7H,„+8H82H-9H90)

1
+ - E(3./i +6J2 +9./2 +12/4,v+8/2.+4J,„,).19 

Note that

-(289n 1 +128n 2 +75n 3 +68n 4 +24n 5 +39n 6 +22n 7 +9n 8 +12n 9)/19=(D 4 )2 =(KM

=10 - p(V)=10 - to( 17 ) -#(D)=6 -(n1+2n2+3n 3 +2n4-1-6n5+3n 6 +4n,+9n 8 +6n 9).

This implies

0=19+45n1+15n2+3n3+5n4-15n5-3n6-9n7-27n8-17n,
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=19-3c+48n,±18n 2 ±6n 3 +8n 4 -12n 5 -6 n 7 -24n 8 -14n 9 .

Hence we obtain :

(5) 2+24n1±9n2+3n3±4n4=6n5+3n7+12n8+7n9.

In particular, 31(n 9 - n 4 - 2 ) .  O n the  other hand, b y  Proposition 1.6, we obtain 17n 1 +
8n2+5n 3 +5n,±2n5+3n,+2n7-i-n,±n 9 = (D , K v ). 5 - 1 - ( K 1

2,) = -2-Fn1+2n2±3n3+2n4+
6725 -1-3n 5 +4n 7 -1-9n 9 ±6n 9 . Eliminating n 7 from the  above inequality by means of the
equality (5), we obtain n 9 - n 4 -2_>_0. T h is  inequality an d  th e  equality (5) will be used
below to show that (n,, ••• , n 9 )=(1, 0, 0, 0, 0, 1, 0, 1, 2), (1, 0, 0, 0, 2, 0, 0, 0, 2), (0, 1, 1,
0, 0, 1, 0, 0, 2) o r  (0, 2, 0, 0, 1, 0, 0, 0, 2). Hence p(V)=29, 29, 24 o r  26, respectively.

Since 31(n 9 -72 4 - 2 )  and  n 9 c= 5 , we see that n 9 - n 4 - 2 = 0  o r  3. I f  n 9 - n 4 -2 =3 ,
then n 9 = 5  a n d  n •= 0  ( i 9 ) .  T h is  i s  impossible by th e  equality (5). S o, n 9 =n 4 +2.
Since 2+272 4 =n 4 -1-n9 5c=5, 12 4 1. I f  n 4 = 1 ,  then n 9 = 3  a n d  E  n 4 = 1 .  Hence 8n7+iO4,9
3/22 4-n 5 =5+2n 5 ± n 7 +4n 9 b y  th e  equality (5). T h is  is impossible because n 1 d-n 2 -En 3 -4-
n 5 d-n 7 ± n 8 1. Thus, n 4 =0, n 9 = 2  a n d  E  n 4 = 3 .  T h e  equality (5) becomes

(5)'8 n 1 - 1 - 3 n 2 - - E - n 3 = 4 + 2 n 5 + n 7 + 4 n 8 .

In particular, 721 1 an d  725 _.<1. I f  n 8 = 1  then n 1 = 1  and  (n i , ••• , n 9 )=(1, 0, 0, 0, 0, 1, 0,
1, 2). Now suppose n 9 =-0. I f  n 1 =1 then n 5 =2 and (n 1 , n9)=(1, 0, 0, 0, 2, 0, 0, 0, 2).
Next, suppose n 1 = n 9 = 0 .  Then n 2 4-n 3 ±n5-025-Fn7=3, and 3n 2 H-n 3 =4+2n 5 H-n 7 4  by
virtue of the  equality (5)'. In  particular, n2 -1-n 3 2. I f  n 2 -1-n3 = 3  then n 5 = n 9 =n 7 =0
and  the  equality (5)' implies n2 = 1 / 2 .  T h is  is a  co n trad ic tio n . S o , /29 -1-n3 = 2 .  Hence
n5+72 6 ±n 7 = 1 , and 2n 2 =2+2n 5 + n 7 b y  th e  equality (5)'. Therefore, ( n , , • ,  n 9 )=(0, 1,
1, 0, 0, 1, 0, 0, 2) o r  (0, 2, 0, 0, 1, 0, 0, 0, 2). Q. E. D.

Corollary 5 .2 .  L et (V , D ) b e  a  log Enriques surface such that D+3K 1,-, -0, i.e.,
D  = (1 /3 )D . Then the canonical covering U is a K3-surface or an abelian surface, and
D  consists o f  three or nine isolated (-3)-curves, accordingly.

P ro o f. Suppose that ./Y = (1 /3 )D . By Lemma 1.8, D  consists o f  c  isolated (-3)-
curves. W e use  the  nota tions as se t a t th e  beginning of § 2. Note that n' '(D) consists
o f  c  (-1 )-curv es. Hence U is nonsingular. Now we can apply Theorems 4.1 and 5.1
to obtain th e  result. Q .  E .  D .

T he  following example is due to S . Tsunoda.

Example 5 .3 .  Denote by X , Y , Z  t h e  homogeneous coordinates o f  P 2 . Consider
three cuspidal cubic curves Cl, C y  an d  C , o f  P 2 :

C1 : X 3 = Y 2 Z ,  C y  17 3 =-Z 2 X , C 3 : Z 3 = X 2 Y

L et e  be a prim itive 7-th root of the  unity. Then C1nC2()C1={(e 3 1 : e l : 1);
L et z : 11--4' 2 b e  t h e  blowing-up o f  (1: 0: 0)EC2C1C 1

5 , (0: 1 :  0)EC 5 n C 1 , (0 :0 :  1)E
C 1 n C 2 ,  and seven points of C1nC 2 n C 3 . Denote by D i  : =T-'(C i ) an d  D:=E,D i . Evi-
dently, w e h a v e  0- , e(E C i+3K p2)= E D id-31iv . Hence th e  su rfa c e  (V , D) is a log
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Enriques surface fitting the case 1 = 3 o f Theorem 5.1.

N ext, we shall give exam ples f o r  th e  c a s e s  (c, /)-= (4, 5), (3, 7) a n d  (2, 11) of
Theorem 5.1. We need several notations :

Let 7r: E 2 ->P 1 b e  th e  P'-fibration o n  a  Hirzebruch surface 2' 2 a n d  l e t  M  be the
( -2 )-c u rv e  o f  I 2 . T ake a n  irreducible curve AE — K 2 1 so that A  has a  node P1.
L e t L , be the  fiber o f  7r containing P, a n d  le t L 2 (# L 2 )  be a  fiber o f Ir so that P2 :=
A n L , is a ram ification point of 7r1.4.

Example 5.4 (for the case (c, I)=(4, 5 ) ) .  Take an irreducible curve C I  in I M+2LI
such that P 1 , P2 C 1 a n d  C , has th e  same tangen t as one  o f those o f  A  at th e  node
P1 of A .  L e t  C, be a n  irreducible member o f  I M-F2L1 I such  th at C ,  m eets C , in
tw o d is tin c t p o in ts  Ps  a n d  P, other than P, o r  Py. Denote the  po in t C2 n L 2 b y  P,.
L et PO P71 P5, Ps be a ll intersection points of A an d  C 2 ,  where some o f  them might
be infinitely near to th e  o th er. L et r, : V 2—>E2 be th e  blowing-up o f nine points P,'s
a n d  le t E ,:= .ri l (P) ) ( j= 1 ,  2 ) .  L et r 2 : V—V, be the blowing-up of two points r;(C1)(1E1
and 7;(A )nE2. S et r : =7 1 0r 2 ,  E', M '  A' :=t-'(A),

(C ,), D E ; d -  M '  A ' ±E C ,. Then D has the same configuration as f - 1 (Sing17)
c  V) in  the  case  (c, /)=(4, 5) o f  Theorem 5.1. By noting that M+2L2+2A+2C1+

3C 2 - - - 5 K , 2 ,  w e see that Ei-I-EP-M' +2(L - P -i-C1)+3C-s- , - 5K v. Hence (V, D ) is
a  log  Enriques surface fitting the case (c, /)=(4, 5) o f Theorem 5.1.

Example 5.5 (for the case  (c, /)---(3, 7)). Take an irreducible curve C, i n  M+2L2
such that C , passes through P2 (=A n L i) , P, (=A n L 2 ) an d  th e  third point P, o f  A
other than P, o r  Ps . Let C 2  be an  irreducible member o f  I M+2L 1 I such that C 2 and
C , h a v e  o n e  a n d  th e  sam e tangen t a t p,. Denote by P„ P, and  P, all intersection
points of A  and  C 2  other than P,, where some o f  P r 's  (r= 4 , 5 , 6 ) might be infinitely
near poin ts of the  o ther. L et r i  :  172- , f 2  be th e  blowing-up of six  poin ts Pi 's  and let
E, :=7T i (P2) ( j= 1 , 2 , 3 ) . L et r 2 : V—>V 1 b e  th e  blowing-up o f  two points of r (A )n E ,
and  two points r(A ) E 2 and r (C 1 )(1E 3 . S et r  0 T 2 ,  E,:=T (E ,),  L 2  : = r'(L 2 ), M ' :=
e(M ), A ' :=e(A ), C ;:=2 - '(Ck), LH-M' ± A' -FEC'k . Then D  h as t h e  same
configuration as f ' ( S in g 7 )  ( V ) in  the  case  (c, I)=(3, 7) o f Theorem 5 .1 .  N ote that
M+2L 2 +4A+2C 1 ±3C 2 ‘ -7K 1 2 .  Then we can check that E-i-M'+2(E-FCi-ELDH-3(E
+CD+4A' ,-, -, -7 If y . Hence (V, D ) i s  a  lo g  Enriques surface fitting the  case (c, I ) ,

(3, 7) o f Theorem 5.1.

Example 5 .6  ( f o r  th e  c a s e  (c, I)=(2, 11)). T ake a n  irreducible member C ,  in
M+2L 1 I  such that P2 (=AnL2)E C , a n d  CI a n d  A have one and the same tangent

at a  smooth point Ps  o f  A .  L e t C2 be a n  irreducible curve i n  I M-1-2L 2 1  such that
Ps e C , and C 2  has th e  same tangen t as  one  o f those o f  A  a t th e  node P, o f  A .  Let
PIE C in C , be the  point different from P, a n d  le t L , be the fiber containing P ,.  Then
A meeis L s  in  two distinct points P, and  P, an d  P t * P;  (i* j, 1 i, j s 6 )  because (A, C1)
= 4 (1= 1 , 2 ). L et r, : V 1—>X2 b e  the  blowing-up of six  po in ts P ,'s  and let E,:-=.1-T1 (P,)
(.1.=-1 , 2, 3). L et 7- 2 V—V b e  th e  blowingup o f three points r(C2)(1.E1, r;(A)r\E, and
T(A)(1.E 3 . S e t  r : = r i or2 , : = r ; ( E ) ), :=- e (Lk ) (k =2, 3), M' :=--- e (M ), A ' :=e(A),
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C; :=e(C 1 ), D :=EE',-FELL-1-M'-FAH-EC;. Then D  h as t h e  same configuration as
f '(S in g 7 ) ( .1 / 1") in  the  case  (c, I)=(2, 11) o f Theorem 5.1. N o te  that 4M+3L 2 +5L 3

+6A+4C 1 -1-2C2 ---11KE 2 . W e can  ch eck  that 2E+4C'H-6A'-k3E;±E±2C-H3L-1-
4 M H -5 / ,- - -1 1 K , Hence (V , D ) is a  lo g  Enriques su rface  fitting th e  c a se  (c, I)=
(2, 11) of Theorem 5.1.

We complete this section by giving two examples fo r the  cases (c, I)=(7, 17) and
(5 , 19). We use  the  following notations:

Let 2 r:b e  th e  Pl-fibration o n  a  Hirzebruch su rfa c e  2' 2 a n d  le t  M a n d  L
be th e  (-2)-curve o f  E, a n d  a  general fiber o f  2r, respectively. L e t C i b e  a n  irredu-
cible member i n  1M+2L1.

Example 5.7 ( f o r  th e  c a s e  (c, I)=(7, 17) a n d  (n i , ••• , n8 ) = (1,1, 0, 2, 0, 0, 0, 3)).
Since dim1/11+2L1=3, th ere  is  a n  irreducible member C2 i n  1M +2L1 such that C2

meets C1 in  a  s in g le  p o in t P, with order of contact 2. T ake tw o d is tin c t fibers L i

(1=1, 2) so  th at P , is not contained i n  L i . Denote the  po in ts L d C 1 1 (i= 1, 2) and
/,,c)C , by P, and  P„ respectively. L et r i : V 1 —>I2  be th e  blowing-up of four po in ts
P.'s an d  se t E,:=7V(P2 ) (1- - / - 3 ) .  L et r 2 : V 2 - 8V 1 b e  th e  blowing-up o f  three points
P5 :=TY(1, 1),"1Ei, P6 :

=
1
-
1
'
 (C E2  and  P 7 :, ---- v1 '(C 2 )(1E 8 a n d  s e t  E k :=-1- V(Pk). L et r 3 :

178 -17 2 be th e  blowing-up o f  three p o in ts  P8:=z2'r1'(L1)(1E4, P9 :=r2'71'(C2)(1.E5 and
P10:=- 1- 2'r1'(C2)(1E6, a n d  s e t  E7:=1- V(P8) a n d  E8 :=7V(P1 0 ). L e t  or,: V'—>V3 b e  the
blowing-up o f two points r 2 's-2 /r1 '(L I )n E 7 a n d  T3 8 (E6)nE 8 . Denote by E i '
M ', C,' an d  L,'(j=1, 2) th e  proper transforms on V' of E i , M, C, and L„ respectively.
Set r:=1-

1 .••r4  a n d  D': , --EE 8 ' +>- C ,'+ E L , '+ M '. Noting that 8C1 - 1- 14C2+15L1+9L2
+12M-- , -17K , 2 ,  w e can  check that 2E7'+4E4H-6E 1 '-1-8C 1 H-10E 6 '-1-5E 2 '+3E 5 '-f-6E 2 '
+9L 2 '+12M'±15L1'-1-14C2'+7E 8 '^-, - 1 7 K r .  Hence (V ', D ') is a  lo g  Enriques surface
with (c, /)= (2, 17). T h e  dual graph o f  D ' is given in  F ig u re  (1 ), where t h e  corres-
ponding intersection number o f each irreducible component o f  D ' is given.

-2 -2 -2 -2 -4 -4 -2 -2 -2 -2 -2 -3 -2
o o o o o o o o o o o o
E5 E'2 L '2 M' L '1 C'2 E'8 E. E' 4 E'1 C'

1 E'6 E'3

Figure (1)

We can find a  sequence o f  blowing-ups :  V.--4/' o f several singular p o in ts  o f  J ':=
E8 ' +E 2 H-L 2 ' +MH-L1'd-C 2 ' +E 8 '  such that t h e  dual graph o f  a- '(4 ' )  is g iven  in
Figure (2), where E i :=6'(E l '), 0 ; :=6'(C/), re k  := e (L k 9 and  /117/:=6/(M').
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Let D :=a - '(D ') -  151 F,. Then (V , D) is a log Enriques surface satisfying (c, I)=(7, 17)

and (n1, ••• , n8 )=(1, 1, 0, 2, 0, 0, 0, 3).

Example 5.8 (for the case (c, /)=(5, 19) a n d  (221 , • ,  n 9 )=(0, 1, 1, 0, 0, 1, 0, 0, 2)).
Take a n  irreducible member C , i n  I M-1-2LI such that C, meets C , in  two distinct
points P, and P2 .  Take an  arbitrary point P2 ( # 1 '1 , P2 )  o f  C , .  L et L , (i=1, 2) be the
fiber of TC contain ing P . Let r, : V 1 .- Z 2 be the  blowing-up o f  three poin ts Pi 's  and
s e t  E,:=T V (Pi ). L e t  r2 : V2 - 4 17 1 b e  th e  blowing-up of four points P4:=71i(LI)nE1,
P6 : = 7 1' (C 1 )n E 1 , P6 : = T1' (L 2 )n -E 2  and P7:=T- 1'(C2)(1E 3 ,  and set E,_,:=7V (P,)(5<jL---_- 7).
Let 7, : V 2 - 1 / 2 be the  blowing-up of three points 13 2:=T- 2'1- 11 (C1)(1E4, P2 :=r2'r,/(L 2 )n E 5

and P  r \E) r_ 10 : = -2 '2 ,  - 6 ,  and set E ,:=z - V (P10). Let z4 : V'->T7 3 b e  th e  blowing-up of
the point r 3 '.z.

2 'r1'(C2)(1E7. Denote by E i ' M ', C ,' and L ,' (j=1, 2) the proper
transforms on V ' o f  E„ M , C5  a n d  L ,, respectively. S et r :=r,•-•74 an d  D ':=Z E , '+
EC/H-EL,'+.AP. Noting that 12C1-1-16C,±5L,+15L 2 +10M---19K1 2 , we can check
that 3E7 ' 9 E 3' +12C 1 ' +8E 2 ' +4E 5 ' +7 E 4 '±14E,H-16C,'+15L,H-10/1/P-1-5L,'--
-19K v ,. Hence (V ', D ') is a log Enriques surface with (c, /) , (2, 19). The dual graph
o f D ' is given in Figure (3), where the intersection number o f  each irreducible com-
ponent of D ' is given correspondingly.

-2 -3 -3 -3 -2 -2 -2 -2 -2 -3 -2 -2
o 0 o o o o 0 0 o o 0 o
E4 E'1 C'2 L '2 M' L '1 E'7 E'6 E'3 C'1 E'2 E'5

Figure (3)

We can find a  sequence of blowing-ups o :  V - ' V ' of several singular points of 4' :-=
E 4 ' ± E 1 '+C 2 ' +L 2 '+M '± L 1 '  such that the dual graph o f o- - 1 (4 ') is given in Figure (4),
where E i  E , : = a / ( L , ' )  and /17/:=6r'(M').
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Figure (4)

Let D :=o - - '(D ') - i l  F , .  Then (V , D) is a log Enriques surface satisfying (c, /) , (5, 19)

and (n 1 , ••• , n9 )=(0, 1, 1, 0, 0, 1, 0, 0, 2).

§ 6. The case where the canonical covering is singular

Let (V ,  D ) or V  be a log Enriques su r fa c e . In  th e  present section, we le t c :-=
#(SingV)=# {connected component o f  D I a n d  /:=Index(Kr), and use the notations

:  U-+V, f :  V --V  and g : U -4U a s  se t a t the beginning of §2 .
In  the following two propositions, we shall give the possible types of singularities

of a log Enriques surface V with 1 =3 or 5.

Proposition 6 . 1 .  L et V  be a log Enriques surface with 1 = 3 .  L et y  be a singular
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point o f V  and set J := f - 1 (y ) (__V). Then 7r - i(y ) consists of a  s ingle poin t x  o f  U
(cf. Lemma 6.5), and the dual graph o f J and the Dynkin type of the singularity  x  are

given in Table 1 below, where o (resp. *) stands for a (-2)-curve (resp. (— a)-curve) and
n := # ( 4 ) .  Moreover, n_<9.

In particular, x  is a cyclic singularity if and only i f  so is y.

Remark. W e  sh a ll se e  in  Example 6.11 th a t  th e re  is  a  lo g  Enriques surface
(V ', D') with 1 =3 such that D ' consists of one isolated (-3)-curve and one fork J ' of
type No. 9 below with n = 9 . Hence the cannonical covering V ' o f (V ', D ') has only
one singular point x  and x is  o f Dynkin type D1 9 . In particular, the minimal resolu-
tion U ' o f  -"U' is a  K3-surface w ith  p(U')=20.

Table 1

Pro o f . Note tha t the coefficient in D " o f  each component o f  D  i s  1/3 of 2/3.
Consider first th e  c a se  w here  J  i s  a  r o d .  W rite  4=R 1 + +R .,  w h e re  R,'s are
irreducible components o f R and (R„ R.,+ 1 )= 1  ( 1 j - r -1). L e t  a ,  b e  the coefficient
in  D" o f R1.

Suppose th a t  (M)=—a.< —3 f o r  some 1 s r  a n d  (R7)=-2 ( i= s ) .  Then a,=
i(a —2) (r — s +1)/ (r +1+ s(a —2) (r—s+1)) when i.<s, and a i = s(a —2) (r—i+1)/(r+1+
s(a-2)(r— s+1)) when i > s .  Note tha t a1<a2<•••<a 9 a n d  a 3 >a 1 + 1 >•••>a, and that
3a1 =1 or 2. Hence r 5 3 .  If  r=3 then a1 =a 3 =1/3, a 2 =2/3, a=4, s=2  and J is given
in the row No. 4 of Table 1. If  r=2, then a s =2/3, a 1 =1/3 ( i=s ) , and 4  is  g iven  in
the row No. 3 of Table 1. If  r=1, then 3a1 =1 or 2, and 4  is  g iv en  in  th e  row No.
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1 o r N o. 2 of T ab le  1.
Suppose th a t (./2 )- —3 and —3 fo r some 1 - q<p_..<r and  (R )= —2 if  i <q or

i>p . By Lemma 1.10, (3), w here w e se t  B ,:=R , (q j_ p ) , (B ,2
2)=(13)= —3 and  (BD=

—2 (i=q, p), w e  o b ta in  a, 1 /2 .  Hence we have a ,= 2 /3  ( q < j_ p ) .  T hen  (R )= —2
if  qd-l_k  — 1  because (D °+K v , R k )= 0 .  Using (D 4 ± K v , R z )=0 ( 1 < i : r )  again, we
see  tha t J  is g iven in  th e  row  N o. 5, N o. 6 o r No. 7 of T ab le  1.

N ext w e consider the  case w here J  is  a  f o r k . W r ite  J= T 0 + T 1-FT 2 -FT 3 ,  where
T o i s  the  central component of a n d  T ,'s  a re  three tw igs of J .  W r i t e  T 1 =T 1 (1)+••-
+T i (n i ), w h e re  T ,/.1)'s a r e  irreducible components of T 1 a n d  (T i (k), T i(k+1))=(7' 0,
T i (1))=- 1 (1 k _ <n 1 - 1 ) .  W e m ay assume th a t T , consists of a single (-2 )-cu rv e . Set
r :=n 3 , j ± 1 ) ,  G r + ,:=T o , G  r+2 :=T i and  G r +2+p :=T 2 (p )  (1--<P<n2). L e t cr
b e  the coefficient in D " of G .  T h e n  3a 1 = 1  o r  2. (D"d-K v , T 1)= 0  implies a r + i =2/3
a n d  ar+ 2= 1 /3 . (D 4 ±K v , T o)=0 im p lie s  th a t e ith e r  (7 1 )= -3  and ce„.+ 3 =a r =1 /3 , or
(71)= —2 and  a r 4 .3 -=- 1/3, a r = 2 /3  after tw igs T 2  and T ,  a r e  interchanged if  necessary.
(D°--EKv , T 1(1))=0 (i=2, 3) im plies that T , consists o f a  sing le  (-2)-curve an d  th a t  if
(7 1 )= -3  then  J  is  g iven  in  th e  row  N o. 9 of T ab le  1 w ith  n=4.

Consider the  case (T )= - 2 .  Then there  is a n  integer 1 s r  such that ( G ;)  —3
a n d  (G;)= —2 i f  j < s  by  our hypo thesis tha t Supp./Y=SuppD. Note th a t  s = 1  o r  2
because (D --K , G ,,)=0  i f  k < s .  By Lemma 1.10, w here w e consider a  divisor con-
sisting of B ,, : =G  k  (s k _<r±3) w ith  (B:)= —3 and  (B )= —2 (/ # s ) ,  we obtain a p -- 1/2
( s < p r ) .  H ence a p = 2 / 3 .  W e  a lso  have (G )=5 — s  a n d  (G )= —2 (q> s) because
(D"d-K v , G , , ) = 0 .  T h en  LI is g iven  in  th e  row  N o. 8 o r  N o. 9 of T ab le  1.

To deduce th e  Dynkin type  o f the  singularity x=77 - 1 (f(J))  o f  V, w e explain our
m ethod by treating th e  N o. 3 case w here J  is  a  rod  w ith  o n e  (-2)-curve D , and one
(-5)-curve D , .  For general cases, w e  re fe r  to  Hirzebruch [3] a n d  Miyanishi-Russell
[ 7 ] .  Let r :  TY—>T7 b e  t h e  blowing-up o f  th e  p o in t P:=D i n D , a n d  se t E:=1- - J(P).
Note th a t the coefficient in D4'  o f  D ,, D , a r e  1/3, 2/3, respectively. H ence r'(3D 1') ,--
—3Kw  because 3EP--, -3 K v . L et if : el-117  b e  the composite of the covering morphism
of a  Z/3Z-covering which is defined by a  re la tion 0(—K w )®3 :---•0(r/(3D 0 )) a n d  a  nonzero
global section of e(e(3D 42 )) followed by th e  normalization of the covering su rfa c e . We
see that i s  a  rod  w ith  one (-1)-curve, one (-2)-curve and one (-3)-curve as
the central com ponent. T hen  th e  canonical covering V of V  is nothing but the surface
o b ta in ed  fro m  CI b y  co n trac tin g  i'c' r - i(4). H ence x=7c - V (J) )  is  a  rational double
singular point of Dynkin type  A2.

Denote th e  reduced divisor g 1(x )( U) by F .  Then #(P)_-çp(U)— p(U)<20-1=19.
Hence 7/-=#(4) 9 (c f. T ab le  1). Q. E. D.

Proposition 6 .2 .  L et V be a lo g  Enriques surface w ith  I=5 . L e t y  be a singular
point of  V and set J := f - i(y) (...T7). Then 7r - 1 (y) consists of  a single point x  o f  U (cf.
Lemma 6.5). S uppose further that J is a  f o rk . T h e n  th e  dual graph o f  J  and the

Dyn kin ty p e  o f  th e  singularity  x  are  given in T able 2  below, where o ( re sp . * )  stands
f o r a  (-2)-curve (resP. (— a)-curve) and n:-=#(4).

Furtherm ore, x  is a cyclic singularity if  an d  only i f  so is y.
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Table 2

No d u a l  g r a p h  o f  A D y n k in  t y p e  o f  x

1 E
6

2 o o o 1 E
7

3 -. o— "  •-1 o
D

5 (n -3 )+3  (6kn k4 )

4 0----:-.1 o—• 
•.__1

o
D

5 (n -4 )+4  (7kn k4 )

5
 
I I o—• • •-1 o

D
5 (n -3 ) (6knk4)

6 
o
--
o--o—:-

.
3--o---1--o

D
5 (n -5 )+1  (8kn k6 )

P r o o f .  W rite  J= T 0 -FT 1 -1-T 2 +T 3 w ith  the  cen tra l component T o a n d  three twigs
T i 's. W e m ay assum e th a t T 1 i s  a  (-2)-curve and  T ,  is  a  (-2)-curve, a  (-3)-curve

o r  a  rod  w ith  tw o  (-2)-curves. W rite T 3 = E T o =-G 1 , TI=G,+2 and T 2 =  E  G,,
3= r +3

w h e re  G ,  is  irreduc ib le  a n d  (G k , G1+1)=(T 0, Gr+s)-= 1 ( 1 5 --k k # r + 2 ) .  L et a ,
be  the coefficient of G ,  in D .  T h e n  5a2 =1, 2, 3 o r  4 .  W e  h a v e  a r + i =2a,- + ,  for

+K v , T 1 )= 0 .  Hence a, + 1 =2/5 o r 4/5. D enote by a  :-= - ( q ) .
Assume th a t T ,  i s  a  (-2)-curve. T hen  ar + ,=2a r + 2  f o r  (D 4 --I-I f v , T 2 )= 0 .  By our

hypothesis that V contains n o  rational double singular p o in ts , w e  m a y  assum e that
a n, _3 f o r  so m e  1_._ni r-P1 a n d  a2 = 2  i f  q > m .  Applying Lemma 1.10 to  a  divisor
consisting o f  B ,:=G , (1q.:"•-" r+3 )  w ith  (B 2

2 )= —3 a n d  (B )= —2 (q # m ) , w e obtain
a 2 m /(m +1) r 1 ) and a 2 . ._q/(m+1)(1_-Lzq m ). In particular, a, + ,-=4/5. Then
a2 =4/5 (mf__-_--q_.<r) for (D 2 -1-K ,  G2 )= 0 .  If  m=1, th en  a1 =6 for (D - ] -K ,  G 1)=0, and
J  is given in  th e  row  N o . 3 o f  T a b le  2 . Suppose N o t e  th a t  an ,±5a n i _i -6=5

G )= 0 .  H ence 5 a ,=6 — a 7,4 =1, 2  o r  3 .  Since ani_i>_- (m -1 ) / (m +1 )1 /3 ,
a n i _,=2/5 o r 3/5. I f  m=2, then  (a i , a l , a2 )=-(2/5, 2, 4) o r  (3/5, 3, 3) fo r  (D"d-K v , G1)
=0, and LI is g iven in  th e  row  N o. 4 o r  No. 5 of Table 2. Suppose m>_3. Then m =4,
a 2 =q I5 , a,=2  and  a4 =3 fo r (D 4 + K v , G2 )=0 (1 q<m ). Hence D is g iven  in  th e  row
No. 6 of T able  2.

A ssum e that T 2  i s  a  (-3)-curve. Since 5ar+1+5-15a, + 3 =5 (D '± K v , T 2 )=0 , we
have a, + 1 =4/5 and  a r + 2 =3/5. Applying Lemma 1.10 to a divisor consisting of B 2 : =G 2

( r q r - k 3 )  w ith  (B;. + 3 )= —3 a n d  (B )= —2 (q#r+3), w e  o b ta in  a r _>.1/4. O n  th e
other hand, since a.-E1+.5a, —5=5 (D "± K v ,  T 0 )=0, w e have 5a,=5— a, 1 =2 o r  3 .  If
r=1, w e have (a1, a l, a2)=(2/5, 2, 3) o r  (3/5, 3, 2) for ( D - 1 - K ,  G1 )= 0 .  T h e n  ZI is
given in  th e  row  N o. 5 o r  N o. 1 of T able  2 .  Suppose r 2. T h e n  5a,..1±(5-5ar)a,
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—6=5 (Ird -K v , G r )=0 implies (a r _i , a r , a r, a r+i)=(2/5, 3/5, 2, 2) and (./Y G,)=0
(1 q< r) im plies that r= 3, ce8 =q/5 and a 8 = 2 .  Hence D  is g iven  in  the row  N o. 2 of
Table 2.

Assume th a t T , is  a  ro d  w ith  tw o  (-2 )-cu rv e s . T h e n  cx, i =3/5, a ,= 2 / 5  and
a r ,= 1 / 5  for (D -1 -K , G8 )= 0 (q= r+ 3 and r + 4 ) .  T h i s  is absurd because a ,.+ 1 =-2/5
or 4 / 5 . Hence this case does not occur.

The Dynkin type of the singularity x = z ' ( f (4 ) )  can be determ ined in  th e  same
fashion as in Proposition 6.1. Q. E. D.

Corollary 6 .3 .  L et V  be a log Enriques surface.
(1) Assume that there is a singularity  o f  Dynkin type E s o n  C . T hen 1=7, 11, 13,

17 or 19.
(2) A ssum e that there is a singularity  o f  Dynkin type E k  (k =6, 7 or 8) on U. T hen

1=5, 25, 7, 11, 13, 17 or 19.

P ro o f . ( 1 )  Assume th a t  x  is  a  singularity of Dynkin type E s o n  V .  W e assert
th a t  I  is  no t divisible b y  2, 3 or 5. Then we conclude the assertion (1) by Lemma 2.3.
Suppose, on the contrary, that I  is  divisible b y  p w here p= 2 , 3 or 5. By Lemma 2.2,

;=/7/(Z/pZ) is a (rational) log Enriques surface su ch  th a t V is  the canonical cover-
ing  o f Vi  an d  Index(Ku i )= P .  Applying Lemma 3.1 and Proposition 6.1 or Proposition
6.2 to  r./1 ,  w e reach a contradiction.

( 2 )  can be proved similarly. Q. E. D.

The following two lem m as will be used in  the  proof of Proposition 6.6.

Lemma 6 .4 .  L et G  be a f inite subgroup o f  G L (2 ,C ). Suppose that G  contains no
ref lections and that th e  order n of  G  is not divisible by 4. Then G  is a cyclic group.
Hence G  is conjugate to a group C„,, w ith g. c. d . (n , q)= 1 an d  1 ..q 5 n -1 ; f or the
def inition o f  C„,,, see Lemma 2.5 or [2 ;  S a tz  2 .9 ] .  Moreover, we have q75-1- n —2 when
the origin o f  Cz/G is not a rational double singular point.

P ro o f . B y [2 ; S a tz  2 .9 ], G  is  co n ju ga te  to  o n e  o f  th e  g ro u p s  lis te d  th e re . In
particular, if G  is not cyclic  then 4 is  a factor of n. Q. E. D.

Lemma 6 .5 .  ( 1 )  L et (V , D) be a log Enriques surface such that I is an odd prime
num ber. L et y  be a singular Point o f  V .  Then 7- 1 (y) consists of  a single point x  of
U, and the singularity  o f  x (resp. y ) is isomorphic to (C 2 /G s , 0) (resp. (C 2 /G8 , 0)) with
a finite subgroup G s  (resp. G 8 )  of  GL (2, C) o f  o rder n (resp. n i ) w hich contains no
reflections provided n. 2. (W hen n=1, x is a smooth point).

(2) Suppose f u rth e r x  i s  a  cyclic singularity  o f  Dynkin type A n _l . In the case
where 1=3 or 5 or in the case where 4  is not a f actor o f  n, then y  is a cyclic singul-
arity isomorphic to (C 2 /C.1,8,,_ 1, 0) for some with g. c. d. (nI, k„_ 1)=1.

(3) By changing coordinates o f  C ' if  necessary, we have:
(3 a )  I f  1=3, then ko =k 1 =1,k2=2,k s =7,k4=4,k,=-5 an d  k,=13 (cf . Proposition

6.1).
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(3b) I f  1=5, then k 0 =1 or 2, k 1 =1 or 3, k 2 =2 o r 11, k 3 =3  o r 11 and k 4 =4 or 9.
(3c) I f  I=7,then k 0 =1, 2 or 3, k 1 =1, 3 or 9 and k 2 =2, 5 or 8.

P ro o f .  (1 )  By the argum ent in  the proof o f  Lemma 2.4, r - 1 (y )  consists o f a
single point x .  Then the assertion (1) follows if one notes that : ri->f/ is a  finite
morphism of degree I  and is étale outside Sing V.

(2 ) Assume x  is of Dynkin type A n _.1 . In the case where 1 =3 or 5, then y  is a
cyclic singularity by Propositions 6.1 and 6.2. In the case where 4 is not a factor of
n, then the order n I of Gy  is not divisible by 4 and hence y  i s  a  cyclic singularity
by Lemma 6.5. Thus, in either case, G„ is a  cyclic group conjugate to 5, :=C„.r .k n _i

for some 1<k„_ 4 <n I - 2  with g. c. d. (nI, k n _1 )=1  and  y  is isomorphic to (C 2 /5 1,, 0)
because y  is not a  rational double singularity.

The assertion (3) is a  consequence of the fact that ID° is an integral divisor of V.
Q. E. D.

We shall define some notations to be used in  the  following proposition. Let (V , D)

be a log Enriques surface such that I  is  an odd prime number a n d  S ing V=
i - 1

f o r  some integers mi( 1 S i < 6 ) .  The second condition means, by definition, that
Sing U consists of mi  singularities {x i i } (J.< j<m i ) of Dynkin type A i  for each 1<i<6.
L e t mo  b e  th e  number o f  all singularities {y o.,} o f  V such that x o ;  : -.=7r- i (y 0 1 ) is a
smooth point of U. In  th e  c a s e  where 1 =3 or 5 or in the case where m3

-=0, then the
singularities y i ;  :=7(x i i ) (0<i<6) exhaust Sing V and are isomorphic to ( C 2 / C ( i+ i) ,  k i , 0)
for some I.< ki </ (i+1 )-2  with g. c. d. ([(i+1), k 9 )=1  by Lemma 6.5. We also have

6 6
,,m=#(Sing V) and E m i =c.

In the case /=.-5, le t 121, • • • , n1 0  be respectively th e  numbers o f  all singularities
fy a i l  of V such that (a , k„) , (0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (2, 11), (3, 3), (3, 11), (4, 4),
(4, 9). Then m i= n 2 6 + 1 + n 2 i+ 2  (0<i<4).

In the case 1=7, le t n 1 ,  • • • ,  n ,  be the numbers of all singularities {y c,; } of V such
that (a, k a )-=(0, 1), (0, 2), (0, 3), (1, 1), (1, 3), (1, 9), (2, 2), (2, 5), (2, 8), respectively. Then

nai+ i+  nsi+ 24- nai+ 3 (0<i<2).
In general, if  1=3 then Sing U= E mi Ai + E 6. i .D;  f o r  some integers mi a n d

j2 4

where 6J =0  if  j 2 (mod 3) by virtue of Proposition 6.1. Set mo :=c-±k(Sing V)
= c -  E mi - >23i .

The bounds for c and p(V )-c  are given below.

Proposition 6.6. L et (V , D) be a log Enriques surface such that I is an odd prime
num ber and  Sing V * 0 .  T hen w e hav e 2 c_.<1\4in{16, 23-/} and c-1<p(V )<c-1-4.
More precisely, we have:

(1) Suppose 1 = 3 .  Then c<15 and p(V )<c+4. Moreover, i f  c=15, then p(V)=14,

p(V)=29, Sing U=6A 1 a n d  (m o ,  m 1 ) = ( 9 ,  6 ) .  I f  p(7)=c+4, then  i m i +3 4 =c , Sing ri

=D 4 , A 3 , A 2  or A1, (mo, ••• , m3, 6 4 )=(1, 0, 0, 0, 1), (2, 0, 0, 1, 0), (3, 0, 1, 0, 0) or (4, 1, 0,
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0, 0) and p(V)=11, 12, 13 o r 14, respectively.
(2) Suppose 1 = 5 .  Then c 16 and p ( V ) c + 2 .  M oreover, i f  c =1 6 , then  p(V )=

15, p(V)=40, Sing El=3/1 4 , (m 0 , m4)-=(13, 3) and (n 1 , ••• , n4 )= (4, 9, 3, 0). I f  p(17 )=c +2 ,

then  ± m i =c ,  Sing LI= A ,  o r A ,, (m 0 , m ,, m 2)=(1, 0, 1) or (2, 1, 0), (n 1 , ••• , n 6)=(0, 1, 0,4=0
0, 0, 1) or (0, 2, 0, 1, 0, 0) and p(V )=11 or 12, respectively.

(3) Suppose 1 = 7 .  Then c 15 and p ( V ) c + 1 .  M oreover, if  c=1 5 , then 9(V)=14,
Sing V = 2A1, (mo, m1) = (13, 2), (n1,•, n0)-=(0, 11, 2, 2, 0, 0), (1, 8, 4, 2, 0, 0), (2, 5, 6, 2,
0, 0) or (3, 2, 8, 2, 0, 0) and p(V)=44, 45, 46 or 4 7 , respectively . I f  p (V )=c +1 , then c
=2, p(V)=11, Sing ri=A4, ( no, m 1)=(1, 1) and (n 1 , •••, n6)=(0, 0, 1, 0, 0, 1).

( 4 )  Suppose Then p (V )=c-1 .
In particular, w e hav e 24-k /_<.cd-p(U )-p(V )=24-/(p(V )-c-F2)_24-I, where k =

6  (resp. 4 , 3  o r  1) i f  1=3  (resp . 1=5 , 1=7  or .1 .11) (cf . Lemma 2.4). Moreover, (D,
K v )= c - 1 - ( K )  when the upper bound o f  c  o r p (V ) -c  in  (1), (2) and (3) is attained.

P ro o f . Since I 3  w e have c 2 by Proposition 1.6. W e use the result p (V )-
c+2 =(2 4 +p (U )- p (U )-c )/ 21/.1. .L--.7 in Lemma 2 .4 . In particular, we obtain the asser-
tion (4), and c p(V )_<c+5 and c=24+ p(C )- p(U )-1(p(V )- c + 2 ) 2 3 - .1 .2 0 .  More-
over, if  p (V )=c+5  then 1 = 3 and 24+p(V )-p(U )-c=21, whence c=2 and Sing V=2=1 4 .
In proving the assertion (1), w e w ill show that th is case does not occurs. Therefore,
in  order to prove Proposition 6.6, w e have only to consider the case where 1 =3, 5 or
7 and show the assertions (1), (2) and (3).

(1 )  Assume 1=3. Then 0 <p (U )-p (1 7 1 )=2 4 -c - I (p (V ) -c +2 ):‹2 1 -c . In particular,

i f  c 15  w e  have p (U )-p (ri) .<6  and hence write Sing V= ± miAi+54134+36D 6 . For

the time being, we assume that Sing V  is  w r it te n  th is  w a y .  T hen  D =f - '  (Sing V)
consists of 34 fo rks P p  (1 - P - 54 ), 3 6 fo rks d q  (1 .q. 36) a n d  ± m , rods B d  (1<d-<m0),

Ce (m0 +17<e<m0d-m4), D f (ino +m i d-l f  Eg(mo±mi+m2+1.fir- g<m o -p ...+

m3), Fh(mod- •••+m 3 +1 h -<m o -i--- ••±m 4), G 4(m 0+•••+m 4+1i_m 0+•••+m 5) and H,(m o+
•••+m 5 +1 < j  rn o +•••+m ,), which are defined as follows (cf. Proposition 6.1):

( i ) B 4 i s  a  (-3)-curve,
(ii) C , is  a  (-6)-curve,
(iii) D 1  consists of one (-2)-curve D i f  and one (-5)-curve D 2 1 ,

(iv) E g  consists of tw o (-2)-curves E i g , E , g  an d  o n e  (-4)-curve E , ,  w ith ( E b g ,

E b +1 ,  9 )
= 1  (b =1 , 2),

(v) Fh  consists o f tw o (-4)-curves F1 6 ,  and F211,

(vi) Gi  consists of one (-2)-curve G 4 „  one (--3)-curve  G 2 1  a n d  o n e  ( -4)-curve
G3 4  w ith  (G01, G6+1,i)=1 (b=1, 2),

(vii) H , consists o f  tw o  (-2)-curves 111„ 1141 a n d  tw o (-3)-curves H 2 ,  H „ with
(H 0 „ H1+1,1)=1

(viii) 1-' = S , „ ,  where S o ,  is the central component and S,,„ (1_<u<3) is a twig

and where S 0 „ is  a  (-3)-curve and S u p  i s  a  (-2)-curve,
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( ix )  4 ,= ± 0 T „, where T „ is  the central component a n d  T i„  (1 u ,---3) is a  twig

and where T „ is a  (-4 )-cu rve  and T„(0.<v_5. 2) is a  (-2)-curve.
Then D" = (113)EB d (2/3)EC 0±  ( 1 / 3 ) E ( D l f  2 D 2 1 )  ( 1 / 3 ) E ( E lg  2.E29±E3g)+

(213)E(F1 14 +F273 )d-(1/3)E(Gi,±2G,i4-2G„)+(1/3)E(H,,+2H2,±2H8,+H4.7)+(1/3)E(2S0p
+Sip+S2p+S3p)+(113)E(2Tog+Tig+T2q4 - 2 T3q). Hence - (mo+ 8m1+6m2+4m3+8m4+
6 mo + 4m6 + 234+ 456)/3 = (D') 2 =(K i ) = 10- p(V )=10 - p(V) - #(D )=10 -  p(V) - (m0- 1- m1+
2m2 ±3m 9 +2m4+3m 6 +4m6+434+436). This entails :

(la) 3(p(V) -  10)+ 2m0- 5mi -I- 5m3 - 2m.,±3m 5 + 8m6 + 1054 + 836 = 0 .

In particular, m1 +m4--(5m1+2m4)/5 -6?-. 3 (p (V )-10 )/ 5 . On the other hand, by Proposition
1 .6 , w e  have m0 +4m 1 +3m 2 +2m 8 +4m 4 +3m 6 +2mo+34+236=- (D, Kv)<c - (K r)=c+p(V )
- 10=c+p(V ) - 10+#(D )=c+p(V ) - 10+(mod- mi+2m2+3m3+2m4±3m5 - 1- 4m,±454+436).
Hence we obtain :

(lb) e+ p(V) - 10>3mi+m2 - ms±2m4 - 2m6 - 334 - 2(36.

To prove p (V )<c+4 , we have only to show that the case p(V )=e+5 is impossible.
Indeed, in the case p(V )=c+5, we have c= 2  a n d  Sing C = A i .  Hence m0 =m 1 = 1 and
34=36-=m4=0 contradicting the above equality (la).

Assume p (V )=c +4 . Then c±p(U) - p(U)=24 - I(p(V ) - c +2 )=6 . Hence (c, p(U) -

p(U))=(2, 4), (3, 3), (4, 2) or (5 , 1 ) . So, the above expression of Sing U  is still effective.
Note that 34 =3 6 =- 0 when p(U) - p(ri) 3. We consider these cases separately.

Case (e, p(U) - p(U))=(2, 4 ) .  Then 9(V )=6 and Sing ri=D 4 , A4, A1+ A3 or 2112 . If
Sing -17:=A4, A1+.113 or 2A 2 ,  then (m, 0, • n16, 34, 3) = (l, 0, 0, 0, 1, 0, • • • y 0), (0, 1, 0, 1, 0,
• •. y 0 ) or (0, 0, 2, 0, ••• 0), respectively. This contradicts the above equality (la). Hence
we must have Sing (7=D4 .  Then (mo, ••• , m6, 34, .36) - ( 1 ,  0 ,  • • •  ,  o ,  1 ,  0) and p(V )=p(V )
+ # (D )= 11 . This is  one of the cases given in the assertion (1).

Case (c, p(U) - p(U))=(3, 3). Then p(V )=7 a n d  Sing U = A „ A i± A , o r  3.4 1 . If
Sing EI=Ai+Ao o r  3A 1 ,  then (m o , ••• , m 6 )=(1, 1, 1, 0, ••• , 0) o r (0, 3, 0, ••• , 0), respec-
t iv e ly . This contradicts the  above equality (la). Thus, w e m u st h av e  Sing Cr=A 3 .
Then (mo , ••• , m 6) , (2, 0, 0, 1, 0, 0, 0) a n d  p(V )=p(V )+#(D )=12 . This is one of the
cases given in the assertion (1).

Case (c, p(U) - p(U))=(4, 2 ) .  Then p(V )=8 and Sing U=A 2  or 2A 1 .  If Sing U=2241,
then (mo , ••• , m 6 )=- (2, 2, 0, ••• , 0), which contradicts the above equality (la). Therefore,
Sing U=A o . Then (m0 , ••• , nz 4)=(3, 0, 1, 0, ••• , 0) and p(V )=p(V )+#(D )=- 1 3 . T h is  is
one of the cases given in the assertion (1).

Case (c, p(U) - p(C)) - (5 , 1). Then p(V )=9 and Sing U=A i . Hence (m o , ••• m 6 )=
(4, 1, 0, •••, 0) a n d  p(V )=p(V )+#(D )=14. T h is  i s  one of the cases given in the as-
sertion (1).

Next, we shall prove c l 5 .  W e co n sid er th e  c a se s  c= 20 , 19 , 18 , 17  a n d  16,
separately.

Assume c = 2 0 . Then 1 _< p(U) - p(U )= 2 4 -c -I (p (V )-c+ 2 )=  4 -3 (p (V ) -1 8 )  1 .
Hence p(V )=19 and Sing U=A i . Then (m o , ••• , m6, (34, 36)= (19 , 1 , o , • • •  , 0 ), which con-
tradicts the above equality (la).



456 De-Qi Zhang

Assume c = 1 9 . Then 0<p(U )-p(ti) = 24 - c-I (p(V )- c+2) = 5-3(p(17)-17) _< 2.
Hence p(V)=18 and Sing U=A 2 o r  2,4 1 . In particular, m1-Fm4 =m 1 2. On the other
hand, we have m1-Em43(p(V)-10)/5=24/5. We thus have a contradiction.

Assume c = 18. Then 0<p(U)-p(U) = 24- c  -I(p (V )-c +2 )= 6-3(p (V )-16)
Hence p(V )=17 a n d  Sing V = A o , - A 2 o r  V 1 . T his leads to a contradiction as in
the case c=19.

Assume c = 1 7 . Then 0 p(U )- p(C )= 24 - c -I (p( -17)-c+2) = 7 - 3 (p (V ) -1 5 )  4 .
Then either p(V )=17 and Sing U =A i ,  o r  p(V)=16 a n d  Sing U  =D o A 4, A i +A „ 211 2 ,
2,4 5 -1-A 2 o r  4.4 1. Since m i - F m 4 - 3 ( p ( V ) - 1 0 ) / 5 ,  w e  h a v e  p(V)=16 and Sing U=4/11.

4 . =Then (m0 , ••• , m 6 , 3 ,  36 ) (13, 4, 0, , 0), which contradicts the above equality (la).
Assume c = 1 6 . Then 0< p (U )-p (U )=  24 -  c  -I(p (V )-c+2) = 8 - 3 ( p ( V ) - 1 4 )  5.

Then either p(V )=16 and Sing U =A 2 or 2A 1 , or p(V)=15 and Sing U .= A l+ D 4 , A 5 1  A1+
A 4 , A 2 H A 2 , M r * As, A1+2A2, 3.111+,42 or 5241. Since m1 --1-m4 -3 (p(V)-10)/5, we have
p(V )=15 and Sing U=3,4 1 ±A 2 o r  5A 1 . Then (m0, ••• , m6, 54, 36)=(12, 3, 1, 0, ••• , 0) or
(11, 5, 0,• , 0). This contradicts the above equality (la).

We have thus proved c.< 15. We now consider th e  c a se  c= 1 5 . Then 0<p(U )-
p(C )=24-c -I (p(V )-c-F2)=9-3(p(V )-13 6. Hence, either 0 (V7)=15 and Sing

A i d - A2 o r  3A 1 ,  o r p(V )= 14 and Sing U=D o , A 2 +D 4 , 2Aid - D4, A 6 , A 1 + A 5 , A 2 + A 4 ,

2A 1 , A i + A 2 ±A 2 , 3A i d - A 3 , 3A 2 , 2A 1 -1-2A 2 , 4.111 + A 2  o r  6A 1 . Since mi

3(p(V )-10)/5, either p(V )=15 a n d  Sing U=3,4 i ,  o r  p(V )=14 and  Sing U-=2241-I-A4,
324,-1- A s , 4A 5 +A 2 o r  6241 . If  p(V )=15 a n d  Sing a= 3,4 1 ,  then (mo , , 1115, 3 4 , 56)=(12,
3, 0, ••, 0), which contradicts the above equality (la). Thus p(I7)=14. Then (m0 , ••• ,
m 6 , 5 4 , 36)=(12, 2, 0, 0, 1, 0, 0), (11, 3, 0, 1, 0, , 0), (10, 4, 1, 0, ••• , 0) or (9, 6, 0, ••• ,
0 ) . Actually, (m0 , •.• , n 1

6, 5 4 ,  5 6 ) -  (9, 6, 0, ••• , 0) by the above equality (la), and p(V )=
P(V )+#(D )=29. This is  the case given in the assertion (1).

( 2 )  Assume 1 = 5 . Then p (V )-c+ 221// < 5 and p (V )c -F 2 . Moreover, i f  p(V)
= c+ 2, then 0< p(U)- p(V )=24- c- I (p(V )- c+2)=4- c_.<2 and Sing U=A 2, 2A I o r  Ai .
On the other hand, if c . - 16 then p (U )-  p (C )=2 4 -c - I (p (V ) -c +2 )2 4 -1 6 -5 =3  and
Sing U= A „ A i d - A2 , 3A 1 , A 2 , 2A 1 o r  A , .  Therefore, i n  order to prove the assertion

(2), we may assume that Sing U - =  nz i A i . Then D consists o f c  rods B d

C, m4), D  (77/0+1_-f  m0 ±n 3), E  ( i n 0 -En 3 + 1 5 . g i n 0 -En 3

+ n 4 = m 0 + m i), Fh G i (m 0±n ii-l-n 5+15 i_m 0±m 1+n 54 -n 6=

m0+m2±m2),
 H

 (1770-1-m1+m2+1.17-57no - Fini - Fm2+727) a n d  j  P  ( M 0 + M 1 + n 1 2 ± n 2 + 1 S P

M 0 +1 f l1 +1 1 1 2 +n 7 ± n 2 =M 0 +• • • ± M 3 )  which are defined as follows:
( i ) B d  is a  (-5)-curve,
(ii) Ce consists of one ( -2)-curve Ci e  and one (-3)-curve  C26,
(iii) D1  is  a  (-10)-curve,
(iv) E g  consists of two ( -2)-curves E i g , 4 ,  and one ( -4 )-curve E „  with (Ebg ,

Eo+ i, g )=1 (b=1, 2),
(v) Fh  consists of one ( -2)-curve F1 ,, and one (-8)-curve F274,

(vi) consists of four (-2)-curves G,,, G 2 4 , G44, G 6 2  and one (-3)-curve G3 4 with
(G 56, G 5+1,4) -=1  (1S654),

(vii) H , consists of one ( -3)-curve H ,, and one (-7)-curve H21,
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(v i i i )  I ',  consists of two ( -2)-curves Jip , .1 3 p  and one ( -6 )-curve J 2 2 2 w ith  ( J ,
J1 +1 )=1P )

=1  (b=1, 2).
Then Ds' = (3/5)EB5+ (1/5)E(Cied -

2 C2e)± (4/5)ED f  (1/5)E(Ei g +2E2,-P3E8 g )+
(2/5)E(Fii i +2F20+(1/5)E(Gici-2G2i+3G3,+2G4z+G6i)+( 1/5 )E( 3 Hii+ 4H2 ) )+(2/5)E(J p
+ 2  j 2 p ±  j 3 p ) .  Hence -(9n 1 ±2n 2 +32n 3 +6n4+24n8+3n8+23n7+16n8)/5 (D*) 2 = (K i27)=-

10 - p(V) = 1O- 9(V) - #(D)  10 -  p(V) - (n i +21224- n8 - 1- 3n4- 1- 2n5+5n,±2n7 - 1- 3n8). This
implies:

(2a) 5(P(V) - 10) - 4n1+8n2 - 27n3+9n4 - 14n5+22n6 - 13n7- n8=0.

On the other hand, by Proposition 1.6 we obtain 3n 1 ±n 2 +8n8±2n4±6n8 - 1- n8+6n7±4n8
=(D, Kv)<c - (Kr5) -=c+p (V ) - 10 =  p ( V ) - 1 0 + # (D )=  p(17 )- 10±(n1±2n2±n3±3n4
+ 2n 5 +5n 8 +2n 7 +3n 8 ). This implies:

(2b) c- 1--p (V )  10> 2n , n 2 +7n 8 n 4 + 4n , 4n 8 +471 7 -d-n8 .

Assume p (V )= c+ 2 . Then p(U) -  p(C)= 4 - c  and (c, p(U) -  p(U ))= (2, 2) or (3, 1).
Consider the case (c, p(U) - p(U))=- (2, 2 ) . Then p(V)=4 and Sing U =A 2 o r  2111 . Sup-
pose Sing U=2A. i . Then n 8 d-n 4 = 2  a n d  n ,= 0 (i# 3 , 4 ). O n  th e  other hand, by the
above equality (2a), we have 0=  -30-27n 8 +9n 4 . T h is  leads to 9130, a contradiction.
Hence Sing C=A 2 . Then n1d- n2=n 5 +n6=1 and n i =0 (i# 1, 2, 5, 6). By (2a), we have
0= -30 -471,4-8n2-14n 5 +22n8= -48+12n 2 +36n 8 , 1 . e ., n 2 -1-3n8=4. Therefore, n2=n6
= 1, (n „  • , n 8 )=(0, 1, 0, 0, 0, 1, 0, 0) and p (V )=p (V )+# (D )=11 . This i s  one  o f the
cases given in the assertion (2).

Consider the case (c, p(U) - p(U))=(3, 1). Then p (V )=5  a n d  Sing U=A i . Hence
n1 +n 2 =2, n 2 H-n4 = 1 and ni =0 5 ) .  By the above equality (2a), w e have 0= -
4n i +8n 2 -27n 8 +9n 4 = --24+12n 2 -36n 2 , i .  e ., n 2 = 2+371 3 2. S o , 722 =2, (n1, ••,
(0, 2, 0, 1, 0,• , 0) and p(V )=  p(V )+ # (D )= 12. This is one of the cases given in the
assertion (2).

Now we shall prove c 16. N ote  th at c= 24-(p (U )-p (U ))-./ (p (V )-c+ 2)524-1

A ssum e c = 1 8 .  T hen 1 _< p(U) - p(U)--= 2 4 - c - I ( p (V ) - c+ 2 )=  6 -5 (p (7 ) -1 6 )1 .
Hence p(V)=17 and Sing U =A i . So, n 1 +n 2 =17, n 3 ±n 4 = 1  a n d  n1 = 0  ( i 5 ) .  On the
other hand, b y  th e  above equality (2a), we have 0=35-472 1 +8n 2 -27n 3 +9n 4 = -24+
12n 2 -36n 3 , i. e., n 2 =2±3n 8 .  Hence (n1, ••• , n 8 )=(12, 5, 1, 0, ••• , 0) or (15, 2, 0, 1,0, ,  0 ) ,
either case contradicting the  above inequality (2b).

Assume c = 1 7 . Then 0<  p(U) - p(t7)=24 - c - I(p (V ) - c - 1- 2) -=7 - 5(p(V) - 15) 2.
Hence p(V)=16 and Sing U=A 2 o r  2A 1 . Consider the  case  where Sing U =A 2 . Then
n 1 +n 2 =16, 12 5 -1-n8 = 1 and n i =0 (i 1, 2, 5 , 6). On the other hand, by the above equality
(2a), w e  have 0=30-4n 1 ±8n2-14n 8 +22n8=-48+12n2+36n6, i. e ., n 2 -1-3n 8 = 4 . Hence
(n„ ••• , n8) , (12, 4, 0, 0, 1, 0, 0, 0) o r (15, 1, 0, 0, 0, 1, 0, 0), either case contradicting the
above inequality (2b). Consider the case where Sing U=2A 1 . Then n1+722=15, n3+
/14 =2 and n ,= 0  By (2a), we have 0=30-4n 1 +8n 2 -27n 3 ±9n 4 =-12-1-12n2-36n8,
i. e ., n 2 =1+3n 2 . Hence (n 1 , ••• , n 8 )=(8, 7, 2, 0, • , 0), (11, 4, 1, 1, 0, ••• , 0) o r (14, 1, 0,
2, 0, ••• , 0), either case contradicting the  above inequality (2b).

So, we have proved c 16. We now assume c= 1 6 . Then 0<p(U) - p(U)=24 - c -
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l(p (V )-c+2 )=8 -5 (p (V )-1 4 )_ <3 . Hence p (V )= 1 5  a n d  Sing C=.24 3 , A i + A 2 o r  3A1.
Consider th e  c a se  where Sing r i= A , .  Then n 1 ± n 2 =15, n 7 + n 8

= 1  and n 1 = 0  ( i* l, 2 ,
7, 8). By the above equality (2a), w e  have  0=25-472 1 ± 8n 2 -1 3 n 7 - n 8 =  -36+ 12n 2 -
12n,, j .  e . ,  n 2 =-3+n

7 . Hence (n 1 , ••• , n 8 )=(11, 4, 0, ••• , 0, 1, 0) o r  (12, 3, 0, ••• , 0, 1),
either case contradicting the above inequality (2 b ) . Consider the case where Sing U =
A i ± A ,  Then n 1 ±n2=14, n3±n4-=n 5 + n 6 = 1  and n i = 0  ( i% 7 ). By (2a), w e  have  0 =
25-4n 1 ± 8n 2 -2 7 n 3 ± 9n 4 -1 4 n 5 +22n 6 =  -3 6 + 1 2 n 2 - 3672 3 +36n 6 , 1 . e .,  n 2 - 3 n 3 ± 3n 6 = 3.
On the other hand, by (2b ), w e  have 21>272,-n2+7n3-n 4 ± 4n 5 - 4 n ,= 3 1 - 3 n 2 ± 8 n , -
8n 8 = 3 1 -3 (n 2 - 3 n ,± 3 n ,) - n ,+ n ,= 2 2 - n ,+ n e . Hence n 3 > 1 + n

6 %  1 . T h is  contradicts
n 3 ± n 4 = 1 .  T herefore  w e m ust have  Sing U=3A 1 . T h e n  n1±n2=13, 723±n4=3 and

( i% 5 ) . By (2a ), w e have  0=25-412 1 ± 8n 2 -2 7 n 3 ± 9n 4 =12n 2 -3 6 n 3 , j .  e ., n 2 =3n 3 .
Hence (ni, ••• , n 8 )=(4, 9, 3, 0, ••• , 0), (7, 6, 2, 1, 0, ••• , 0), (10, 3, 1, 2, 0, ••• , 0) or (13, 0,
0 , 3 , 0 , • • , 0 ) . By using the above inequality (2b), w e m ust have (n1, •••, n 8) --= (4, 9, 3,
0, ••• , 0) and p(V )=p(V )+#(D )=40. This is  the case given in the assertion (2).

( 3 )  Assume I = 7 .  Then p (V ) -c +2 2 1 /1 =3  and p ( 7 ) c + 1 .  Moreover, i f  p(V)
=c +1 , then 1 <p ( U ) - p ( U ) =2 4 - c - I ( p ( V ) - c +2 ) =3 - c 1 .  Hence c= 2 , p(V )=3 and
Sing C =A i . On the other hand, if c%15, then 0 <p (U )-p (U )=2 4 -c -I(p (V )-c +2
2 4 - 1 5 - 7 = 2  and Sing U=A 2 , 2A 1 o r  A ,. T herefore , in  o rd e r  to  p ro v e  the assertion

(3), we may assume tha t S in g t7 =  m ,A i . Then D consists o f c  rods Bd (1_<d

C, (n 1 + 1:< e5n i-kn2), D f  (n1±n2+15J-n1-En2+712 =-- m 0 =  c -m i - m 2 ), E g  (m 0 + 1 < g ,<
mo +n4), Fh, (m0-Fn4+15h5m0+n4d-n5), Gi (m0+n4+725 -1- 1.<i<m0+n4-1-n5+n6=m0-1- m1),
1-11 (m 0-km 1+15/5m o+m i+n7), /p (m0-F-m1d-n7+15._ p _m0-kin1-En 7 ± n8) and L,(mo±mi
-En 7 -1-n8±1<q<m0+m,+n7+n8±n2=mo±m1d - m2) which are defined as follows:

( i ) B d  is  a (-7)-curve,
(ii) C , consists of one (-2)-curve C 1 8 and one (-4)-curve C28,
(iii) D f  consists o f two (-2)-curves D11, D2 1 a n d  o n e  (-3 )-curve  D31 w ith  ( Dbf,

D b + i,f)= 1  (b=1, 2),
(iv) E g  i s  a  (-14)-curve,
(v) F h  consists of one (-3)-curve  F 1 ,, and one (-5 )-cu rv e  F2h,

(vi) G i  consists of four (-2)-curves G 11, G21, G 3 1 , G5 1 and one (-3)-curve  G 4 1  with
(G51, G51-1, 8) = 1  (1. b.<4),

(vii) II1 consists of one (-2)-curve and one (-11)-curve H2 1 ,
(viii) J ,  consists of four (-2)-curves J 1 „, ••• , J 4 7,  a n d  o n e  (-5 )-c u rv e  J „  with

(h ,  + 1 , p )= 1  (1 S .b 4 ) ,p b
(ix) L , consists o f three (-3 )-curves L i ,, L 2 2 , L „ w ith (L „, L 5 + 1 ,2 )=1 (b=1, 2).
Then D" =(5/7)Ef3d±(2/7)E(Cie-1-2C2e)±(1/7)E(Dif + 2 D 2f + 3 D 3 1 )±  (

6 / 7 )E E g +

(1/7)E(4F 11, ± 5F21,)±(117)E(G11±2G21±3G31±4G41± 2 G51)±(3/7)E(H11± 2 H21)±( 1/ 7 )E
(./ip-E2J2p±3/2 1, + 4 J4p -F5J5p)±( 1/ 7 )E ( 4 L , , ± 5L 2 2 ± 4 L 3 2 ). H ence -(25/2 1 ± 8 n 2 ± 3n 3 +
72124 + 19n 5 + 4n 6 + 54n 7 + 15n,±13n,)/7=(D*) 2=(K12,-)= 1 0 -p (V )= 1 0 - p(V) - #(D )=10 -

P(V)-(ni+2n2±3n3±n4±2n5±5n6±2n7±5n8+ 3 n2). This implies:

(3a) 7(p(V )-10)-18n1+6n2+18n3-65n4-5n5+31n6-40n7+20n8+8n9=0.

O n  th e  o the r hand , by Proposition 1.6 we obtain 5711±2n2+n2+12n4+4n5+n6±9n7+
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31184- 3n2=(D, K v )<c-(K 1
2,)=c-Fp(V )-10 , ---c+p(V )-10+#(D)=c+p(V )-10-1-(ni+2n2+

3/23 4-n 4 +2n 5 +5n 6 +2n 7 +5n 8 +3n 9 ). This implies :

(3b) c±p(V)-10> 4n1-2n3+11n4+2n6-4n6+7n7-2n8.

Assume p (7 )=c +1 . T h en  c=2, p(V )=3 and Sing U=-A i .  Hence n1+n2±n3=n4+
n5 +74=1 a n d  n 1 =0  ( i_ 7 ) . O n  th e  o th e r  hand, b y  the above equality (3a), w e have
0= -49 -18n i -1-6n2 +-18n3 -65n 4 -5 n 6 4-31n,= -48 -24n i  +12n o -60 n 4 +36n,, j .  e., 4
3n 6 =4+2n 1 +512

4
4. T h u s, w e  must have (n 1 , •••, n 9 )=(0, 0, 1, 0, 0, 1, 0, 0, 0) and p(V)

=p(V )+*(D )=11. This is  the case given in the assertion (3).
N o w  w e  s h a ll  p ro v e  c 1 5 . N ote  t h a t  c=24-(p(U )- p(U))-I(p(V )-c+2)<24-1

- 7=16.
Assume c= 16. T h e n  1 <p (U )-p (U )=2 4 -c -I(p (V )-c +2 )=8 -7 (p (V )-1 4 )< 1.

Hence p(V )=15 a n d  Sing U=A i . S o , n 1 ±n 2 -1--n3
-=15, n4 -1-n5 +n 3 = 1  a n d  n i =0

U sin g  th e  above equality (3a), w e  o b ta in  0=35-18n 1 +6n 2 +18n 3 -65n 4 -5 n 5 +31n 6 =
120-24n 1 -1-12n 3 -60n 4 +36n 6 , j .  e., 2n 1 - n 3 =10-5n 4 ±3n 6 . O n  th e  o ther hand, b y  the
above inequality (3b), we have 21>4n 1 -2 n o -1-11n 4 4-2n 5 -4 n 3 =2(10-5n,±3n6)±11n4+2n,
- 4n 6 =20-1-n

4
±2n 5 +2n 6 =21+n 5 + n 6 21. This is  absurd.

Assume c =1 5 . T h e n  0 <  p(U)-p(C)=24-c-I(p(V )-c-1-2)= 9 -7(p( -17)-13) < 2.
Hence 9(7)=14 and Sing D=A 2 o r  2A 1 . Consider the case where Sing U=A 2 . Then
n 1 +n 2 ±n 8 =14, n 7 ± N ± n 9 =1 and n i -=0 (i*1, 2, 3, 7, 8, 9). U sin g  th e  above equality
(3a), we obtain, 0=28-18n i ±6n z +18N-40n 7 +20n 8 4-8n 9 =120-24n i +12n 8 -48n 7 +12n„,
i. e., 2/2 1 -N-1-4n 7 - n 8 = 1 0 . O n the other hand, b y  the above inequality (3b), w e have
19>471 1 -2 n 3 4-7n 7 -2 n 8 =2(2n 1 - n 3 +4n 7 - n 8) - n 7 = 20-n 7 19. This is  absu rd . S o , we
m ust have  Sing /7=2,4 i . T h e n  n1 -l-n 2 ±n 3 =13, n4 -1-n5 H-n 6 =2  and n = 0  (i:_>_7). By
v ir tu e  o f  (3a), w e  o b ta in  0=28-18n i 4-6n 2 +18n o -65n 4 -5 n 5 +31n 6 =96-24n 1 +12n 3 -
60n 4 4-36n 6 , j .  e., 2n 1- n 3 4-5n 4 -3 n 6 = 8 .  On the other hand, by virtue of (3b), w e have
19>4/2 1 -2 n 3 4-11n 4 +2n 5 -4 n 6 =4±2 (2n1-1234-5n4-3n6)-n4=20-n4, i. e ., n 4 > 1 . Hence
n4 =2, n 5 =n 6 =0 and 0=2221 -74-1-5n 4 -3 n 6 -8= 2n 1 - n 3 + 2 . So, (n i , ••• , n 9 )=(0, 11, 2, 2,
0, • • •  , 0), (1, 8, 4, 2, 0, • • •  , 0), (2, 5, 6, 2, 0, • • •  , 0) o r  (3, 2, 8, 2, 0, • , 0) and p(V )(=p(V )
+#(D))=44, 45, 46 or 47, respec tive ly . T hey  are the cases given in the assertion (3).
The last assertion is now verified straightforwardly.  Q .  E .  D .

Rem ark 6 .7 .  ( 1 )  Let (V, D ) b e  a log Enriques surface satisfying 1=3, p(V)=c--I-

4= 6, Sing t i=D 4  an d  (mo , m 1 ,  m2, m3, a4)=(1, o, 0, 0, 1). Then D =B j + .J S r i  w ith  ther=0
notations of Proposition 6.6. D enote  the intersection point S 0 1 n S 1 (1 i<3) b y  P,.
Let r :  W --+V  b e  the blowing-up o f P i  (resp. P i  a n d  P2 ,  o r P1 P2 and PO and le t LI :=
r'(D ) . T hen (W , 4) is  a  log  Enriques surface satisfying 1 = 3 and p(W )=c+4, where

: TV->W is  the contraction of 4 .  Moreover, Sing Z=A, (resp. A „ o r A i ), c=3 (resp.
4 , or 5) and (mo , ••• , mo , 3 4)=(2, 0, 0, 1, 0) (resp. (3, 0, 1, 0, 0), o r  (4, 1, 0, 0, 0)), where
2 is  the canonical covering of W. (See Example 6.8 below).

( 2 )  Let (V , D ) be  a log Enriques surface satisfying 1=5, p(17)=c+2=4, Sing U=
A2 , (mo, ml, m2)=(1, 0, 1) and (n i , ••• , n2)=(0, 1, 0, 0, 0, 1). T h en  D=Cii+CH+Gii+•••
-1-G2 1  w ith  the notations of Proposition 6.6. Let r :  W .-1/  b e  th e  blowing-up of the
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point G2InG 31 and let (D ) .  Then (W, 4 )  is a log Enriques surface satisfying
1=5, p(VV)=-- c+2=5, Sing Z =A i , ( m,, m i ,  m2 )=(2, 1, 0) and (n1, n6):=(0, 2, 0, 1, 0, 0),
where e: 1V->W" is  the contraction of 4  and 2  is  the canonical covering of W . (See
Example 6.9 below).

The following three examples show that the upper bounds of p ( V ) - c  in (1), (2)
and (3) of Proposition 6.6 are the best possible ones.

Example 6.8 (for the case (I, p(V )-c)=:(3, 4)). Let 7C : X 0 - P '  b e  a  PI-fibration
on the Hirzebruch surface X .  L e t  M  and L  be a minimal section and a fiber of 7r,
respectively. Take nonsingular members A  I 2 M  L I and C c IM -I-2L I . Denote by
P„ ••• , P, all five intersection points of A nC , where some points of them might be
infinitely near to the other. Take a minimal section M i of it such that P6 :=/1// 1 n A =

(1_<i<5) and M 1 m eets C  in two distinct points P , and P, other than P, (1
Let L i  and L , be the fibers of i t  containing P ,  and P , ,  respectively. Let P, and P .
(resp. P1 1 and P .) b e  a ll the intersection points of A n L , (resp. A r)L 2 ), where the
second point might be infinitely near to the first one. Let r :  V ->Z , be the blowing-
up of nine points P i 's (i±5, 6 , 12 ). Set L ,:=•r'(L ,), :=T-t(M1), A' :=2'(A ), C ':=z -'(C)
and D:=L 1'd-L 2 1 d -M i'± A 'd -C '.  Noting that L1+L2-1-M1+C-1-2A---31i10 ,  we can
check th a t L1'±L2'-+M1'+CH-2A'--, - 3 K ,  Hence (V , D ) is a log Enriques surface
with 1=3. Evidently, we have c=2, p(V )=11, p(7)=6, Sing V =D 4 and (mo, , ni3, a4)
=(1, 0, 0, o, 1).

Example 6.9 (for the case (I, p (V )-c )=(5 , 2 ) ) .  Let 7r : M  and L  be the
same as in Example 6.8. Take an irreducible rational curve A in I2M+2L I such that
the unique singular point P i  o f A is a node. Let P2 (=>•-' P i )  be a ramification point of
71.A. Denote by L i  ( i=1 , 2) the fiber containing P i . Take a minimal section M i  of  i t

so that M i meets A in two distinct points P, and P 4  other than P ,'s  (i= 1 , 2 ). Then
the point Pi + 4 :- , --M n L i ( i=1 , 2 ) is different from P , for each 1_</_.<4. Since dim 1M

L 1 =3 , there is an irreducible member C  in 1M+ L I  such that P,, P5 E -C . Let P 1 (7
_<i.<9) be the intersection points of A nC  other than P 2  where some of P,'s might be
infinitely near to the o th er. Let T., : 1/1-*I 0 be the blowing-up o f seven points P i 's

9) and set E , : = 1 " T i ( P . 7 ) ( 1 = 1 ,  2). Let r 2 : 17 -417
1 b e  the blowing-up of the point

r1'(A)nE2 and one of two points r i '(A ) n E i .  Set r Ei' :=r2 1(E1), Li'
M1' :=--e(M i), A' :=7'(A ), C' :=1-'(C) and D :=L 2'± A li'+L i'd--E l'+A '± C '+E ,'. Noting
that L 2 +2MH-L 1 +-3A+2C---5K10 ,  w e can  check that L2'±2M 1'd-L1'd-2E1'--F3A '±
2C '+ E 2 ' -- - 5 K .  H ence (V, D) is a log Enriques surface with 1 = 5 . Evidently, we
have c=2, p(V )=11, p(V )=4, S in g  -=A 2 and (n i ,  « ,  n6 )=(0, 1, 0, 0, 0, 1).

Example 6.10 (for the case (I, p (7 ) -c )=(7 , 1 ) ) .  Let (V , D ) be the log Enriques
surface given in Example 5.5. Then Index (Kv)=7 and the canonical covering V  of V
is a K 3-surface. Let o :  V-41/ be the blowing-down of the (-1 )-cu rve z- - 1 (P6 )  o f  V
where P ,  is defined in  Example 5.5. Set 4  :=0 . (D ) . Then (W, 41) is a log Enriques
surface satisfying 1=7, c=2, p(W )=11, p(W )=3, Sing 2 - A 1 and  (n 1 , ..•, n 6 )=(0, 0, 1,
0, 0, 1), where y) : W -47V is the contraction of 4  and 2  is the canonical covering of W.
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In  view  o f  th e  following three exam ples, the upper bounds o f  c in  (1), (2) and (3)
of Proposition 6.6 a re  th e  best possible o n e s .  In  the  case  o f Example 6.11, the re  is  a
reduced effective divisor G  o n  U  w ith  on ly  sim ple norm al crossings such that G  con-
s is t s  o f  (-2)-curves a n d  its  dua l g raph  D ual (G) is  a s  given in  F igure  (7). Several
subgraphs o f Dual (G) o f Dynkin ty p e  A,.+D s -I- E ,  w ith  r+s-Ft=19 a r e  obtainable.
In  p a r tic u la r , th e r e  is  a  subgraph L' o f Dynkin type  D 1 9 . Hence U  is  a  K3-surface
w ith  p(U)=20.

W e shall u se  the  same n o ta tio n s 7c: M, A , F1, P2, L 1  a n d  L ,  a s  defined
before Example 5.4.

Example 6.11 (for the case  (c, /)=(15, 3)). L et P, (-# Pi , P9 ) be a ramification point
o f  r i A  a n d  le t  L , b e  th e  fiber o f  7 :  containing P,. L e t  z-i : V1-0_72 b e  th e  blowing-up
o f  th re e  po in ts  P,'s (1 i 3) a n d  le t  E6:=1- T1(P ) .  L e t 72 : V 2

-
>V  1 b e  th e  blowing-up

o f  th ree  points P, :=one of tw o  intersection points (A ) n  E l ,  P5 :=7:(A )(1E 2 and  P 6 :
=

r1
'
 (A )r)  E  3 , a n d  s e t  F1:=rnF4), : = T V  (Pi ) (i = 5, 6). L e t  73 : V 3 —> V ,  b e  the

blowing-up o f  tw o points P i := r 2 'r 1 '(A )nE 4 a n d  P3:=1- 2'(E 3 )(1E 5 ,  and set E 6 :=z - (P 7 )
and  F, :=T 31(P8). L et vs : V'—>V 3 b e  th e  blowing-up o f the  po in t P 9 :=7 3 /2-2 '71 '(A)c■E G,
and set V 9 ).  D enote by E,', F,', L k '(k =2, 3), M ' and A ' the proper transforms
o n  V ' of E 4 , F,  L 3 , M  and  A , re sp ec tiv e ly . S e t or :=z3or2073074, F4' :=z- '(L1) and D ':
=EE,'H -EL k 'd-M '± A '.  N ote th a t  F i/(1p_.<4) is  a  ( -1)-curve o f  V ' .  N oting that
21, 2 ±2L 8 +2M +2A---3K1 2 , w e  c a n  ch eck  th a t  E3'±E1H- 2(A'-i-E5'±L3'-i-M'---1-2'd-
E 4 ') +E 2H -E 6 '--3K v.. Hence (V ', D ') is  a  lo g  Enriques su rface  w i th  (c, ./. )---(2, 3).
D'd-EF,/ has only simple normal crossings and has th e  dual graph as shown in Figure
(5), where the self-intersection number of each irreducible component o f  D ' is attached.
Here recall th e  Rem ark to Proposition 6.1 and  note  that

-3 -1o o
E F'3 2

Figure (5)

W e can find a  blowing-up u :V -4 V ' o f  several singular points of 4' :=E 1 '+A '±E5 '±
L 3 'H-M'H-L2'-E4 1 -d-E 2 '-i-E 6 '  in  such a  w a y  th a t th e  dual graph o f  6 - 1 (4 ') is g iven  in
Figure (6), w here E i :=6 '(E i '), î k 1 a := e (M 9  and  21'
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Denote by D :=a 1 (D')— { (-1)-curve o f  V  contained in  6 - i(D ')} . Then (V ,  D) is a log
Enriques surface satisfying 1 =3, c=15, p(V )=29, p(V )=14, Sing ti=6 /1 , and ( in , ,  m4)=
(9, 6). Since 2 0  p(U)= p(U)±#{irreducible component of g-- - 1 (Sing CI)} = p(17)-1-6 p(7)
+ 6 = 2 0 , w e  h a v e  p(U)=20 a n d  p(C)=- 14. We use the notation  ft: "U—>V defined at
th e  beginning o f  § 2. L e t yi :  0-->C1 be a  m inim al desingularization. Then there is a
birational morphism  :  Ci—>U whose exceptional curves a re  contained in  (t..7)) - '(D).
Denote by P,, and r th e  reduced to ta l transforms o n  U  o f  o- '(F„')  a n d  o. - 1 (D ') , res-
pectively. Then Pi, i s  a  (-2)-curve and P  is a  (-2)-fork o f Dynkin type  D , , .  Set

H, :=P ,.  Then we can write P = 1-12 -1- C, so  that G9 : = F Pp —Hk (k =1, 2) hasi=2 j=1

only simple normal crossings and  has th e  dual graph as shown in Figure (7). Moreover,
(H,, H ,)=1 and  H , passes the intersection point 1/2(1P4.

L et ço U-41:7' be the contraction of r . Then V ' is  th e  canonical covering o f  V'
and  Sing LP=D,,, where V' is obtained from V ' by the contraction of D'.
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Figure (7)

Example 6 .1 2  (for the case (c, /)=(16, 5)). L et P, (*P i, P,) be a ramification point
o f  ir IA and  le t L , be th e  fiber of r containing P,. Denote by P, the intersection point
Mn L,. L e t  r, : V,—>2", b e  t h e  blowing-up o f fo u r  p o in ts  Pt 's  a n d  se t E z :=z-V(P,)
(1- i 3) and  F,:-=z- V(P4). L et r 2 :  V,—>V 1 b e  th e  blowing-up o f  three points P,:=one
o f  two intersection points ri'(A )nEz , P6 :=- 1- 1'(A )nE, and P7 :-- --- r 1 '(A )r1E, and set EJ-2

( j=6 , 7 ) . L et r , :  V,—>V, be th e  blowing-up o f  two po in ts  P8 :=r2'r1'(A)nE4
and  P,:=7 2 '(E ,)n E ,, a n d  se t E 4  :---tY ( P 2 ) .  L et rri :  V'—>V, b e  the blowing-up of the
point P 10 := -1- 3 '(E 5 )(1E G  and set F 2 : = T V ( P 1 0 ) .  D en o te  b y  Ei', L k ',  A ' and  M ' the
proper transforms on V ' of E z , F ,  L k ,  A  and  M , respectively. S et r : - = r i or 2 o r ,o r 4 and
D ':=E E ,'± E L k ' ± A '+M '. Noting that L i +3A+4L 3 +4M +3L 2 - - 5 K 1 2 , we can check
th a t L1'+2E1'± 3A '± 4E,'± 4/. 3 '-H IM '+3L 2' +  2E4' E2' Hence
(V ', D ') is a  log  Enriques surface with (c, /)=(2, 5).

Since dim 1M +2L1=3, w e can find a n  irreducible member F, i n  1M +2L1 such
that P,, P„ P2 E F,, where P, is a n  infinitely near poin t o f P, a s  defined above. Then
F ,':=e ( F ,)  i s  a  (-1 )-cu rve  satisfying (P11 - ,1- ;z- V ( P 5 ) ) =( n  E ) =( F , L )= 1 .  Then
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D 'd - ± F , ' has only simple normal crossings and h a s  th e d u a l g ra p h  a s  show n in
P=1

Figure (8), w here the self-intersection number of each irreducible component of D' is
attached and w here  E,' E5 ' +  L3' =r - l (L3).

W e can find a  blowing-up o:  V — >V ' of several singular points of 4' :=Li'd-E,'±
A '±E 5 H-L 3H-M'±L2H-E4'±E2' s u c h  th a t  th e  d u a l g rap h  of a - A ZI') is  as given in
Figure (9), w here the proper transform s of E i ', L k ', A ' and M ' on V  are denoted by

E k ,  A  and respectively.

o— o — o — o — o — o — o -
L 1 15 -1

-10
-1

 

1:
3

21 2 3  2 2  2 1 2 1 0  2 1  2 2 2 3  2 1 2 5  2 1 2 3  2 2

 

Figure (9)

Let D :=a - 1 (D ')-1 (-1 )-c u rv e  of V contained in a -  i(D91. Then (V, D) is a log Enriques
surface sa tisfy ing  1=5, c=16, p(V)=40, p(V) -=15, Sing U=--- 3,41 and (n 1 , ••• , n4)=(4, 9,
3, 0). We use the same notations f t : 7 ): 0 ,0 "  and e : 11—>U as in Example 6.11.
Denote by P , and the reduced total transform s on U  o f  e (F p ' )  and  a - 1 (D ') , res-
pectively. T h e n  P p  i s  a  ( -2)-curve and is  a  (-2)-rod of Dynkin type 241 7 . The
canonical covering U ' of (V ', D ') is  o b ta in e d  f ro m  U  by contracting Moreover,
F + E P , has only simple normal crossings and has the dual graph as show n in Figure

(10), w here l '= 1 C 1 and C1 7 + 4( 1 _ < i _ < 3 ) .
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Example 6.13 (for the case (c, /)=(15, 7)). Let r 1 : V 1—>E2 b e  the blowing-up of
tw o  points P i ' s  (i=1, 2) an d  se t E „:=rV (PO . Let r2 : V2 - >V 1  b e  the blowing-up of
tw o  points P , :=  one of tw o  intersection points of 1-1 '(A )n E 1 and /3

4 :=z-
4 '(A)nE 2 , and

set E i :=7 -i i (P 3 . Let 2-5 : 1/2-1 7
2 b e  the blowing-up o f  tw o  points /3

5 := r 2 'or1 '(A )nE 3

and /3
5 := r 2 '( E2)n.E4 a n d  s e t  E4:=1 - V (P4). Let sr,: "174--17 3 b e  the blowing-up of two

points 13
7 := r 3 's-2 '7 1 '(A )n E 5 and P9 :-- - r 3 '( E4)(1E6 and set E 4:=z -

4
- 1 (P4). Let v5 : V5—).V4

b e  the blowing-up of tw o  points P9:=(r1•••1- 4)'(A )nE7 and P E  ) n E_ 10 - -  -  3 ' .  -4 , - 8  and set
E 9  :=TV(P9) and F1:-=TV(P10). Let r5 : V '— V 5 b e  the blow ing-up  o f the point P11:=
(71.--r5)'(A )nE9 and set F2:=TV(P11). D enote the proper transform s on V ' of E 4 , F.„
M , L , and A  by E ,', F ,',  M ', L 8 '  and A ', respec tive ly . Set v := r 1 .--r5 and D ':= E E , '
± M '-F L ,'-F A '. N oting that 2M+4L 2 ±6A-- —7K1 2 , w e  c a n  check th a t  2M'-{--4L2'±

o
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6E4H-6AH-5.E1 1 +4E3H-3E 6 ' ±2E 7 '± E9H- Es'-F2E6'+3E2'^- -7Kr. Hence (V ', D ') is a
log  Enriques surface w ith (c, /)= (2 , 7 ). The dual graph o f D '+F i '± F ,' is as given
in Figure (11), where the self-intersection number o f  each irreducible component of
D '+F 1

1 d-F2 ' is attached and where E2'+ EG'+ E8'±F1'+ E4H - L2'-=D- 1 (L2).
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Figure (11)

We can find a  blowing-up a: V -47 ' of several singular points of 4' :=M 'd-L 2'±E4'±
A '± E 1 'd-E 3 '± E 5 H-E 7 H-E 9 ' such that the dual graph o f a - '(4')  is as given in Figure
(12), where th e  proper transforms of E t ', M ', L 2 ' and A ' are  denoted by f t , M , i 2

and A, respectively.
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L e t  D:-=a - 1 (D ')- {(-1)-curve o f  V  contained i n  a '( D ') } .  Then (V, D )  i s  a log
Enriques surface satisfying 1=7, c=15, p(V )=46, p(V )=14, Sing V=224 1 and (n 1 , - , n6)
=(2, 5, 6, 2, 0, 0).

Let P, and l '  be the  reduced total transforms on U  o f  a'(F,')  a n d  a - 1 (D '), res-
pectively. Then P, i s  a  ( -2 )-curve and  P  is a  (-2)-rod of Dynkin type A15 . The
canonical covering /7' of (V ', D ') is obtained from U by contracting P .  Moreover, F-F
EP, has only simple normal crossings and has the dual graph as shown in Figure (13).
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Figure (13)

Let (V ', D ') be one of the log Enriques surfaces given in  Examples 5.7, 5.8, 6.11,
6.12 and 6 .13 . Let f ':  V ' - ;V ' be the contraction of D '.  Then we see that #(Sing 7')
= 2  a n d  p(FP)=1. Hence th e  lower bound - 1  fo r p(V )-c  in Proposition 6 .6  i s  the
best possible one.

The following lemma gives an upper bound for #(Sing V).
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Lemma 6 .1 4 . Let V  be a log Enriques surface. Then #(Sing U)5 Min {10, (24 —p)/2}
fo r  every prime divisor p  of  I.

Pro o f . It suffices to consider the case where Sing Ti# 0 .  In this case, if g :
U  is a minimal desingularization then U  is a K 3-surface. In  view of Lemma 2.2, we
may assume that I = p  which is a prim e number. For each x ESing U , we have 7:(x)
G Sing V and 7r- in ( x ) = x .  Hence, #(Sing U- ) c. Note that p(U)— p(U) is  the  number
of all irreducible components of exceptional divisors o f  g ,  which is apparently not
less than #(Sing U ).  So, w e have #(Sing (7) MinIc, p(U)—  p(U)} 5[c+ p(U)—  p(U)]/2
<24 — /(p(V)—  c+2)]/2 (24--/)/2 by Lemma 2.4. T h is , together with Lemma 3.1,
implies Lemma 6.14. Q. E. D.

In the forthcoming article [14], we shall reduce the general cases V of log Enriques
surfaces to the  case  W  with at worst singularities of Dynkin type A,.

Added in  proof :

In the proof of Lemma 2.3, actually, we do not need to use the fact that one of
e , 's  i s  a  p r im itiv e  /- th  root o f  t h e  un ity . W e have another elementary proof for
Lemma 2.3 as fo llow s. Note that i s  a primitive n i -th root o f  th e  unity fo r  some
n i _>_1. We may assume that n 1 <•••  < n r  a n d  each n, (1 j < h )  is equal to one of n 1 ,
••• n r . N o t e  th a t 1. c. m . {n i , •-• n,-}=I. L e t  f (T ) (resp . gi (T ) )  b e  the minimal
polynomial of A (resp. e t ) over Q . Then deg g ( T ) = 0 ( n ) .  We have also f (T )=1. c. m.

•-• g h (T )} =g i(T )-••  g,-(T). Hence ¢(/)5_0(ni) • • • çb(nr)=deg H=b2(U)
— p(U).
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