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Logarithmic Enriques surfaces

By

De-Qi ZHANG

Introduction

Normal projective surfaces with only quotient singularities appear in studies of
threefolds and semi-stable degenerations of surfaces (cf. Kawamata [5], Miyanishi [6],
Tsunoda [11]). We have been interested in such singular surfaces with logarithmic
Kodaira dimension —oo (cf. Miyanishi-Tsunoda [8], Zhang [12, 13]). In the present
paper, we shall study the case of logarithmic Kodaira dimension 0.

Let V be a normal projective rational surface with only quotient singularities but
with no rational double singular points. Let Kp be the canonical divisor of ¥V as a
Weil divisor. We call V a logarithmic Enriques surface if H YV, 0p)=0 and Kp is a
trivial Cartier divisor for some positive integer N. The smallest one of such integers
N is called the index of Kp and denoted by Index(Ky) or simply by I. Since /Ky is
trivial, there is a Z/IZ-covering = : U—V, which is unique up to isomorphisms and
étale outside Sing¥. Then U, called the canonical covering of V, is a Gorenstein
surface, and the minimal resolution of singularities of U/ is an abelian surface or a
K 3-surface.

Let f:V—V be a minimal resolution of singularities of ¥ and set D:=f"*(SingV).
We often confuse V deliberately with (V, D) or (V, D, f).

§1 is a preparation and contains a proof of an inequality (cf. Proposition 1.6) which
plays an important role in the whole theory; in particular, if /=3 then c:=#(SingV)
<(D, Ky)<c—1—(K$%), and it I=4 then ¢<—3(K%). In §2, it is proved that if a
positive integer p is a factor of I then U/(Z/pZ) is a logarithmic Enriques surface,
as well. We also prove that /<66 ; this result is originally due to S. Tsunoda. More-
over, /<19 if I is a prime number. §§3-5 are devoted to the proofs of the following
three theorems:

Theorem 3.6. Let V or synonymously (V, D) be a logarithmic Enriques surface with
Index(Kp)=2. Then there is a logarithmic Enriques surface W or (W, B) with Index(Kw)
=2 and #(SingW)=1 such that V is obtained from W by blowing up all singular points
of B (i.e., intersection points of irreducible components of B) and then blowing down
several (—1)-curves on the blown-up surface.

Moreover, #(SingU)=#(SingV )< # {irreducible component of D}<10 (cf. Lemma 3.1).
The case with #(SingV)=10 occurs (see Example 3.2) and, in this case, there is a (—2)-
rod of Dynkin type Ay, on U (cf. Cor. 3.10).
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Theor_em 4.1. Let (V, D) be a logarithmic Enrigues surface such that the canonical
covering U is an abelian surface. Then Index(Kp)=3 or 5, and the configuration of D
s explicitly given.

Theorem 5.1. Let (V, D) be a logarithmic Enriques surface such that I(=Index(Kp))
is a prime number and the canonical covering U is a K 3-surface. Then I#2, 13. Moreover,
the singularity type of V is explicitly given. In particular, (D, Kp)=c—1—(K3%).

In §6, we consider the remaining case where the canonical covering U of V is
singular. Possible types of singularities of V and U are given when [ :=Index(Ky)=3
or 5. As a corollary, we see that if there is a singularity of Dynkin type E.(k=6, 7
or 8) on U then I=5, 25, 7, 11, 13, 17 or 19. It remains to consider possible combina-
tions of singularities on V. We obtain the following theorem (cf. Proposition 6.6 and
Lemma 6.14):

Theorem Let (V, D) be a logarithmic Enriques surface such that I is an odd
prime number and SingU+ @. Then c:=#(SingV)<Min{16, 23—}, #(SingU)<(24—1)/2
and —1§p(V)—c§4, where p(V) is the Picard number of V. Moreover, if ¢=16 or
o(V)—c=4, then I=5 or 3, respectively and SingV is precisely described in Proposition
6.6 (cf. Examples 6.12 and 6.8); particularly, (D, Ky)=c—1—(K3).

Example 6.11 gives a logarithmic Enriques surface (V, D) with (¢, I)=(15, 3).
Moreover,. there is a (—2)-fork I" of Dynkin type D,, on the minimal resolution U of
the canonical covering U of (V, D). By contracting I" on U we get the canonical
covering U’ of a new log Enriques surface (V/, D). In particular, U is a K3-surface
with p(U)=20. Such a K3-surface is probably new. Note that U’ can not be a quartic
surfaces of P?® (cf. Kato-Naruki [4]).

The author heartily thanks Professor M. Miyanishi for careful reading of the
present article and giving valuable advice. He also thanks Professor S. Tsunoda who
kindly reminded him the reference [10] for the proof of Lemma 2.3 and suggested
Lemma 2.2.

Terminology. We refer to [8; §§1.1-1.5] or [9; §2] for the definitions of (admis-
sible rational) rods, twigs and forks, and the definition of B* for a reduced effective
divisor B. A (—n)-curve on a nonsingular projective surface is a nonsingular rational
curve of self-intersection number —n. A (—2)-rod (resp. fork) is a rod (resp. fork)
whose irreducible components are all (—2)-curves.

Notation. Let V be a nonsingular projective surface and let D, D, and D, be
divisors on V.
Ky : Canonical divisor of V,
£(V): Kodaira dimension of V,
#(X): Logarithmic Kodaira dimension of a non-complete surface X,
o(V): Picard number of V,
hiV, D): =dimH%V, D),



Logarithmic Enriques surfaces 421

#(D): The number of all irreducible components of Supp(D),
f*D: Total transform of D,
f'D: Proper transform of D,
D,~D,: D, and D, are linearly equivalent,
D,=D,: D, and D, are numerically equivalent,
¢(D): Euler number of D,
1. : Hirzebruch surface of degree n.

§1. Preliminaries

We work over the complex number field C. Let ¥ be a normal projective algebraic
surface defined over C and let f: V—V be a minimal resolution of Sing(¥). Denote
by D the reduced effective divisor whose support is f~*(Sing¥).

Definition 1.1. ¥ is said to be a log (=logarithmic) Enriques surface if the follow-
ing three conditions are satisfied:

(1) V has only quotient singularities and Sing(V)+ @,

(2) NKp is a trivial Cartier divisor for some positive integer N,

3) ¢(V):=dimHV, ©p)=0.

Let 4 be a connected component of D. Then 4 is an admissible rational rod or
an admissible rational fork, which are defined in [9; § 2] (cf. Brieskorn [2; Satz 2.11]).
f(4) is a rational double singular point if and only if 4 is a (—2)-rod or a (—2)-fork.
We can define the direct image f«F for each divisor F on V as in the case where f
is a morphism between nonsingular surfaces. Then the property of linear equivalence
“~” between divisors on V is preserved under f4 By [8; Lemma 2.4], there exists
a positive integer P such that for each Weil divisor F on V, PF is linearly equivalent
to a Cartier divisor. Let F, and F, be two Weil divisor on V, we define the intesec-
tion number of F, and F, by (F;, F,) :=(1/P2(f*PF), fx(PF,)).

We often identify ¥ with (V, D, f) or (V, D).

Lemma 1.2. Let V be a log Enriques surface. Then the following assertions hold :

(1 g(V)=0.

(2) We have f«Ky=Ky. There exists a Q-divisor D¥ on V, such that [*(NKp)=
N(D¥+Ky) and SuppD*SSuppD and that if a; is the coefficient in D* of an irreducible
component D; of D then 0<Za;<1. Here, N is a positive integer such that NKy is a
Cartier divisor. In particular, we have D¥-+-K,=0. Moreover, Supp(D)—Supp(D*) con-
sists of exactly those connected components of D which are contracted to rational double
singular points on V.

(3) Let N be a positive integer. Then NKy is a Cartier divisor if and only if ND*
is an integral divisor. If this is the case, then f*(NKp)~N(D*+Ky,) and NKp~
f+«N(D*¥+Ky). Hence NKp~0 if and only if N(D*+Ky)~0.

Proof. (1) Since V has only rational singularities, we have ¢(V)=¢(V)=0. For
(2), we refer to [8; §1.5 & §2.5]. )
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(3) Suppose that NKp is a Cartier divisor. Then E:=f*(NKy)—NKy is a Cartier
divisor and supported by SuppD. By the assertion (2), we see E—ND#=0. Since
SuppD#*\USuppE is contained in SuppD which has negative intersection matrix, we
must have ND#¥=E. Hence ND* is an integral divisor and f*(NKp)=N(D*+Ky).

Suppose that ND#¥ is an integral divisor. Since (N(D*+Ky), D;)=(f*(NKy), D;)=0
for each irreducible component D; of D, N(D#+Ky) is linearly equivalent to a divisor
4 which is disjoint from D (cf. Artin [1; Cor. 2.6]). Note that NKp=f NK,=
f«N (D¥+ Ky)~f 4 which is a Cartier divisor. Hence NKy is a Cartier divisor.

Q.E.D.

Proposition 1.3. Let (V, D) be a log Enriques surface. Then w(V)<kE(V —D)=0.
Moreover, if k(V)=0, then V has only rational double singular points and either V is a
K3-surface or V is an Enriques surface.

Proof. By virtue of [8; Lemma 1.10], we have h°(V, n(D+Ky)=h"(V, n(D*+Ky))
=1, for each positive integer n satisfying n(D*+Ky,)~0 (cf. Lemma 1.2). Therefore,
£V —D)=0.

Suppose that k(V)=0. Then there exists a positive integer N such that ND#¥ is an
integral divisor and NK, is linearly equivalent to an effective divisor 4. Since 0=
N(D*¥4+Ky)~ND#%+4, we have D¥=4=0. D*=0 means that D consists of (—2)-rods
and (—2)-forks (cf. [8; §1.5]). Namely, V has only rational double singular points.
Note that V is a minimal surface, for NK,~0. By the classification theory of non-
singular surfaces and by the hypothesis that x(V)=¢(V)=0, we see that V is a K3
surface or an Enriques surface. Q.E.D.

Let (V, D) be a log Enriques surface. Denote by D the reduced divisor SuppD*.
Then D—D consists of exactly those connected components of D which are contracted
to rational double singular points on V. Therefore, (V, D) is also a log Enriques
surface with the same index as (V, D) (cf. Definition 1.4 below).

In view of Proposition 1.3 and the above argument, we assume, until the end of
the present article, the following two conditions:

(1) k(V)=—oco, hence V is a rational surface,

(2) Supp(D#)=Supp(D)# D.

Definition 1.4. Let V be a log Enriques surface. We denote by Index(Ky) or
simply by I, the smallest positive integer such that /Ky is a Cartier divisor.

Actually, IKy~0 which is proved in the following lemma.

Lemma 1.5. (1) (K})=—1, =2, IKp~0 and I(D*+ Ky)~O0.
(2) Let N be a positive integer. Then h*(V, —NKy)+0 if and only if I is a divisor
of N.

Proof. (1) Since Ky=—D*, SuppD*=SuppD+ @ and D has negative definite in-
tersection matrix, we have (K2)<—1. If I=1, then V is Gorenstein. Hence K, =f*Kp
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and D*=0 because V has only rational singularities. This contradicts the assumptions
that Sing(V)# @ and SuppD¥=SuppD. Hence [=2. Note that [(D*+K;,)=0. Hence
I(D*4+Ky)~0 and IKy~0 by the additional assumption that V is rational. In particular,
A%V, —IKy)#0.

(2) Suppose that h°(V, —NKy)#0. Then —NK, is linearly equivalent to an
effective divisor 4. Note that ND¥—A~N(D*+K,)=0. Since D¥ has negative definite
intersection matrix, we have ND¥=4. Hence ND¥ is an integral divisor. So, NKy
is a Cartier divisor by Lemma 1.2. Then, N is divisible by I by the definition of 1.

Q.E.D.

The inequality (*x) in the following proposition is very helpful in proving Theorem
5.1 and Proposition 6.6.

Proposition 1.6. Let (V, D) be a log Enriques surface and let ¢ be the number of
connected components of D. Let p and q be integers satisfying 1<qg<p=I—1(:=
Index(Kyp)). Then we have:

2e(p—gF +(p—p)XKD)
) =0 K< G -

and
(%%) (D, Ky)<c—1—(K}) if I=3.

If 124 then ¢<—3(K$). If ¢=1 then I=2 and D has the configuration to be given in
Lemma 1.8 below. (The case c=1 has been treated in [10; Proposition 2.2]).

Proof. Let p, g be the same as in the statement. We claim first that A*(V, (p—q)D
+pKy)=h"V, —(p—¢)D—(p—1)Ky)=0. Indeed, suppose that h°(V, —(p—q)D—(p—
1Ky)#0. Then A%V, —(p—1)Ky)#0. Hence I is a divisor of (p—1) and I<p—1 by
Lemma 1.5. This contradicts the assumption p<I—1.

Next, we claim that A%V, (p—¢)D+pKy)=0. Suppose, on the contrary, that
h(V, (pb—q)D+pKy)#0. Then h°(V, [pD*]1+pKy)=h"V, pD+pKy)#0 (cf. [8;: Lemma
1.10]). Here, [pD*] is the maximal effective integral divisor such that pD#—[pD¥]
is effective. Let 4 be an effective divisor such that [pD#]+pKy~4. Then p(D*+Ky)
~d+(pD*¥*—[pD*]). Since D*+K,=0, we have 4=0 and pD*=[pD*] which is an
integral divisor. Hence [ is a factor of p and /<p. This contradicts the assumption
psI-1.

Write D——-é‘1 D; where D;’s are irreducible components of D. Note that D consists
of rational trees. Hence we have %(Di, D;)=n—c. Therefore, 2p.(D)—2=(D, D+K)
=§(D%)+§(Di, KV)+2%(Dt, Df)=§‘:(2pa(Di)—2)+2(n—6)=——26- Hence, p.(D)=1—c.

Applying the Riemann-Roch theorem, we obtain:

0=2—hrV, (p—q)D+pKy)= % {[(b—)D+pEy1L(p—9)D+(p—DEy1} +1.

Hence we have:
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0>[(p—@)D+pKy1[(p—@)D+(p—DKy]
=(p—*(D)+2p—1Xp—gXD, Ky)+(p*—p)K$)
=(—qP[—2c—(D, Ky)]+@2p—1Xp—¢XD, Ky)+(p*—p)K?)
==2c(p—q)+(p—qXp+q—1XD, Kn)+(p*—pXK}).

Thence follows the second half of the inequality (x). Setting p=2 and ¢=1, we obtain
the inequality (xx).

Since SuppD#=SuppD, each connected component 4; of D contains an irreducible
component D; with (D%)<—3. Hence (4:, Ky)=(D;, Ky)=—2—(D2?)=1. Therefore,
(D, Kv)g C.

Suppose /=4. Setting p=3 and ¢=2 in the inequality (x), we obtain ¢<(2c—6(K3))/4,
i.e, ¢c<—3(K}%).

Consider the case ¢c=1. Suppose I=3. Then (D, Ky)<—(K%) by the inequality
(%+). Hence (D—D*, Ky)=(D+Ky, Ky)<0 because D*+K,=0. Since D—D*=0 by
Lemma 1.2, we have (D—D¥, K;)=0. Hence D—D* whose support coincides with
SuppD by Lemma 1.2, consists of (—2)-curves. Hence D*=0, SuppD=SuppD*=@ and
SingV=@. This is a contradiction. Q.E. D.

In the subsequent Lemmas 1.7, 1.8 and 1.9, we shall prove that ¢<—3(K3) even
when I (=Index(Kp))=2 or 3, where ¢ is the number of connected components of D.

Lemma 1.7. Let (V, D) be a log Enrigues surface. Write D= i_il D; and D¥*=F a;D;,

where D;’s are irreducible. Then we have:
(1) g.c.d. (ay, -+, lay)=1. In particular, if a,= - =a,, then a;=1/I(1=<i<n).
2) a;=1/2 for at least one index i.

Proof. (1) Denote by s=g.c.d.(Jay, -+, Ia,). Since (K})=(D¥)*<0, there is a
(—1)-curve E on V. Note that 1=—(E, Ky)=(E, D¥)=s/I X a;/s)(E, D;). Hence I/s

is an integer. On the other hand, (I /s)D*z‘fj(Iai/s)Di is an integral divisor. Hence,

we have s=1.
(2) Suppose that a;>1/2(1</<n). Let E be a (—1)-curve on V. Then 0=
(E, D*+KV)=—1—|—§‘_,a,~(E, Di)>—1+(1/2);(E, D;). Hence ¢E<E’ D)<1 and 0=(E, D*

+Ky)< —14max{a,, -+, a,} <0 by Lemma 1.2. This is a contradiction. Q.E.D.

Lemma 1.8. Let (V, D) be a log Enriques surface and let 4 be a connected com-
ponent of D. Suppose that each irreducible component of A has the same coefficient in
D¥, say a. Then either 4 consists of a single curve with self-intersection number
—2/(1—a), or 4 is a linear chain such that two tips of 4 have self-intersection numbers
(a—2)/(1—a) and the others have self-intersection numbers —2.

Suppose that D¥=aD. Then a=1/I, I=2 or 3 and c=—(K}) or —3(K$), accordingly.
Moreover, D¥=(1/3)D if and only if D consists of isolated (—3)-curves.
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Remark. (1) If I=2 then D#¥=(1/2)D (cf. Lemma 1.2).
(2) If D¥=(1/3)D, we shall prove in Corollary 5.2 that ¢=3 or 9.

Proof. We claim that 4 is a rod. Suppose, on the contrary, that 4 is a fork.
Then one of three tips of 4, say D,, is a (—2)-curve. Since (D;, 4—D,)=1, we have
(Dy, D*+Ky)=a+a(D¥)+(D,, Ky)=a—2a=—a+0. This contradicts D¥+ K, =0. There-
fore, 4 is a rod. Then the first assertion of Lemma 1.8 follows from the observation
that the intersection number of D¥+ K, with each irreducible component of 4 vanishes.

Suppose that D*=aD. Then a=1/] by Lemma 1.7. Put n,:=—2/(1—a) and n,:
=(a—2)/(1—a). Since n, or n, is the self-intersection number of a tip of a connected
component 4 of D, we see that n, or n, must be an integer. Hence I=2 or 3. Let
t be the number of all isolated irreducible components of D. Note that Ky=—D¥=
—aD. Hence, —(K})/a=(D, Ky)=t(—2+2/(1—a))+2(c—t)(—2+2—a)/(1—a))=2ac/
(1—a). Hence c=(a—1)(K}%)/2a®. So, we obtain ¢=—(KE) or —3(K%) according as
I=2 or 3. If I=3, then D consists of isolated (—3)-curves. Conversely, if D consists
of isolated (—3)-curves, then D#=(1/3)D because (D*+ Ky, D;)=0 for each component
D; of D. Q.E.D.

Lemma 1.9. Let (V, D) be a log Enriques surface with I=3. Then ¢<—3(K}),
and the equality holds if and only if D*¥=(1/3)D.

Proof. If W'V, (p—q)D+pKy)=0 for p=3 and ¢=2, we have ¢<—3(K3) by the
same proof as in Proposition 1.6. Suppose h°(V, D+3Ky)#0. Then D+3Kjy is linearly
equivalent to an effective divisor 4. The hypothesis SuppD*=SuppD implies that 0<
3D%—D~—3Ky—D~—4<0. Hence 4=0 and D#¥=(1/3)D. By Lemma 1.8, we have
c=—3(K%). So. ¢c=<—3(K$). If ¢c=—3(K}) then AV, D+3K,)#0 and D*=(1/3)D.
If D¥=(1/3)D then Lemma 1.8 shows ¢=—3(K3). Q.E.D.

We end this section by proving the following lemma.

Lemma 1.10. Let (V, D) be a log Enriques surface. Write D= i D; and D¥= é a; Dy,
1 i=1

=1
where Di’s are irreducible components of D.
(1) Let E be a (—m)-curve on V which is not contained in D. Then m<2, and m=2

if and only if END=@.
(2) Take r irreducible components of D, say Dy, -+, D, (r<n). Define rational
numbers Bi’s by the condition:

(2 BiDetKy, D)=0  (Sj<r).

Then, 0<B:<a;<1 (1<i<r).
(3) Furthermore, we assign a virtual curve B; to each i (1<i<7), so that (D?)<
(B3)=—2, (B;, Ky)=—2—(B%) and (B;, B;)=(Dy, D;) (j#1i). Define v; by the condition:

(glr,-Bi+KV, B))=0 (sjsr).

Then, 0=7:=B:iSa; (1Si<r).
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Proof. (1) results from the observation:
0=(E, D¥+Ky)=(E, DH)4+m—2=m—2.

.
(2) Since g}lDi has negative definite intersection matrix, we have f;<a; because

(i_zi‘:(“i‘ﬁiwi’ Df)§0 0Lj<r).
Indeed,

(B@—paD:, D)=(F abitKy, D,)~( 3 aDi D)~ Dot Ky, D)

i=7+1
=—< é a;D;, D;)éo, if 1<;<r.
i=r+1
We also have 3,20 (1<:/<r) because

(élﬁiDi, Dj):—(KV, DH<0 (1<5<r).

(3) Note that X B; has negative definite intersection matrix. We have 7:<8;
i=1

(1=7/<r) because:

(S Be=19Bs, B))=(2 BeBi+ Ky, B))—( S reBit Ky, B,)

=(Z 8:Bi+Ky, By)=( 2 BiDitKy, D;)+BAB)—BD3)
—2—(BY+2+(DY=(—BXDY—(BP=O0  (A<j=r).

We also have 7;=0 (1</<r) because

(Z7eBe By)=—(Ky, B)=(B)+250  (I=j=r). Q.E.D.

§2. Canonical coverings of logarithmic Enriques surfaces

Let V (or synonymously (V, D, f)) be a log Enriques surface. Denote by V° the
smooth part V—(SingV)=V—D. By the relation O(/D¥*)=0(—Ky)®! (I :=Index(K7))
and a nonzero global section of ©(/D*), we can define a Z/IZ-covering #: U—V such
that U is normal and the restriction z° of # to U°:=#"%(V°) is finite and étale. By
Lemma 1.7, U is connected. Actually, # (D) is contractible to quotient singular
points on a normal projective surface U (cf. [13; Cor. 5.2]). Let =: U—V be the
finite morphism induced by #. Note that z° is induced by the relation [(—Ky¢)~0
and U is the normalization of V in the function field C(U°). Note that Kyo~a"*(Kyo+
I—1)(—Kpo))~2n°*Kyo~2Kyo and Kyo~0. Hence Kp~0 and there are only rational
double singular points on U. Let g: U—U be a minimal resolution of singularities of
U. Then Ky~0. Hence U is an abelian surface or a K3-surface. Note that U=U
when U is an abelian surface.

Definition 2.1. The surface U (resp. the map =: U—V) defined above is called
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the canonical covering (resp. the canonical map) of V.

Assume I=pq with p<[I and ¢g<I. Set U,=U/(Z/pZ) where Z/pZ is considered
as a subgroup of Z/IZ which acts on U. Then V=U/(Z/IZ)=U,/(Z/9Z) where the
action of Z/qZ=(Z/I1Z)/(Z/pZ) on U, is induced by the action of Z/IZ on U. Let
7, U—U, and n,: U,—V be the natural quotient morphisms. Let Ul=z3'(V"), ni=
Typo and ngzzmg. Note that z? and = are étale and =} is constructed by means of
the relation ¢(—pKyo)~0. We have Kugwng*(Kyo—(q—l)pKyo)N(p+1)n8*Kyo~(p+
l)KUg. Hence pKUgva and pKy ~0. Note also that =z} is constructed by means of
the relation p(—Ky9)~0. Let g,: U,—U, bea minimal resolution and let B=g7'(SingU,).
As in Lemma 1.2, we have p(B¥+Ky )~g¥(pKy,)~0.

Lemma 2.2. Let | be a positive integer. Then JKg, is a Cartier divisor if and
only if p is a divisor of J. Moreover, U, is a rational log Enriques surface with
Index(Kg,)=p. If U is nonsingular then 2 is not a divisor of I.

Proof. We have proved that pKp, is a trivial Cartier divisor. Conversely, suppose
that JKgy, is a Cartier divisor. In order to show that p is a divisor of J, we have
only to show that ¢/Kp is a Cartier divisor, or equivalently that a divisorial sheaf
O(gJKy) is invertible.

Consider the case where ¢ is a prime number. Let y be a singular point of V.
Then =3'(v) consists of one or ¢ points because =, is a finite Galois morphism of degree
g between normal surfaces. Moreover, if n3'(y) consists of ¢ points {x;}, we have
07.,=0p,.z;, where “A” means the completion. Hence /Ky is a Cartier divisor near
y. Now we assume that z3'(y) consists of a single point x. Let & be a generator of
O(JKg,) at an affine neighbourhood N of x. Note that x is fixed under the Z/qZ-
action. We may assume that N is stable under the action of Z/¢Z by replacing N by
NgN where g moves in Z/qZ. Since KU?=7r’;‘Kyo, there is a natural Z/qZ-action on
o( ]Kug) compatible with the action of Z/gZ on Oy,. The action extends naturally to
an action on O(JKg,). Note that for each g&Z/qZ, g(§)=%g)§ with a unit X(g).
Note that ©(¢/Kg,) is an invertible sheaf over N which has a generator £&2 and on which
Z/qZ also acts. Set 77=1;Ig(&), where g moves in Z/qZ. Since np=ué&? with a unit

u, 7 is a generator of O(¢J/Kg,) over N. Since % is Z/gZ-invariant, % is viewed as an
element of I'(zy(N)—y, O(gJKvo))=I["(ro(N), 0(gJK7)). We claim that % is a generator
of ©(qJKp) over my(N). For any asl (ny(N), qJKp)=T"(my(N)—y, O(qJKyo) ST (N—
x, O(q]KUg)):F(N, O(gJKg))), a is written as a=vy with a section v of Oy. Since a
and 5 are Z/qZ-invariant, v is Z/gZ-invariant. Hence v comes from a section of
O.,v>. Therefore 7 is a generator of O(¢JKy) and O(g/Ky) is invertible over (V).

In a general case, let ¢; be a prime divisor of g. We consider the natural morphism
U,—-U,:=U./(Z/q.Z) instead of the morphism =,. By the same arguments as above,
we can prove that ¢, /Kg, is a Cartier divisor. Continuing this process, we see that
qJKp is a Cartier divisor.

Hence p(=1/q) is a divisor of J by the definition of /. In particular, Kz, is not
a Cartier divisor. Hence U, has at least one singularity of multiplicity greater than 2



428 De-Qi Zhang

and B*#0. So, k(U;)=—co because p(B*+Ky)~0. If U, is a ruled surface with
g(U,)=1, there is a P'-fibration @: U,—~C with a nonsingular curve C of genus equal
to q(U,). Hence B is contained in singular fibers of @. Let L be a general fiber of
@. Then —2=(L, Ky,)=(L, B¥+Ky,)=0. This is absurd. So, U, is a rational surface
and U, is a log Enriques surface.

Suppose that 2 is a divisor of I and U is nonsingular. Let U,:=U/(Z/2Z). Then
U, has only rational double singular points and Kp, is a Cartier divisor. This is a
contradiction. Q.E.D.

In view of the above lemma, we assume that [ (=Index(Kp)) is a prime number
in order to obtain the information about U, e. g., the singularity type of U. Possible
divisors of I are given in the following lemma. The idea of the proof is found in
[10; p. 108].

Lemma 2.3. Let V be a log Enriques surface. Then o(1)Zb(U)—p(U)<21, where
o(I) is the Euler function and by,(U) is the second Betti number. Hence each prime divisor
of I is not greater than 19 and the following assertions hold true.

() If JII with J=13, 17 or 19, then I=2%- ] (i=0, 1).

2) If 11|11, then I1=2%-11(;=0, 1, 2) or 2-3-11(=0, 1).

(3) If 7|1, then I=2¢7(:=0, 1, 2) or 2'-3-7(:=0, 1).

(4) If 5|1, then I=2¢-5(0<i<3), 28-5%(7=0, 1) or 2¢-3-5(0<7<2).

(5) If there are no prime divisors in I other than 2 or 3, and if 3|I, then [=2%-3
0:i£4), 27-34(0<:£2) or 28-33(E=0, 1).

6) If I=2% then 1=<i<5.

In particular, 21566, and if I is not a prime number then 2|1, 3|1 or 5|1.

Proof. We use the same notations as set before Lemma 2.2. Note the Z//Z acts
on U biregularly because it acts on U biregularly and U is a minimal resolution of
singularities of U. Hence Z/IZ acts on H:=H*U ; @)/NS(U)R2Q and dimH=>b,(U)—
o(U)<21 because b,(U)=6 if U is an abelian surface and b,(U)=22 if U is a K3-surface.

Claim. Z/IZ acts effectively on H, i e., the natural map 7: Z/IZ—GL(H) is
injective.

Denote by G,=Kery and U,=U/G, Note that G, acts trivially on H®C=
HYU, Ky)HYU, 0y)PH U, 2,)/NS(U)R,C and hence acts trivially on H(U, Ky)=
HYU, Kg)=H"U", Kyo)=C. Hence H%(T,, Ky )=HU}, Ky9)=H"(U®, Kyo)#0 and Ky,
is linearly equivalent to an effective divisor. This, together with |G,|Kg~0 (cf.
Lemma 2.2), implies Kz ~0. By the same Lemma 2.2 we have G,=(0). The claim
is proved.

Note that a generator A of %(Z/IZ) satisfies the equation 7/—1=0 and that, as
an element of GL(H®,C), A is conjugate to a diagonal matrx [&,, ---, §,] where h=
dimH. Then &l=1 (1</<h) and we may assume that & is a primitive /-th root of
the unit by the same arguments as in the proof of the above claim. Let f(7) and
g(T) be the minimal polynomials of A and & over @, respectively. Then f(A4)=0
implies f(&;)=0 (1<7/<h). Hence g(T)|f(T) in Q[T]. In particular, ¢(I)=degg(T)=



Logarithmic Enriques surfaces 429

degf(T)<dimH. The first assertion of Lemma 2.3 is now proved. The remaining
assertions follow by a straightforward computation. Q.E. D.

The following two lemmas will be used in the subsequent sections.

Lemma 2.4. Let V be a log Enriques surface. Let I:=Index(Kyp) and let ¢ and ¢
be the numbers of all connected components of SingV and =n~'(SingV), respectively. We
use the notations ©: U—V and g: U—U as set at the beginning of §2. Then we have:

e(U)+p(U)— p(U)—e=1(p(V)—c+2),

where e(U) is the Euler number.

Suppose further that €=c (this hypothesis is satisfied if I is a prime number) and
that U is a K3-surface. Then we have:

cL214p(0)—pUN=<21 and 1=Zp(V)—c+2<23/1.

Proof. Let y, -, y. be all singular points of V. Then e(g 'z~ !(SingV))=¢+
o(U)— p(T) because g~'(SingU) consists of rational trees. Since D consists of rational
trees, we have e(D)=c+#(D), where #(D) signifies the number of all irreducible com-
ponents of D. By noting that = is étale over V°, we obtain:

e(U)—e(g 'z '(SingV))=1I(e(V)—e(D)).

By Noether’s formula, we have e(V)=12—(K3)=p(V)+2=p(V)+#(D)+2. So, the
first assertion of Lemma 2.4 follows.

Suppose that ¢=c¢ and U is a K3-surface. By the first assertion of Lemma 2.4,
we have:

c=ﬁ(21+1p(17)+p(U)—p(U)—24)
=24 (V) +oW)— p(D)—22)
<24 (U0 o)~ p(D)—22)

=2+ o)~ o)+ o)+ 7 (pU)—22)
<224 p(U)—pU).

We also have 1(p(l7)—0+2)=24+p(L7)—p(U)—c;24+p(17)—20—c:(,o(17)—c+2)+2.
Hence we obtain p(V)—c+2=2/(I—1)>0. On the other hand, we have o(V)—c+2=
24+ p(U)—pU)—c)/1<23/1.

Consider the case where [ is a prime number. Then n7'(y;) consists of one or [
points. If #~!(y;) consists of I/ points {x,;} for some 7, then @r,,,ijzév_yi. Hence y;
is a rational double singular point. This contradicts our assumption. Therefore,
77 Y(y:) (1=i<c) consists of a single point and ¢é=c. Q. E. D.

Lemma 2.5. Let V be a log Enriques surface. Suppose that U is nonsingular and
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I (=Index (Kp)) is a prime number. Then for each singular point y of V, n~(y) consists
of a single smooth point, and Op ,=C[[X, Y]1/C,;, with a cyclic subgroup C;., of
GLZ, C), where 1=<9q<1-2 and g.c.d. (¢, I)=1. The action of C; ,is givenby: gX=
EX and gY =&%, where g is a generator of C;, and € is a primitive I-th root of the
unity.

Proof. This follows from the argument at the end of the previous lemma, the
smoothness of U and the assumption that y is not a rational double singular point.
Q.E. D.

§3. The case where the bi-canonical divisor is trival

Let V (or synonymously (V, D)) be a log Enriques surface with Index(Kyp)=2.
Then D#=(1/2)D and the configuration of D is described by Lemma 1.8. Let G(1=<
i<c¢) be all connected components of D and set n;=#(G;). Let r: V=V be the blow-
ing-up of all singular points of D (intersection points of irreducible components of D).
Denote by D the proper transform of D. Then D consists of isolated (—4)-curves.
Since 2(D*+4 Ky)=D+2Ky~0, we have D+2K~0. Hence (V, D) is again a log Enriques
surface and if f: V—V* is the contraction of [ then Index(Ky.)=2. As in §2, using
the relation D~—2Kp7, we can find a finite morphism #: U—V, which is étale over
V—D and totally ramified over . Then U is nonsingular and (z-7)"(G;) consists of
2n;—1 (—2)-curves which are contractible to a rational double singular point of Dynkin
type Asn,-i. Indeed, if x#: U—V is the canonical covering and if f: V-V and g:
U—U are minimal resolutions, then U=U and mog=/foro%. Note that U is a K3-surface
because there are rational curves on U.

Lemma 3.1. Let (V, D) be a log Enriques surface with Index(Kp)=2. Then the
minimal resolution U of the canonical covering Uof (V, D) is a K3-surface. Moreover,
#(D)L10, and if G; (1£i<c) is a connected component of D with n;:=#(G;), then
x ' (f(Gy)) is a singular point of Dynkin type Asn,_, on U and = '(f(Gy) (1Zi<c) ex-
hausts all singular points of U.

In particular, #(SingU)=#(SingV)=c< #(D)<10.

Proof. We have only to show that #(D)<10. By Lemma 1.8, we have —(Kp)*=
#(D)=#(D). Note that 20=p(0)=p(V)=10—(Kp)?=10+#(D)=104+#(D). So, #(D)<
10. Q.E.D.

The upper bound 10 for #(SingV) is the best possible one in view of the following
example :

Example 3.2. Let m: X,— P! be the P'-fibration on a Hirzebruch surface 2,, let
L be a general fiber and let M be the (—1)-curve of X,. Take a nonsingular irreducible
member A in |2M+2L|. Then there are exactly two ramification points P; (=1, 2)
for a double covering m,4: A—P'. Let L; be the fiber with P,eL; and let L, (*L,,
L,) be an arbitrary fiber. Then A meets L, in two distinct points. Since dim|M+L|
=2, there is an irreducible member C in |M+L| so that P,, P,C. Denote by P;:=
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MNL, and P,:=CNL, and denote one of the points ANL; by P. Let 7,: V,—2, be
the blowing-up of five points P;’s and set E;:=z7'(P;) (j=1, 2). Let 7,: V,—V, be
the blowing-up of two points Q,:=t{(A)NE, and Q,:=7{(A)NE, and set E,:=73(Q%)
(k=3, 4). Let 7,: V-V, be the blowing-up of two points z;7{(A)NE,; and z;7i(A)NE,.
Set 7:=r1y07507y, Ej:=1iti(E;), Et:=1tEs), Ly =7"(Ly), A’ :=7'(4), C':=7'(C), M":=

¢'(M) and D:=§4)E;,+é Ly+A+C'+M'. Then D is a rod with two (—3)-curves as
n=1 p=1
tips and eight (—2)-curves in between. By noting that pEi]le+A+C+M~—2K;l, we

can check that D~—2Ky,. Hence (V, D) is a log Enriques surface with Index(Ky)=2
and with #(D)=10. Let r: V—V be the blowing-up of all nine singular points of D
and and let ﬁ:zr’(D). Then (¥, Dyis a log Enriques surface such that D+2Ky~0
and D consists of ten isolated (—4)-curves.

Now we are going to state and prove Theorem 3.6 which is a main result of the
present section. For this purpose, we need several lemmas.

Lemma 3.3. Let (V, D) be a log Enriques surface such that Index(Kyp)=2 and D
consists of isolated (—4)-curves. Let @: V—P! be a P'-fibration. Suppose that S is a
singular fiber containing at least one component of D and that D, (1Su=sr+1) are all
components of D contained in S. Then either r=0 or there are (—1)-curves E, (1=<v=r)
such that (E,, Dy)=(E., Dy..)=1. More precisely, one of the following cases occurs:

Case (1). We have r=0. There are integers s=1, a;=0 and irreducible components
Ci(j) 1=i<s; 0=Z7=<a;) of S such that C;0) is a (——1)-curve and C(j) is a (—2)-curve

if j=1. Moreover, i}l(l+ai)=4, (Dy, CiON=(C«()), C:(j+1)=1(0=j<a;) and SuppS=
Dl+2Cl(])

.7

Case (2). We have rz1. There are integers s=1, t=1, a;=0, b;=0 and irreducible

components Cy(m) (1=i<s; 0=m=a;) and Cyj(n) (1=<;<t; 0=<n=b;) of S such that
Cy0) (1=p=s+t) is a (—1)-curve and Cpg) is a (—2)-curve if q=1. Moreover,

s t
§1(1+ai):§(l+bj):2: (Dy, CA0)=(D;41, Cs40)=(Cp(q), Cp(g+1))=1 and SuppS=
EDu+EEv+p2 C,(q) for all possible i, j, p and q.
»q

Case (3). We have r=2. There are (—1)-curves F; (1=<i<3) such that (F;, D;)=1
and SuppS=>D,+3E,+>F..

Case (4). We have r=3. There are (—1)-curves F; (i=1,2) such that (F,, D))=
(F3, Dy)=1 and SuppS=Z D+ E,+ZFi.

Proof. Let E; (1=:<m) and C; (1£7<n) be all (—1)-curves and (—2)-curves in
S, respectively. Then SuppS=3D,+>E;+3C; by Lemma 1.10, (1). Note that (E;,
E.)=0 (i#k) and the dual graph of S is a connected tree. We shall show that 3D, +
> E; is a connected tree. We have only to consider the case where there are (—2)-
curves in S. Let C be a connected component of 33C;. Noting that (C, D)=0 by (1)
of Lemma 1.10, that S is connected and that 3}E;+31C; has negative definite intersec-
tion matrix, we can find a (—1)-curve in S, say E,, such that E,+C is a rod, (E,,
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2Dzl and (E,+C, E;)=(E,+C, C,;)=0 for each i#1 and each C,<3C;—C. Hence
C looks like a twig in S. Therefore, 3D, +3E; is a connected tree. So, S is as in
the case (1) of Lemma 3.3 if »=0, i.e., if there is only one component of D in S.
Suppose r=1. Take (—1)-curves in S, say E, (1<v<7r’), such that 3D, +3E, is
connected while 3XD,+ %Ev is not connected for every 1<k<r’. We shall prove that

r'=r and E,’s satisfy the requirement of the first assertion of Lemma 3.3. Suppose
that >D,+>E, is not a rod. Then, there is a (—4)-curve in S, say D,, such that
D, meets three (—1)-curves, say E, (k=1, 2, 3) because S is contractible to a nonsingular
rational curve and (D;, D;)=0 (#7). By our assumption, ED"+u§= E, is not connected.

Hence E, meets a component H, of 3D,. Then, Supp S (2Supp(D,+>H;+3E:))

is not contractible to a nonsingular curve. We reach a contradiction. Therefore,

S\D,+3E, is a rod. Note that (E,, 3D,)=2 (1=k<7r’), for otherwise (E;, 33D,)=1

and 2XD,+ ‘Z"‘k E, is connected, which contradicts our assumption. Hence »'=7 and ) E,
v

meets 2D, as described in Lemma 3.3.

If each (—1)-curve other than E,’s in S meets only D, or D,,, among D,’s, then
S drops in the case (2) of Lemma 3.3 by the above arguments. Suppose that there
are (—1)-curves F, (1=k<s), other than E,’s, meeting one of D,, ---, D.. Then s=1
and F, meets only one component of Supp S— F, because §20u+2 E,+3>F, has negative

definite intersection matrix and S is contractible to a nonsingular curve. Thus S drops
in the case (3) or (4) of Lemma 3.3. Q.E.D.

Lemma 3.4. Let (V, D) be a log Enriques surface with Index(Kyp)=2. Then P? is
a relatively minimal model of V.

Proof. Since (K%)=-—c<9 by Lemma 1.8, ¢ being the number of all connected
components of D, there is a birational morphism %: V—3,(0<n=<4) by Lemma 1.10,
(1). Let m: 3,—P"' be a P'-fibration of X, and let M be a minimal section of .

Consider first the case where 7'(M) is not a component of D. Then —2=(9p'M )<
(M*)=—n<0 by Lemma 1.10, (1. Lemma 3.4 is clear if n=1. Suppose n=0 or 2.
Since (K3)<7, there is a blowing-up »,: V,—X, of a point P in a fiber L of z= and
a birational morphism %,: V—V, such that p=%,°9,. If n=2, then P is not contained
in M for we must have (p’M)*=—2. Let x;: V,—P* be the blowing-down of %,(L)
and 7,'(M). Then we obtain a birational morphism 9sen,: V=P If n=0, let »,:
V,—P? be the blowing-down of %,'(L) and %,'(M,) where M, is the minimal section
with PeM,.

Assume %’(M) is a component of D. If n=<1, Lemma 3.4 can be proved by the
same argument as above. So, we assume n=2. Let 7: V—V be the blowing-up of
all singular points of D. Set D:=7(D) and M:zr’r)’(M). Then (V, D) is a log
Enriques surface and D consists of isolated (—4)-curves. Set @ :=m-7 and G :=0or:
Y- P! Then M is a cross-section of &. Let S,, ---, S, be all singular fibers of @
and let S;:=7%(Sy).

Suppose £=3. Then, there are blowing-up 7,: V,—3X, of three points P; of 7(S;)
(=1, 2, 3) and a birational morphism 7,: V-V, such that n=x;°9,. Note that —4=
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(MMPEM?)=—n<—2. Let n'=—(9iM)". Let 7,: V,—P* be the blowing-down of,
n’—1 (—1)-curves contained in XI%7'n(S;) and meeting n,'(M), 4—n’ (—1)-curves con-
tained in 377'9(S;), not meeting %,’M and disjoint from the previous (—1)-curves, and
then the curve n,/(M). Thus we obtain a birational morphism 7gen,: V—P%
Suppose £<2. If S; contains a component of D, then S, looks as in one of the
cases (1)-(4) of Lemma 3.3 and 7 contracts no (—4)-curves of S.. If S; contains no
components of D, then S; is a rod consisting of several (—2)-curves and two (-—1)-
curves E, and E, as tips with (E,, r(A7I))=1 by (1) of Lemma 1.10 and because (7(1\71).
Si)=1. We have 8=(K;2)=(K#)+2(#(S:)—1) and X (#(S:)—1)=8+4c=9. Note that
—4§(z~(ﬂ7l))2§—2. Note also that if #=1 and S, contains components of D, then S,
is in the case (2) of Lemma 3.3 with #(5))=#(S,)=10 and M meets a (—1)-curve of
S, with coefficient one in S,. Therefore, in the case k=1, we can find a birational
morphism %,: V-3, such that (1;11(1\71))2:—1 because #(S,)=10. This implies Lemma
3.4. Suppose k=2. It is impossible that both S, and S, belong to the case (1) of
Lemma 3.3 by virtue of the inequality >3(#(S:)—1)=9. So, in the case =2, by using
the above inequality, we can find a birational »,: V—3; such that (7]17(1\7))2:—1 and
conclude Lemma 3.4. Q.E.D.

Lemma 3.5. Let (V, D) be a log Enriques surface with Index(Kp)=2 and ¢ (=
# {connected component of D})=22. Let n: V—P? be a birational morphism. Then there
are exceptional curves E, 1=v=c—1) of % such that E, is a (—1)-curve and the dual
graph of D+3>E, is a connected tree.

Proof. Let E; (1<i<m) be all exceptional curves of 7 such that E; is a (—1)-
curve on V. Let C; (1=;7<n) be all exceptional curves of % such that (C})<—2 and
C; is not contained in D. By (1) of Lemma 1.10, we have (C?)=—2 and (C,, D)=0.
Note that (E;, Ez)=0 (i+k). Since (E;, D)=(E;, —2Ky)=2>0, we have n(E,)=n(D).

We assert that 5 'p(D)=D+3E;+3C; and that D+ E;+3>C; is connected if
and only if so is D+ F;. Let C be a connected conmponent of 33C;. Since (C, D)
=0 and X E;+3C; is an exceptional divisor of 7, there is a curve among E;’s, say
E,, such that C+E, is a rod and (C+E,, E;)=(C+E,, C,)=0 for each 7=1 and each
Cr=3C,;—C. Thus, n(C)=n(E,)en(D) and C looks like a twig in D+ E;+3C;.
This proves our assertion.

We now claim that D+3>E; is connected. Suppose the claim is false. Then D+
2EA43C(=n""9(D)) and n(D) are not connected. So, there is a union 4 of con-
nected components of D such that 7(d) consists of a single point, y(D—4)+ @ and
DN D—A)=@ because p(P?=1. Hence np 'y(d)Ny 'n(D—A)=¢@. So, if we write
P d)=4+ D E+3C} and 5 'n(D—A)=D— A+ EI+3C" with Ej, E/={E,; 1<i<
m} and Cj, CY={C,;; 1=<j<n}, then S E;+3E?/=XE; and 3Cj+3C7=3C,. Since
n(4) is a smooth point of P?, there are (—1)-curves F,’s in {E}} such that 4+3F,
is a linear chain while 4+XF,—F, is not connected for each F,<3IF,. Lety,: V-V
be the contraction of 3F,, let D=x,(D) and let d=y,(4). Then (V, D) is a log
Enriques surface with D42Ky~0, as well. Clearly, n is factored as np=7n,°7, with a
birational morphism 7,: V— P2 Since m(Z)zr)(d) is a smooth point of P2, there is
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a (—1)-curve G, in {n(ED} or {n(C)} such that (G,, HH=1. Then (G, H={G,, D)
=2 and it is impossible that 7]2(3):1]2(2+5r) is a smooth point of P2 Therefore,
the claim is true.

Restrict E;’s to a subset {E;; 1<:<r}, relabelled suitably, where »<m, so that

D—l—UETJlEv is connected while D+ § E, is not connected for each 1<;<r. We shall
= v#J

show that »=c—1 and E,’s satisfy the requirement of Lemma 3.5. If (E;, 4)=2 for
some 1<;=r and some connected component 4 of D, then (E;, D—4+ 3 E,)=0 for
v#J

(E;, D)=2. Then D+§jEv is connected, which contradicts our assumption. Thus

each FE, meets exactly two connected components of D. Hence there are no three
components of D+ F, passing through one and the same point because D has only
simple normal crossings and (E;, E;)=0 (i#j). Therefore D43 E, has only simple
normal crossings. Suppose D+3> E, contains a loop. Then there are (—1)-curves, say
E, (1£k<s; s<r), and rods 4, such that 4,<D and (4,_,, Ex)=(E:, 4,)=1(d,:=4,)
because D contains no loops. Then (E,, D—Supp(A1+As)+§,lEv):0 and D+v§}1 E, is

connected. This contradicts our assumption. Therefore, the dual graph of D+ Er] E,
v=1

is a tree. By noting that (E;, E;)=0 (#) and E, meets exactly two connected com-
ponents of D, we have r=c—1. Q. E.D.

Theorem 3.6. Let (V, D) be a log Enriques surface such that Index(Ky)=2 and D
consists of exactly ¢ (=2) isolated (—4)-curves. Then there are (—1)-curves F; (1=;=<
c—1) of V such that D+3F; is a linear chain. More precisely, we can write D=3D;
with irreducible components D;’s of D such that (D;, F;)=(F;, D;u.)=1, 1=j<c. Hence,
if ¢: VoW is the blowing-down of Fy's, then (D) is a rod consisting of two (—3)-
curves as tips and ¢—2 (—2)-curves and (W, ¢(D)) is a log Enriques surface with
Index(Kw)=2.

Remark. Let (V, D) be an arbitrary log Enriques surface with Index(Ky)=2. Let
(V, D) be the log Enriques surface which is associated with (V, D) and defined at the
beginning of §3. Then we can apply Theorem 3.6 to (V, D) and obtain Theorem 3.6’
which is stated in the Introduction.

Proof. Suppose that there are (—4)-curves R, (1<i<r) of D and (—1)-curves F;
(1<j<r—1) of V such that (F;, R,)=(F;, R;;.)=1. Let ¢: V=X be the blowing-down
of Fy's and let G=¢(D). Then (X, G) is a log Enriques surface with Index(Ky)=2.
Set R::=a(f;) and R=3JR;. Then R is a rod and (R%})=—3 if ;=1 or r and (R})=—2
otherwise. The divisor G consists of R and several isolated (—4)-curves. Denote by
Y the set of all morphisms ¢ of the above type. Then X is not empty. Indeed, by
Lemma 3.5, there are (—1)-curves E; (1<;7<c¢—1) of V such that D+3E; is a tree.
Then, the blowing-down of E, belongs to 5. Theorem 3.6 is equivalent to asserting
that there is a o¢<JX such that ¢(D) contains no isolated (—4)-curves. It suffices to
prove the following :
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CLAIM 1. For any o2 such that ¢(D) contains at least one isolated (—4)-curve,
there is a &2 such that 7(D) contains less isolated (—4)-curves than ¢(D).
We shall prove the claim 1 by using the following three lemmas. We use the

above notations ¢: V—X, G=¢(D) and R= };‘lRi.

Lemma 3.7. [f there is a (—1)-curve E of X such that E meets one isolated (—4)-
curve of G and one (—3)-curve of R, then the claim 1 holds with a morphism t which
is the composite of ¢ and the blowing-down of E.

Proof. Obvious.

Lemma 3.8. If there are two disjoint (—1)-curves E, and E, of X such that (E,, R,)
=(E,, R.)=(E,, R)=(E,, G)=1 for some 2=q=<r—1 and some isolated (—4)-curve G,
of G, then the claim 1 holds.

Proof. Blowing down E, and E, and blowing up one of the intersection points
of two divisors R, and R—R,. We obtain a new surface Y from X. Evidently, there
is a birational morphism t: V—Y such that t=2. Then r satisfies the condition of
the claim 1. Q.E. D.

Lemma 3.9. If there is a (—1)-curve E of X such that (E, R)=(E, G,)=1 for
some 3Zq<r—2 and some isolated (—4)-curve G, of G then the claim 1 holds.

Proof. Relabelling R=3R; anew if necessary, we may assume ¢<r—g+1. Let
So=2(E+R)+ Ry_1+ R4s1 and @: X— P! the P'-fibration defined by |S,|. Then Ry,
and R, are cross-sections.

Assume r=5. Then ¢=3. Since (K%)<0, there is a singular fiber S(#S,). Then
there is a (—1)-curve F, in S such that (F,, R,)=1 (cf. Lemma 1.10, (1)). Since (F;, G)
=2, F, meets a (—4)-curve in G or R;. Accordingly, the claim 1 follows from Lemma
3.7 with E:=F, or Lemma 3.8 with E,:=F, and E,:=E.

Assume »=6. Let S, be the singular fiber of @ containing R,.;+---+ R.. Suppose
that S, contains at least one (—4)-curve of G. As shown in the proof of Lemma 3.3,
the divisor consisting of all (—1)-curves in S, and all components of G in S, is a
connected tree. Suppose further that there is a (—1)-curve F; and a (—4)-curve H, in
S, such that (F,, H,)=(F,, R;)=1 for some ¢+3<t<r. Since S, is contractible to a
nonsingular rational curve, t=¢+3 or . We have t=r because (R, S;)=1 and R,y
has coefficient one in S;,. Thus the claim 1 follows from Lemma 3.7 with E:=F,. If
there is no such a (—1)-curve F, as above connecting a (—4)-curve and a linear chain
Riss+--+R,, then S, contains a linear chain R,+--+R,_; and there exists a (—1)-
curve F, connecting a (—4)-curve H, and the linear chain R,+--4+ R,_,. Then we are
done by the same argument as above. So, we may assume that S, contains no (—4)-
curves.

If ¢g=4, we may assume that R,+:--+ R,_; is not contained in S,. Indeed, since
the divisor consisting of all (—1I)-curves in S, and all components of G in S, is a
connected tree (cf. Lemma 3.3), in the case where R,+---+R,_, is contained in S,, we
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can find integers 1<s<¢—3 and ¢+3<¢<7 such that there is a (—I)-curve F, in S,
satisfying (F, R,)=(F,, R;)=1. By Lemma 3.8 with E,:=F, and E,:=FE, we may
assume that (F;, R+ R,)<1. In the case (F,, R,)=0, we have ¢=5 and s=¢—3 because
S, is contractible to a nonsingular curve. Then R,_; has coefficient greater than one
in S;. This is a contradiction to (R,_,, S;)=1. Similarly, we are led to a contradic-
tion if (F;, R,)=0. So, we assume that R,+---+ R,_; is not contained in S,.

Now we are reduced to considering the case where S, consists of one (—3)-curve
R. and several (—1)-curves and (—2)-curves. Such a degenerate fiber S, is described
in [12; Lemma 1.6]. If there is only one (—1)-curve F; in S, then F, has coefficient
greater than two in S;. This is impossible for the 2-section G; of @ meets only F,
in S; by Lemma 1.10, (1). So, S, contains at least two (—1)-curves. Suppose that
there are more than two (—1)-curves Fi’s in S,, then two of them, say F, and F,,
meet R,. We may assume that (Fy, R;..)=0. Then F, meets a (—4)-curve in G
because (F,, G)=2. Then the claim 1 follows from Lemma 3.7 with E:=F,. Suppose
that there are exactly two (—1)-curves F, and F, in S;. Then one of them, say F,
meets R,. Since (F;, G)=2, F, meets the cross-section R,_, or a (—4)-curve of G. If
F, meets a (—4)-curve of G then we are done by Lemma 3.7 with E:=F,. So, we
assume that (Fy, R,,)=1. Hence (F,, R,,)=0, F, has coefficient one in S, and F,
meets one component of Ry.s;+---+R,. Applying the same argument to F,, we may
assume that (F,, R,)=0. Then we can show that r=¢+5, (F;, R,_;)=1and S,=2(F,+
Rys)+Fi+ Ry s+ Revs.  1f ¢=3, in particular, the claim 1 follows from Lemma 3.8
with E,:=F, and E,:=E. Suppose ¢=4. Let S, be the singular fiber of @ containing
R,+--+R,_;. Applying the same argument for S, to the fiber S,, we can prove the
claim 1 except for the following case: ¢=6, r=11, #(S,)=#(S;)=5 and S, and S. have
the same configuration. In the exceptional case, we have #(G)z=12, which is a con-
tradiction to Lemma 3.1. Q.E.D.

We resume the proof of the claim 1. Consider the case where G contains at
least two isolated (—4)-curves. By Lemma 3.5, there are (—1)-curves E,’s of X such
that G4+ E; is a connected tree. In view of Lemma 3.7, we may assume that there
are two (—4)-curves G, and G, and two (—1)-curves, say E, and E,, such that one of
the following two cases occurs.

Case (1). (Gi, E)=(G,, E;)=(R,, E;))=1 (i=1, 2) for some 2<¢g<r—1.

Case (2). (Gy, Ei)=(Ry E)=(R,, E;)=1 (i=1, 2) for some 2<¢<p=<r—1.

Assume the case (1) occurs. Labelling R=3}R; anew if necessary, we may assume
g<r—q+1. If g=3, the claim 1 follows from Lemma 3.9 with E:=E,. Suppose ¢=2.
Blowing down E, and E, and blowing up the point R,N\R,, we obtain a new surface
Y from X. Clearly, there is a birational morphism 7: V—Y such that rY and 7
satisfies the condition of the claim 1.

Assume the case (2) occurs. Let Sy:=E,+R,+ -+ R,+E, and @®: X—P' be the
P fibration defined by |S,|. Then R,.;, Rp+1, G, and G, are cross-sections of @. By
the same argument as in Lemma 3.9 applied to a singular fiber S, of @ containing
R,+--+R,_, or a singular fiber S, containing Rp,.+---+ R,, it suffices to consider the
case where ¢=5 and S,:=2(F,+R,)+F,+R,+ R, is a singular fiber of @ with two
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(=1-curves F, and F, such that (F, R)=(F\,, Rps)=(F;, R;)=1. Then (S, G)=1
implies (Fi, G,;)=1. This leads to (F;, G)=3, a contradiction.

Next, we consider the case where G=R+G, with a unique isolated (—4)-curve G;.
By Lemma 3.5, there is a (—1)-curve E such that (E, G,)=(E, R;)=1 for some 1=g=r.
In view of Lemma 3.7, we may assume 2<¢g<r—1. Labelling R=3}R; anew if neces-
sary, we may assume ¢=r—¢+1. In view of Lemma 3.9, it suffices to consider the
case ¢=2. In this case, we have r=2¢—1=3.

Assume r=25. Let ¢: X—P' be the P'-fibration such that fo:=3E+3R,+2R;+
R,+R, is a singular fiber of ¢. Since (N%)=—2<4, there is a singular fiber f, other
than f,. By (1) of Lemma 1.10 and since (f, G,)=3, there is a (—1)-curve E, in f,
such that (E;, G))=1 or 3. Since (E,, G,)<(E,, G)=2, we have (E,, G,)=1. Moreover,
(E,, Ry)=1 for some 5<p=<r. By Lemma 3.7, we may assume p#r. Let Sq:=FE+
R,++R,+E, and @: X—P' the P'fibration defined by |[S,|. Using the same
arguments as in Lemma 3.9, we can prove the claim 1.

Assume r=4. We shall show that there is a (-—1)-curve E, of X such that (E,, R,)
=(E,, G,)=1. This will imply the claim 1 by Lemma 3.7. Indeed, let &: X—X, be
the blowing-down of E, R,, R, and R,, let &: X,—Y be the blowing-down of &,(R.)
and set £:=§,°&,. Then &G)=¢&(G,) and it has only one singular point P. Note that
(K3)=(K%)+5=3<9. Hence there is a nonsingular rational curve [ of Y such that
Pel and (1*)<0. By noting that 3=, &G,)=—2(/, Ky), we have ([, Ky)=-2, ({2)=0
and (/, &G.))=4. Hence (1), E(G))=(E3(), &«(G1))—(6:(Ry), Ex(G1))=(, &(Gy)—3=1.
So, &,’(l) does not pass through the unique singular point of £,(G,). Note also that
&), &(R,))=1. Hence E,:=§&'(l) satisfies the requirement.

To complete the proof of the claim 1, it remains to consider the case r=3. Let
&: X-Y be the blowing-down of E and R,. Since (K$)=0<9, there is a nonsingular
rational curve / such that (/2)<0 and [/ contains the point &(G,)N\E(R)NE(R,). We have
(, Ky)==2, ((1)=0 and (I, &G+ R,+ R,))=4 because 3=(l, &(G,+ R+ R))=(, &G)=
(I, —2K5;). Interchanging the roles of R; and R, if necessary, we may assume that
(, &(Ry)=1. Since (K{$)<8, there is a singular fiber f, of the P'-fibration @,,,: Y —
P'. Then there is a (—1)-curve E, in f, sech that (£,, &(Ry))=1 (cf. Lemma 1.10, (1)).
Since (£, &G))=2, we have (£, &G,+R)=1. Then E,:=¢'(E,) is a (—1)-curve of
X with (E,, Ry)=(E,, G,+ R,)=1. Then the claim 1 follows from Lemma 3.7 with
E:=F, or Lemma 3.8 with E,:=EFE, and E,:=E.

This completes the proof of Theorem 3.6.

Corollary 3.10. Let (V, D) be a log Enriques surface with Index(Ky)=2 and let U
be a minimal resolution of singularities of the cauonical covering U of V. Then there
is a (—2)rod R on U with #(R)=2(#(D))—1. In particular, U is a K3-surface with
oU)Zz2(#(D)). Moreover, if #(D)=10 then p(U)=20 and U is a singular KS3-surface.

Proof. Set ¢:=#(D). If ¢=1, then the inverse image of D is a (—2)-curve on U.
Suppose ¢=2. Let r: V=V be the blowing-up of all singular points of D and let
D:=7/(D) with the notation at the beginning of §3. Then (V, D) is again a log
Enriques surface satisfying the hypothesis of Theorem 3.6. Hence, there are (—1)-
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curves F‘j (1<j<e&—1) of V such that 5+2ﬁ‘,~ is a linear chain. Note that the ca-
nonical coverings of (¥, D) and (V, D) have the same (up to isomorphisms) minimal
resolution U. Then the inverse image of ﬁ+2ﬁ‘j is a (—2)-rod on U satisfying the
requirement of Corollary 3.10. Q.E.D.

§4. The case where the canonical covering is an abelian surface

We shall prove the following theorem in the present section.

Theorem 4.1. Let (V, D), or synoymously (V, D), be a log Enriques surface whose
canonical covering U is an abelian surface. Then I (=Index(Kp))=3 or 5. More pre-
cisely, we have:

(1) Suppose I=3. Then p(U)=p(V)=4 and D consists of nine isolated (—3)-curves.
Hence U is a singular abelian surface.

(2) Suppose I=5. Then p(U):p(V)=2, and D consists of five connected components
each of which consists of one (—2)-curve and one (—3)-curve.

Proof. By Lemma 2.2, I is not divisible by 2. By Lemma 2.3, we have ¢(/)<
by(U)—p(U)=6—p(U)<5. Hence /=3 or 5, and we have p(U)<2 if I=5 and p(U)<4
if I=3. By Lemma 2.4, we have ¢=c¢ and

o(V)=c—2—c¢/I and I]c,

where ¢=#(SingV)=4# {connected component of D}. By noting that o(V)<p(U)<4,
we obtain :

c=I(p(V)+2)/(I-1)<6+6/(I-1)<9.

Therefore, (¢, I)=(3, 3), (6, 3), (9, 3) or (5,5). Here (c, I)#(3, 3) for p(V)=1.

We consider these cases separately. Employ the same notations ¢, & C; , etc. as
in Lemma 2.5.

Case (¢, I)=(6, 3). Then g=1, D consists of six isolated (—3)-curves and D¥=(1/3)D.
Hence —(K#)=c/3=2 by Lemma 1.8. On the other hand p(V)=p(V)—#(D)=10—(K})—
6=6, while p(V)=2. This is absurd.

Case (¢, I)=(9, 3). Then ¢=1, D consists of nine isolated (—3)-curves and 4= p(U)
=p(V)=c—2—c/I=4. Hence p(U)=p(V)=4.

Case (¢, I)=(5,5). Then p(U)=p(V)=c—2—c/I=2. Since we have shown p(U)<2,
we see o(U)=p(V)=2. By replacing the generator & of C,,, by a new one and in-
terchanging the coordinates X and Y of C? if necessary, we may assume that ¢g=1 or
2. Let a be the number of all singular points of V with ¢g=1. Then D consists of «
isolated (—5)-curves D;’s and (5—a) connected components 4;’s, each of which consists
of one (—2)-curve B;; and one (—3)-curve B,; Note that D*=(3/5)23D;+(1/5)%(B,;+
2B,;) and (K3)=(D#*)*=—9a/5—2(5—a)/5=—2—7a/5. Thus, a=0 or 5. If a=5 then
o(V)=10—(K3)—#(D)=10+9—-5=14+2. This is a contradiction. Hence a=0.

Q. E.D.

For the case /=5, we can not find any example yet. For the case /=3, we have
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the following example.

Example 4.2. Let E=C/(Z+Zw) be an elliptic curve, where o is a primitive
third root of the unity. Then E has complex multiplication and the Picard number
of the abelian surface U:=EXE is 4. Since G:={l, o, @*} acts on E by the natural
multiplication, we can consider the diagonal action of G on U. Denote by [x, y] a
point of U represented by two complex numbers x and y. Then all fixed points of
G are as follows:

(1,13, 1, 1—w)/3], [1, @—20)/3], [(1-w)/3, 1],
[(A-w)/3, 1—w)/3], [(A—w)/3, 2—2w)/3], [(2—2w)/3, 1],
[(2—2w)/3, (1—w)/3], [(2—2w)/3, 2—2w)/3].

Hence there are exactly nine singular points on V :=U/G. More precisely, if f: V-V
is a minimal resolution of SingV then D:=f"'(SingV) consists of nine isolated (—3)-
curves D; (1=7/<9). We assert that V is a rational surface. Indeed, since Ky~0,
3Kp is a trivial Cartier divisor. Hence 3(D*+ Ky)~ f*(3Kp)~0, where D*=(1/3);Di

(cf. Lemma 1.2). Hence #(V)=—oo. By the argument in the proof of Lemma 2.2, we
see that V is a rational surface. Hence (V, D) is a log Enriques surface fitting the
case I=3 of Theorem 4.1.

§ 5. The case where the canonical covering is a K3-surface

Employ the notations as set at the beginning of §2. In the present section, we
consider log Enriques surfaces V satisfying that the canonical covering U is a K3-
surface and the index I of Ky is a prime number. Since U is nonsingular, we can
apply Lemma 2.5. Let m,, ---, m, be integers such that the following three conditions
are satisfied :

Q) I=m<my< <me<l—1,

(2) the singularity (C*/C; =, 0) is not isomorphic to the singularity (C*/Crm; 0)
if i#7,

3) for each 1=<k=<I—-2, the singularity (C?/C,.;, 0) is isomorphic to a singularity
(C?/Cy m; 0) for some m; with m;<k.

(my, my, -+, mg) is uniquely determined and easily found (cf. [2; Satz 2.11]). Let
n; be the number of all singular points of ¥ which have the same singularity as
(C%*/Cy,m;, 0). By our assumption that V has no rational double singular points, we
have Sn,=c(=#(SingV)). A precise description of (ny, n,, -, ng) is given in the
following theorem :

Theorem 5.1. We use the above notations. Let V, or synonymously (V, D) be a log
Enriques surface. Suppose that the canonical covering U is a K3-surface and the index
I of Ky isa prime number. Then p(V):c—2+(24—c)/1, and one of the following cases
occurs, where >n;=c:

{1 (e, D=, 3). Then (i, -, ma)=(1), c=n,=3 and p(V)=11. Hence D consists
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of three isolated (—3)-curves.

2) (¢, I)=(4,5). Then (my, -, ma)=(1, 2), (n1, n:)=(1, 3) and p(V)=13.

@) (¢, D=@, 7). Then (my, -+, ma)=(1, 2, 3), (n1, 1y, ny)=(0, 1, 2) and p(V)=12.

@) (¢, D=2, 11). Then (my, -+, ma)=(, 2, 3,5, 7), (ny, -, n5)=(0, 0,0, 1, 1) and
o(V)=1L.

®) (¢, N=(13, 11). Then (my, -, ma)=(1, 2, 3,5, 7), (ny, -+, n5)=(3, 4, 0, 0, 6), (4,
1,1,0,7), 4,2,0,1,6) or (5,0,0,2,6) and p(V)=47, 48, 49 or 51, respectively.

®) (¢, =7, 17). Then (my, ---, ma)=(1, 2, 3, 4,5, 8,10, 11) and (n,, ---, ng)=(1,
,0,0,2,2), (1,0,0,1, 1,0, 3, 1), (0, ,0,0,0,31),(,2,0,0,1,0,4,0), (1,1, 1

0 (1,1,0,0,1,0, 1, 3), (1,0, 1, ,4,0),(2,0,0,0,0,2,1,2), (1,2,0,0,0,
,0,2,0,0,0,3),(1,1,0,1,0, ), (1, ,0,3,0,0,2,1),(0,3,0,1,0,0, 1
0,1,3,0) 0r (0,2,0,2,0,0,

) (c, 1)=(5,19). Then (my, -, mg
0,0010,12),(,0,0,0,2,0,0, O, 2), (
and p(V)=29, 29, 24 or 26, respectively.

In particular, (D, Ky)=c—1—(K}).

Conversely, if V is a log Enriques surface of which the singularity type belongs to
one of the above cases, then the canonical covering U is a K3-surface.

Finally, for each prime number I with 3<I1=<19 and I+13, there is a log Enriques
surface V such that I is the index of Ky and the canonical covering U of V is a K3-
surface (cf. Examples 5.3-5.8).
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Proof. At first, we show the converse part. Let V be a log Enriques surface of
which the singularity type belongs to one of the cases of Theorem 5.1. Every singular
point x of V has the same singularity as (C%/G,, 0) with a cyclic subgroup G, of
GL(2, C) of order I. Since the canonical covering =: U—V has degree I and is an
étale cyclic covering outside SingV, we see that U is nonsingular. Then U is a K3-
surface in view of Theorem 4.1. Now we shall prove a main part of Theorem 5.1.

By Lemma 2.4, we obtain the first assertion and that ¢<21. In particular, I|(24—c).
By Lemma 2.2, we have I =3. Hence ¢=2 by Proposition 1.6.

Consider the case I=3. Then (m,, ---, my,)=(1) and D consists of ¢ isolated (—3)-
curves D; (1<i<¢). Note that D*=(1/3)D and (K$)=(D¥)*=—¢/3. Hence we have
¢/3+10=p(V)=p(V)+#(D)=c—2+(24—c)/3+c. This implies ¢=3 and p(V)=11

Now we assume I=5. Since 2<¢=<21 and 7|(24—c), we see that (¢, [)=(4, 5), (9,
5), (14, 5), (19, 5), (3, 7), (10, 7), (17, 7), (2, 11), (13, 11), (11, 13), (7, 17) or (5, 19).

Consider the case I=5. Then (m,, ---, me)=(1, 2). As in Theorem 4.1, we have
(K8)=(D*)*=—(Hc—n.)+2n,)/5. Hence 104+9¢/5—7n,/5=p(V)=p(V)+#(D)=(4c+14)/5
4+(c—ny+2n,). This implies n,=3 and n,=c—3. We shall prove ¢=4. Indeed, by
Proposition 1.6, we obtain:

3(c—3)+3=(D, Ky)Sc—1—(K3)=c—14(9c—21)/5, whence ¢=4. Since ¢=4 when
I=5, we have c¢=4, (n, n;)=(1, 3) and p(V)=13.

Consider the case I-==7. Then (m,, ---, my)=(1, 2, 3). Note that D consists of the
following ¢ connected components :

(1) isolated (—7)-curves A; (1=i<n,),
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(2) rods B; (n,+1<j<n,+n,), each of which consists of one (—2)-curve B;; and
one (—4)-curve B,;,

3) rods C, (n,;+n,+15k<n,+n,+n;=c), each of which consists of two (—2)-
curves Ci;, C,r and one (—3)-curve C;, With (Cpe, Cyer,z)=1 (b=1, 2).

Then D*=(5/12A:+(2/T)Z(B1;+2B:)+(1/7)2(C14+2C1,+3Cs:) and —(25(c—n,—
n3)+8n,+3n,)/7=(D*)*=(K}) = 10— p(V) = 10— (V) — #(D)=10—(c — 2+ (24— )/ T)—(c —
ny—ns+2n,+3n,). This implies 54+c¢=2n,+3n,. Note that c=n,+n,+n,=3, 10 or 17.
Hence all possible pairs of (n,, n,, n;) are as follows:

0,1,2),5,0,5), 4,3, 3), 3,6, 1),
9 2,6), (8,5,4), 7,8, 2), (6,11, 0).
On the other hand, by Proposition 1.6, we have:
5ny4+2n,4+n,=(D, Ky)<c—(K&)=c+(25n,+8n,+3n,)/7.

Therefore we have ¢=3, (n,, n,, n)=(0, 1, 2) and p(V)=12.

Consider the case I=11. Then (my, -+, ma)=(, 2, 3, 5, 7). Note that D consists
of the following ¢ connected components:

(1) isolated (—11)-curves A; (1=5:<n,),

(2) rods B; (n;+1=j<mn;+mn,), each of which consists of one (—2)-curve B,; and
one (—6)-curve B,

3) rods Cy (ny+n.+1<k=<n,+n,+n,), each of which consists of one (—3)-curve
C.. and one (—4)-curve Cyy,

4) rods D, (my4+ns+ns+1<r<n;+---+n,), each of which consists of four (—2)-
curves D,,, -+, D,, and one (—3)-curve D;, with (Dy,, Dpsy..)=1 (1£bh<L4),

®) rods E; (my+--+n+1=s<n;+---+n;=c), each of which consists of three
(—2)-curves Ei;, Ey, E, and one (—3)-curve E;; with (Eps, Epyy,s)=1 (1Sb=3).

Then D*=(9/11)3 Ai+(4/11)23(B1;42B:)+(1/11)3(6C 12 +7Co2)+(1/11)3(Dy 42D,
+3D3, 44D, +5D5:)+(1/11) D2 E1s+4 Eys+6 Egs+3Ey;), and —(81n,432n,+20n,+5n,+
6n5)/11=—Tn,—3n,—2n3—ns+(—4n,+n,+2n,—5n,+5n:)/11 = (D*)* = (K3) = 10— p(V)=
10— p(V) — #(D)= (108 — 10¢)/11—(n,+2n,42n,+5n,+4n;). In particular, we have
11|(—4n,+n,+2n;—5n,+5n,). Hence, if ¢=2 then (n, -, n;)=(0,0,0,1,1) and
o(V)=11.

Now we suppose that ¢=13. We shall show that (n,, ---, n;)=(3, 4, 0, 0, 6), (4, 1,
1,0,7),42,0,1,6) or (50,0, 2,6). Hence, p(V)=47, 48, 49 or 51, respectively. By
the above computations of (D#)?, we deduce 0=—22+70n,+10n,—2n;—50n,—38n;=—
22+10¢+60n,—12n,—60n,—48n, and thence the following equality :

(1) 5n,+4ns=9—n,+5n;.

On the other hand, by Proposition 1.6, we obtain 9n,+4n,+3n,+n,+n;=(D, Ky)<
13—1—(K$)=12424n,4+2n,4+2n,+5n,+4n; and hence 0<14—8n,—2n,—n;+4n,43n,=
14—2¢—6n,+n,+6n,45n,. Using the equality (1) to eliminate n, in the later inequality,
we obtain an inequality :
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(2) 3+n1§n4+7’l5-

This, together with the equality (1), implies 0=n,4+4(n,+ns)—9+n,—5n,=3—n,+n,+
n,=23—n,. Hence 7,23 and n,+n;=23+n,=6. If n,+n;=9, then n,=13—(n,+--+n;)
=4 and 36=<5n,+4ns=9—n;+5n,<29 by the equality (1). This is a contradiction.
Therefore we have 6<n,+n;<8.

Case n,+ns=6. Then n;+n,+n,=7 and n,<3 by the inequality (2). Hence n,=3,
and 244-n,=24—n, by the equality (1). Thus n,=n,=0 and (n,, -, n5)=(3, 4, 0, 0, 6).

Case n,+n;=7. Then n,+n,+n,=6 and 28=<28+4+n,=9—n,+5n,<9+5n, by the
equality (1). Hence n,=4. Thus, by the inequality (2), we have n,=4. Hence n,+n,
=2 and 28+4+n,=29—n, Therefore, (n,, -+, n5)=4, 1,1, 0, 7) or (4, 2, 0, 1, 6).

Case n,+n;=8. Then n,+n,+n;=5 and 32=<324+n,=9—n,+5n,<9-+5n, by the
equality (1). So, n,=5 and (n,, -+, n:)=(5, 0, 0, 2, 6).

Next we shall prove that the case (¢, I)=(11, 13) is impossible. Indeed, if the
case (¢, I)=(11, 13) occurs, then (m,, -, ma)=(1, 2, 3, 4, 5, 6), p(V)=c—2+(24—¢)/1=10,
and D consists of the following eleven connected components:

(1) isolated (—13)-curves A; (1=i<n,),

(2) rods Bj (n;+1=<j<n,+n,), each of which consists of one (—2)-curve B,; and
one (—7)-curve B,

B) rods C, (ny+n,+1<k<n,+n,+n,), each of which consists of two (—2)-curves
Cit, Cs and one (—5)-curve C;p with (Cyi, Cpirz)=1 (b=1, 2),

4) rods D, (n,+n,+ns+1=r=<n,+---+n,), each of which consists of three (—2)-
curves D,,, D,,, D;, and one (—4)-curve D,, with (D,,, Dys1.-)=1 (1ZbZ3),

(5) rods E; (ny+---+ns+1=s<n,+---+n;), each of which consists of one (—2)-
curve E;; and two (—3)-curves E,; and E;; with (Ey;, Epy.s)=1 (b=1, 2),

6) rods F, (n,+--+ns+1st=n,+---+n,=11), each of which consists of five (—2)-
curves Fy,, -+, Fy; and one (—3)-curve F;, with (Fy, Fpyre)=1 (1ZHZD5).

Then D#=(11/13)33A;:+(5/13)2(B1;+2B,)+(3/13)2(C1x +2C0r +3C ) +(2/13)2(D;
42D, 43Dy 44D, )+(1/13) D AE 1s4-8 Eys+7 E3s)+(1/13) X (Fyu+2F5 +3F +4 Fo +5F5,+
6F,) and —(121n,450n,+27n3+16n,415n;+16n,)/13=(D**=(K})=10—p(V)=10—p(V)
—#(D)=—(n1+2n,4+3n;+4n,+3n;+6n,). This implies 0=—9n,—2n,+n,+3n,+2n,+
6n,=c—10n,—3n,4+2n,+n;+5n,=11—10n,—3n,+2n,+n;+5n,. On the other hand, by
Proposition 1.6, we obtain 1ln,+5n,+3n,+2n,+2n;4+n,=(D, Ky)<11—(K§)=114n,+
2no+3ng+4n,+3ns+6n, and hence 0<11—10n,—3n,+2n,+n;+5n,. This contradicts
the above equality. Therefore the case (¢, I)=(11, 13) is impossible.

Consider the case (¢, [)=(7, 17). Then (m,, --- ma)=(, 2, 3, 4, 5, 8, 10, 11). Note
that o(V)=c—2+(24—c)/I=6 and D consists of seven connected components of the
following type:

(1) isolated (—17)-curves A; (1=<i<n,),

(2) rods B; (n,+1=<j=<n,;+n,), each of which consists of one (—2)-curve B,; and
one (—9)-curve By,

(3) rods C, (n+n,+1=<k=<n,+n,+n,), each of which consists of one (—3)-curve
C,; and one (—6)-curve C,;,

4) rods D, (my+n,+n+1=<r<n,+---+n,), each of which consists of three (—2)-
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curves D,., D,,, D;, and one (—5)-curve D,, with (D,., Dy,,.,)=1 (1=b<3),

(5) rods E; (n;+--+n+15s<n,+--+n;), each of which consists of one (—3)-
curve E,, one (—2)-curve E,, and one (—4)-curve E,; with (E,, Epis)=1 (b=1, 2),

(6) rods F, (ny+---+n;+1=t<n,+--+n,), each of which consists of seven (—2)-
curves Fy, -+, F,, and one (—3)-curve Fy, with (Fy, Fpir.0)=1 (1ZbZ7),

(7) rods G, (ny+-+ng+1<u<n,+--+n,), each of which consists of three (—2)-
curves Giu, Gay, Gy and one (—4)-curve G, With (Gys, Gpers)=1 (1ZbZ3),

(8 rods H, (ny+--+n,+1=v=n,+---+n;=7), each of which consists of five (—2)-
curves H,,, -+, H,, Hs, and one (—3)-curve Hy, with (Hyy, Hyyy0)=1 (1Z525).

Then D¥=(15/17)ZA:+(7/171)Z(B1;+2B,;)+(1/17)2(10C . +13C,)+(3/17)5(Dy - +
2D, +3D;3, 44D, ) +(1/1T) DO E s+ 10 Eys+ 11 Egy) + (1/171) 3 (Fr+ 2Fp +3Fy +4F +-5F5 +
6F;+7F+8Fe)+(2/17) 202G 1. +4G 20 +6G 50 +-3G ) + (/17 Z(2H y+4 Hoy -+ 6 Hyy +8H,+
10H;,+5H,,). Note that —(225n,498n,+62n;+36n,+31n;4-8ns+24n,+10n,)/17=(D*)*
=(K3)=10—p(V)=10— o(V)— #(D)=4—(n,+2n,+2n,+4n,+3n,+8ns+4n,+6n,). This
implies 0=17+52n,+16n,+7n;—8n,—5n;,—32n,—11n,—23n,=17—5¢+57n,+21n,+12n,
—3n,—27n,—6n,—18n,. Hence we obtain:

3) 19n,4+7n,+4n,=6+n,+9n,+2n,+6n,.
In particular, %nigl. On the other hand, by Proposition 1.6, we obtain 15n,+7n,+

5ns+3ns+3ns+n,+2n,+n,=(D, Ky) ST—1—(K§)=2+4n,+2n,+2n;+4n,+3n;+8ny+4n.
+6n,. By using the equality (3), we eliminate n, in the above inequality and obtain
442n+n<5n,+2n,+n, Multiplying both sides of the later inequality by 4 and using
the equality (3), we obtain 164+8n,+4ns<n,;+n,+19n,+7n,+4n,)=6+n,+n,+n,+9n,
+2n,+6n; and hence

“) 10 n,+ns+ns+n+2n,+2n,< c+n,+ns.

So, 3=10—c<Zn,+ns<c—(n,+n,+n,)=<6.

Case mn,+ns=6. Then E’G"i:l and 19n,+7n,+4n,=184+n,+9n,+4n,=18 by virtue
of the equality (3). This leads to (n,, -+, ng)=(1, 0, ---, 0) and 19=1844n,=0 (mod 2),
a contradiction.

Case nq,+ng=>5. Then %ni=2 and 197,4+7n,+4n,=16+n,+9n,+4n,=16 by the
equality (3). If Eé n:<1, then (n,, n, ny)=(1, 0, 0) and 3=n,+9n,+4n,. Hence we
must have (n,, ng ns)=(3, 0, 0), which contradicts 26n1-=2. Therefore, Zani:2 and

13 is
n,=ns;=n,=0. Then the equality (3) becomes 15n,+3n,=8+4n,. Hence n,4+n,=1 and
4|(n,+n,), contradicting tz,"ani=2. So, it is impossible that n,+n,=>.

s
Case n,+ngs=4. Then iEﬂsz and n;+n,+n,4+n,=22 by the inequality (4). On

the other hand, we have n,+n,+n,+n;=—14+20n,48n,+4n,—8n;—4n,=0 (mod 2) by
the equality (3). Hence n;+n,+n,+n,=2, ny+ns;=1 and 3=4—n,+n,=5n,+2n,—2n,.
All seven solutions of (n,, ---, n;) are given in the assertion (6) of Theorem 5.1.

Case mn,+ns=3. Then ig n;=4 and n,+n,+n,+n,=4 by the inequality (4). Hence
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ni+n,+n+n,=4 and n,=n,=0. By virtue of the equality (3), we have 12>4—2n,+
2ne=5n,—ns In particular, n,<3 and 2|(n,+n;). We can show that (n,, n:)=(2, 2),
(1, 3), (1, 1), (0, 2) or (0, 0). All eight solutions of (n,, ---, ns) are given in the asser-
tion (6).

Consider the case (¢, I)=(5, 19). Then (my, -+, ma)=(1, 2, 3, 4, 6, 7, 8, 9, 14). Note
that p(V)=0—2+(24—c)/I=4, and D consists of five connected components of the
following type:

(1) isolated (—19)-curves A; (1Zi<n,y),

(2) rods B; (n,+1=<j<n,+n,), each of which consists of one (—2)-curve B;; and
one (—10)-curve By,

3) rods C, (ni+n,+1<k<n,+n,+n,), each of which consists of two (—2)-curves
Cii, Cy and one (—7)-curve Cjy, with (Cyi, Cosrn)=1 (b=1, 2),

(4) rods D, (n,+n,+ns+1<r<n,+--+n,), each of which consists of one (—4)-
curve D,, and one (—5)-curve D,,,

(®) rods E; (ni4-+n,+1=s<n,4--+n;), each of which consists of five (—2)-
curves Ei, -+, Es and one (—4)-curve Eg with (Eys, Epyr.)=1 (1=0Z5),

6) rods F, (ni+:+ns+1<t<n,+---+n,), each of which consists of one (—2)-
curve Fy,, one (—4)-curve F;, and one (—3)-curve F,, with (F,, Fy.1,.)=1 (b=1, 2),

(7) rods G, (m+-+ne+1<u<n;+--+mn,), each of which consists of two (—2)-
curves Gy, Gy, and two (—3)-curves Giy, Gou With (Gyyy Gogr.)=1 (1S0Z3),

(8) rods H, (n,+-+n,+1<v<n,;+---+n,), each of which consists of eight (—2)-
curves H,,, .-, Hy, and one (—3)-curve Hy, with (Hy, Hyr10)=1 (1S5<8),

9 rods J, (m+-+ng+1swsn,+---+n,=5), each of which consists of five
(—2)-curves Jiw, Jows Jows Jows Jow and one (—3)-curve Ji, With (Jow, Jos1,0)=1 (1<

b<5).
Then
DA=1ES At S 5By 2Bu) 5 T(C o H2Cu+3C)
S5 SU3Dy 14D, V- s Sy 2B 43 Bt A Bt 5 E 46 E,)
S AF A UE e TE)+ 555661+ 126+ 1165 +10G.0)
19 T Huort 2Hauk 3Hoy b A Hout 5 Houob 6 Hoo T Hy 4 8Hou k- 9Hi)
15 TB 1+ vt s+ 12 +8 s 4 ).
Note that

—(289n,+128n;+75n,+68n,+24n5-+39n,+22n,4+9n+12n,)/19=(D*)*=(K})
=10—p(V)=10—p( V)—#(D)=6—(n,+2n,+3n;+2n,+6n5+3ns+4n.+9n5+6n,).
This implies
0=19+445n,+4+15n,+3n,+5n,—15n;—3n;—9n,—27n,—17n,
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=19—3¢+448n,+18n,+6n,+8n,—12n,—6n,—24n;—1dn,.
Hence we obtain:
5) 24-24n,+9n,+3n,+4n,=6n;+3n,+12n+7n,.

In particular, 3|(n,—n,—2). On the other hand, by Proposition 1.6, we obtain 17xn,+
8ny+5n3+5n+2n;4-3n+2n,+ng+ny= (D, Ky)<5—1—(K}) = —2+n,+2n,+3n;+2n,+
6n5+3ns+4n,+9n;+6n, Eliminating n, from the above inequality by means of the
equality (5), we obtain n,—n,—2=0. This inequality and the equality (5) will be used
below to show that (n,, ---, n4)=(1,0,0,0,0,1,0,1,2), (1,0,0,0,2,0,0,0, 2), (0, 1, 1,
0,0,1,0,0,2) or (0,2,0,0,1,0,0,0, 2. Hence p(V)=29, 29, 24 or 26, respectively.
Since 3|(ny—n,—2) and n,<c¢=>b5, we see that n,—n,—2=0 or 3. If ny—n,—2=3,
then n,=5 and n;=0 (/#9). This is impossible by the equality (5). So, n,=n,+2.
Since 242n,=n,+n,<c=5, n,<1. If n,=1, then n,=3 and ,g'g"‘:l' Hence 8n,+

3ny+n;=5+42n;+n,+4n, by the equality (5). This is impossible because n;,+n,+n;+
ns+n.,+ng<1. Thus, n,=0, n,=2 and > 971i=3. The equality (5) becomes
1#4,

()4 8n.1+3n,+n,=4-+2ns+n,+4n,.

In particular, n,<1 and ns<1. If ng=1 then n,=1 and (n,, ---, ny)=(1,0,0,0,0, 1, 0,
1, 2). Now suppose ny=0. If n,=1 then n;=2 and (n,, ---, ny,)=(1, 0,0, 0, 2, 0, 0, 0, 2).
Next, suppose n,=ny,=0. Then ny,+n;+n;+ns+n,=3, and 3n,+n,=4+2n;+n,=4 by
virtue of the equality (5)’. In particular, n,+n,=2. If n,+n,=3 then n;=n=n,=0
and the equality (5)" implies n,=1/2. This is a contradiction. So, #n,+n,=2. Hence
ns+n¢+n,=1, and 2n,=242n;+n, by the equality (5)’. Therefore, (n,, .-, ny,)=(0, 1,
1,0,0,1,0,0,2) or (0,2,0,0,1,0,0, 0, 2). Q. E.D.

Corollary 5.2. Let (V, D) be a log Enriques surface such that D+3Ky~0, i.e.,
D#*=(1/3)D. Then the canonical covering U is a K3-surface or an abelian surface, and
D consists of three or nine isolated (—3)-curves, accordingly.

Proof. Suppose that D¥*=(1/3)D. By Lemma 1.8, D consists of ¢ isolated (—3)-
curves. We use the notations as set at the beginning of § 2. Note that # (D) consists
of ¢ (—1)-curves. Hence U is nonsingular. Now we can apply Theorems 4.1 and 5.1
to obtain the result. Q. E.D.

The following example is due to S. Tsunoda.
Example 5.3. Denote by X, Y, Z the homogeneous coordinates of P® Consider
three cuspidal cubic curves C,, C, and C, of P?:
C.: X?=Y?Z, C,:Y*=27°X, C,: Z°=X?Y.

Let & be a primitive 7-th root of the unity. Then C,NC,NCy={(&%:&%:1); 0</<6).
Let 7: V—P? be the blowing-up of (1: 0: 0)&C.,NC,, (0: 1: 0)&C,NCy, (0: 0: De
CiNC,, and seven points of C,C,N\C,. Denote by D;:=7'(C;) and D:=31D;. Evi-
dently, we have 0~7*(3JC;+3Kp:)=>D;+3Ky. Hence the surface (V, D) is a log
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Enriques surface fitting the case /=3 of Theorem 5.1.

Next, we shall give examples for the cases (¢, [)=(4, 5), (3, 7) and (2, 11) of
Theorem 5.1. We need several notations:

Let =: 2,—P' be the P!fibration on a Hirzebruch surface X, and let M be the
(—2)-curve of X,. Take an irreducible curve Ae|—Kj5,| so that A has a node P,.
Let L, be the fiber of = containing P, and let L, (#L,) be a fiber of = so that P,:=
ANL, is a ramification point of x|,.

Example 5.4 (for the case (¢, I)=(4, 5)). Take an irreducible curve C, in |M-+2L,|
such that P, P,C, and C, has the same tangent as one of those of A at the node
P, of A. Let C, be an irreducible member of |M+2L,| such that C, meets C, in
two distinct points P, and P, other than P, or P,. Denote the point C,\L, by P..
Let P, P, F;, P, be all intersection points of A and C,, where some of them might
be infinitely near to the other. Let z,: V,—2, be the blowing-up of nine points P;’s
and let E;:=7z7'(P;) (=1, 2). Let 7,: V-V, be the blowing-up of two points 7{(C,)N\E,
and 7(A)NE, Set ti=7,°7y, Eji=7i(E;), Lz:=7'(L,), M :=7v'(M), A’ :=7'(4), Cj:=
7(Cj;), D:=3Ej+Lj+M' +A'+3C;. Then D has the same configuration as f~'(SingV)
(€V) in the case (¢, I)=(4, 5) of Theorem 5.1. By noting that M+2L,4+2A4+2C,+
3C,~—b5Ky, we see that E{+E;+M'+2(L;+A'+C)+3Ci~—5Ky. Hence (V, D) is

a log Enriques surface fitting the case (¢, /)=(4, 5) of Theorem 5.1.

Example 5.5 (for the case (¢, [)=(3, 7)). Take an irreducible curve C, in |M+2L,|
such that C, passes through P, (=ANL,), P, (=ANL,) and the third point P, of A
other than P, or P,. Let C, be an irreducible member of |M+2L,| such that C, and
C, have one and the same tangent at P,. Denote by P,, P; and P; all intersection
points of A and C, other than P;, where some of P,’s (»=4, 5, 6) might be infinitely
near points of the other. Let 7z,: V,—2, be the blowing-up of six points P;’s and let
E;:=t7'(P;) (j=1, 2,3). Let 7,: V=V, be the blowing-up of two points of 7{(A)NE,
and two points 7{(A)N\E, and t;(C)NE,. Set t:=rto1y, E;i=14(E;), Ly:=7'(Ly), M’ :=
'(M), A" :=7'(A), Cr:=7"(Cy), D= Ej+L;+M+A'+2C;. Then D has the same
configuration as f~!(SingV) (SV) in the case (¢, 1)=(3, 7) of Theorem 5.1. Note that
M+2L,+4A+2C,+3Cy~—T7Ks, Then we can check that E;-+M'+2(E;4-Ci+ L3)+3(E;
+Cy)+4A'~—7Ky,. Hence (V, D) is a log Enriques surface fitting the case (¢, I)=
(3, 7) of Theorem 5.1.

Example 5.6 (for the case (¢, [)=(2, 11)). Take an irreducible member C, in
|M+2L,| such that Py(=ANL,;)eC, and C, and A have one and the same tangent
at a smooth point P, of A. Let C, be an irreducible curve in |M+2L,] such that
P,eC, and C, has the same tangent as one of those of A at the node P, of A. Let
P.eC,NC, be the point different from P, and let L, be the fiber containing P,. Then
A meeis L, in two distinct points P; and P, and P;# P;(7+j, 1<7, j<6) because (A4, C;)
=4 (I=1,2). Let 7,: V,—2%,; be the blowing-up of six points P;’s and let E,:=77(F;)
(j=1, 2, 3). Let 7,: V-V, be the blowingup of three points z{(C.)NE,, 7{(A)N\E, and
T((ANE;. Set t:=t1,°1y, E;j:=t(E;), Li:=1'(L:) (k=2,3), M':=7'(M), A’ :=7'(A),
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Ci:=7'(C), D:=3FE+3Li+M+A'+>Ci;. Then D has the same configuration as
f~SingV) (SV) in the case (¢, [)=(2, 11) of Theorem 5.1. Note that 4M+3L,+5L,
+6A+4C,+2C,~—11K5,. We can check that 2E;+4C{+64'+3E{+E;+2C3+3L:+
4M'+5L;~—11K,. Hence (V, D) is a log Enriques surface fitting the case (¢, [)=
(2, 11) of Theorem 5.1.

We complete this section by giving two examples for the cases (¢, I)=(7, 17) and
(5, 19). We use the following notations:

Let z: 2,— P! be the P!fibration on a Hirzebruch surface 2, and let M and L
be the (—2)-curve of 2, and a general fiber of =, respectively. Let C, be an irredu-
cible member in |M+2L1.

Example 5.7 (for the case (¢, I)=(7,17) and (n,, ---, ng) =1, 1,0, 2, 0, 0, 0, 3)).
Since dim|M+2L|=3, there is an irreducible member C, in |M+2L| such that C,
meets C, in a single point P, with order of contact 2. Take two distinct fibers L;
(=1, 2) so that P, is not contained in L;. Denote the points L;/\C; (=1, 2) and
L,N\C, by P; and P, respectively. Let 7,: V,—2, be the blowing-up of four points
P;’s and set E;:=t7'(P;) (1=7=<3). Let 7,: V,—»V, be the blowing-up of three points
P:=7,(L)NE,, P;:=1,/(Co)NE, and P,:=7,/(C,)N\E, and set E,_,:=7t7'(P:). Let 7,:
V.,—V, be the blowing-up of three points P;:=7,'v,/(L))NE,, Py:=7,'7,/(C;)N\E;s and
Py:=7'71,(C.)NEs, and set E,:=73;'(P) and E;:=t3'(P,). Let 7,: V'->V, be the
blowing-up of two points z,/z,’7,'(L:)N\E; and 7/ (E;)N\Es Denote by E; (1=<:<8),
M', Cy and Ly (j=1, 2) the proper transforms on V'’ of E;, M, C;and L,, respectively.
Set r:=7;:7y and D =3 FE,/+XC;/+>L;/+M'. Noting that 8C,+14C,+15L,+9L,
+12M~—17Ks,, we can check that 2E,'+4E,/+6E,'+8C,'+10E,/+5E;'+3E;'+6E,’
+9L,+12M'+15L,'+14C,'+7E{/~—17Ky.. Hence (V’, D’) is a log Enriques surface
with (¢, [)=(2, 17). The dual graph of D’ is given in Figure (1), where the corres-
ponding intersection number of each irreducible component of D’ is given.

-2 -2 -2 -2 -4 -4 -2 -2 -2 -2 -2 -3 -2

(o] (0] o 0 0 o] (o] s} 1]} (o] 0 o] 0

' . ] ' . * . ' . [ ] T [}

E; E; Ly M Ly €5 Eg E; Ey Ej € E. Ej
Figure (1)

We can find a sequence of blowing-ups ¢: V-V’ of several singular points of 4':=
ESy+E/+L,/+M+L,/+Cy’+Eg such that the dual graph of ¢7'(4") is given in
Figure (2), where F;:=0¢'(E/), C;:=0d'(Cy), L :=0¢'(L,') and A7I::a’(M').
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ES §2 L, ﬁ Fl F, L, Fq
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% é ; (4] o (o] 0 ; 0 0 0 0] 0 (+]
8 2 5 4

Figure (2)
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Let D:=¢"Y(D")— izlei. Then (V, D) is a log Enriques surface satisfying (¢, I)=(7, 17)
and (nly Tty ns):(ly 1’ 07 2) 0: Oy 0: 3)'

Example 5.8 (for the case (¢, I)=(5, 19) and (n,, -, ne)=(0, 1, 1,0, 0, 1, 0, 0, 2)).
Take an irreducible member C, in |M+2L| such that C, meets C; in two distinct
points P, and P,. Take an arbitrary point P, (#+ P, P;) of C,. Let L; (=1, 2) be the
fiber of z containing P;. Let 7,: V,—2%, be the blowing-up of three points P;’s and
set E;:=t7'(FP;). Let 7,: V,—V, be the blowing-up of four points P,:=z,"(L,)NE,,
Py:=7,/(C,)NE,, Py:=7,/(L)NE; and P,:=7,'(C:)N\E,, and set E;_,:=73%(P;) 6Zj<7).
Let r3: V3—V, be the blowing-up of three points Py:=7,'7,/(CONE,, Py:=t.'7)/(L)NE;
and Py, :=1'7/(C.)NE,, and set E,:=73'(P,). Let zr,: V'-V,; be the blowing-up of
the point 7,'7,'7,/(C2)NE,. Denote by E;' (15:<7), M’, C; and L; (j=1, 2) the proper
transforms on V' of E;, M, C; and L;, respectively. Set z:=r7,---t, and D' :=3E;/+
2C/+XLy/+M’. Noting that 12C,+16C,+5L,+15L,+10M~—19K5, we can check
that 3E,/+6E, +9E,'+12C,' +8E,’ +4E,/+7E,+14E,'+16C,'+15L,’+10M’'+45L '~
—19Ky.. Hence (V’, D') is a log Enriques surface with (¢, 1)=(2, 19). The dual graph
of D’ is given in Figure (3), where the intersection number of each irreducible com-
ponent of D’ is given correspondingly.

-2 -3 -3 -3 -2 -2 -2 -2 -2 -3 -2 -2
o] (o] 0 0 [} (o] o 0 O o] 0 (o]
E4 El C2 L2 M Ll E7 Eé Eé Ci Eé Eé

Figure (3)

We can find a sequence of blowing-ups ¢: V-V’ of several singular points of 4':=
E/4+E/+Cy+L,/+M'+ L, such that the dual graph of ¢7'(4’) is given in Figure (4),
where E;:=¢'(E/), C;:=0"(Cy), L;:=0'(Ly) and M:=a'(M’).

-2 -4 -3 -1 -2 -10 -1 -2 -2 -2 -3 -2 -2 -1 -7 =2 -2

Figure (4)

Let D:=¢"Y(D")— i‘iFi. Then (V, D) is a log Enriques surface satisfying (¢, 1)=(5, 19)
and (n,, -+, n9)=(0,1, 1, 0,0, 1, 0, 0, 2).

§6. The case where the canonical covering is singular

Let (V, D) or V be a log Enriques surface. In the present section, we let c¢:=
#(SingV)=#{connected component of D} and I:=Index(K7), and use the notations
n: U-V, f: V-V and g: U-U as set at the beginning of §2.

In the following two propositions, we shall give the possible types of singularities
of a log Enriques surface V with /=3 or 5.

Proposition 6.1. Let V be a log Enriques surface with I=3. Let y be a singular
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point of V and set 4:=f"Yy) (SV). Then =n~'(y) consists of a single point x of U
(cf. Lemma 6.5), and the dual graph of 4 and the Dynkin type of the singularity x are

given in Table 1 below, where - (resp. _:) stands for a (—2)-curve (resp. (—a)-curve) and
n:=#(4). Moreover, n<9.
In particular, x is a cyclic singularity if and only if so is y.

Remark. We shall see in Example 6.11 that there is a log Enriques surface
(V’, D) with I=3 such that D’ consists of one isolated (—3)-curve and one fork 4’ of
type No. 9 below with n=9. Hence the cannonical covering U’ of (V’, D’) has only
one singular point x and x is of Dynkin type D,,. In particular, the minimal resolu-
tion U’ of U’ is a K3-surface with o(U’)=20.

Table 1

No dual graph of A Dynkin type of X
1 -3 smooth

2 Q Al

3 o—=% A,

4 o———#(——-o A3

5 i—o——°°"—o—-$ Agin-1yep (72022)
6 o—=F——o—- - - —o—4 Ag(n-2y+2 (72n23)
7| o—=d—o— - mo—=—0 | Ay _,, (8=nz1)
9 o_-g___o__..._i_o Da(n-3y+; (92024

Proof. Note that the coefficient in D¥ of each component of D is 1/3 of 2/3.
Consider first the case where 4 is a rod. Write 4=R,+---+R,, where R,’s are
irreducible components of R and (R;, R;;1))=1 (1<j<r—1). Let a; be the coefficient
in D¥ of R,

Suppose that (R¥})=—a<—3 for some 1<s<7 and (R?)=—2 (:#s). Then a;=
(a—2) (r—s+1)/(r+1+s(a—2) (r—s+1)) when :<s, and a;=s(a—2) (r—i+1)/(r+1+
s(a—2)(r—s+1)) when i>s. Note that ¢, <a,<---<a, and a;>a;.;>->a, and that
3a;=1 or 2. Hence r<3. If »=3 then a;=a,=1/3, a,=2/3, a=4, s=2 and 4 is given
in the row No. 4 of Table 1. If »=2, then a,=2/3, a;=1/3 (i#s), and 4 is given in
the row No. 3 of Table 1. If »r=1, then 3a;,=1 or 2, and 4 is given in the row No.
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1 or No. 2 of Table 1.

Suppose that (Rg)<—3 and (R3)<—3 for some 1=<¢g<p=<r and (R)H=-2if i<gor
i>p. By Lemma 1.10, (3), where we set B;:=R; (9g<j<p), (B2)=(B%)=—3 and (B})=
—2 (i#¢q, p). we obtain a,;=1/2. Hence we have a;=2/3 (9<j<p). Then (R})=-2
if g+1<k<p—1 because (D*+Ky, R;)=0. Using (D*+K,, R;)=0 (1<i=r) again, we
see that 4 is given in the row No. 5, No. 6 or No. 7 of Table 1.

Next we consider the case where 4 is a fork. Write 4=T+T7T,4+T,+7T, where
T, is the central component of 4 and T';’'s are three twigs of 4. Write T,=T 1)+
+Ti(n;), where T;(j)’s are irreducible components of T; and (T «(k), T:(k+1))=(T,,
T:1)=1 (1£k<n;—1). We may assume that T, consists of a single (—2)-curve. Set
ri=ng G;:=Ty(r—7+1), G;11:=To, G,42:=T; and G 4o4p:=Ts(p) 1<p=<n,). Let a;
be the coefficient in D¥ of G;,. Then 3a;=1 or 2. (D*+Ky, T,)=0 implies a,.1==2/3
and a,..=1/3. (D*+Ky,, T,)=0 implies that either (T%)=—3 and «a,,;=a,=1/3, or
(T?H=-2 and a,.;=1/3, a,=2/3 after twigs T, and T, are interchanged if necessary.
(D¥+ Ky, T«(1))=0 (7=2, 3) implies that T, consists of a single (—2)-curve and that if
(T%)=—3 then 4 is given in the row No. 9 of Table 1 with n=4.

Consider the case (T%)=--2. Then there is an integer 1<s<r such that (GH<—3
and (G3)=-—2 if j<s by our hypothesis that SuppD*=SuppD. Note that s=1 or 2
because (D*+ Ky, G,)=0 if k<s. By Lemma 1.10, where we consider a divisor con-
sisting of B, :=G (s£k<r+3) with (B%)=-3 and (B})=—2 ({#s), we obtain a,>1/2
(s€£p<r). Hence a,=2/3. We also have (G3)=5—s and (Gi=—2 (¢>s) because
(D*+Ky, G,.,)=0. Then 4 is given in the row No. 8 or No. 9 of Table 1.

To deduce the Dynkin type of the singularity x=="'(f(4)) of U, we explain our
method by treating the No. 3 case where 4 is a rod with one (-—2)-curve D, and one
(—5)-curve D,. For general cases, we refer to Hirzebruch [3] and Miyanishi-Russell
[7]. Let 7: W—V be the blowing-up of the point P:=D,ND, and set E:=7"'(P).
Note that the coefficient in D* of D,, D, are 1/3, 2/3, respectively. Hence z/(3D¥%)~
—3Kyw because 3D*~—3K,. Let #: U—W be the composite of the covering morphism
of a Z/3Z-covering which is defined by a relation &(—Ky)®*=0(z'(3D*%)) and a nonzero
global section of ©(z'(3D*)) followed by the normalization of the covering surface. We
see that 7 'z7}(4) is a rod with one (—1)-curve, one (—2)-curve and one (—3)-curve as
the central component. Then the canonical covering U of ¥ is nothing but the surface
obtained from U by contracting # 'z"%(4). Hence x=="'(f(4)) is a rational double
singular point of Dynkin type A,.

Denote the reduced divisor g'(x) (SU) by I'. Then #(I")< p(U)—p(U)<20—1=19.
Hence n=#(4)<9 (cf. Table 1). Q.E.D.

Proposition 6.2. Let V be a log Enriques surface with I=5. Let y be a singular
point of V and set 4:=f"*(y) (£V). Then n~'(y) consists of a single point x of U (cf.
Lemma 6.5). Suppose further that 4 is a fork. Then the dual graph of 4 and the

Dynkin type of the singularity x are given in Table 2 below, where - (resp. :ka) stands
for a (—2)-curve (resp. (—a)-curve) and n:=#(4).
Furthermore, x is a cyclic singularity if and only if so is y.
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Table 2

No dual graph of A Dynkin type of x
1 ST 5
2 0——0——0 I —3 E;
3 .. ._I_o De (n-g3)43 (62n24)
4 o .. ,___I__o De (n-gy+q (72024
ol d— —-—o—“-——I—o D5 (n-3) (62n24)
6| —o—o— _0_..._i_0 Depogysey (82n26)

Proof. Write 4=T,+T,+T.+T; with the central component T, and three twigs
T.s. We may assume that T, is a (—2)-curve and T, is a (—2)-curve, a (—3)-curve

or a rod with two (—2)-curves. Write Ty= 31 Gy, To=G 41, T1=G 4, and To= 3 G,
i=1

=7+3
where G, is irreducible and (G, Grs)=(To, Gri)=1 (1=<k<n—1, k#r+2). Let a,
be the coefficient of G, in D*. Then 5a,=1, 2,3 or 4. We have a,,;=2a,,, for
(D¥+Ky, T1)=0. Hence a,,;=2/5 or 4/5. Denote by a,:=—(G3).

Assume that T, is a (—2)-curve. Then a,,;=2a,,, for (D*+K,, T,)=0. By our
hypothesis that V contains no rational double singular points, we may assume that
an=3 for some 1<m<r+1 and a,=2 if ¢>m. Applying Lemma 1.10 to a divisor
consisting of B,:=G, (1=<¢=r+3) with (B%)=—3 and (B))=-—2 (g#m), we obtain
azm/(m+1)=1/2(m<g<r+1)and a,=q/(m+1)(1=<g<m). In particular, a,,,=4/5. Then
a,=4/5 (n=¢<r) for (D*¥*+Ky, G))=0. If m=1, then a,=6 for (D*+ Ky, G,)=0, and
4 is given in the row No. 3 of Table 2. Suppose m=2. Note that a,-+5an_,-—6=5
(D*+Ky, G,)=0. Hence 5a,_,=6—a,=1, 2 or 3. Since an_,=(m—1)/(m+1)=1/3,
an_1=2/5 or 3/5. If m=2, then (ay, a,, a,)=(2/5, 2, 4) or (3/5, 3, 3) for (D*+K,, G,)
=0, and 4 is given in the row No. 4 or No. 5 of Table 2. Suppose m=3. Then m=4,
a,=q/5, a;=2 and a,=3 for (D*+ Ky, G,)=0 (1<g<m). Hence D is given in the row
No. 6 of Table 2.

Assume that T, is a (—3)-curve. Since 5a,,,+5—15a,,;=5 (D*+Ky, T,)=0, we
have a,,,=4/5 and a.,,=3/5. Applying Lemma 1.10 to a divisor consisting of B,:=G,
(r<g=r+3) with (B%,)=—3 and (B2)=-—2 (g#r+3), we obtain a,=1/4. On the
other hand, since a,;,+5a,—5=5 (D*¥+ Ky, T,)=0, we have 5a,=5—a,,;=2 or 3. If
r=1, we have (a,, ai, a;)=(2/5, 2, 3) or (3/5, 3, 2) for (D*+Ky, G,)=0. Then 4 is
given in the row No. 5 or No. 1 of Table 2. Suppose r=2. Then 5a,_,+6—5a,)a,
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—6=5 (D*+Ky, G,)=0 implies (a,.1, a,, a,, a,+1)=(2/5, 3/5, 2, 2) and (D*+ Ky, G,)=0
(1=¢<r) implies that »=3, a;=¢/5 and a,=2. Hence D is given in the row No. 2 of
Table 2.

Assume that T, is a rod with two (—2)-curves. Then «,,;=3/5, «a.,.;=2/5 and
a,+,=1/5 for (D*¥+4+Ky, G,)=0 (¢g=r+3 and r+4). This is absurd because a,.,=2/5
or 4/5. Hence this case does not occur.

The Dynkin type of the singularity x==""' (f(4)) can be determined in the same
fashion as in Proposition 6.1. Q.E.D.

Corollary 6.3. Let V be a log Enriques surface.

(1) Assume that there is a singularity of Dynkin type Eq on U. Then I=7, 11, 13,
17 or 19.

(2) Assume that there is a singularity of Dynkin type E, (k=6,7 or 8) on U. Then
I=5, 25,7, 11, 13, 17 or 19.

Proof. (1) Assume that x is a singularity of Dynkin type Es; on U. We assert
that I is not divisible by 2, 3 or 5. Then we conclude the assertion (1) by Lemma 2.3.
Suppose, on the contrary, that I is divisible by p where p=2, 3 or 5. By Lemma 2.2,
U,:=U/(Z/pZ) is a (rational) log Enriques surface such that U is the canonical cover-
ing of U, and Index(Ky,)=p. Applying Lemma 3.1 and Proposition 6.1 or Proposition
6.2 to U, we reach a contradiction.

(2) can be proved similarly. Q.E.D.

The following two lemmas will be used in the proof of Proposition 6.6.

Lemma 6.4. Let G be a finite subgroup of GL(2, C). Suppose that G contains no
reflections and that the order n of G is not divisible by 4. Then G is a cyclic group.
Hence G is conjugate to a group C, , with g.c.d. (n,q)=1 and 1=Zq<n—1; for the
definition of Ca,q see Lemma 2.5 or [2; Satz 2.9]. Moreover, we have ¢<n-—2 when
the origin of C*/G is not a rational double singular point.

Proof. By [2; Satz 2.9], G is conjugate to one of the groups listed there. In
particular, if G is not cyclic then 4 is a factor of n. Q. E.D.

Lemma 6.5. (1) Let (V, D) be a log Enriques surface such that I is an odd prime
number. Let y be a singular point of V. Then n~'(y) consists of a single point x of
U, and the singularity of x (resp. y) is isomorphic to (C*/G, 0) (resp. (C*/G,, 0)) with
a finite subgroup G, (resp. G,) of GL (2, C) of order n (resp. nl) which contains no
reflections provided n=2. (When n=1, x is a smooth point).

(2) Suppose further x is a cyclic singularity of Dynkin type A,_,. In the case
where 1=3 or 5 or in the case where 4 is not a factor of n, then y is a cyclic singul-
arity isomorphic to (C*/Cnr.k, ., 0) for some 1<k, y<nl—2 with g.c.d. (nl, ky_)=1

(3) By changing coordinates of C*® if necessary, we have:

(Ba) If I=3, then ko=~k,=1, k,=2,k,=T7,k,=4,k;=5 and k=13 (cf. Proposition
6.1).
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3b) If I=5, then ko=1 or 2, ky=1 or 3, ky=2 or 11, ky=3 or 11 and k,=4 or 9.
(Bc) If I=T7,then ky=1,2 or 3, ky,=1,3 or 9 and k,=2,5 or 8.

Proof. (1) By the argument in the proof of Lemma 2.4, z '(y) consists of a
single point x. Then the assertion (1) follows if one notes that =: U—V is a finite
morphism of degree I and is étale outside Sing V.

(2) Assume x is of Dynkin type A,_,. In the case where /=3 or 5, then y is a
cyclic singularity by Propositions 6.1 and 6.2. In the case where 4 is not a factor of
n, then the order nl of G, is not divisible by 4 and hence y is a cyclic singularity
by Lemma 6.5. Thus, in either case, G, is a cyclic group conjugate to 5y =Cnrtpy_,
for some 1<k, 1<nl—2 with g.c.d. (nl, k,_,)=1 and y is isomorphic to (C”/é,,, 0)
because y is not a rational double singularity.

The assertion (3) is a consequence of the fact that I D* is an integral divisor of V.

Q.E.D.

We shall define some notations to be used in the following proposition. Let (V, D)
— 6

be a log Enriques surface such that I is an odd prime number and Sing U= -21 m:A;
=

for some integers m;=0 (1</<6). The second condition means, by definition, that
Sing U consists of m; singularities {x;;} (1<j<m;) of Dynkin type A; for each 1<i<6.
Let m, be the number of all singularities {y,;} of V such that x,;:=7n"%(y) is a
smooth point of U. In the case where /=3 or 5 or in the case where m,=0, then the
singularities y;; :=n(x;) (0<7=6) exhaust Sing V and are isomorphic to (C*/Creisn>. e, 0)
for some 1<k;<I (7+1)—2 with g.c.d. ({(G+1), k)=1 by Lemma 6.5. We also have

6 —
Z}lml:#(Sing U) and }s] mi=c.
i= i=0

In the case /=5, let n,, ---, n,, be respectively the numbers of all singularities
{ya;} of V such that (a, k.)=(0, 1), (0, 2), (1, 1), (1, 3), (2, 2), (2, 11), (3,3), (3, 11), (4, 4),
(4, 9). Then mi=nsi1+ 2142 (0S7<4).

In the case /=7, let n,, ---, n, be the numbers of all singularities {y.;} of V such
that (a, k.)=(0, 1), (0, 2), (0, 3), (1, 1), (1, 3), (1, 9), (2, 2), (2,5), (2, 8), respectively. Then
M= MNgip1 T+ NaivatNaiss (0§Z§2)

In general, if =3 then Sing U:igmtAi—i—j%&ij for some integers m;=0 and

8,20, where 6,=0 if j=2 (mod 3) by virtue of Proposition 6.1. Set m,:=c—#(Sing U)
=c— gl Mmi— 205

The bounds for ¢ and p(V)—c are given below.
Proposition 6.6. Let (V, D) be a log Enriques surface such that I is an odd prime
number and Sing U#@. Then we have 2<c¢<Min{l6, 23—} and c—l§p(7)§c+4.

More precisely, we have: :
(1) Suppose I=3. Then c<15 and p(V)<c+4. Moreover, if c=15, then p(V)=14,

o(V)=29, Sing U=6A, and (m,, m))=(9, 6). If p(17)=c+4, then zéo my+8,=c, SingU
:D4y 1481 AZ or Al) (m(); ter, Mg, 64):(1; Oy Oy 0: 1): (2’ 0; 0: ]-r 0)7 (3: Oy 1) 0: 0) or (4) 1’ 0;
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0, 0) and p(V)=11, 12, 13 or 14, respectively.
(2) Suppose I=5. Then ¢=16 and p(V)<c+2. Moreover, if ¢=16, then p(V)=
15, p(V)=40, Sing U=3A,, (m,, m)=(13, 3) and (ny, -, n,)=4,9,3,0. If p(V)———c—l-Z,

2 —
then i%mi:c’ Sing U=A, or A, (me, my, me)=(1, 0, 1) or (2, 1, 0), (ny, -+, n5)=(0, 1, 0,

0,0,1)0r (0,2,0,1,0,0) and p(V)=11 or 12, respectively.

() Suppose I=T7. Then ¢<15 and p(V)<c+1. Moreover, if c=15, then p(V)=14,
Sing U = 2A,, (mo, m) = (13, 2), (ny, -+, ne)=(0, 11, 2, 2, 0, 0), (1, 8, 4, 2, 0, 0), (2, 5, 6, 2,
0,0) or (3,2,820,0) and p(V)=44, 45, 46 or 47, respectively. If p(V)=c+1, then ¢
=2, p(V)=11, Sing U=A,, (m,, m)=(1, 1) and (n,, ---, ne)=(0, 0, 1, 0, 0, 1).

(4) Suppose I=211. Then p(V)=c—1.

In particular, we have 24—kI<c+p(U)—p(U)=24—I(o(V)—c+2)<24—1I, where k=
6 (resp. 4,3 or 1) if I=3 (resp. I=5, I=7 or [ =z11) (cf. Lemma 2.4). Moreover, (D,
Ky)=c—1—(K}) when the upper bound of ¢ or o(V)—c in (1), (2) and (3) is attained.

Proof. Since I =3 we have ¢=2 by Proposition 1.6. We use the result 1§p(17)—
c+2=(24+p(U)—p(U)—c)/I <21/ <7 in Lemma 2.4. In particular, we obtain the asser-
tion (4), and c—1=<p(V)<c+5 and c=24+ p(0)— p(U)—I(p(V)—c+2)<23—1<20. More-
over, if p(V)=c+5 then I=3 and 24+ p(U)— p(U)—c=21, whence ¢=2 and Sing U=A,.
In proving the assertion (1), we will show that this case does not occurs. Therefore,
in order to prove Proposition 6.6, we have only to consider the case where /=3, 5 or
7 and show the assertions (1), (2) and (3).

(1) Assume I=3. Then 0<p(U)—p(U)=24—c—I(p(I7)—c+2)§21—c. In particular,

if ¢=15 we have p(U)—p(U)<6 and hence write Sing U= i}]mzAi+54D4+5sDe. For
the time being, we assume that SingU is written this way. Then D=f"" (Sing V)
consists of 8, forks I", (1=p<4d,), §; forks 4, (1=¢<0d,) and Zjomi rods B, (1£d<m,),

Ce(mot+1=Ze<mot+my), Dy(mo+m+1< f Smot+mi+ms), E (met+mi+me+1<g<me+--+
ma), Fa(mot--+my+1ShSme+--+my), Gilmot--+my+1=i<mo+--+m;) and H;(mo+
ceedmy+1< < me+-+-+mg), which are defined as follows (cf. Proposition 6.1):

(i) By is a (—3)-curve,

(ii) C,. is a (—6)-curve,

(iii) D; consists of one (—2)-curve D,; and one (—5)-curve Dy,

(iv) E, consists of two (—2)-curves E,,, E;, and one (—4)-curve E,, with (E,,,
Epi1,5)=1 (b=1, 2),

(v) F, consists of two (—4)-curves Fy, and F;,

(vi) Gy consists of one (—2)-curve G,;, one (—3)-curve G,; and one (—4)-curve
G with (Gui, Gyir,0)=1 (b=1, 2),

(vii) H; consists of two (—2)-curves H,; H,; and two (—3)-curves H,;, H;; with
(Hbj: Hh+l.j):1 (lébé?’)’

3 . .
(viii) I'p=2>1S,,, where S,, is the central component and S., 1=u=3)is a twig
=0

and where Sy, is a (—3)-curve and S, is a (—2)-curve,
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(ix) 4,= é T, where T, is the central component and T, (1=u=3) is a twig
8$=0

and where Ty, is a (—4)-curve and T ((0=v<2) is a (—2)-curve.

Then D* = (1/3)2Bs+ 2/3)2Ce+ (1/3)Z(D1s +2Dsg) + (1/3)Z(Erg + 2Ez;+ Egp)+
(2/3)S(Fin+Fon)+(1/3)2(G1i+2G2+2G 33)+(1/3) 2 (Hyj4-2H, 4+ 2H 5+ Hyy) + (1/3)2Z(2S0,
+S1p+Sep+Sap)+(1/3)2(2T og+ T1g+T20+2Ts,). Hence —(mo+ 8my +6my+4m,+8m,+
65 +4me+23,4436)/3=(D**=(K}) = 10— p(V) = 10— p(V)— #(D) = 10— p(V)— (mo+m,+
2ms-+3ms+2my+3m;+4ms+40,+40:). This entails:

(1a) 3(p(V)—10)+2m,—5m;+5ms—2m,+3ms+8me+ 100,485, =0.

In particular, m,+m=(5m;+2m,)/523(o(V)—10)/5. On the other hand, by Proposition
1.6, we have mo+4m,+3me+2ms+4m,+3ms+2me+0,+20,=(D, Ky)<c—(K&)=c+pV)
—10=c—l—p(l7)—10+#(D)=c—I—p(17)—10+(m0-|-m,+2mg+3m3+2m4+3m5+4m6+454—|—45,~,).
Hence we obtain:

(1b) c+p(V)—10>3m,+my—my+2m,—2m—30,— 205

To prove p(V)<c+4, we have only to show that the case p(V)=c+>5 is impossible.
Indeed, in the case p(V)=c+5, we have ¢=2 and SingU=A4,. Hence m,=m,=1 and
0,=0,=m;=0 (:=2), contradicting the above equality (la).

Assume p(V)=c+4. Then c+pU)—p{U)=24—1(p(V)—c+2)=6. Hence (¢, p(U)—
e0)=(2, 4), (3, 3), (4, 2) or (5, 1). So, the above expression of Sing U is still effective.
Note that §,=8,=0 when p(U)—p(U)<3. We consider these cases separately.

Case (¢, p(U)—p(0)=(2, 4). Then p(V)=6 and Sing U=D,, A,, A;+A; or 2A4,. If
Sing U=A,, A;+A; or 24,, then (mq, -+, ms, 84, :)=(1, 0, 0,0, 1,0, ---, 0), (0, 1,0, 1, 0,
-+, 0)0r (0,0,2 0, ---, 0), respectively. This contradicts the above equality (1a). Hence
we must have SingU=D,. Then (mq, -, m, 85, 86)=(1, 0, ---, 0, 1, 0) and p(V)=p(V)
+#(D)=11. This is one of the cases given in the assertion (1).

Case (¢, p(U)—p0))=(3, 3). Then p(V)=7 and SingU=A,, A,+A, or 34, If
SingU=A,+A, or 3A4,, then (m,, -, mg)=(,1,1,0, -, 0) or (0, 3,0, -, 0), respec-
tively. This contradicts the above equality (la). Thus, we must have Sing U=A,.
Then (mq, -+, ms)=(2, 0,0, 1,0,0,0) and p(V)=p(V)+#(D)=12. This is one of the
cases given in the assertion (1).

Case (¢, p(U)—p(U))=(4, 2). Then p(V)=8 and Sing U=A, or 24,. If SingU=2A4,,
then (m,, -+, me)=(2, 2, 0, ---, 0), which contradicts the above equality (la). Therefore,
SingU=A, Then (my, -+, me)=(3, 0, 1, 0, ---, 0) and o(V)=p(V)+#(D)=13. This is
one of the cases given in the assertion (1).

Case (¢, p(U)—pU))=(5, 1). Then p(V)=9 and Sing U=A,. Hence (my, -, ms)=
4, 1,0, --,0) and p(V)=p(V)+#(D)=14. This is one of the cases given in the as-
sertion (1).

Next, we shall prove ¢<15. We consider the cases ¢=20, 19, 18, 17 and 16,
separately.

Assume ¢=20. Then 1< p(U)—pU) =24—c—I(p(V)—c+2) =4—-3(p(V)—18) < 1.
Hence p(V)=19 and SingU=A,. Then (m,, -, ms, 8,, 85)=(19, 1, 0, ---, 0), which con-
tradicts the above equality (1a).
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Assume ¢=19. Then 0<pU)—pU)=24—c—I(p(V)—c+2) =5-3(p(V)—-17) < 2.
Hence p(V)=18 and SingU=A, or 2A,. In particular, m,+m,=m;<2. On the other
hand, we have m,+m,=3(p(V)—10)/5=24/5. We thus have a contradiction.

Assume ¢ =18. Then 0<pU)—pU)=24—c—I(p(V)—c+2)=6—3(p(V)—16) <3.
Hence p(V)=17 and SingU=A,, A,+A, or 34,. This leads to a contradiction as in
the case ¢=19.

Assume ¢=17. Then 0< p(U)—pU) = 24—c—I(p(V)—c+2) = 7—3(p(V)—15) < 4.
Then either o(V)=17 and SingU=A4,, or p(V)=16 and SingU=D,, A, A+ A, 24,,
2A,+A, or 44, Since m,+m,23(p(V)—10)/5, we have p(V)=16 and Sing U=4A,.
Then (my,, -+, mg, 04, 05)=(13, 4, 0, ---, 0), which contradicts the above equality (la).

Assume ¢=16. Then 0< p(U)—p(U) = 24—c—1(p(V)—c+2) = 8—3(p(V)—14) < 5.
Then either p(V)=16 and Sing U=A4, or 24,, or p(V)=15 and Sing U=A,+D,, A;, A+
Ay Ayt Ay 24,4 Ay, Ai+2A4A,, 3A+ A, or 5A,.  Since my+m,=3 (p(V)—10)/5, we have
o(V)=15 and Sing U=3A,+ A, or 54,. Then (m,, -+, mq, ds, 85)=(12, 3, 1, 0, ---, 0) or
(11, 5, 0, ---, 0). This contradicts the above equality (1a).

We have thus proved ¢<15. We now consider the case ¢=15. Then 0<p(U)—
oO)=24—c—1I(p(V)—c+2)=9—3(p(V)—13)<6. Hence, either p(V)=15 and Sing U=
A, Ai+A, or 34,, or p(V)=14 and Sing U =D;, As+D,, 2A,+D,, As, Ai+A4s, As+A,,
24,4+ A,, 24,, A+ A+ A, 34,4+ A4, 34, 2A,+2A4,, 4A,+ A, or 6A,. Since m;+m =
3(o(V)—10)/5, either p(V)=15 and SingU=3A4,, or p(V)=14 and Sing U=2A,+A.,
3A,+ A, 4A,+ A, or 6A,. If p(V)=15 and SingU=3A,, then (mq, -, ms, ds 05)=(12,
3,0, ---, 0), which contradicts the above equality (la). Thus p(V)=14. Then (m,, -,
mse, 04, 06)=(12,2,0,0, 1,0, ---, 0),(11,3,0,1,0, ---, 0), (10,4, 1,0, ---, 0)or (9,6, 0, ---,
0). Actually, (mq, -+, me, 04 36)=(9, 6, 0, -+, 0) by the above equality (1a), and p(V)=
o(V)+#(D)=29. This is the case given in the assertion (1).

(2) Assume [=5. Then p(V)—c+2<21/I<5 and p(V)<c+2. Moreover, if o(V)
=c+2, then 0<p(U)—p0)=24—c—I1(p(V)—c+2)=4—c<2 and Sing U=A4,, 24, or A,.
On the other hand, if ¢=16 then p(U)—pU)=24—c—I(p(V)—c+2)<24—16—5=3 and
Sing U=A,, Ai+A,, 3A,, Ay, 24, or A,. Therefore, in order to prove the assertion

(2), we may assume that Sing U:gs‘,l m;A;. Then D consists of ¢ rods By (1Zd<n,),
Ce (n1+1§e§n1+nz=mo=c—é}lmi), Dy (my+1=f S motnsy), E; (metns+1<g<mo+n;

Fni=mo+my), Frp (Met+mi+1ShSmot+mi+n5), Gy (no+mi+ns+1<iSme+mi+ns+ne=
Mmo+mi+1mg), Hy (me+my+me+-1= jSmoe+mi+me+nq) and Jp (met+mi+me+n.+1Sp<
Mmo+my+my+n,+ng=my-+----+m,) which are defined as follows:

(i) B, is a (—b)-curve,

(ii) C, consists of one (—2)-curve C,, and one (—3)-curve C,,,

(iii) Dy is a (—10)-curve,

(iv) E, consists of two (—2)-curves E,,;, E,, and one (—4)-curve E,;, with (E,,,
Epiig)=10=1,2)

(v) F, consists of one (—2)-curve F,, and one (—8)-curve F,;,

(vi) Gy consists of four (—2)-curves Gi;, G, Gui, Gs: and one (—3)-curve G4; with
(th, Gb+!.i)=1 (1§b§4),

(vii) H; consists of one (—3)-curve H,; and one (—7)-curve H,,,
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(viii) J, consists of two (—2)-curves Jip, Jsp and one (—6)-curve J,, with (Jsp,
]b+1,p):1 (b=1, 2).

Then D* = (3/5)XBa + (1/5)2(C1e+2Cs0) + (4/5)X Dy + (1/5)Z(Erg+2E,;+3Es, )+
/) (Fin+2F00)+(1/5)2(G1i4-2G 243G 5:4+-2G 45+ G5:)+(1/5) 2B Hy+ 4Ho )+ (2/5) 2 1
4220+ Jsp). Hence —(9n,42n,+32n,4-6n,+24n;43n+23n,416n,)/5 = (D*) = (K$)=
10—p(V) = 10— o(V)—#(D) = 10— p(V) — (n,+2n,+n,+3n,+2n,+5n,+2n,4+3n,). This
implies :

(2a) 5(p(17)—10)—4n1+8n2——27n3+9n4—14n5+22n8—13n7——n8=0.

On the other hand, by Proposition 1.6 we obtain 3n;+n,+8n;+2n,+6n;+ns+6n,+4n,
=(D, Ky)<c—(K)=c+p(V)—10=c+p(V)—10+#(D) = c+p(V)—10+(n,+2n;+n,+3n,
+2n5+5ns+2n,+3n,). This implies:

(2b) c+p(V)=10>2n,—ny+7n;—n,+dns—4ne+4dn,+ng.

Assume p(V)=c+2. Then p(U)—p(l)=4—c and (¢, p(U)—p@))=(2, 2) or (3, 1).
Consider the case (¢, p(U)—p(U))=(2, 2). Then p(V)=4 and SingU=A, or 24,. Sup-
pose Sing U=2A,. Then n;+n,=2 and n;=0(#3,4). On the other hand, by the
above equality (2a), we have 0=—30—27n;+9n,. This leads to 9|30, a contradiction.
Hence SingU=A,. Then n,+n,=n;+n=1and n,=0 (%1, 2,5, 6). By (2a), we have
0=—30—4n,+8n,—14n;+22n,—=—48+12n,+36n,, i.e., n,+3n,=4. Therefore, n,=n,
=1, (ny, -+, n5)=(0,1,0,0,0, 1, 0, 0) and p(V)=p(V)+#(D)=11. This is one of the
cases given in the assertion (2).

Consider the case (¢, p(U)—p(U))=(3, 1). Then p(V)=5 and Sing U=A,. Hence
n,+n,=2, ng+n,=1 and n;=0 (=25). By the above equality (2a), we have 0=—25—
4n,+8n,—27n,+9n,=—24+12n,—36n;, i.e, n,=24+3n,=22. So, n,=2, (ny, -+, ng)=
0,2,01,0,--,0) and p(V)=p(V)+#(D)=12. This is one of the cases given in the
assertion (2).

Now we shall prove ¢<16. Note that c¢=24—(pU)—p0)—I1(p(V)—c+2)<24—1
—5=18.

Assume ¢=18. Then 1< p(U)—pU)=24—c—I(p(V)—c+2)=6—5(p(V)—16)<]1.
Hence p(V)=17 and SingU=A,. So, n;+n,=17, ny+n,=1 and n,=0(;=5). On the
other hand, by the above equality (2a), we have 0=35—4n,4+8n,—27n,+9n,=—24+
12n,—367,, i. €., n,=2+43n,;. Hence (n,, -+, n)=(2, 5, 1, 0, ---, 0) or (15, 2,0,1,0, ---, 0),
either case contradicting the above inequality (2b).

Assume ¢=17. Then 0< p(U)—p(U)=24—c—I(p(V)—c+2)=T7—5(o(V)—15)<2.
Hence p(V)=16 and SingU=A, or 24,. Consider the case where Sing U=A4, Then
n,+n,=16, ny+n,=1 and n,=0 (G7+#1, 2, 5, 6). On the other hand, by the above equality
(2a), we have 0=30—4n,+8n,—14n;+22n,—=—48412n,+36n,, i. e., n,+3n,=4. Hence
(ny, -+, ng)=(12,4,0,0,1,0,0,0) or (15,1,0,0,0, 1, 0, 0), either case contradicting the
above inequality (2b). Consider the case where SingU=2A,. Then n,+n,=15 n,+
n,=2 and n;=0 (=5). By (2a), we have 0=30—4n,+8n,—27n;+9n,=—12+12n,—36n,,
i.e., n,=143n,. Hence (n,, -+, ns)=(@,7,2,0,---,0),(11,4,1,1,0, ---, 0) or (14, 1, 0,
2,0, -, 0), either case contradicting the above inequality (2b).

So, we have proved ¢<16. We now assume ¢=16. Then 0<p(U)—p(U)=24—c—
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I(o(V)—c+2)=8—5(p(V)—14)<3. Hence p(V)=15 and SingU=A, A;+A, or 3A,.
Consider the case where SingU=A, Then n,+n,=15, n,+n,=1 and n,=0 G+#1, 2,
7, 8). By the above equality (2a), we have 0=25—4n,4-8n,—13n,—n;=—36+12n,—
12n,, i.e., n,=34n,. Hence (m,, ---, ns)=(11,4,0,---,0,1,0) or (12,3,0, ---, 0, 1),
either case contradicting the above inequality (2b). Consider the case where Sing U=
A+ A,. Then ny;+n,=14, ny+n,=ns+n.=1 and n;=0 (:=7). By (2a), we have 0=
25—4n,+8n,—27n;+9n,—14n;+22n, = —364+12n, — 36n,+36n,, i.e., n,—3n;+3n,=3.
On the other hand, by (2b), we have 21>2n,—n,+7ny—n,+4n;—4n,=31—3n,+8n,—
8ns=31—3(n,—3n;+3ns)—ns+n;=22—n,+n.. Hence n;>1+n,=1. This contradicts
ny+n,=1. Therefore we must have SingU=3A,. Then n;+n,=13, n;+n,=3 and
n;=0(=5). By (2a), we have 0=25—4n,+8n,—27n;+9n,=12n,—36n,, i.e., n,=3n,.
Hence (n,, -, ny)=4,9,3,0, ---,0),(7,6,2,1,0, ---,0), (10,3, 1,2,0, ---, 0) or (13, 0,
0,3,0, -, 0). By using the above inequality (2b), we must have (n,, ---, ns) =4, 9, 3,
0, -, 0) and p(V)=p(V)+#(D)=40. This is the case given in the assertion (2).

(3) Assume I=7. Then p(V)—c+2<21/I=3 and p(V)<c+1. Moreover, if p(V)
=c+1, then 1<pU)—pU)=24—c—I(p(V)—c+2)=3—c=<1. Hence c¢=2, p(V)=3 and
Sing U=A,. On the other hand, if ¢=15, then 0<p(U)—p(U)=24—c—1(p(V)—c+2)<
24—15—7=2 and Sing U=A,, 24, or A,. Therefore, in order to prove the assertion

(3), we may assume that Sing U=:21miz4¢. Then D consists of ¢ rods By (1<d<n,),

C. (Tl1+l.§e§n1+nz)y Df (n1+n2+1§f§n1+nz+ns= My = C—My—My), Eg (my+1=g=<
Mmo+n4), Fr (me+n,+1Zh<metn+n5), G (mo+ny+n+-1=i<me+n+n+ns=mo+m),
Hj (mo+m1+1§j§_mo+m1+n7): J» (mo+mi+n,+1= p Sme+my+n,4ng) and L, (me+m
.+ ng+ 1SS mo+my+n,+ng+ny=me+m,+m;) which are defined as follows:

(i) Bg is a (—T7)-curve,

(ii) C. consists of one (—2)-curve C,, and one (—4)-curve C,,,

(iii) D; consists of two (—2)-curves D,;, D,, and one (—3)-curve D, with (D,y,
Dysr,)=1 (=1, 2),

(iv) E, is a (—14)-curve,

(v) Fy consists of one (—3)-curve Fy, and one (—5)-curve F,,,

(vi) G consists of four (—2)-curves Gyi, Gz, Gii, Gy and one (—3)-curve G4; with
(Goty Goar.0)=1(1=b=4),

(vii) H, consists of one (—2)-curve H,; and one (—11)-curve H,j,

(viii) J, consists of four (—2)-curves Jip, ==+, Jip and one (—5)curve [, with
(]bp, ]b+l.p)=1 (1=b=4),

(ix) L, consists of three (—3)-curves Ly, Loy, L3y With (Lyg, Lps1.0)=1(b=1, 2).

Then D* = (5/1)ZBa+(2/1)Z(C1e42C 1)+ (1/T)Z(Dys + 2D55 + 3Dss) + (6/NZE, +
(1N EF i, +5F0) + (/TG i + 2Goi + 3G 5t +4G 45 +2G 5:)+ 3/ 1) D (Hyy4-2He )+(1/7)E
(]1p+2]2p+3]sp+4j4p+5.[5p)+(1/7)2(4l/1q+5L2q+4L3q)- Hence —(25n,4 8n,+3n;+
72n, 4+ 197, + 4ng + 54n, + 15n,+13n,)/7=(D*)*=(K 3)=10—p(V)=10-— p(V )— #(D)=10—
o(V)—(n+2n,+3ns+ny+2n,45n,+2n,45n5+3n,).  This implies:

(3a) 7(o(V)—10)—18n,+67n,+18n;—65n,—5n;+31n,—40n,+20n,+8n,=0.
On the other hand, by Proposition 1.6 we obtain 5n,+2n,+ns+12n,+4n;+n+9n,+
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3ns+3n,=(D, Ky)<c—(K3)=c+p(V)—10=c+p(V)—10+#(D)=c+ p(V)—10+(n,+2n,+
3ns+n,+2ns+5n.-+2n,+5n,+3n,). This implies:

(3b) c+o(V)—10>4n,—2ny+11n,+2n,—4ne+7n,—2n;.

Assume o(V)=c+1. Then ¢=2, p(V)=3 and SingU=A,. Hence n,+n,+n,=n,+
ns+ne=1 and n;=0(;=7). On the other hand, by the above equality (3a), we have
0=—49—18%n,+6n,+18n;—65n,—5n;+31n;=—48—24n,+12n,—60n,+36n,, i.e., 4=n,+
3n,=44+2n,+5n,=4. Thus, we must have (n,, ---, 1n,)=(0,0, 1,0, 0, 1, 0, 0, 0) and p(V)
=p(V)+#(D)=11. This is the case given in the assertion (3).

Now we shall prove ¢<15. Note that c¢=24—(p(U)— o(U)—I(p(V)—c+2)<24—1
—7=16.

Assume ¢=16. Then lgp(U)—p(U)z24—c—l(p(l7)—-c+2):8-—7(,0(17)——14)g1.
Hence p(V)=15 and SingU=A,. So, n;+n,+n;=15 n,+n,+n=1 and n;=0(E=7).
Using the above equality (3a), we obtain 0=35—18n,+6n,+18n,—65n,—5n,+31n;=
120—24n,+12n,—60n,4+-36n,, i.e., 2n,—ny=10—5n,4+3n,. On the other hand, by the
above inequality (3b), we have 21>4n,—2n,+11n,+2n;—4n,=2(10—5n,+3n)+11n,+2n;
—4n=204+n,+2n;+2n,=214n;+ns=21. This is absurd.

Assume ¢=15. Then 0< o(U)—pU)=24—c—I(p(V)—c+2)=9—7(p(V)—13) < 2.
Hence o(V)=14 and SingT=A, or 2A4,. Consider the case where SingU=A,. Then
m+n,+n,=14, n,+ng+n,=1 and n;=0(#1, 2, 3,7,8,9). Using the above equality
(3a), we obtain, 0=28—18n,+6n,+18n,—40n,+20n,+8n,=120—24n,+12n,—48n,+12n,,
i.e., 2n,—ny+4n,—ny;=10. On the other hand, by the above inequality (3b), we have
19>4n,—2n,+7n,—2n,=22n,—ny+4n,—ng)—n,=20—n,=19. This is absurd. So, we
must have SingU=2A4,. Then n,+n,4+n,=13, n,+n;+n,=2 and n,=0(E=7). By
virtue of (3a), we obtain 0=28—18n,+6n,+18n;—65n,—5n;+31n,=96—24n,+12n,—
60n,+36n,, i.e., 2n,—n,+5n,—3n,=8. On the other hand, by virtue of (3b), we have
19>4n,—2ny+11n,+2ns—4n=4+2 2n,—ny+5n,—3ns)—n,=20—n,, i.e., n,>1. Hence
ns=2, n;=n,=0 and 0=2n,—n,+5n,—3ns—8=2n,—n,+2. So, (n, ---, n,)=(0, 11, 2, 2,
0,--,0),(1,84,2,0,:,0),(2,5,6,2,0,--,0) or (3,28 2,0, -, 0) and p(V)(=p(V)
+#(D))=44, 45, 46 or 47, respectively. They are the cases given in the assertion (3).
The last assertion is now verified straightforwardly. Q.E.D.

Remark 6.7. (1) Let (V, D) be a log Enriques surface satisfying I=3, p(V)=c+
4=6, SingU=D, and (m,, m, ms, ms, 0,)=(1, 0,0, 0, 1). Then D=B,+ zj}OS,., with the

notations of Proposition 6.6. Denote the intersection point S¢;N\S:; (1<i<3) by P..
Let z: W—V be the blowing-up of P, (resp. P, and P, or P, P, and P,) and let 4:=
/(D). Then (W, 4) is a log Enriques surface satisfying I=3 and p(W)=c+4, where
n: W—W is the contraction of 4. Moreover, Sing Z=A, (resp. A,, or A,), c=3 (resp.
4, or 5) and (my, -+, my, 0,)=(2, 0, 0, 1, 0) (resp. (3,0, 1,0, 0), or (4,1, 0, 0, 0)), where
Z is the canonical covering of W. (See Example 6.8 below).

(2) Let (V, D) be a log Enriques surface satisfying /=5, p(V)=c-+2=4, SingU=
Az, (mo, my, me)=(1, 0, 1) and (n,, -+, ne)=(0, 1,0, 0, 0, 1). Then D=C,,+Cs+G 1+
+G; with the notations of Proposition 6.6. Let r: W—V be the blowing-up of the
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point Gy NGy and let 4:=7(D). Then (W, 4) is a log Enriques surface satisfying
=5, p(W)=c+2=5, Sing Z=A,, (mo, m1, my)=(2, 1, 0) and (n,, --- , n:)=(0, 2, 0, 1, 0, 0),
where &: W—W is the contraction of 4 and Z is the canonical covering of W. (See
Example 6.9 below).

The following three examples show that the upper bounds of p(V)—c in (1), (2)
and (3) of Proposition 6.6 are the best possible ones.

Example 6.8 (for the case (I, p(V)—c)=(3, 4)). Let n: Y¥,—P' be a P!fibration
on the Hirzebruch surface X,. Let M and L be a minimal section and a fiber of =,
respectively. Take nonsingular members A< |2M+L| and Ce|M+2L|. Denote by
P, .-, P all five intersection points of ANC, where some points of them might be
infinitely near to the other. Take a minimal section M, of = such that P;:=M,NA+
P, (1<:<5) and M, meets C in two distinct points P, and P, other than P; (1<:<6).
Let L, and L, be the fibers of = containing P, and P, respectively. Let P, and P,
(resp. Py, and P,;) be all the intersection points of ANL,(resp. ArL,), where the
second point might be infinitely near to the first one. Let 7: V—2, be the blowing-
up of nine points P;’s (15, 6, 12). Set L;:=7'(L;), M\ :=t'(M,), A’ :=7'(A), C' :=7'(C)
and D:=L,/+L,’+M,'+A’+C’. Noting that L,+L,+M,+C+2A~—3K;s, we can
check that L,'+L,+M,/+C'4+2A’~—3Ky. Hence (V, D) is a log Enriques surface
with I=3. Evidently, we have ¢=2, p(V)=11, p(V)=6, Sing U=D, and (imq, -, ms, 0s)
=(1,0,0,0, 1).

Example 6.9 (for the case (I, p(V)—¢)=(5, 2)). Let #: Jy—P', M and L be the
same as in Example 6.8. Take an irreducible rational curve A in |2M +2L| such that
the unique singular point P, of A is a node. Let P, (#P,) be a ramification point of
7,4. Denote by L;(:=1, 2) the fiber containing P;,, Take a minimal section M, of =
so that M, meets A in two distinct points P; and P, other than P;’s (=1, 2). Then
the point Pi.,:=MNL; (=1, 2) is different from P; for each 1<;7<4. Since dim|M
4+ L|=3, there is an irreducible member C in |M+ L| such that P, P,=C. Let P; (7
<7<9) be the intersection points of ANC other than P,, where some of P;,’s might be
infinitely near to the other. Let 7,: V,—2X, be the blowing-up of seven points P;’s
(+6, 9) and set E;:=t7'(P;) (j=1, 2). Let r,: V-V, be the blowing-up of the point
7.'(A)NE, and one of two points 7,(A)NE,. Set =107y, Ei' :=10(Ey), L' :=7'(Ly),
M, :=7'(M,), A" :=7'(A), C':=7'(C)and D:=L,/’+M,'+L,/+E,+A'+C’+E,’. Noting
that L,+2M,+L,+3A+2C~—5Ks,, we can check that L,’+2M,'+L,/+2E,/+3A'+
2C'+E,’~—5Ky,. Hence (V, D) is a log Enriques surface with /=5. Evidently, we
have ¢=2, p(V)=11, p(V)=4, SingU=A4, and (n,, -, ne)=(0, 1, 0, 0, 0, 1.

Example 6.10 (for the case (I, p(V)—c)=(7, 1)). Let (V, D) be the log Enriques
surface given in Example 5.5. Then Index (Ky)=7 and the canonical covering U of V
is a K3-surface. Let o: V—W be the blowing-down of the (—1)-curve 7 '(F) of V
where P, is defined in Example 5.5. Set 4:=¢(D). Then (W, 4) is a log Enriques
surface satisfying I=7, ¢c=2, p(W)=11, p(W)=3, Sing Z=A, and (n, -, ns)=(0, 0, 1,
0,0, 1), where n: W—W is the contraction of 4 and Z is the canonical covering of W.
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In view of the following three examples, the upper bounds of ¢ in (1), (2) and (3)
of Proposition 6.6 are the best possible ones. In the case of Example 6.11, there is a
reduced effective divisor G on U with only simple normal crossings such that G con-
sists of (—2)-curves and its dual graph Dual (G) is as given in Figure (7). Several
subgraphs of Dual (G) of Dynkin type A,+D,+E, with r+s+t=19 are obtainable.
In particular, there is a subgraph I' of Dynkin type D,,, Hence U is a K3-surface
with p(U)=20.

We shall use the same notations =: X.,—P', M, A, P,, P,, L, and L, as defined
before Example 5.4.

Example 6.11 (for the case (¢, 1)=(15, 3)). Let P; (# P, P,) be a ramification point
of m,4 and let L, be the fiber of = containing P,. Let z,: V,—2, be the blowing-up
of three points P;’s (1</<3) and let E;:=77'(F;). Let 7,: V,—»V, be the blowing-up
of three points P,:=one of two intersection points z,/(A)NE,, P;:=7,/(A)N\E. and Ps:
=0,'(A)NE,;, and set F,:=t7'(P), Ei_,:=73'(P;) (1=5,6). Let 7,: V,—V, be the
blowing-up of two points P, :=1,'t,/(A)NE, and Py:=7,'(E;)NE;, and set Eq:=r3'(P,)
and F,:=73;%(P). Let r,: V-V, be the blowing-up of the point P,:=7,'t,/z,/(A)"\E,,
and set F;:=z;'(P). Denote by E;’, F;', L,'(k=2, 3), M’ and A’ the proper transforms
on V' of E;, F;, L, M and A, respectively. Set r:=t,ot,07,°7,, F\':=7'(L,) and D’:
=2E/+3L,/+M’'+A’. Note that F,’ (1<p<4) is a (—1)-curve of V’'. Noting that
2L,42L+2M+2A~—3K5,, we can check that Ey+E,/42(A'+E/+Ly/+M'+~L,'+
E/)+E,+E;/~—3Ky:.. Hence (V', D) is a log Enriques surface with (¢, I)=(2, 3).
D'+ 3 F," has only simple normal crossings and has the dual graph as shown in Figure
(5), where the self-intersection number of each irreducible component of D’ is attached.
Here recall the Remark to Proposition 6.1 and note that F\'+E,'+F,’=7"%(L,).

-2
L'
:1 3\-2
F) -3 ow
E,
-2 -2
° L

5 -2
E E4 )

6
Figure (5)

We can find a blowing-up ¢: V-V’ of several singular points of 4':=E,’+A’'+4+ E; +
L/y4+M+L,’+E/+E,/+E; in such a way that the dual graph of ¢7%4’) is given in
Figure (6), where E,:=¢"(E/), Ly:=0'(Ly’"), M:=¢'(M’) and A:=a"(A").

-3 -1 -6 -1 -3 -1 -6 -1 -3 -1 -6 -1
A9 U v U % U v A\
§6 E:\ -3, x L, ﬁ
=1 2 -3
-3 -1 -6 -1 -3 -1 -6 -1 -3 -1 -6
L v g U A\ v v v A\ g
él A ES L3 -1

Figure (6)



462 De-Qi Zhang

Denote by D:=¢ '(D’)—{(—1)-curve of V contained in ¢~(D’)}. Then (V, D) is a log
Enriques surface satisfying /=3, ¢=15, p(V)=29, p(V)=14, Sing U=6A, and (m,, m,)=
(9, 6). Since 20= p(U)=p(U')+#{irreducible component of g~ (Sing U)} = p(T)+6= o(V)
+6=20, we have p(U)=20 and p(U):14. We use the notation #: U—V defined at
the beginning of §2. Let %: U—U be a minimal desingularization. Then there is a
birational morphism &: U—U whose exceptional curves are contained in (o) (D).
Denote by }:"',, and I" the reduced total transforms on U of ¢'(F,’) and ¢ '(D’), res-
pectively. Then F,, is a (—2)-curve and I' is a (—2)-fork of Dynkin type D,,. Set

H,:=F,. Then we can write 11=H2+.1292 C; so that G, ::F+‘421 F,—H, (k=1, 2) has
i= i=

only simple normal crossings and has the dual graph as shown in Figure (7). Moreover,
(H,, Hy)=1 and H, passes the intersection point H,NF,.

Let ¢: U--U’ be the contraction of I". Then U’ is the canonical covering of V7’
and Sing U’'=D,,, where V'’ is obtained from V’ by the contraction of D’.

c A\ v U A% v C
10 3
Cq Cg G4 Ce C;\\\\\\‘\n ¥, Cy
iy g o c,

4 K
c c c c‘g\\\\\\\\c
12 13 14 15 16 L7 18 ?3
Figure (7)

Example 6.12 (for the case (¢, [)=(16, 5)). Let P,(#*P,, P,) be a ramification point
of m.4and let L, be the fiber of = containing P,. Denote by P, the intersection point
MNL, Let r,: V,—»2%, be the blowing-up of four points P;’s and set E;:=77'(F;)
(1=£:£3) and F;:=77'(P.). Let r,: V,—V, be the blowing-up of three points P;:=one
of two intersection points 7,/(ANE,, P;:=7./(AINE, and P,:=7,/(A)"\E;and set E;_,:
=7;(P;)) (=6, 7). Let r,: V,—V, be the blowing-up of two points P;:=7,'7,"(A)NE,
and P,:=7,/(E;)N\E;, and set E;:=t3;'(FP,). Let z,: V'-V, be the blowing-up of the
point Py, :=1,/(E;)N\E,; and set F,:=7;'(P,). Denote by E;, Fy/, L)', A’ and M’ the
proper transforms on V' of E;, F;, L,, A and M, respectively. Set 7:=7,°7,°73°7, and
D" :=XE/+3L,+A+M'. Noting that L,4+3A4+4L,4+4M+3L,~—5K5, we can check
that L,/+2E,/+3A'+4E,/+4L,/+4M +3L, +2E, + E,'’ + E{/ + 2E,/~—5Ky.. Hence
(V’, D) is a log Enriques surface with (¢, I)=(2, 5).

Since dim|M+2L|=3, we can find an irreducible member F, in |M+2L| such
that P, P,, P,&F, where P, is an infinitely near point of P, as defined above. Then
Fy:=7'(F,) is a (—1)-curve satisfying (Fs, rititz' (P))=(F}, E;)=(F;, L;)=1. Then

-2 -2 -1 -3 -2 -2
E; Ei ;i ]M' Eé E}
Al-2 P -2} sL -2
£ . EsI Ly Fj E;
o3 =2 -1 Fé

Figure (8)
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D’—l—éF,,’ has only simple normal crossings and has the dual graph as shown in
=1

Figure (8), where the self-intersection number of each irreducible component of D’ is
attached and where E,/+Ey+Fy+E/+ Ly =7"'(L,).

We can find a blowing-up ¢: V—V’ of several singular points of 4’:=L,'+E,’+
A4+E/+L,/+M'+L,’+E,/+E, such that the dual graph of ¢~%4’) is as given in
Figure (9), where the proper transforms of E;’, L;’, A’ and M’ on V are denoted by
ENi, [~,k, A and ]\71, respectively.

=2 =3 -1 5 -1 -3 =2 -1 610 -1 -2 =3 -1 -5 -1 -3 -2

2 0 ,\:)‘ 0 0 (o] o= 0 0 0 (o} Q 0 0
L }él A 5 -1
tof T
3
~ -1
E, E4 L,
% 9321 % 1 ;3 =2 -1 -10 -1 =2 =3 1 =5 -1 -3 ~-2

Figure (9)

Let D:=¢"*(D')—{(—1)-curve of V contained in ¢~(D’)}. Then (V, D) is a log Enriques
surface satisfying I=5, ¢=16, p(V)=40, p(V)=15, SingU=3A4, and (n,, ---, n)=(4, 9,
3, 0). We use the same notations #: U—V, 7! U-U and &: U—U as in Example 6.11.
Denote by ﬁ‘p and I” the reduced total transforms on U of ¢'(F,’) and ¢ '(D’), res-
pectively. Then f"p is a (—2)-curve and I is a (—2)-rod of Dynkin type A,,. The
canonical covering U’ of (V’, D’) is obtained from U by contracting I. Moreover,
I"+2ﬁ‘p has only simple normal crossings and has the dual graph as shown in Figure

(10), where I'= 3} C; and Cipyii=F, (1iS3).

15 Ci6 €17 Ci8 CN C3 Cy
C c
5 6
Cry4 Cig I
Cg c,
UC13 Cia i €10 C9/ 20 ¢y
A\ 0 U O 0

Figure (10)

Example 6.13 (for the case (¢, 1)=(15, 7)). Let 7,: V,—2, be the blowing-up of
two points P;’s (=1, 2) and set E;:=t7'(F;). Let r,: V,—V, be the blowing-up of
two points P;:= one of two intersection points of 7,(A)NE, and P,:=7,/(A)N\E,, and
set E;:=73'(P:;). Let r3: V;—V, be the blowing-up of two points P;:=z,'7,/(A)N\E,
and Ps:=1,/(E,)N\E, and set E;:=t3;'(P;). Let r,: V,—»V, be the blowing-up of two
points P, :=7,'7./t.//(A)NE;s and P;:=7,(E,)N\E; and set E;:=7;'(P;). Let 75: V;—V,
be the blowing-up of two points P,:=(z,--7.)'(A)NE; and P, :=7,/7,/(E,)NE; and set
Ey:=77(P,) and F,:=13'(Py,). Let 7,: V'—>V; be the blowing-up of the point P, :=
(t1-15)(A)NE, and set F,:=7;'(Py;). Denote the proper transforms on V’ of E;, Fj,
M, L, and A by E/, F//, M’, L,’ and A’, respectively. Set r:=7,--75 and D' :=3E;’
+M'+L,+A’. Noting that 2M+4L,+6A~—7Ks,, we can check that 2M’'+4L,'+
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6E,/+6A+5E,/+4E,/+3E;+2E,/+Ey+ E{/+2Ey +3E,’~—T7Ky.. Hence (V’/, D') is a
log Enriques surface with (¢, I)=(2, 7). The dual graph of D'+ F,’+F, is as given
in Figure (11), where the self-intersection number of each irreducible component of
D'+ F/'+F, is attached and where E,’+E/+E,/+F/'+E/+L,=7"Y(L,).

;2 :2 -4 -3 :l ;2 =2
M L, E} A F, Eg E.
E) B¢ Eg Fi Ej E3 Eg
23 23 22 °1 °2 22 22

Figure (11)

We can find a blowing-up ¢: V-V’ of several singular points of 4':=M'+L,’+E,’+
A'+E/+E/+E/+E;+Ey such that the dual graph of ¢7(4’) is as given in Figure
(12), where the proper transforms of E;, M’, L,’ and A’ are denoted by E., M, L,
and A, respectively.

52 ;4 :l :3 :2 :2 -1 -14 :l ;2 =2 -3 -1 -4 -2 -1 =7 -1
LA v v v U v U U
Ly 4 -2
-1 -3 ;éz -2 -4
E -1
5 7 9 v
IE3 B A -3
=4 =2 =1 =7 =1 =2 =4 -1 =3 =2 =2 "1 14 1 =2 =2

Figure (12)

Let D:=¢ '(D')—{(—1)-curve of V contained in ¢~ '(D’)}. Then (V, D) is a log
Enriques surface satisfying =7, ¢=15, p(V)=46, p(V)=14, Sing U=2A, and (n,, ---, ns)
=(2, 5,6, 2,0, 0).

Let F‘, and I" be the reduced total transforms on U of ¢'(Fy) and ¢ '(D’), res-
pectively. Then F‘j is a (—2)-curve and I" is a (—2)-rod of Dynkin type A,,. The
canonical covering U’ of (V’, D’) is obtained from U by contracting I". Moreover, I"+
EF‘, has only simple normal crossings and has the dual graph as shown in Figure (13).

Cy Cs C C7 Cg G €10 i C12
F €3 G < Fy €15 C14 Cy3
[o] Q (¢} 0 (] 0

Figure (13)

Let (V’, D’) be one of the log Enriques surfaces given in Examples 5.7, 5.8, 6.11,
6.12and 6.13. Let f’: V'—-V’ be the contraction of D’. Then we see that #(Sing V")
=2 and p(V’)=1. Hence the lower bound —1 for p(V)—c in Proposition 6.6 is the
best possible one.

The following lemma gives an upper bound for #(Sing U).
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Lemma 6.14. Let V be a log Enriques surface. Then #(Sing U)<Min{10, (24— p)/2}
for every prime divisor p of I.

Proof. 1t suffices to consider the case where SingU#@. In this case, if g: U—
U is a minimal desingularization then U is a K3-surface. In view of Lemma 2.2, we
may assume that J=p which is a prime number. For each x<SingU, we have m(x)
€Sing V and z~'n(x)=x. Hence, #(SingU)<c. Note that p(U)—p(D) is the number
of all irreducible components of exceptional divisors of g, which is apparently not
less than #(SingU). So, we have #(Sing U)<Min{c, o(U)— o)} =[c+pU)—p(U)1/2
=[24—1(p(V)—c+2)]/2<(24—1)/2 by Lemma 2.4. This, together with Lemma 3.1,
implies Lemma 6.14. Q.E.D.

In the forthcoming article [14], we shall reduce the general cases V of log Enriques
surfaces to the case W with at worst singularities of Dynkin type A,.

Added in proof:

In the proof of Lemma 2.3, actually, we do not need to use the fact that one of
&/’s is a primitive I-th root of the unity. We have another elementary proof for
Lemma 2.3 as follows. Note that &; is a primitive »;-th root of the unity for some
n;=1. We may assume that n,< --- <n, and each n;(1<j<h) is equal to one of n,,
-+, n,. Note that l.c.m. {n,, .-, n,}=1. Let f(T) (resp. giT)) be the minimal
polynomial of A (resp. &;) over Q. Then deg g«(T)=¢(n;). We have also f(T)=l.c.m.
{g(T), -, gn(T)}=g«(T) - g-(T). Hence ¢(1)<¢(n,) - p(n.)=deg f(T)<dim H=b,U)
—o(U).
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