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Introduction

A  quasi-conformal mapping preserves B M O , th a t  i s ,  i f  g: ‘2 1 . ( 2 2  i s  a
quasiconformal mapping between plane dom ains, then fo r  every f eB M 0(0 2 ),
f o g  belongs to BM0(52 1 ). In  our former paper we partially extended this result
by characterizing the analytic functions which preserve B M O . In  this paper we
treat more generally meromorphic functions. W e shall characterize the Blaschke
type meromorphic functions preserving BM O (Theorem 1).

§ 1 .  Main Theorem

Let Q be a  domain on complex p la n e  C . BMO(Q) is the space of all locally
integrable functions f  on  Q such that

II f 11* ,  =  sup m(B) -
1—  f B I dm <

where dm  is  th e  2-dimensional Lebesgue measure, f B  i s  th e  integral mean of f
o n  B  and the suprem um  is  taken  fo r  every disk B  in  Q .  BM O (C ) coinsides
with the BMO space on the complex sphere t ‘ with respect to  its surface measure
(cf. [10]), and  BM O (C) is obviously invariant under dilations and translations,
especially it is invariant under Möbius transformations of M o r e  generally,
Reimann and Jones proved the  following result;

Proposition 1  ( [7 ] ,  [9 ] ) .  L et 0 1 an d  Q 2  be plane domains and g: Q 1 —> S22
a quasi-conformal mapping then f o r every fe  BMO (Q2 ), fo g belongs to B M 0 (0 1 )
and it holds that f o g  w here C >0  is  a constant depending only
on the m ax im al dilatation o f  g. Conversely  i f  g  i s  a n  absolutely continuous
homeomorphism which preserves BM O  then g  is a  quasi-conformal mapping.

In  our former papers, we characterized the analytic function which preserves
BMO, BMOH, and BMOA as follows, where BMOH (resp. BMOA) is the space
of all harmonic (analytic) BM O functions ;
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Proposition 2  ([4 ], [5 ]) . L e t ‘2 1 , Q 2  be plane domains and g: Q, 0 2  an
analytic function then

(1) g preserves B M O if  and  only  there ex ists a  integer p> 0  such that f or
every  disk  B  in  Q , satisfying rad(B) < d(B , Q 1 ) , g  is p-valent on B.

(2) g preserves BMOH if  and only if  there exists a constant C > 0 such that

Idg(z)11d(g(z), Of2 2 ) <  0 / Z 1 C * , 00 1 ), z e Q,

(3 )
 g  always preserves BMOA ,

where rad(B) is the Euclidean radius of  B  and d( , ) denotes the Euclidean distance.

Corollary 1 ( [ 5 ] ) .  A n entire function g: C  C  preserves B M O(C) if  and
only  if  g  is  a polynomial.

Especially le t  a n  analytic function g: Q , —> 0 2  fo rm  a n  unbranched and
unbounded covering, then the  conditions (1 ) a n d  (2 ) of P roposition  2  are
equivalent, hence in this case g preserves BMOH if and only if g preserves BMO.

We extend the usual definition of BMO for plane domains to the subdomains
Q of the complex sphere 't by BMO (Q) = BMO (0\ { ool). This extension is  a
natural one because if g: Q , —> 0 2  is  a  conformal mapping between subdomains
of t ,  then we can identify the space BMO (Q1)  w ith BMO (Q2 ) , since one point
is removable for B M O, to be precise, le t 0  be  a  p lane  domain and  peS 2 then
BMO (0 \ =  BMO (Q) and  it h o ld s  th a t 11f11 Allf11.,D\t, ) , where A > 0
is a  universal constant (cf. [10]).

Let g : Q ,  Q ,  be a  meromorphic function. W e now consider the problem
that under what condition does f a g belong to B M O  21 ) for every f e BMO (Q2).

If  0 2  is  a  proper subdomain of t  , w e can reduce this problem  to the case of
analytic function. Therefore we can restrict our attention to  the case Q 2 =  C .  In
the beginning we give one example.

Let g: C  't be an  elliptic function, f  a  BMO ( t )  function and B  a  disk on
C .  If rad (B) < 1 then by Proposition 2, we have m(B) -

1 IBIfog — ( f a  g)5  d m  C 1 ,
where C, (and C2 below) > 0 is constant independent on B .  Further if rad(B )> 1
then by the periodicity of g we have m(B) - 1 5131f°9 — ( f  g ) B ldm  2m (B ) - 1 falf°91
dm  < C 2 .  Hence f o g  belongs to  BM O (C). Remark that the boundedness of the
norm of g  as a  linear operator is the consequence of the category theory. Thus
there exists a n  infinite valence meromorphic function f  o n  C  which preserves
B M O . Similarly th e  meromorphic function g 1 (z) = g(11z) o n  C \ {0} gives the
example o f  a  meromorphic function preserving B M O which does not satisfy the
condition of (1) of Proposition 2. From these examples, it seems to be much
more difficult to characterize such meromorphic functions than the analytic case.

In this paper we treat Blaschke type meromorphic functions. In the following
D  always denotes the  un it disk in  C  and  D(z, r) denotes the  disk in  C  having
z and r  as its center and  rad ius. L e t B  be a  finite Blaschke product on  D .  Its
zeros {z„},  w hich is to  be counted w ith their m ultiplicity , induce a  measure
dp(z )=E,,(1  — I zn 12 )c1(5„, where Sz „ is  the  D irac m easure at z„. We denote its



Zk —  Z1 > 0,
1 — ikZ 1

Functions of  bounded mean oscillation 637

Carleson constant Car(p) by Car(B), that is,

Car (B) = sup {/L(So h )/h: 0 < h 1 ,  0 < 0 < 2m}

where So,, = 1 — h < r < 1, 0—  h  < go < 0 + h} . F u rth er w e set

Car* (B) = sup {Car (B ) : B(z) = (B(z) — (1 — B(z)), e

We now state our main result.

Theorem  1. L et B: t  be a f inite B laschke product on  D  and  II BI its
norm  as  a linear operator between BM0(e), then

(1) II B C ,(Car* (B)),

(2) Car* (B) < C2(1 B 11),

where Ci (Car*(B))> 0 is a constant depending only on Car*(B) and C2( I B  >
is a constant depending only o n  03 11.

Lemma 1 ( [3]). L et i be a positive measure on D and G't its Green potential.
W e extend GP as 0 to t\D, which we denote by d", then d" belongs to BM0(t)
if  and only  if  (1 — 1z12 )0  is a  Carleson measure and it holds that

(1) C org i — 1z12 )40 C1(11'6 1 1 11* ,e),

(2) 11Ô"11* :e C2(Car((1 — 1z12 d/1)),

w h e re  C1(11 dA é ) >  0  is a  c o n s ta n t  depending only  on and
C2 (Car((1 — 1z12 )dp)))> 0 is a constant depending only on C orgi

to.

Proof  o f  Theorem 1 (2). We extend the Green function g(z) = log (11 — Cz1
/1z — 1) on D  as  0 to  t\D , which we denote by Since Jo belongs to
BMO (t) and 4c = jo . Ac where A c (z)= (z — (1 —  z), we have sup {  II cll * ,e: CeD}
( =: M) < co  b y  Proposition 1. Let t1/4 = B(z„)= (1, then g o B =
hence by Lemma 1,

Car (B ) = Car((1 — lz1 2 ) C1(11Ô4'11*, e)_ci(11BIlm).
and so Car* (B)-C1(11)3 11A4 ).

To prove Theorem 1 (1), we need several lemmas. We say a  sequence {z }
on D  is  an interpolating sequence if

41;1) = inf
keN  k

Let B be a  Blaschke product having {z„} as its zeros, then

/ ( {z.}) = — lz.12 /113 '(z)1.
neN

Lemma 2 (cf. [8 ]) .  L et {z,,} be a sequence on D and assume its corresponding
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measure dp(z) = En (1 — lz,,12)(15„ form  a Carleson m easure. Then w e can partition
{z„} into a finite number of  interpolating sequences {4,k) } , k  = 1, 2,,..,s, such that

(1) M e l ) C i (Car (p)), k = 1, 2,...,s,

(2) s C  2 (Car 04),

where C ,(Car(p)), C 2 (Car(p))> 0  are constants depending only on  Car Cu).

Lemma 3 (cf. [ 6 ] ) .  L et {z„} be an interpolating sequence and B  the Blaschke
product having {z„} as  its zeros, then there ex ists a constant e > 0 which depends
only  on 1({z„}) such that

(1) 13- 1 (D(0, e)) = U n Un, z n e U „, (disjoint union),

(2) B  is conformal on each U„.

Lemma 4  (cf. [ 4 ] ) .  L e t g  be  a  p-valent locally  univalent analytic function
on D  then there ex ists a constant r > 0  which depends only  on p  such that g  is
conformal on  a disk  D(z, r) c D.

Lemma 5. L et B be a finite Blaschke product on D, then there exist constants
Œ, f ,

 y ,  5 > 0  w h ich  d ep en d  o n ly  o n  Car*(B ) s u c h  th a t  f o r  ev ery  disk
D , = D(z i , d(z i , 3D)12) c D  there ex ists a  disk  D 2 =  D(z 2 , r2 ) D ,  such that

(1) r2  > ad(z i , (3D),

(2) B  is conformal on D2,

(3) y d(B (z  2 ), (3D )  max {1B(z) — B(z 2 )1: z E OD2}

y min {I B(z) — B (z 2 )1: z e (3D2 },

(4) (5 -  I 13 ' (z I (z) Bjz 2)1, z E I) 2.

P ro o f . Remark that B  is p = p(Car*(B))-valent on  D1 ,  hence by Lemma 4
there exists a  disk D o  =  D(z o , ro ) c D ,  su c h  th a t  ro  > C 1 d(z ,, (3D ) a n d  B  is
conformal on Do , where C, (and C 2 ,  C 3 ,  •  below) is a positive constant depending
only on  Car* (B ) . Therefore if we set z2 = z o , r 2 =  r 0 /2 , then it is easy to show
th a t D(z 2 , r2 ) satisfys every condition of this lem m a except fo r  th e  inequality
ỳ - 1  d(B(z 2 ), (3D) max liB(z) — B(z 2 )1: z e OD2 1'. T o  p ro v e  th is  r e m a in in g

inequality, it suffices to prove

c 2 /(1 -  1z212 ) I BJz211/(1 -  1B(z2)12 ),

By considering (B — B(z 2 ))1(1 — B(z 2 ) B ), w e  c a n  assum e B(z 2 ) =  0  fro m  the
beginning, then above inequality reduces to (1 — iz21 2)1H(z2)1 > C 2 .  L et { n} be
the zeros of B  and we partition this sequence into finite number of interpolating
sequences g )} ,  k  = 1, 2, ..., s ,  following Lem m a 2 ,  where VI"  = z 2 ,  and  le t

k  = 1, s, the  Blaschke products having {C )} as its zeros. Then

(1 - z21 2
) 1B( 1 ) " (z2 )i i ( {»})C .
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Further by Lemma 3, 11-3(k) (z2)1 > C4, k = 2, 3,...,s. Summerizing above we
have

(1 — 1z212 )113'(z2)1 = iz,12)1( z 2 )  f l  i B ( z 2 ) 1 C3 Cs4— 1 .
k = 2

Q.E.D.

Lemma 6  (cf. [2 ], [7 ]). L et L be a  circle o r a  line on  C, Q, and S22 the
connected components o f  C \L, p the reflection with respect to L and f  a BM0(.(2 1 )
f unc tion . I f  we extend f  to C\Q, as f o p ,  which we denotes by 1, then J belongs
to  BMO(C) and  111 1 4 ,c  h e r e  A > 0 i s  a  universal constant.

Lemma 7  (c f . [2 ], [7 ]). L e t  Q = D o r  C, f  a  BM0(52) function,
D1 = D(z i ,r,), D2 = D(z2,r 2) disks in 0 , then

1Z, Z21
+  

) ( 1 Z 1 Z21
fD21 A  1 + log + 1)} Ilf II * ,f2r

ir 2

where A  > 0 is a  universal constant.

Lemma 8. L et f  be a  BMO(D) f unction satisf y ing f II D 1 and

sup {I f IDl : D1 = D(z, d(z, OD)/2), zeD}(=:M)< oo,

then if  we extend f  as 0 to  t\ D , which we denote by 1, J  belongs to BMO (t)
and 11-111*:e _C (M ), where C(M)> 0 is a constant depending only on M .

P ro o f .  L et So h = : 1 — h r < 1, 0  —  h (p. 0 -E h l .  N ote that If] e
BMO (D) a n d  III f li*,D 211f II*,D 2, indeed

m(B) - 1  I II f  I — If IBI d m  m(B) - 2 I  If (z) — f Oldni(z) din(c) 2 1If II*,D,
B B

for every disk B c D .  And the similar argument, using the dyadic decomposition
of So, h, as the proof of Hilfsatz 2 (p4 [10]) shows

suP flflso,„: O < h<  27r} < C,

where C > 0 is a constant depending only M . L e t  D , = D(z„, r„) be a  disk such
that D , çt D .  If r, > 1/4 then If ID, {m(D)/m(Di)} I f D  6 4 C .  O n the  other
h a n d ,  i f  r, < 1/4 th e n  w e  c a n  c h o o se  S od , s u c h  th a t  D n Di  S o , h  and
m(So ,h) Am(D,), where A  > 1 is  a  universal constant, hence If ID, Irn(so,h)/
m(i) 01 If ISO ,h A C . Thus, we have

m(D1Y 1 J I J _ J DJdm 2 IJIDI
 2 C max {64, .

Di

and

Q.E.D.

Proof  o f  Theorem 1 (1). Since both B ID and 131(C \D) satisfy the condition
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(1) of Proposition 2, we have II B D B 1(C \ D) C1 , where C , (and C2 , C3,...
below) >  0  is  a  constan t depending only o n  Car* (B). L et p  b e  th e  reflection
with respect to  a D, and f  a  BMO (C) func tion . Set

f° P on D { f _ f o p on D
= f2, —f on t'\D 0 on t\ D

then f = + f 2  an d  by Lemma 6, II fi 11* ,E f  II * ,D, where A > 0  is  a  universal
c o n s ta n t, h e n c e  f2I1 4,6 f II*,D 11f111*,D ( A  +  1)11f  II* , Similarly, since
( f 1 0 B). p = f, p o B = f 1

 o B w e g e t th e  following estim ate by using Lem m a 6
again;

IIf1 o B 11 Z A Li1 ° Bil * , C\D C211 *,Z\ C211 f II*,z.

Thus w e can assume f =  0  o n  C\D from the  first. L e t D, = D(z, d(z 1 , OD)/2),
then by Lemma 8, it suffices to show °B)D, C3 11f11.,& Let D2 be the disk
in  D I satisfying the condition of Lemma 5. Then by Lem m a 7,

(I f  I° B)D, (If '. B)D, + C411If I° BII * ,D = I  + 12 ,

here  12 < C5IIIfIII.,D 2C511f11* ,D. N ext le t  D3 = D(Z3, r 3 ) ,  where z3 =  B(z 2 )
and r 3 =  max { B(z) — B(z2)1: 1 Z  =  r2 }, then 1 2 C

6 1 , f  1 . 1 3 ( D )  -

we can take a  disk D3' = D(z 3' , r) C \  D  so  tha t r 3' =  r 3 a n d  d (D , D3) < C 8 r3 ,

hence by applying Lemma 7 we obtain

If ID, I f  [Ds + C9 III fi 11* , 2C91If II*,z.

from these estimate we have (If 1 ° B)D , C3 II f  II c z.
Q.E.D.

§ 2. Some consequences

The assumption that B is finite Blaschke does not play an essential role to
prove Theorem 1. Indeed, it is not difficult to verify that the  same argumant
holds for every indestructive Blaschke product, here we say a  Blaschke product
B is indestructive if for every Möbius transformation T of the unit disk D, B o  T
is again  a  Blaschke p ro d u c t. Then B  m ay have singularities on D .  B ut we
can ignore it when we regard B a s  a  linear operator between BMO since aD is
a nul set.

W e  g iv e  so m e  e x a m p le  o f  infinite B laschke products w hich preserve
B M 0 (t). Let R be a Riemann surface having 7C: D —> R as its universal covering
and we assume R has the Green function. We define a function cR  on  R x R by

c i ,(7r(z), 7r()) = E cp(z, A( ) ), z, cED
A E r

<  C71f ID,. S in c e

where cD (z, () = (1 — z1 2 )(1 — C1 2 )/1 1 — z1 2  an d  T' is the covering transformation
group for tr.
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Proposition 3 ( [ 3 ] ) .  L et R, c, be as above, g , a positive measure on R, and
P D  its lif t on D , then (1 — lz12 ) 0 (z ) is a  Carleson m easure if  and only  if

sup c ,(p, q)dp(q) < co .
p e l t  J R

Proposition 4  ( [ 3 ] ) .  L et R  and c ,  be as  above and g, the G reen function
on R . T hen  c, is bounded above if  and only if  R satisfies the following condition;

(*) there ex ists a constant M >  0  such  that f o r  ev ery  qe R th e  domain
{p e R: g ,(p, q) > M} is simply connected.

With these propositions and Theorem 1 we have

Corollary 2. L et R  and i t  b e  as  above and p p  = X {6z : n(z) = p, zeD} then
sup {Car ((1 — lz12 )dup ): pe RI <  co i f  and only  i f  R  satisf y  the condition (* ) in
Proposition 4.

Theorem 2. L et R  be  a R iem ann surface having D  R  as  its universal
covering satisfying the  conditon (*) in Proposition 4  and h :  R  D  a unbounded
and branched covering with f inite v alence. T hen h. it is a  indestructive Blaschke
product and its natural extension to  t  preserves BMO (e).

For instance let

c° 2"z — i A  2n i — z
g(z)

.n = i2 n z + in ..2 .1 +  z

and H  the upper half plane, then g1H: H  D  is a 2-valenced unbounded branched
covering map on the compact bordered surface R =  H I T  where F= <T>,
T(z) = 4z, hence g  preserves BMO(C).
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