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Introduction

A quasi-conformal mapping preserves BMO, that is, if g: Q, > Q, is a
quasiconformal mapping between plane domains, then for every fe BMO(£2,),
fog belongs to BMO(£2,). In our former paper we partially extended this result
by characterizing the analytic functions which preserve BMO. In this paper we
treat more generally meromorphic functions. We shall characterize the Blaschke
type meromorphic functions preserving BMO (Theorem 1).

§1. Main Theorem

Let 2 be a domain on complex plane C. BMO(R) is the space of all locally
integrable functions f on Q such that

1/l 0= SUPm(B)‘lj |f—fpldm < 0
B
where dm is the 2-dimensional Lebesgue measure, fy is the integral mean of f
on B and the supremum is taken for every disk B in 2. BMO(C) coinsides
with the BMO space on the complex sphere C with respect to its surface measure
(cf. [10]), and BMO(C) is obviously invariant under dilations and translations,
especially it is invariant under Mobius transformations of C. More generally,
Reimann and Jones proved the following result;

Proposition 1 ([7], [9]). Let Q, and 2, be plane domains and g: Q; — Q,
a quasi-conformal mapping then for every fe BMO(82,), fog belongs to BMO(Q))
and it holds that | fogl,. a, < Cllf . o, where C >0 is a constant depending only
on the maximal dilatation of g. Conversely if g is an absolutely continuous
homeomorphism which preserves BMO then g is a quasi-conformal mapping.

In our former papers, we characterized the analytic function which preserves
BMO, BMOH, and BMOA as follows, where BMOH (resp. BMOA) is the space
of all harmonic (analytic) BMO functions;
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Proposition 2 ([4], [5]). Let 2., 2, be plane domains and g: Q, — Q, an
analytic function then
(1) g preserves BMO if and only there exists a integer p > 0 such that for
every disk B in Q. satisfying rad(B) < d(B, 2,), g is p-valent on B.
(2) g preserves BMOH if and only if there exists a constant C > 0 such that

|dg(2)|/d(g(z), 02,) < Cldz|/d(z, 02,),  zeL,
(3) g always preserves BMOA,
where rad(B) is the Euclidean radius of B and d( , ) denotes the Euclidean distance.

Corollary 1 ([S]). An entire function g: C —» C preserves BMO(C) if and
only if g is a polynomial.

Especially let an analytic function g: 2, - @, form an unbranched and
unbounded covering, then the conditions (1) and (2) of Proposition 2 are
equivalent, hence in this case g preserves BMOH if and only if g preserves BMO.

We extend the usual definition of BMO for plane domains to the subdomains
Q of the complex sphere C by BMO (22) = BMO(2\{0}). This extension is a
natural one because if g: 2, - 2, is a conformal mapping between subdomains
of C, then we can identify the space BMO (2,) with BMO(8,), since one point
is removable for BMO, to be precise, let Q be a plane domain and peQ then
BMO (2\{p}) = BMO(®) and it holds that | f[, o< Alfl, o\, Where 4 >0
is a universal constant (cf. [10]).

Let g: 2, - Q, be a meromorphic function. We now consider the problem
that under what condition does fog belong to BMO(R2,) for every fe BMO(R,).
If Q, is a proper subdomain of C, we can reduce this problem to the case of
analytic function. Therefore we can restrict our attention to the case 2, = C. In
the beginning we give one example.

Let g: C — C be an elliptic function, f a BMO (C) function and B a disk on
C. Ifrad(B) < 1 then by Proposition 2, we have m(B) ™! || fog — (fog)gldm< C,,
where C, (and C, below) > 0 is constant independent on B. Further if rad (B) > 1
then by the periodicity of g we have m(B)™! (] fog —(f°g)gldm <2m(B)™" [4|fog|
dm < C,. Hence fog belongs to BMO(C). Remark that the boundedness of the
norm of g as a linear operator is the consequence of the category theory. Thus
there exists an infinite valence meromorphic function f on C which preserves
BMO. Similarly the meromorphic function g,(z) = g(1/z) on C\{0} gives the
example of a meromorphic function preserving BMO which does not satisfy the
condition of (1) of Proposition 2. From these examples, it seems to be much
more difficult to characterize such meromorphic functions than the analytic case.

In this paper we treat Blaschke type meromorphic functions. In the following
D always denotes the unit disk in C and D(z, r) denotes the disk in C having
z and r as its center and radius. Let B be a finite Blaschke product on D. Its
zeros {z,}, which is to be counted with their multiplicity, induce a measure
du(z)=3.,(1 —|z,1*)dé,,, where 6, is the Dirac measure at z,. We denote its
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Carleson constant Car(u) by Car(B), that is,
Car(B) = sup {u(Se.)/h: 0<h<1,0<6 < 2n}
where Sg, = {re“:1 —h<r<1,0—h<¢<6+h}. Further we set
Car*(B) = sup {Car(By): B,(z) = (B(z) — {)/(1 — ZB(Z)), {eD}.
We now state our main result.

Theorem 1. Let B:C—C be a finite Blaschke product on D and ||B| its
norm as a linear operator between BMO (C), then

(1) 1B < C,(Car*(B)),
(2) Car*(B) < C,(IBI),

where C,(Car*(B)) > 0 is a constant depending only on Car*(B) and C,(||B|) >0
is a constant depending only on | B|.

Lemma 1 ([3]). Let u be a positive measure on D and G* its Green potential.
We extend G* as 0 to C\D, which we denote by G*, then G* belongs to BMO (C)
if and only if (1 —|z|*)du is a Carleson measure and it holds that

(1) Car((1 —|z|?dp) < C,(I1G* I 4.0).
@ 16 |,.e < Cy(Car((1 — |z|*dp)),

where C,(]|G* l«,&d >0 is a constant depending only on | G* e and
C,(Car((1 — |z|*)du))) > 0 is a constant depending only on Car((1 — |z|?)dp).

Proof of Theorem 1 (2). We extend the Green function g,(z) = log(|1 — {z]
/lz—={|) on D as 0 to C\D, which we denote by g;. Since g, belongs to
BMO(C) and g, =g, ° A, where A (z)=(z—{)/(1—{z), we have sup {[lg;| . ¢&: C(iD}
(=:M) < o by Proposition 1. Let py =) ,{6,: B(z,) ={}, then §,oB = G*,
hence by Lemma 1,

Car (By) = Car((1 — |z[?) dup) < C, (]| G*Il,&) < C, (I B| M).
and so Car*(B) < C,(||B|M).

To prove Theorem 1 (1), we need several lemmas. We say a sequence {z,}
on D is an interpolating sequence if

Zx — g

> 0,

I({z,}) = inf [

1#k

1 —z.z

Let B be a Blaschke product having {z,} as its zeros, then
I({z,}) = inf (1 — |2, | B'(z,).

Lemma 2 (cf. [8]). Let {z,} be a sequence on D and assume its corresponding
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measure du(z) = Y., (1 — |z,|*)dd,, form a Carleson measure. Then we can partition
{z,} into a finite number of interpolating sequences {z®}, k = 1, 2,...,s, such that

(1) I1({zP}) > C,(Car(w), k=1,2,....5,
(2) s < Cy(Car(p),

where C,(Car(y)), C,(Car(p)) > 0 are constants depending only on Car (u).

Lemma 3 (cf. [6]). Let {z,} be an interpolating sequence and B the Blaschke
product having {z,} as its zeros, then there exists a constant ¢ >0 which depends
only on 1({z,}) such that

(1) B~YD(, ¢)) = U, U,, z,€U,, (disjoint union),
(2) B is conformal on each U,.

Lemma 4 (cf. [4]). Let g be a p-valent locally univalent analytic function
on D then there exists a constant r > 0 which depends only on p such that g is
conformal on a disk D(z,r) = D.

Lemma 5. Let B be a finite Blaschke product on D, then there exist constants
o B, y, 6 >0 which depend only on Car*(B) such that for every disk
D, = D(z,, d(z,, 0D)/2) = D there exists a disk D, = D(z,, r,) < D, such that

(1) ry>oad(zy, 0D),

(2) B is conformal on D,,

(3) vy 'd(B(z,), D) < max {|B(2) — B(z,)|: z€0D,}

< ymin {|B(z) — B(z,)|: zedD,},

(4) 07'B(z))| <|B'(2)| < 6|B'(zy)|, z€D;.

Proof. Remark that B is p = p(Car*(B))-valent on D,, hence by Lemma 4
there exists a disk Dy = D(zq, ro) = D; such that ry > C;d(z,, dD) and B is
conformal on D,, where C, (and C,, C,,--- below) is a positive constant depending
only on Car*(B). Therefore if we set z, = z,, r, =ry/2, then it is easy to show
that D(z,, r,) satisfys every condition of this lemma except for the inequality

‘y~1d(B(z,), 0D) < max {|B(z) — B(z,)|: zedD,}’. To prove this remaining
inequality, it suffices to prove

C2/(1 — |2,1) < |B'(2)l/(1 — | B(z))[?).

By considering (B — B(z,))/(1 — B(z,) B), we can assume B(z,) =0 from the
beginning, then above inequality reduces to (1 — |z,|%)|B'(z,)| > C,. Let {{,} be
the zeros of B and we partition this sequence into finite number of interpolating
sequences {{®}, k=1,2,...,s following Lemma 2, where ({" =z,, and let
B®, k=1,2,...,s, the Blaschke products having {{®} as its zeros. Then

(1 =122 BY ()] = I({{"}) = Cs.
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Further by Lemma 3, |B¥(z,)| > C,, k=2, 3,...,s. Summerizing above we
have

(1 = 12219 B'(z2)l = (1 — |22/ BY () | [T 1B¥(z2)| > C5C7 1.
k=2

Q.E.D.

Lemma 6 (cf. [2], [7]). Let L be a circle or a line on C, Q, and Q, the
connected components of C\L, p the reflection with respect to L and f a BMO(L2,)
function. If we extend f to C\R2, as fop, which we denotes by f, then f belongs
to BMO(C) and ||f||*,c <Al fll4 a,» here A> 0 is a universal constant.

Lemma 7 (cf. [2],[7]). Let =D or C, f a BMO(Q) function, and
D, = D(z, 1), Dy = D(z,, r,) disks in Q, then

zZ: — 2 Z{ — 2
ow —fol < A{l + log<"r—2' ; 1)('3—2'+ 1)}||f||*,n
1 2

where A > 0 is a universal constant.
Lemma 8. Let f be a BMO (D) function satisfying | fll,,p <1 and
sup{|flp,: D; = D(z, d(z, 0D)/2), ze D} (=: M) < oo,

then if we extend f as O to C\D, which we denote by f, f belongs to BMO(C)
and ||f||*,é < C(M), where C(M) >0 is a constant depending only on M.

Proof. Let Sg,={re“:1—h<r<1,0—h<¢<6+h}. Note that |f|e
BMO D) and ||| flll.p <2 fll4,p <2, indeed

m(B)_‘J If1—1flgldm < m(B)'ZJ J |f(2) = f(Oldm(z)dm(0) < 21| f |, p>
B BJB
for every disk B = D. And the similar argument, using the dyadic decomposition
of Sy 4, as the proof of Hilfsatz 2 (p4 [10]) shows
sup {|fls,,:0<h<1,0<6<2n} <C,

where C > 0 is a constant depending only M. Let D, = D(z,, r,) be a disk such
that D, ¢ D. If r, > 1/4 then |f|p, < {m(D)/m(D))}|f|p < 64C. On the other
hand, if r; <1/4 then we can choose Sy, such that DnD, =Sy, and
m(Sy, ) < Am(D,), where A > 1 is a universal constant, hence |f]|p, < {m(S, )/
m(D )} fls,, < AC. Thus, we have

m(Dl)_lj |f — fp,ldm < 2| f|p, <2Cmax {64, A}.
D,

Q.E.D.
Proof of Theorem 1 (1). Since both B|D and B|(C\D) satisfy the condition
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(1) of Proposition 2, we have | B|D||, | B[(C\D)| < C,, where C, (and C,, Cs,...
below) > 0 is a constant depending only on Car*(B). Let p be the reflection
with respect to 0D, and f a BMO(C) function. Set

f={f°p on D f_{f—fOp on D
! f on C\D ’ 27 o on C\D

then f=f, + f, and by Lemma 6, || f; ||,.¢ < Al fll,,p, where A > 0 is a universal
constant, hence ||yl .6 <Ilfllep+ Ifillsp <A+ 1| flly e Similarly, since
(fieB)ep=fi°cpeB=f,°B we get the following estimate by using Lemma 6
again;

||f1°B||*,é < A||f1°B“*.é\D <G llf ”*.é\D < Cz”f”*,é-

Thus we can assume f=0 on C\D from the first. Let D, = D(z, d(z,, dD)/2),
then by Lemma 8, it suffices to show (|f|°B)p, < Cs| fl,.¢& Let D, be the disk
in D, satisfying the condition of Lemma 5. Then by Lemma 7,

(1f1°B)p, < (1f1°B)p, + C4lllf1°Blly,p = I, + I,

here I, < Cs||flllu.p <2Cslifll4, p- Next let Dy = D(z3, r;), where z3 = B(z,)
and ry = max {|B(z) — B(z,)|: |z — z,| = r,}, then I, < Cg| flppy) < C41fIp,. Since
we can take a disk Dj = D(z5, r3) € C\D so that r; =r; and d(D3, D;) < Cgrs,
hence by applying Lemma 7 we obtain

|flps < 1f1ps + Colllfl14,& < 2Cs | fI4,&-

from these estimate we have (|f|°B)p, < Csll f . é-

Q.E.D.

§2. Some consequences

The assumption that B is finite Blaschke does not play an essential role to
prove Theorem 1. Indeed, it is not difficult to verify that the same argumant
holds for every indestructive Blaschke product, here we say a Blaschke product
B is indestructive if for every Mobius transformation T of the unit disk D, Be T
is again a Blaschke product. Then B may have singularities on dD. But we
can ignore it when we regard B as a linear operator between BMO since 0D is
a nul set.

We give some example of infinite Blaschke products which preserve
BMO(C). Let R be a Riemann surface having n: D — R as its universal covering
and we assume R has the Green function. We define a function cg on R x R by

cr(n(2), () = ). cplz, A(),  z (eD
Ael’

where cp(z, {) = (1 — |z|))(1 — [{|?)/I1 — {z|?® and I is the covering transformation
group for =.
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Proposition 3 ([3]). Let R, cg be as above, g a positive measure on R, and
up its lift on D, then (1 — |z|*)du(z) is a Carleson measure if and only if

peR

SUPI cr(p, @) dul(g) < oo.
R

Proposition 4 ([3]). Let R and cg be as above and gy the Green function
on R. Then cy is bounded above if and only if R satisfies the following condition ;
(*) there exists a constant M >0 such that for every qeR the domain
{peR: grlp, 9 > M} is simply connected.

With these propositions and Theorem 1 we have

Corollary 2. Let R and n be as above and p,=2{6,: n(z) = p, ze D} then
sup {Car((1 — |z|*)du,): peR} < oo if and only if R satisfy the condition () in
Proposition 4.

Theorem 2. Let R be a Riemann surface having m: D — R as its universal
covering satisfying the conditon () in Proposition 4 and h: R - D a unbounded
and branched covering with finite valence. Then homn is a indestructive Blaschke
product and its natural extension to C preserves BMO (C).

For instance let

© My —j 2 M — 2z
g(z) = [1 [1

n=12"Z +in=02" + z

and H the upper half plane, then g|H: H - D is a 2-valenced unbounded branched
covering map on the compact bordered surface R = H/I' where I'=<(T),
T(z) = 4z, hence g preserves BMO(C).
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