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Canonical forms of 3X3 strongly hyperbolic
systems with real constant coefficients
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1. Introduction
Consider an mXm system of differential equations

ou n ou
where u is an m-vector and A; are real constant mXm matrix coefficients. For
simplicity, we further assume any nontrivial linear combination of A, is not equal to
the zero matrix or the identity. Otherwise, the system (1.1) can be reduced to the
one with a smaller n. (See the comments between Definition 2.6 and 2.7)

It was Yamaguti and Kasahara [3], [7] who gave the definition and a criterion
for the system (1.1) to be strongly hyperbolic. Later, Strang [5] proved that (1.1) is
strongly hyperbolic if and only if its initial value problem is L2-wellposed. However,
few attempts have been made to find out all the canonical forms of strongly hyperbolic
systems (1.1). It is perhaps because the criterion of Yamaguti and Kasahara is stated
in terms of the linear combinations of A, A, ---, A, and seems difficult to verify
directly. The only exception is the case of m=2 (2X2 systems). In fact, Strang [5]
proved that every .strongly 2X2 system is simultaneously symmetrizable (see Definition
2.5). However, the case m=3 is much more delicate. For instance, Lax [4] already
gave an example of strongly hyperbolic 3X3 system which cannot be simulaneously
symmetrized. But, as far as the author knows, no one has fully investigated the
3 X3 systems.

In the present paper, we will give all the canonical forms of 3Xx3 (m=3) strongly
hyperbolic systems (1.1). The result depends drastically on n. If n=2, the systems
are either strictly hyperbolic (see Definition 2.6) or simultaneously symmetrizable.
And there are eight canonical forms for the strictly hyperbolic systems. If n=3, the
systems cannot be strictly hyperbolic and they are simultaneously symmetrizable or
can be reduced to either
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where 0<a<1, or

oo [roo] Joa o] [op 1]

u u u , u

e I P o R P U P oy
00 0 0 —1 700

where

a>0, 7‘>%(a+ ‘?:) r'>%(a+ ’3:), 18'—B 1+ 17 —711>0.

Lastly, if n>=4, all the strongly hyperbolic systems are simultaneously symmetrizable.
We will also consider a class of systems including Petrovsky’s example

du
0x,

du _
ot

u

0x,

S O =

00 010
00 +1 01
0 0 0 00
which is non-uniformly real-diagonalizable and give their canonical forms.

All the results of this paper shall be summarized in the last section in terms of
matrix families.

2. Definitions and preliminaries

Throughout this paper, we consider only real square (actually 3X3) matrices and
their linear combinations with real coefficients.

Definition 2.1. The set of all linear combinations A(&)=A(&,, &, -+, &)=
Dr.EA; (6, &y oo, EaER) of the mXm matrices Ay, A, -+, A, is said to be the
matrix family spanned by A,, A, ---, A, and is denoted by <{A,, A,, -+, AD.

Definition 2.2. A matrix family <(A4,, 4, -+, A,> is called real-diagonalizable if
for every A(§)e{A, A, -, A,>, there exists a nonsingular matrix S(&) (called a
diagonalizer) such that

S(&)TTAE)S(8)

is a real diagonal matrix.

Definition 2.3. A matrix family <{A4,, A, -+, A, is called uniformly real-diagonal-
izable if it is real-diagonalizable and there is a diagonalizer S(&) such that

IS, 15(§) | =const.

when & runs over R”  Similarly, a matrix family is called non-uniformly real-
diagonalizable if there are no bounded diagonalizers.

We state here the most fundamental theorem concerning the equation (1.1).

Theorem 2.4 (Yamaguti-Kasahara [7]). Equation (1.1) is strongly hyperbolic if
and only if the matrix family {Ai, A, -, As) is uniformly real-diagonalizable.



Strongly hyperbolic systems 939

Remark. As mentioned in Introduction, for constant-coefficient equations, strong
hyperbolicity is equivalent to L*-wellposedness. For the proof of Theorem 2.4, see
Yamaguti-Kasahara [7], Kasahara-Yamaguti [3] (B>-theory), or Strang [5] (L*-theory).

We now refer to two important subclasses of the uniformly real-diagonalizable
matrix families.

Definition 2.5. A matrix family <A, A, ---, A,) is called simultaneously symme-
trizable if there exists a nonsingular matrix T such that all T 'A,T (j=1, 2, ---, n)
are simultaneously symmetric. In addition, Equation (1.1) with such A; is called
simultaneously symmetrizable.

Definition 2.6. A matrix family {(A4,, A, ---, A,> is said to have real distinct
eigenvalues if every A(§)e(A,, A, -, A,> with £#0 has real distinct eigenvalues.
In addition, Equation (1.1) with such A, is called a strictly (or regularly) hyperbolic
system.

Let us now consider what equivalence relation should be introduced for matrix
families. It is easy to see the following three operations <{A,, -+, A,>—<(By, -+, B
do not affect the real-diagonalizabilty (uniform or not) of matrix families.

a) Change of basis.

Bi=m Ai+mi Aot - +mia An
B2:7n21 Ay+ma Aet -+ +man An

B.n:mn1A1+mn;A2+ +mn;LAn

where M=(m;;) is a nonsingular real nXn matrix.
b) Addition of scalar multiples of identity.

B,=A, +Il1]
B,=A, +#21
Bn:An+[ln1

where I is the identity matrix and p; (1</<n) are reals.
c) Similarity transformation.

B, =T'A,T
Bg =T-l.'42 T
Bo=T"'A,T

where T is a nonsingular m Xm real matrix arbitrarily fixed.
It is perhaps worth noting how the above three operations transform the original
differential equation (1.1). First, a) corresponds to the change of space variables:

(%1, %2, -, Zn)T=M(xy, x4 -+, x2)T.
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Second, b) corresponds to the change of time-space variables of the type:
fi:xi—ﬂit (lélgn).

Note that if some space variables disappear from (1.1) by these operations, they can
be regarded as parameters for the solution of the reduced equation. Finally, ¢) corre-
sponds to the change of unknowns:

(ﬁh ﬁ?) Tty izm)T:T-l(uly Ugy **°, um)T'
Combining the above operations a), b) and c), we are led to the following definition.

Definition 2.7. Matrix families <A,, A,, ---, A,> and <{B,, B,, -+, B> are called
equivalent if there exist a nonsingular matrix T and g;€R (j=1, 1, ---, n) such that

KTAT—p,d, TP AT —pl, -, T AT —pald
:<B1, Bz: tty Bn’>
And we denote the equivalence relation by

(A, Ay, o, AD~KCBy, By, -, Bad.

Remark. Note that if one of the equivalent matrix families is simultaneously
symmetrizable then the others are also simultaneously symmetrizable.

By using the above operations a) and b), it is easy to see that any matrix family
is equivalent to some {B,, ---, B,) where B,, B,, ---, B, are linearly independent and
none of their nonzero linear combinations is equal to any scalar multiple of identity.
Let us define a word indicating this property for later convenience.

Definition 2.8. A matrix family <A, A, -, A,) is called nondegenerate if
1, A, A,, -, A, are linearly independent over reals.

Note that the definitions in this section are valid for the square matrices of an
arbitrary size, though we limit ourselves to study 3X3 matrix families which are
uniformly or non-uniformly real-diagonalizable. And we shall treat the problem purely
as the one in the matrix theory and shall not refer to the differential equation (1.1)
any more.

3. Matrix families with multiple eigenvalues

We study first the real-diagonalizable matrix family <A,, A, ---, Ap) such that
A(é) has a multiple eigenvalue for some £+0, and study later matrix families with
real distinct eigenvalues. However, we had better cite the following result of
Friedland, Robbin and Sylvester at this stage.

Theorem 3.1. Let A, B, C be arbitrary real 3X3 matrices. Then it is impossible
that <A, B, C> has real distinct eigenvalues.



Strongly hyperbolic systems 941

For the proof, see Friedland-Robbin-Sylvester [2] where these authors treat the
problem for square matrices of arbitrary size.

Let us turn to the matrix families with multiple eigenvalues. For such a family
(A, A, -, An), changing the basis if necessary, we may assume A; has a multiple
eigenvalue. If this multiple eigenvalue is triple, the 3X3 matrix A, must be a scalar
multiple of identity and we may ignore it (see Definition 2.7). So we may assume A,
has a double eigenvalue. By use of the similarity transformation diagonalizing A,
and the addition of an appropriate scalar multiple of identity, we have

<Alr *42v ) 14n>

1 00
~{B;=| 0 0 0| By, By, -+, Bx>
000
with certain B,, B, -, B,. We now reduce B, by the similarity transformation with
1 00
T=|0
0 U

i

where U is a nonsingular 2X2 matrix. Note that this type of similarity transformation
leaves B, invariant and reduces the right-lower submatrix of B, to one of the follow-

ing canonical forms.
a 0 a 0 a 1 a B
0 a|'|0 8|0 a] |—B al

By use of this similarity transformation, <(A4,, A., ---, A,> and <B,, B,, ---, By) are
equivalent to one of the following.

0 0|[0 b b

40 0 0]|bs0 0 -->,

000 by 0 0

00 0 b b,
40 0 0}[bs1 0 |-,
00 O0f]|b 0 —1

1 00 0 by b

00 O0||bs0 0

100 0 b b,
40 0 0f{b 0 114 -
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where b,, b,, b,;, b, are certain real constants.
Let us consider each case separately, first for familes spanned by two matrices.

Proposition 3.2. The matrix family (A, B) spanned by

100 0 b b
A= 0 0 O B=| by 0 0 |#0
000 by 0 0

is real-diagonalizable if and only if

bibs+b:6,>0.
Proof. 1t suffices to find out under what condition

§ by b
3.1 §A+B=|b; 0 0
bs 0 0

is similar to a real diagonal matrix for any &=R. The characteristic equation of
§A+ B turns out to be

det(—A/+£A+B)=0,
(3.2)

—2(22—$l—b1b3_b2b4):0 .

We split the case into three; biby+b:b,>, =, <0. When b,bs+b.b,>0, (3.2) has three
real distinct roots (zero, positive, negative) for any é R and (3.1) is similar to a real
diagonal matrix. When b,b,+b,0,<0, (3.2) has imaginary roots for £&=0. When
b1bs+b,b,=0, (3.2) with £&=0 has 0 as a triple root but 0A+B=+0 is not similar to
the zero matrix. Thus we have completed the proof. [J

Proposition 3.3. Let the matrix family <A, B) spanned by

be real-diagonalizable. Then it is simultaneously symmetrized by some T as follows.

[100 010
T3AT=|0 0 0|, T-'BT=a| 1 0 0
000 000

where a is some real constant.

Proof. From Proposition 3.2, we have

bibs+b:0,>0.
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Setting
a= '\/blb3+b2b4

1 0 0
T: 0 bs/a —bZ/a
0 b4/a bl/a

we obtain the conclusion. O

Proposition 3.4. The matrix family <A, B) spanned by

100 0 b b
A={0 0 0, B={by 1 0
000 by, 0 —1

is real-diagonalizable if and only if

sgnb,=sgnb; and sgnb,=sgnb,.

Proof. 1t suffices to find out under what condition

E bl b2
(3.3) §A+B=|b, 1 0
by 0 —1

is similar to a real diagonal matrix for any £ R. Now the characteristic equation of
£A+B turns out to be

det(—AI+&A+B)=0,
(3.4)

(5_1)(12_1)+b1b3(2+1)+b2b4(2_1)=0-

First we consider the case when b,b;#0 and b.b,+#0. In this case, (3.4) has never +1
as roots, its graph in A, é-plane is the same as that of

bibs  bab,
-1 41

(3.5) E=A—

Let us plot the graph of (3.4) in the form of (3.5), noticing (3.4) has at most three
real roots (counting their multiplicity) for each fixed & From Fig. 1.(a), (b), (¢c), (d),
we have the following. If b,6;>0 and b,b,>0 then (3.3) with any £=R has three
real distinct eigenvalues and is similar to a real diagonal matrix. If b,6,<0 or b,b,<0
then (3.3) with some £=R has just one real eigenvalue and two imaginary ones.
Thus the proposition is proved when b,b;#0 and b.b,#0 hold at once.

Each of remaining two cases is much simpler because (3.4) has always 1 or —1
asaroot when b,b;=0 or b,b,=0 respectively. This root isrepeated when é=—b,b,/2+1
(resp. §=b,b;/2—1) and corresponding eigenspace of (3.3) is 2-dimensional if b,=b,=0
(resp. b,=b,=0) and 1l-dimensional if b,#0 or b;+#0 (resp. b.#0 or b,#0). This and
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¢ 3
2 A
(a) bybs>0, byb,>0. (b) b1bs>0, byb,<0.
3 §
A A
(¢) bibs<0, byby>0. (d) byb;<0, byb,<0.
Fig. 1.

the following facts complete the proof of the proposition. If one of b,b; and b.b, is
zero and the other negative, then (3.4) has just one real root and two imaginary ones
for some é€R. O

Proposition 3.5. Let the matrix family <A, B) spanned by
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be real-diagonalizable. Then it is simultaneously symmetrized by some T as follows.

100 0a B
T AT=/0 0 0| TBT=|a 1 0
000 B0 —1

where a, ,8 are some rveal constants.

Proof. From Proposition 3.4, we have

sgnb,=sgnb; and sgnb,=sgnb,.
Setting
a= vb_lb—sy B: \/M y

{———a/b, (if b1b3>0) N
u

=1 (if b,=b;=0),
=B/b,  (f b:bs>0),
v{:l (if b,=b,=0),
100
T=|0 u 0],
00 v

we have the desired result. [

Proposition 3.6. The matrix family <A, B) spanned by

100 0 by b,
A=|0 0 0| B=bs 0 1
000 by 00

is real-diagonalizable if and only if one of the following holds.

1) bbs>0 and b=0.
2) b2b4>0 and b1:0 .

Proof. 1t suffices to find out under what condition

§ by b
(3.6) EA+B=| b, 0 1
by 0 0

is similar to a real-diagonal matrix for any é&R. Now the characteristic equation of
EA+ B turns out to be

det(—AI+£A+ B)=0,
3.7)

12(&—l)+(blb3+b2b4)l+blb4=0-
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We first consider the case b,;b,#0. In this case, the graph of (3.7) in A, &-plane is
the same as that of

b1b3+b2b4 blb4
1 e

3.8) §=1

From Fig. 2.(a), (b), we obtain that for some &, (3.8), namely (3.7) has just one real
root and two imaginary ones.
Let us go on to the case b,b,=0. In this case (3.7) turns to be

(3.9 —A(A2—§A—Db1bs—bsb,)=0.

So if b,b,=0 and b,b;+b.b,>0 then EA+B for any £=R has three real distinct
eigenvalues (zero, positive, negative) and is similar to a real diagonal matrix. If
b,b,=0 and b,bs+b.b,<0 then 0A+B (i.e., £=0) has imaginary eigenvalues. If
b,b,=0 and b,b;+b,b,=0 then B=0A-+B has 0 as a triple eigenvalue but is not similar
to the zero matrix.

We have proved <A, B) is real-diagonalizable if and only if

b1b4"——0 and b1b3+bzb4>0.

From this, the conclusion follows. [

Proposition 3.7. The following holds.
1) Let b,bs>0. Then

100 0 b, by 100/([010
g0 0 0l{bs O 1P~0O 0 OL|{1 O 1}
000 0 00 000|000
§ §
2 2
(@) b:bs>0. (b) b:b,<0.

Fig. 2.
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2) Let b2b4>0. Then

100 0 0 b, 100 010
0 0 0)|bs O 1P~0O0O0L{1 0 O0OP
000 by 0 0 000 010

And both matrix families are non-uniformly real-diagonalizable.
Proof. We begin with 1). Setting
a=~bb;,
1/6s 0
T=| 0 l/a —bz/bl
0

we obtain
1 00 1 00
T40 0 0(T=|0 0 0|,
00 0 00

—_—1 —_

0 100|100 100
01 0 00|00 1|=00 0],
0 000010 0 00

0 0]To 0al[1 00
0 1| |5 0 100 1]=|5 0 0]
0|6 00010

To end the proof, we have only to show the real-diagonalizabilty of
1 00 01

&0 0 0f+yn 1 0

000 00

&, 7€R)

S = O

is not uniform. For this purpose, it suffices to calculate its three eigenvectors and
construct a diagonalizer. See Kasahara-Yamaguti [3] for detail. [

Proposition 3.8. Given a matrix family {A, B) spanned by
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100 0 by by
A= 0 0 O B=|by 0 1
000 by —1 0

where b, by, by, by are arbitrary real constants. Then (A, B) is not real-diagonalizable.

Proof. 1t is sufficient to prove, for & large enough,

& by b,
(3.10) EA+B=|b, 0 1
by —1 0

has imaginary eigenvalues. Now the characteristic equation of €A+ B turns out to be

det(—AI+£A+B)=0,
3.11)
(22+1)(6—2)+(b1b3+b2b4)1+b1b4"'bzbazo .

The graph of (3.11) in 4, &-plane is clearly the same as that of

(b1b3+b3by)+b1by—bsbs

(3.12) g=a— o

It is easy to see from Fig. 3, (3.11) has just one real root and two imaginary ones
when & is large enough. [ '

Combining the results obtained in this section, we have the}following theorem.

Theorem 3.9. Let (A, B) be a nondegenerate 3 X3 matrix family. Then the follow-
ing holds.

. Fig. 3.



Strongly hyperbolic systems 949

1) Suppose that <A, B> has multiple eigenvalues and is umformly real- a’zagonalzzable

Then (A, B) is simultaneously symmetrizable.
2) Suppose that <A, B) is non-uniformly real-diagonalizable (consequently, {A, B>
must have multiple eigenvalues). Then {A, B) is equivalent to either

1 00 010
0o 00|10 1P
000 000
or its transposition
1 00 010
40 00|11 0 0P
000 010

4. Real-diagonalizable families spanned by three matrices

In this section, we study nondegenerate real-diagonalizable families spanned by
three matrices. From Theorem 3.1, such a family, say <A, B, C), contains a certain
member which has a double eigenvalue (recall that the nondegenerate <A, B, C> does
not contain I). Therefore

; 100
<A, B,C>~<| 0 0 0} B',C"»
; 0 00

where B’, C' are appropriate matrices. From the propositions in Section 3, we may
specify B’ as one of the following.

010 0 b, b 010
10061 0 |1 01
000 b, 0 —1 000

We begin with the first two cases, when every member of the -matrix family has a
right-lower 2X2 submatrix similar to a real diagonal one. Changing the basis if
necessary, such a matrix family must be equivalent to one of the following.

1.00 010 0 ¢ ¢
4.1) . 0 0 0|1 0 0} 030Q>,
00 000 ¢, 00

1 00|[0b b 0 ¢ ¢
4.2) 0 ¢s 00D,
ce 00

()
S
—
(=)

o
o
o

I
o
S
o

|
—
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1 00 0 a B 0 a b
(4.3) g0 0 O0|lal O [[|c 0 e
000 g 0 —1 d f 0

where ef>0. The property ef>0 of (4.3) is derived as follows. Because every
member of (4.3) must have a right-lower 2X2 matrix similar to a real diagonal one,
e=f=0 or ef>0. But (4.3) is reduced to (4.2) if e=f=0. Let us further reduce
(4.3). By use of the similarity transformation with

1 0 0
T=0 1 0 |,
0 0 «~f/e

(4.3) is equivalent to
1 00 0 b, b, 0 ¢ ¢
4.3") 40 0 0f}bs 1 0 |,]es O 1P,
000 b, 0 —1 ¢ 1 0

Let us treat (4.1), (4.2), (4.3’) separately.

Proposition 4.1. The nondegenerate matrix family (A, B, C) spanned by

't 00 010 0 ¢ ¢
A=/ 0 0 0|, B=|1 0 0, C=|¢ 0 O
000 0 00 ¢t 00
is real-diagonalizable if and only if
100 010 0 al
KA, B,C>~¢ 0 0 0|1 0O0||]—a 00}
0 00 0 00 1 00

where 0<a <1 is satisfied. And in this case, <A, B, C) is uniformly real-diagonalizable.

Remark. The matrix family in the proposition

1 00 010 0 «a
0 0 0L|1 0O} —a 00/
00O 000 10

is not simultaneously symmetrizable when 0<a <1 as will be proved in the following
Lemma 4.2,

Proof. 1t is easy to see

1 00][0 10 Occ;l
CA,B,C>=</ 0 0 0|10 0||—c 00}
000[|l0 OO c400J
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for some ceR. Applying Proposition 3.2 to the real-diagonalizable subfamily

1 00 0 ¢ ¢
g0 0 0| —c 0 0D
0 00 e 00
we have
4.4) cs¢>c?=0.
Using the similarity transformation with
1 0 0
T=l0 =+1 0
0 0 Aey/c,
we obtain
100 010 0
(4.5) CA, B,C>~¢0 0 0|1 0 0}| —a 0 0}
0 00 000 1 0

where 0<a<1. The last inequality follows from (4.4) because a is determined by

= lc]
VCeCs

Let us now prove the right side family of (4.5) is uniformly real-diagonalizable.
We set
o=¢(n, D=[n"+(1—a®){*]'"*
1 0 0
S, 0= 0 (n—al)/p —C/¢ for (n, £)#(0, 0),
0 &/ (p+ad)e

1
S0, 0)=I=| 0
0

(=T N e }
= O O

Thus we obtain the uniformity of S(», {) and S(%, {)™* as well as

é o(n, 8 0
S(n, O HEA+B+LCIS(, D=| ¢(n, {) 0 0
0 0 0

Thus §A+nB+LC is uniformly symmetrized. Therefore (A, B, C) is uniformly real-
diagonalizable. [J

Lemma 4.2. The matrix family <A, B, C)» spanned by
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1 00 010 0 al
A=|0 0 0, B={1 0 0,C=| —a 0 0 (a=+0)
000 000 1 00

s not simultaneously symmetrizable.

Proof. In order to prove the lemma by contradiction, we assume there exists T
such that
T*AT, T'BT, T'CT
are simultaneously symmetric. So we can diagonalize T '!AT by an orthogonal O as
follows.

o o o

o o o
I
S

1
O'T*ATO=| 0
0

This means A and TO commute. Hence replacing TO by its appropriate scalar
multiple if necessary, we may conclude it has the following form.

S firoo0]
TO=|0 a b | (ad—bc+0).
0 ¢ d

We set another orthogonal matrix O;.

1 0 0

0 a ' v—b
0,= Va®+b®* va*+b® |,
' b a
va*+b® va*+b®

0

-

Then T,=TO0O, has the following form.

1 00
T,= 0 a 0
0 ¢ d
where a’>0, ¢/, d' are certain real constants. Because
T'BT,=(00,)'T*BT(00,)
is symmetric, its (2, 1)- and (1, 2)-entries are equal and so are its (3, 1)- and (1, 3)-entries;
1/a’'=a’>0
—c'/a’'d’=0.

From this we have a’=1 and ¢’=0, that is, T, has the following form;
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On the other hand,
T*CT,=(00,)*T'CT(O 0Oy,

must also be symmetric. However, its (2, 1)- and (1, 2)-entries are not equal because
they are a and —a respectively (recall that a0 by assumption). We are thus led
to a contradiction. [J

Proposition 4.3. The nondegenerate matrix family <A, B, C> spanned by

100 0 b, by 0 ¢, ¢
A=/ 0 0 O, B=bs 1 0 ||C=|c 0 0 [0
00 b, 0 —1 ¢, 00

is real-diagonalizable if and only if <A, B, C> i's simultaneously symmetrizable.

Proof. With any fixed s€R,

1 00 0 by+cis  bytcss
<A, B+SC>:< 000 , b3+(333 1 0 >
: 000

bitcis - 0 —1
is real-diagonalizable. So, from Propositioﬁ 3.4,

sgn(b3+fss)55gn(b14cls) ,
(4.6)
sgn(bs+cis)=sgn(by+c»s)

for any s R. Notice that two linear polynomials have always the same sign if and
only if one of them is a positive multiple of the other. From this fact and (4.6), there
exist positive constants 2,>0 and k,>0 such that

by=Fib:, cs=kic,,
b4:k2b2, C4tk202. .

This means <A, B, C) is simultaneously symmetrizable by the similarity transformation
with

1 0 0
T=|0 ~vk, 0 |.
0 0 Wk,

Thus the proof is complete. [J

Proposition 4.4. The nondegenerate matrix family <A, B, C> spanned by
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1 0 0 0 bl bz 0 C1 C2
A= 0 0 O, B=|bs 1 0 |,C=|¢c;s 0 1
000 by 0 —1 ¢ 10

is real-diagonalizable if and only if {A, B, C) is either simultaneously symmetrizable or

100][0a 0708 7
(A B, Cy~ 0 0 0||lal 0L|g 01
000|l00 =1l 10
where
l BZ , 1 ﬁlz
a>0, r>§(a+ - ) r>§(a+7).

Also in the second case, <A, B, C) is uniformly real-diagonalizable.

Remark. The matrix family in the proposition

100][0oa 07087
qooolla1 o ||pgo0o1]
000[|00 —1|[r 10

with

a>0, r>—;~(a+ £ ), r’>%(a+ ﬁlz).

a a

is not simultaneously symmetrizable when (B, 7)#(8, r) as will be proved in Lemma
4.5,

Proof. Let us begin with the necessity. For any fixed s€ R, the subfamily
(A, (s*=1)B+2sC>

@n 100 0 by(s®—1)+2¢;s by(s®—1)+2¢;s
' = 0 0 01 |by(s®—1)+2css s2—1 2s 5
000 by(s®—1)42¢,s 2s —(s?—1)

is also real-diagonalizable. Using the similarity transformation with

0 0
—11,
s

T=

o O
—

we know that (4.7) is equivalent to



where

4.8)

From Proposition 3.4,

4.9)

Strongly hyperbolic systems

A
S O =

-

fa(s)

0 fx(s)
001 rye
0 ol|syr St 0
00 fa(s) 0

s?41

—(s*+1)

F1(s)=(s2—1Xb.s+by)+2s(c,5+¢3),
fo(8)=(s"—1)bos —b1)+2s(cos—c1),
fo(8)=(s2—1Xbss+b)+2s(css+cs),
Fa(8)=(s2—1)(bss—bs)+2s(cas—cy).

sgn fi(s)=sgn f(s) and sgn fu(s)=sgn f.(s).

955

These equalities hold for any s&R (recall that we have chosen s arbitrarily).
Especially, the cubic equations f,(s)=0 and f,(s)=0 have the same real roots one of
So, using the similarity transformation with

which we denote by s,.

we have
(A, B, C>

10 0
T=| 0 So -1 ,
01 So

=4, (s —1)B+25,C, —25,B+(s’—1)C>

~<| 0

00

(=)

[0 = 0 0

where each * stands for a certain real constant.
From the result just obtained, we may assume b,=b,=0 in B from the beginning.

And (4.8) is reduced to

fi(s)=s(b:s*+2¢,s—bi+2¢,),
fo8)=(—b,+2¢,)s*—2¢,s+by,
fa(8)=s(bss®+2c55—bs+2¢4),
Fa(8)=(—bs+2c,)s*—2ces+bys.

*
* s’ +1 0 x 0
_0 0 —(s*+1) *  §o2+1
[0 % 0 0 * =
* 1 0 |, |* 0 1P
~0 0 —1 * 1 0

*
s+l P
0
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From (4.9), we have

sgn{(—b,+2¢,)s*—2¢,5+b,}
4.10)

=sgn{(—bs+2c,)s*—2¢ys+bs}

for any s€R. There are only two cases. In the first case, there exists a positive
constant 2>0 such that

(—b3+2C4)32—2(:35+ngk {(—b1+262)32—2C15+b1}
which means

bs=Fkb,, cs=kc,, ci=kc,.
Therefore <A, B, C> can be symmétrized by the similarity transformation with
1/vE 0 0
T=| 0 1 0/[.
0 01
Let us go on to the otherA’case where (4.10). holds. In fhis éase,
©(—bi+2¢,)s*—2¢y5+ by,
(_b3+204)52—2633+b3

have the same constant sign and they do not vanish for any seR. Thus we have

blb3>01
(4.11) 612<b1(_b1+262>;
. C»32<b3(—b3+204).
We set
a=vbb;
ERY AR
T= 0 10
0 01

where the sign =+ is taken appropriately. With this T and (4.11),

100 0 a 0 0 B 71
T'AT={0 0 0|, T"'BT=la 1 0 |, T'CT=|p8 01
' 000 00 —1 7 10
where the constants «, 8, B/, 7, 1’ satisfy
1 g s Ly B2
(4.12) a>0, r>§(a+—a—)_, 7’>2(a+ a ).

In order to complete the proof, we have only to prove the uniform real-diagonali-
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zability of

100][0a O 08 7
g0 0 0L|lal O [|B 01p
0 00 00 —1 Y 1 0
with (4.12). Let us symmetrize
100 0 a 0 08 7
ME 9, 0=¢60 0 0 [+(*~C) @ 1 0 |+29{ p 0 1
000 00 —1 r 1 0
3 a(n*=C)+2898  2rng
=| a(n*—L)+28'7¢ - 2ng
2r'ng 2n¢ —n*+C

Notice that (y, {)—(9*—C% 29{) maps R? onto R® because
(+HLV—=1P=9"—L+2pLv—1.

We set
1 0 0o
0 1 S
Vin, = VR4 VR L |,
g 7
,\/n2+c2 ,\/772+C2—
(1 0 0 )
0 [a772+2/8’1)c+(2r’—a)?]”2 0
W(n, O)= an®+289L+2r—a)l?

0 0 [ Q2r' —a)p*—2p'nl+al? ]"2
QCr—a)n®*—289L+al?

- J

for (9, {)#(0, 0) and

1
V(0, 0)=W(, 0)=I=| 0
' 0

S = O
= o o

We set also
S(n, D=V (g, OW(x, §).

Thus we obtain the symmetricity of
S(xn, OM(E, 9, DS(n, )

as well as the uniformity of S(x, {) and S(y, {)"'. Because M(&, %, {) is uniformly
symmetrized, it can be uniformly real-diagonalizable. The proof is complete. [
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Lemma 4.5. Let the matrix family <A, B, C) be spanned by

100 0 a 0 08 7
A=[0 0 0| B={a 1 0 | C=|p 0 1
000 00 —1 10

where a>( and (B’, v')#(B, 1). Then (A, B, C> is not simultaneously symmetrizable.

Proof. In order to prove the lemma by contradiction, we assume there exists
T, such that
T,*AT,, T,*BT,, T, 'CT,

are simultaneously symmetric. The same procedure as in the proof of Lemma 4.2
shows that we may assume T, has the following form.

0
0

Because the (3, 2)- and (2, 3)-entries of T,"!C T, are equal, we have
1/d’'=d’.

From this we obtain d’=+1, that is, T, must actually have the following form.

With this T, however, T,"'CT, is not symmetric because of (8’, r")#(B8, r). We are
thus led to a contadiction. O

Let us now work on the last type of real-diagonalizable families mentioned at
the beginning of this section, namely,

(4.13) < , C>

S O =

0
0}
0

o O O
O = O
o O
O = O

with some matrix C or its transposed family. We shall consider only (4.13) without
loss of generality. Changing the basis if necessary, we may assume (4.13) is expressed
as follows.

1 00 010 0 ¢ c
4.14) 0 0 0,1 O 1}|csee O D
0 0 0 0 00 Cs C¢ —Cy

where ¢y, ¢s, €3, €4, C5, C¢ are certain real constants.
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Proposition 4.6. The nondegenerate matrix family <A, B, C> spanned by

1 00 010 0 ¢, ¢
A=0 0 0, B=|1 0 1|, C=| ¢ ¢, 0 [#0
0 0 0 0 0 0 Cs C¢ —Cy

s (non-uniformly) real-diagonalizable if and only if C is a scalar multiple of

0 B —r
Bl—a) 1 0
—2a 0 —1

where 0<a <1, r>[B%/8 are satisfied.

Proof. Taking an arbitrary s€ R, the subfamily

1 O 0 0 S+Cl Cy
(A, sB+C>=¢ 0 0 0 || s+c, ¢, s D
0 00 Cy Ce —Cy
is also real-diagonalizable. From Propositions 3.2, -+, 3.8, the 2X2 submatrix

¢, S
Ce —C4
must have only real eigenvalues for any fixed s€ R. This means

C(;:O.

Let us now prove c,#0 by contradiction. We assume ¢,=0. Because the sub-
family

1 00 0 cis+1  css
CA, B+sC>=<¢ 0 0 0| | cys+1 0 1 D
0 0O CsS 0 0

with any fixed s R is real-diagonalizable, Proposition 3.6 is applicable. So we have
css(cis+1)=0
(€1841Xcss+1)+cacss>0

for any s=R. This implies
=0, ¢,=c¢;=0

and C has actually the following form.



960

Yorimasa Oshime

This contradicts the (real-)diagonalizability of C.
Combining the above results, we find that

C=

0 ¢, ¢
¢c; ¢, O
¢ 0 —c,

with ¢,#0. So, multiplying C by a scalar if necessary, we may assume

[0 ¢, C»
¢ 1 0
¢ 0 —1

Let us consider again the real-diagonalizability of

(A, sB+C>=<

By the similarity transformation with

we have

(A, sB+C>~<

[
S O O
oS o O

S O =

-

o O O

0 0 s+c¢; €
0| s+ecs 1 s
0 65 0 _].
10 0
01 —s/2
00 1
1
0 s+c, —532

Thus Proposition 3.4 is applicable and we have

sgn(s+cl)=sgn{(l+%)s+c3}>

2
sgn cs=sgn{—iz——%s+cz}

with any s€R. This means

c>—2, —01(1+i)+cs=0 ,

2

<0, ¢,*+8¢,<0.

Putting

,3=01; T=-—2¢Cs,
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we have the desired result. O
Summing up the results of this section, we have the following theorem.

Teeorem 4.7. Let <A, B, C)> be a nondegenerate 3X3 matrix family. Then the
following statements hold.

1) <A, B, C>is uniformly real-diagonalizable and is not simultaneously symmetrizable
if and only if it is equivalent to either

010|[0 a1
< 100, —a00p (O<a<l)
00 1 00
or
100][0oa 07][0 8 7
qoool|la1 o |pgo0o1]
000||00 —1|[7 10

with real constants

>0, 1>a(a+L), 1> (et B), @ e, .

a

2) <A, B, C) is non-uniformly real-diagonalizable if and only if it is equivalent to
either

100][0o10 0 B —7
qoooll1o1]]|pa—a1 0]
000|000/ 22 0 —1

with real constants 0<a<1, B, r>p%/8 or its transposition.
5. Real-diagonalizable families spanned by four or more matrices
The goal of this section is the following theorem.

Theorem 5.1. Suppose that a nondegenerate 3X3 matrix family (A, A, -+, An
(n=4) is real-diagonalizable. Then {A,, A,, -+, An> is simultaneously symmetrizable.

We shall prove this theorem by several lemmas. First, by the same argument as
at the beginning of section 4, we may assume

1
A1= 0
0

o O O
oS O O

Lemma 5.2. Suppose that the same hypotheses as in Theorem 5.1 are satisfied.
Suppose also that
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Then every member A(&) of <A, A, -, Az> has a real-diagonalizable right lower 2X2
submatrix.

Proof. In order to prove the lemma by contradiction, we assume a certain member
has a right-lower 2X2 submatrix which is not similar to any real 2x2 diagonal

matrix. By the same procedure as at the beginning of section 4, we may further
assume

Recalling the comment just before Proposition 4.6 and applying the proposition itself
to <A, A;, As> and <(A,, A,, A,>, we may assume

0 * =* 0 =
(5.1) A= 1 0 |, A= * 1
* 0 —1 * 0 —1

where each # stands for a certain real. On the other hand <{A,, A, A,—A,> must be
real-diagonalizable. From (5.1), A;— A, must have the form

0 = =
As—A,=|* 0 0 |#0
* 0 0

because A; and A, are linearly independent. This contradicts Proposition 4.6. [

With this Lemma 5.2 in mind, we repeat the same argument as the one just before

Proposition 4.1. Thus, we know <{A,, A,, -+, Ax> is equivalent to one of the following.
(100 1 [0 % = 0 * = 0 * x
< 0 y | o* y | * 00 , | * 00 > '“>
0 0 * * 0 0 * 0 0
(10 0][0 = TTo0 1To i
0 R R | % 0 >
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where each * stands for a real number. We treat each of the cases separtely.

Lemma 5.3. Suppose that the matrix family (A, A, ---, Ax> (n=4) spanned by

1 00 0 b, by 0 ¢, ¢ 0 d, d,
Al: 00 0 y A2: b3 00 y A3: Cs 00 y A4: d3 0 0
0 00 by 00 ¢ 00 d, 0 0

is real-diagnalizable. Then A,, A,, ---, An are linearly dependent.

Proof. Assume the contrary. Applying Proposition 4.1 to (A,, A, A,>, we may
assume

On the other hand
(A, A4+('—d1+ad2)A2'—dzAs>

must be real-diagonalizable. However, since
f14+(—d1+ad2)A2— dzAgiO

has vanishing (1, 2)- and (1, 3)-entries, we get a contradiction from Proposition 3.2. [

Lemma 5.4. Suppose that the nondegenerate matrix family (A, Az -+, And (n=24)
spanned by

0 0 b, b 0 ¢ ¢ 0 d, d.
0 y A2: ba 1 0 s Asz Csy 0 0 , A4—'—— d3 0 0
0 by 0 —1 ¢ 00 d, 00

A=

i

S O =
oS O O

is real-diagonalizable. Then {A,, A,, -+, An> is simultaneously symmetrizable.

Proof. For any fixed s, t, u, - €R,
CAi, ActsAsttActudst->

is real-diagonalizable. We assume n=4 for simplicity because the argument remain
the same for the other case. From Proposition 3.4,

Sgn(bl—l‘Cls+d1t)=Sgn(b3+(:3s+d3t)
sgn(b,+cos+dat)=sgn(bs+cis+dat)

for any s, te R. Regarding these linear polynomials as ones in ¢ with s& R arbitrarily
fixed, we have

¢15+by ¢tk

sgnd,=sgnd,, a4
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sgnd,=sgnd,, Czsj;bz = c4sd-i-b4 .

Because the last equalities hold for any fixed s€ R, we obtain
by=Fb,, cs=kicy, ds=k.d,,
bi=ksb,,  ci=ksc,, di=h.d,

with some £,>0 and %k,>0. Therefore <(A,, A, A, A.,> is simultaneously symmetrized
by

1 0 0
T=|0 vk 0
0 0 +k,

Thus the proof is complete. O

Lemma 5.5. Suppose that the nondegenerate matrix family {A,, A, -, Az> (n=24)
spanned by

1 00 0 by b 0 ¢ ¢ 0 d, d,
A1: 0 0 0 N A2: b3 1 0 y A3: Cs 0 ]. y A4: d3 0 0 y
0 00 by, 0 —1 ¢, 1 0 d, 0 0
is real-diagonalizable. Then {A,, As, -+, An> is simultaneously symmetrizable.

Proof. For any fixed s, t, u, --€R

(5.2) (A (8"=1)Apt25 Ayt AstuAs >

is real-diagonalizable. We assume n=4 for simplicity because the argument remains
the same for the other cases. Using the similarity transformation with

1 0 O
T=0 s —1]/,
01 s
we know that (5.2) is equivalent to
0 Fi(s)+tgu(s) fa(s)+igss)
100 fa(s)+tgs(s) N
doo ol| st s+l 0 N
0 0 0| fus)+tads) .
e O —("+D)
where
f1($)=(s*—1Xbis+ba)+2s(c,5+¢2),
Fo8)=(s*—=1Xbos—b1)+2s(ces—cy),
(5.3)

F(8)=(s>—1)bas+bs)+2s(css+ca),
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F4(8)=(s>=1Xbss—bs)+2s(cis—¢y),
g:(s)=ds+d,,

gu8)=d,s—d,,
(5.4)

gi(s)=dss+d,,

gu(s)=dss—d,.
From Proposition 3.4,

sgn{fi(s)+1g:(s)}=sgn{fs(s)+1gs(s)}
sgn{fu(s)+tg«s)t=sgn{fu(s)+1g.(s)}
for any s, t€R. Regarding
Fi(s)Ftgis),  fals)+tg«(s)
as linear polynomials in ¢ for an arbitrarily fixed s, we have
sgn g,(s)=sgn gx(s),
fi(s) _ fos)

&i(s)  g&(s)
for any fixed s R. Hence_there exists a positive constant 2>0 such that
by=kb,,  bi=kb,,
ci=kcy, cy=kec,,
dy=kd,, di,=kd,.

Therefore <A,, A,, As, As) is simultaneously symmetrized by the similarity transformation
with
I/veE 0 0
T=| 0 1 0.
0 01
Thus the proof is complete. [

Proof of Theorem 5.1. First, use Lemma 5.2. Next, use one of Lemmas 5.3, 5.4,
5.5. Then the claim follows.

6. Matrix families with real distinct eigenvalues

In this section, we study matrix families with real distinct eigenvalues. From
Theorem 3.1, we know such a family is spanned by two matrices, say A and B. Thus
the cubic equation in A

6.1) det(—AI+£A+9B)=0

has three real distinct roots for any choice of (&, )+(0, 0).
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Let us consider how the equivalence relation between matrix families is expressed
in terms of the characteristic polynomial :

6.2) det(—AI+£A+7B).
The general form of matrix family equivalent to <A, B) is
(TN erA+cauB—co)T, T N c12A4CoeB— oo DT
where ¢;,¢32— 13¢5, #0. For this family, (6.2) becomes
det{-—(A+coé+conl+(cué+ciun)A+(caé+cen) B}

where ¢;1€30—¢12¢2,%0. The last polynomial can also be obtained from (6.2) in another
way, that is, by use of the new variables ', &, »’ determined by
A= ~+coé' +con’
(6.3) &= cué’ 4’
n= 521&,+0227]/~
So we shall use this type of change of variables to reduce the cubic polynomial (6.2).
Concerning the property of (6.2), there are two cases. In the first case, (6.2) is

reducible and can be fatorized as a polynomial in 2, & %. In the second case, (6.2) is
an irreducible cubic polynomial in 2, & 5. We begin with the first case.

Lemma 6.1. Suppose that a matrix family (A, B> has real distinct eigenvalues.
Suppose also that the cubic polynomial det(—AI+EA+nB) in 2, & 0 can be factorized.
Then there exists a matrix family <A’, B')> equivalent to (A, B) such that

det(—Al+EA+ 9B )=—{ 2+ k. EA—E—kon?}
where k, and k,>0 are real constants.
Proof. First we show (6.2) det(—AI+&A+B) is the product of a linear factor
and an irreducible quadratic one. This is the case because otherwise it would have
three linear factors and det(—A/+&A+7B)=0 as an equation in 1 would have a repeated

root for certain (&, 9)#(0, 0).
The linear factor must have the form

At+caé+tcon.
So using the new variables A’, &, »' determined by
A =24cué+con,
§&'= 3 )
7= /B
we have (6.2) is the product of 2’ and an irreducible quadratic polynomial in 4, &', 7’.

Because (2', &, 7') corresponds to a certain matrix family (A’, B’) equivalent to (A, B,
we now drop primes from 2/, &, 5’, A’, B’ for simplicity. Therefore we may assume
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(6.2) has the following form from the beginning.

(6.4) det(—AI+£A+ 7]B)=—2{12+(011$+0127])X+((]2o§2+42157]+(]22772)}

where ¢;; are certain real constants.

We now show ¢;08%+¢.:67+¢22%® on the right side of (6.4) is a negative definite
quadratic form in &, 5. First we notice that it does not vanish for any (&, %)#(0, 0)
because otherwise det(—AI4+§A+nB)=0 would have 0 as a double root for some pair
of parameters (&, 7)#(0, 0). S0 ¢20&*+¢2En+¢:n® is positive or negative definite.
Actually it must be negative definite because otherwise det(—2/+&A+7B)=0 would
have imaginary roots for the pair of parameters (&, 9)+(0, 0) satisfying ¢..6+¢..7=0.
Thus we have shown the quadratic form is negative definite.

From the results just obtained, we can introduce again new variables ', &, 3’
determined by

A=

&= CllE+c|27]

7= 021§+sz77
such that
det(—1’1+$’A+77’B)=—Z’{2’2+kl$'2’—&’2—k21)’2}
where &, and k,>0 are real constants. And this (4, &, ') corresponds to another
matrix family <A’, B’) equivalent to <A, B). The proof is now complete.

By virtue of Lemma 6.1, we may limit ourselves to study matrix familes (A4, B>
satisfying

6.5) det(—2+EA+nB)=—A A+ k EA—E—ky7?)

where k, and k,>0 are real constants. Substituting (¢, n)=(1, 0) in this equation, we
know A has a zero, a positive, a negative eigenvalues. Using a similarity transform-
ation which diagonalizes A, we may assume

0 0 0
A=|0 —a 0
0 0 1l/a
for some a>0.
Lemma 6.2. Suppose
0 0 0 b bys bys |
A=| 0 —a 0 |, B=| by by bys
0 0 la bsy bas by

where a>0 and b;; are real constants. Then

(6.5) det(—A+EA+7B)=—2—k £ +(E+kon*)A
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holds for some real constants k, and k,>0 if and only if the following 1), 2), 3), 4)
hold at once.

1) bi=bs=by=0,
2) bisbyu=abybs,
3)  bisbashai+b13beibs=0,
4)  bisbaitbashss+bishs >0.
Proof. Comparing the coefficients of &°n, 4%y and 1£% of the both sides of (6.5),
we have
b,=0,
b11Fboa+bs=0,

1 1
(a— Z)bu—'&‘bzz‘l'abaszo
which implies
b1,=bs=b4,=0.

Substituting this in (6.5) and comparing the coefficients of %> %°® and 4%* on the both
sides, we have

M_ablsbsl——‘o
a

b1zbzab31+b13b21b32=0
b12b21+bzabsz+b13b31(=k2)>0~
The converse is clear. Thus the proof is complete. [

Using Lemmas 6.1 and 6.2, we have the following proposition.

Proposition 6.3. A matrix family <A, B) has real distinct eigenvalues and the cubic
polynomial det(—AI+EA+nB)in 2, & 0 is factorizable if and only if <A, B> is equivalent
to one of the following.

00 01[0 a 1
D0 —a 0 ||la 0 B
0 0 1lal|ll =B 0

where the real constants satisfy a>0 and B*<a’+1.

0o 0 o [o0opg
2) {0 —a 0 |,|O O
0 0 1l/a 01

o = =
v
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where B and v are arbitrary real constants.

3) The transposition of 2).
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Proof. From Lemma 6.1, we may assume (6.5) is valid. Hence Lemma 6.2 is
applicable and we have b,;=b,,=bss=0. We split the situation according to

b1sba1#=0 or bisby=0.
We begin with the case bysb,;#0. From 2) of Lemma 6.2, we have
SgN bysby =sgn b3y 0.
From this and 3) of Lemma 6.2, sgnb,;——sgn b;, which means
b33 =0.
The last inequality and 2) and 4) of Lemma 6.2 show
(14a®)bysbs1=b12b214-b13bs1 > —b23bs2 =0.

Thus we have proved b12b21>0 and b13b31>0.
Using the similarity transformation with

1 0 0
V'bysbsy
T— 0 b 0 ’
Vb1sbsy
0 0 —
b1s N

if necessary, we can reduce the situation as b,,=b,,>0 and b;3=b;,>0.
positive scalar if necessary, we may further assume

bis=bs=1.
From 2) of Lemma 6.2 and b,;s=b3,>0 and a>0,

bie=b:=a.
From 3) of Lemma 6.2, there exists some S such that

bzaz,@, b32="[9-
From 4) of Lemma 6.2,
a*—pB2+1>0.

Thus we have 1) of the present proposition.
Let us go on to the case where

b12b21=a2b13b3,=0.
From this and 4) of Lemma 6.2 with
b28b82>0.

Using the similarity transformation with

Multiplying a
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10 0
T— 01 0
0 O Vb23b32
bas

and an appropriate scalar multiplication, we may assume
boy=bg=1.
From this and b,,0,,=b,3b;;=0 and 3) of Lemma 6.2, we have
bi;=b13=0 or by=by=0.
Thus we have 2) or 3) of the proposition. [
We now go on to the case where (6.2) is an irreducible cubic polynomial in 2, &, 7.

In this case, (6.1) defines a nonsingular cubic curve in RP? because it has three real
distinct roots for any fixed (&, 7)#(0, 0).

Lemma 6.4. Suppose that a matrix family <{A, B) has real distinct eigenvalues.
Suppose also that the cubic polynomial det(—AI+EA+-9B) in A, &, 0 is irreducible. Then
there exists a matrix family <A’, B’) equivalent to {A, B) such that

det(—AI+EA + B )=—2{ 2 +(k &+ kyn)A—E—kyn?t +ky7?
where ki, ks, ks and k,#0 are real constants.
Proof. First we notice that every nonsingular cubic curve in RP? has just three
real inflection points and six imaginary ones (see p 92 of van der Waerden [6] or

Prop. 14 of Brieskorn-Knérrer [1]). We denote by (4o, &, 7.) one of the real inflection
points. It is easy to see

(&0, 70)#(0, 0)

because there are no points of det(—A/+£A+79B)=0 in RP? satisfying §=7=0. And
its tangent line at the inflection point (4, &o, %,) must have the form

(6.6) X+Clé+621]:0

where ¢, and ¢, are real constants. Let us prove this fact by contradiction. We
assume the contrary, namely, that the tangent line at (4o, &o, 7o) is

7705—607]=0'
The definition of tangent lines and inflection points shows
det(—AI+EA+9B)=(n—&)Q(4, &, 9)—(2+ab+bn)

where Q(4, & 7) is a quadratic polynomial and a, b are real constants. From this,
det(—AI+&A+7B)=0 would have a triple root when (&, n)=(&, 7.)#(0, 0). This
contradiction shows the tangent line at (4, &, 7,) has the form (6.6).

Using the above Ay, &, 7o, €1, C;, We introduce new coordinates 4', &', ’ as
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A=A+cié+cay
&= &b+noy
7'= né—&.

With these coordinates, the tangent line is expressed as 2’=0 and the inflection point is
expressed as (0, 1, 0)=(0, &*+7.%, 0)= RP?. Therefore the cubic polynomial is expressed
as

“‘Z’{llz‘*‘((hl&/+(]1277,)1/+020512+(121EI77,+0227}’2} +Q337]’3

where ¢;; are real constants. Notice that g0 because otherwise the cubic polynimial
could be factorized. By virtue of the next Lemma 6.5, we also have ¢,,<0. So
introducing new coordinates of the form

=X

§"= cné'+cny’

7= 7',
we can make ¢,o=—1 and ¢,,=0. Because (4", £”, »”) corresponds to a certain family
(A”, B”) equivalent to (A, B), we have the desired result. [J

Let us prove Lemma 6.5 used in the proof of Lemma 6.4.

Lemma 6.5. Given a cubic polynomial Q(Z, &, n) in 4, &, 5 as
Q4, &, 7]):—2{22+((111$+01277)/2+(]2062+421577+(122772}+(]ss7]3

where gss#0. Suppose that Q(4, & ), as an equation in A, has three real distinct roots for
any (&, 7)#(0, 0). Then
l]zo<0.

Proof. Let v, denote the middle one of the three real roots of Q(4, 1, 0)=0. Let
also 7(€) denote that of Q(4, &, 1)=0.
We first show »,=0 by contradiction. Assume 7,#0. It is easy to see
lim@:roio.
§—too 6
So #(&) has the opposite sign according to £&—+oo. Consequently r(&)=0 for some
&= R. It means Q(4, & 1)=0 has 0 as one of its roots for such & This contradicts

Q(O; E) 1):‘]:139&0
for all é€R.

Because 7,=0 is the middle root of
Q4 1, 0)=—AA+¢1144¢20)=0,

one of the remaining roots is positive and the other negative. This means the desired
inequality
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C]zo<0-
Thus the proof is complete. [

Notice that we may assume also in the present case

0 0 0
A=|0 —a 0 (a>0)
0 0 l/a

repeating the same argument just before Lemma 6.2.

Lemma 6.6. A matrix family <A, B> spanned by

0 0 0 biy byy bis
A=l0 —a 0 (@>0), B=| by bss b
0 0 l/a b31 bsz bsa

has real distinct eigenvalues and satisfies
det(— A +EA+B)=—M 2P +(k &+ kon)A—E —kan?} + kyy®

for some real constants ki, ks, ks and k,#0 if and only if the following four conditions
hold at once.

l) bn:O »
2) b12b2y=a’b1sba,
3) bp=a’bss,

4) det{—l] +%(a—%)1A—I—B}=O has three nonzero real distinct roots including a

positive one and a negative one.

Proof. Substituting (§, 9)=(1, 0) in
6.7) det(— A +EA+nB)=— M2+ (k i+ kon)A—E—Rsn} +kn?
we get the characteristic polynomial of A. So we have

. 1
6.8) kl—a—z.

Comparing the coefficients of &%, §»* and A§n on the both sides of (6.7), we obtain
1), 2) and 3) of the lemma.

In order to obtain 4), we plot the graph of det(—2/4+£A+%B)=0 in the 4, &-plane.
Substituting =1 in (6.7) and using (6.8), we obtain

| ——%(a—-i—)l}z=%(a+%)zla+kzlz—kax—k,,
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= —det{—21+%(a—%)lA+B}»

Solving this with respect to & we have

$=l(a—%)2i[—ldet{—l+%<a—%)2A+B}]w

2 2
:%(a—é)li [%(a+%>212_ /;4 +k22—k3]1/2.

We plot det(—AI/+&A+B)=0 in the last form, taking account of the curve:
. 1 1
E—F(l):—det{—21+§(a—z>1A+B}.
Observing Fig. 4(a), (b), (¢), we obtain 4) of the lemma. [

Let the conditions in Lemma 6.6 be satisfied. Then we obtain

(6.9) biobsi#0 Or  byshyy#0
as follows. First we have
(6.10) (biz, b13)#(0, 0) and (b1, bs1)#(0, 0)

because otherwise k£,=0 would hold and contradict Lemma 6.6. Hence (6.10) and 2)
of Lemma 6.6 show (6.9). In addition, the second case in (6.9) can be reduced to the
first case b;;b;;#0. This is done by the similarity transformation with

1 00
T=0 0 1
010

FQ)

det(—AI+£A+B)=0
Fig. 4(a)
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F)

Wk
/

det(—2J+£A+B)=0
Fig. 4(b)

¢ S

)
/]

det(—AJ+6A+B)=0
Fig. 4(c)
and the replacement of a(>0) by 1/a in
{(=T'AT, T 'BT>.
From the last argument, we may assume
(6.11) b1obs #0.

Let us now reduce B by a scalar multiplication and a similarity transformation with
a diagonal T. Note that T !AT=A. Using 1), 2), 3) of Lemma 6.6, B is reduced to
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one of the following.

[0 (a+1)/2 (a®+1)/2a* |
a (a®+1)/2 (a*+1)b/2a® |,
K (a®*+1)c/2 (a®+1)/2a* |

[0 (a®+1)/2 0
0 (a®+1)/2 (a*+1)b/2a |,
_1 (a*+1)c/2 (a®+1)/2a° i

[0 (a?+1)/2 (a*+1)/2a® ]
1 0 (@®+1)b/2a% |,
1 (@*+1)c/2 0

[0 (a®+1)/2 (a’+1)/2a®
—1 0 (a®+1)b/2a® |,

| =1 (a’+1)c/2 0

[0 (a?+1)/2 0 1
0 0 (a®+1)b/2a® |,

1 (er41)/2 0 |

[0 (a?+1)/2 0 i
0 0 (a®+1)b/2a®
1 0 0

where a+0, b, ¢ are real constants. Here det B#0 because of the assumptions of
Lemma 6.6, especially k,#0. We consider each of the above cases separately, some-
times putting b=0+¢, c=0—¢ for convenience of calculation. But we write a detailed
argument only for the first one because the others can be discussed almost in the same
way.

Lemma 6.7. The matrix family <A, B) spanned by

0 0 0 0 (a?41)/2 (a?+1)/2a”
A=|0 —a 0 | B=|7 (a®+1)/2 (a?+1)0+¢)/2a®
0 0 1l/a v (a®+1)0—¢e)/2 (a*+1)/2a?

which satisfy a>0 and det B#0 has real distinct eigenvalues if and only if there exists
B#0 such that

7(0—1)

5 <min(8—g? 0),
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(5+2%—B+1)(5+,B—1)20,

52=(5+2%—ﬁ+1)(5+5—1).

Remark. In order to determine adequate parameters, we have only to do in the
following way. First determine a>0, 8+#0 and 70 arbitrarily. Next, determine &
satisfying the above two inequalities. Finally, determine ¢ by the last equality.

Proof. By virtue of Lemma 6.6, we have only to find the condition such that

1, 1

det{—21+(a—-)14+B}
—1 (a+1)/2 (a®+1)/2a?

=det| 7 (@®+1X1-2)/2 (a’+1)0+¢)/2a®
T (@+1)Xd—e)/2  (P+1X1—-2)/2a°

-1 1 1
tf v 1—20+4¢ |=0
v 0—el—121

_(a?41)
= dat de

has three nonzero roots including a positive one and a negative one. The equation in
question is simplified as following.

-1 1 1
detf 7 1—2d+¢ |=0,

(6.12) 7 d—el-2
— 228 4-(27 48" — 62— 1)+ 27(6—1)=0.

We begin with the necessity. Let 8+#0 be the middle one of the three real roots
of (6.12). Substituting 2=p and solving (6.12) with respect to ¢*, we obtain

(6.13) e2=(5+2%—ﬂ+1)<5+ﬁ—1>.

Note that the right side of (6.13) must be nonnegative. And in this case where (6.13)
holds, (6.12) is factorized as

(6.14) —(x—ﬁ){22+(ﬂ—2)z+-2—7%}=0,

Because the two roots of (6.14) other than B have the opposite signs,

(6.15) %@.
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Because 8 is the middle root of (6.14),

2r(6—1)
B--

Conversely if (6.13), (6.15) and (6.16) are satisfied for some 8+0 and r+0, (6.12) has
three nonzero roots including a positive one and a negative one. Simplifying (6.13),
(6.15), (6.16), we obtain the conclusion. [

(6.16) BrH(B—2)8+2L0 2 o,

Also, in the other cases, the same argument holds, introducing again a new
parameter 8 as the middle root of

1 1
det{—21+7<a—z)2A+B}—
So let us write down only the results omitting their proofs.

Lemma 6.8. The matrix family {A, B) spanned by

0 0 0 0 (a®+1)/2 0
A= —a 0 |, B=l0 (a®41)/2 (a®+1)0/2a*
0 0 1l/a 1 (a®41)e/2 (a?41)/2a°

which satisfy a>0 and det B+0 has real distinct eigenvalues if and only if there exists
B#0 such that

O <min(28—28%, 0),

B
_ B 284 B0
E= ﬁ5 .
Lemma 6.9. The matrix family (A, B) spanned by
0 0 0 0 (at+1)/2 (@ +1)/22°
A=|0 —a 0 | B=|1 0 (a?+1)0+¢)/2a*
0 0 1l/a 1 (a®+1)0—e)/2 0

which satisfy a>0 and det B#0 has real distinct eigenvalues if and only if there exists
B#0 such that

5 2
E<—,B ,

o+8)(3-p+5)=20
~@+)(0-p+5)-

" Lemma 6.10. The matrix family {A, B) spanned by



978 Yorimasa Oshime

0 0 0 0 (a?+1)/2 (a*+41)/2a*
A=|0 —a 0 |, B=| —1 0 (a®+1X0+¢)/2a®
0 0 1/a =1 (a®+1)d—e)/2 0

which satisfy a>0 and det B#0 has real distinct eigenvalues if and only if there exists
B+0 such that

0
_> 2’
] B
@0+8)(5-p—2)20,
B
£=@+ﬁxa—p—3).
B
Lemma 6.11. The matrix family {A, B) spanned by
0 0 0 0 (a*+1)/2 0 1
A=|0 —a 0 |, B=|0 0 (a®+1)0/2a®
0 0 1l/a 1 (a?+1)/2 0

which satisfy a>0 and det B#0 has real distinct eigenvalues if and only if 5>2—7

holds. !

Remark. Proceeding in the same way as in the proof of Lemma 6.7, we have

3 B
—g <AL 5—ﬁ+r

From this, the statement of the lemma immediately follows.

Lemma 6.12. The matrix family {A, B) spanned by

0 0 0 0 (a®+1)/2 0
A= 0 —a 0 |, B=|0 0 (a*+1)0/2a®
0 0 1l/a 1 0 0

is not real-diagonalizable for any a>0 and 0.
Proof. Clear from the fact that B is not similar to a real diagonal matrix. [
We shall summarize Lemma 6.7, ---, 6.12 not in this section, but in the next

section as a part of the summary of all the present paper.

7. Summary

In this section, we summarize all the results obtained in the present paper. For
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the sake of the completeness of this section, let us first reproduce Theorem 5.1 as
Theorem 7.1.

Theorem 7.1. Suppose a nondegenerate 3X3 matrix family {Ai, As, -+, Ar> (n=24)
is real-diagonalizable. Then it is simultaneously symmetrizable.

From Theorem 3.9, Theorem 4.7, Theorem 5.1, we have the following two
theorems.

Theorem 7.2. A uniformly real-diagonalizable 3X3 matrix family is neither simul-
taneously symmetrizable nor equivalent to any family with real distinct eigenvalues if and
only if it is equivalent to one of the following 1), 2).

100 010 0
1) ¢/0 0 0|1 0 O}| —a O O}
0 00 0 00 1
where 0<a<1 is satisfied.
1 00 0 a O 08 7
2) 0 0 O0f|]al O ||B 0 1P
000 0 0 —1 Y 10

where

! ﬂlz 7 7
), r>g(ato), 1B—BI+Ir—TI>0
are satisfied.

Therem 7.3. A 3X3 matrix family is non-uniformly real-diagonalizable if and only
if it is equivalent to one of the following 1), 17), 2), 2).

100 010
1) 0 0 0|1 0 1)
000 0 0O

1) The transposition of 1).

(10 0][0 1 0] 0 B —r
2) 000|100 1}]|gd—a 1 0 .
000[[000]] —2a 0 -1

where 0<a<1 and 7>p%/8 are satisfied.
2"y The transposition of 2).

We now summarize the results concerning 33 matrix families with real distinct
eigenvalues. Recall that each of such families is spanned by two matrices (see The-
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orem 3.1). First we reproduce Proposition 6.3 as Theorem 7.4 for the sake of com-
pleteness of this section.

Theorem 7.4. A 3X3 matrix family (A, B> has real distinct eigenvalues and the
cubic polynomial det(—Al+&A+nB) in A, &, n is factorizable if and only if <A, B) is
equivalent to one of the following 1), 2), 2').

0 0 0 0 a 1
DLKL0 —a 0 |ja 0 B
0 0 lla 1 =g 0

where the constants satisfy a>( and B*<a*+1.

0 0 o ][0 g 7
2 (0 —a 0 |00 1]
0 0 1/al|0 1 0

where B and y are arbitrary constants.

2")  The transposition of 2).
Now we summarize the results of Lemma 6.7 to 6.12.

Theorem 7.5. A 3X3 matrix family {A, B) has real distinct eigenvalues and the
cubic polynomial det(—AI+EA+9B) in A, & n is irreducible if and only if (A, B) is
equivalent to {A,, B> where

0 0 0
A= 0 —a 0 (a>0)
0 0 1/a

and B, is one of the following 1), 2), 3), 4), 5).

0 (a®+1)/2 (a®+1)/2a®
1) Be=|7 (a*+1)/2 (a®+1)0+4¢)/2a®
v (a®+1)0—e)/2 (a®+1)/2a2

where there exist B+0 and r+#0 such that

T2 <min(—p, 0),

(5+2%—,B+1)(5—i—ﬁ—1)20.

sz=<5_.|_‘2.‘§.——‘8-+1)(5+ﬁ7—1)



Strongly hyperbolic systems
are satisfied.

0 (a®4+1)/2 0
2) Be=| 0 (a®+1)/2 (a?+1)d/2a*
1 (a®*+1)e/2 (a?+1)/2a°

where there exists B+#0 such that

§<min(2;3—2/32, 0),

B
i
Bo
are satisfied.
0 (a*+1)/2 (a*+1)/2a°
3) Bo=|1 0 (a®+1)0+e)/2a?
1 (a2_+1)(5—5)/2 0

where there exists B0 such that

U 2
‘—8‘<—,B s

(5+,8)(5—,9+%);0,‘

=0 +B)(0-B+5)

are satisfied.

0 (a®+1)/2 (a®41)/2a*
4) Bey=| —1 0 (a®+1)6+¢)/2a®
—1 (a*+1)0—¢)/2 0

where there exists B#0 such that

0+B)(0—f—75)=0,

e=(0+8)(0-—2)
are satisfied.
0 (a*+1)/2 0

5) Be=| 0 0 (a®*+1)d/2a*
1 (a®41)/2 0

981
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where

27
0>

is satisfied.
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