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Canonical forms of 3x3 strongly hyperbolic
systems with real constant coefficients

By

Yorimasa OSHIME

1 .  Introduction

Consider an  m x m system of differential equations

aun au= E Aat i i  t a x ,

where u  i s  a n  m-vector a n d  Az a r e  rea l constant m  xm  m atrix coefficients. F o r
simplicity, we further assume any nontrivial linear combination o f A , is not equal to
th e  ze ro  m atrix o r  th e  identity. Otherwise, the system (1.1) can be reduced to the
one with a  smaller n. (See the  comments between Definition 2.6 and 2.7)

It was Yamaguti and K asahara [3], [7] who g a v e  th e  definition a n d  a  criterion
fo r  th e  system (1.1) to be strongly hyperbolic. Later, Strang [5 ] proved that (1.1) is
strongly hyperbolic if and only if  its initial value problem is L 2 -wellposed. However,
few attempts have been made to find out all the canonical forms of strongly hyperbolic
systems (1.1). It is perhaps because the criterion o f Yamaguti and Kasahara is stated
in  terms of the linear combinations o f  Ai , A 2 , '••  , A n  a n d  seems difficult to verify
d irectly . The only exception is  the case of m=2 (2 x 2 system s). In  fact. Strang [5]
proved that every strongly 2 x 2 system is simultaneously symmetrizable (see Definition
2.5). However, the case m 3  is much more delicate. For instance, Lax [4 ] already
gave an example of strongly hyperbolic 3x3 system which cannot be simulaneously
symmetrized. B u t ,  a s  f a r  a s  th e  author knows, no one has fully investigated the
3x3 systems.

In the present paper, we will give all the canonical forms of 3 x 3  (m=3) strongly
hyperbolic systems (1.1). T he result depends drastically on n .  If  n= 2, the systems
a re  either strictly hyperbolic (see Definition 2 .6 ) o r  simultaneously symmetrizable.
And there are eight canonical forms for the strictly hyperbolic systems. I f  n =3, the
systems cannot be strictly hyperbolic a n d  they a r e  simultaneously symmetrizable or
can be reduced to either
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w here  0<a< 1, or
1 0 0 0  a 0 0 j3 r

au 0 0 0 au + a 1 0 au p' o 0 au
at = ax, .., +ux, ax,

0 0 0 0 0 - 1 _ r' 0 0 _
where

a > 0 ,  r > -2-1 ( a + P
a

2
 ) ,  r'> 2

1 ( a + P
a

" ) ,  113 ' -pl+Ir-rl>0.

Lastly, if n all the strongly hyperbolic systems are simultaneously symmetrizable.
We will also consider a  class of systems including Petrovsky's example

1 0 0 0 1 0
au 00 0 au 1 0 1 au
at ax, + ax,

0 0 0 0 0 0 

which is non-uniformly real-diagonalizable and give their canonical forms.
All the results of this paper shall be summarized in  the  la st sec tion  in  te rm s of

matrix families.

2 .  Definitions and preliminaries

Throughout this paper, we consider only real square (actually 3x3) m atrices and
their linear combinations with real coefficients.

Definition 2.1. T h e  s e t  o f  all lin e a r  c o m b in a tio n s  A (e)=A (ei, 2 /  •  • •  en)=
E.7.1e,A, ( $ 1 /  e 2 /  •  •  •  e n E R )  of the  m  xm  m atrices A1, •••, A .  is  s a id  to  b e  the
matrix family spanned by A 1, A2, ••, A . and is denoted by <A l, A 2 ,  •  •  •  /  A.>.

D efinition 2.2. A  matrix family <A1, A2, ••• A .> is called real-diagonalizable if
fo r  every  A ( $ ) E < A l y  A 2 /  •  •  •  /  A .>, th e re  ex is ts  a  nonsingular matrix S ( )  (called a
diagonalizer) such that

S ()-'.A ($)S ()
is  a  real diagonal matrix.

D efinition 2.3. A  matrix family < A 1 ,  A 2 /  •  •  •  /  A .> is called uniformly real-diagonal-
izable if  it is real-diagonalizable and there is a diagonalizer S($) such that

S(E)II , S (Y  'Il c o n s t

w h e n  e  ru n s  o v e r  R .  S im i la r ly ,  a  matrix family is called non-uniformly real-
diagonalizable if  there are no bounded diagonalizers.

W e state here the most fundamental theorem concerning the equation (1.1).

Theorem 2.4 (Yamaguti-Kasahara [7]). Equation (1.1) is strongly  hy perbolic if
and only if the m atrix  fam ily  <A1, A 2 /  •  •  A .> is uniform ly  real-diagonalizable.
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Rem ark. A s mentioned in Introduction, for constant-coefficient equations, strong
hyperbolicity is  e q u iv a le n t  to  L 2 -wellposedness. For the proof of Theorem 2.4, see
Yamaguti-Kasahara [7], Kasahara-Yamaguti [3] (B - -theory), or Strang [5] (L 2-theory).

W e n o w  re fe r to  tw o  im portant subclasses o f  t h e  uniform ly real-diagonalizable
matrix families.

Definition 2.5. A  m atrix  fam ily  < A 1 ,  A 2 ,  •  ,  A n >  is called simultaneously symme-
trizable if  there  exists a  nonsingular m atrix T  s u c h  th a t  a l l  T - 1  A ,T  (  j =1 , 2, ,  n )
a re  sim ultaneously  sym m etric . In  addition, E quation (1.1) w ith  s u c h  A , is called
simultaneously symmetrizable.

Definition 2.6. A  m a trix  fa m ily  < A 1 ,  A 2 ,  •  • •  A n >  i s  s a id  t o  have  r e a l  distinct
eigenvalues i f  e v e ry  A (e)E <A ,, A 2 ,  • • ,  A .> w i t h  *0  has rea l distinct eigenvalues.
In addition, Equation (1.1) w ith  such  A , is called a  s tr ic tly  (o r  regularly) hyperbolic
system.

L e t  u s  now  consider w hat equ iva lence  relation should be introduced for matrix
fam ilie s . I t is  e a sy  to  see  the  following three operations <A 1 , •••  , A „>-1<B 1, ••• , B .•>
do n o t affect the real-diagonalizabilty (uniform or not) of matrix families.

a) Change of basis.

B , =m 1 1 A i+m 12 A 2+ • • +m ,„ A „

B 2  —m2, A l + M 2 2  A 2 +  4 - M 2 n  An

B. n = m 1 A 1 d - in n 2 A 2 +  • • •  ± m A n

where M =( m )  is  a  nonsingular real n  x n  matrix.
b) Addition of  scalar multiples of identity.

B 2 = A 2 +p21

13.  n =A .  n +p .n 1

w here / is  the  identity  m atrix  and p i (1.<i n) are reals.
c )  Sim ilarity  transformation.

131 = T ' A , T

B , 212T

„T

w here T  is  a  nonsingular m x m real m atrix arbitrarily fixed.
It is perhaps w orth  noting how  the above three operations transform  the original

differential equation (1.1). F irs t, a) corresponds to  the change of space variables :

( i"  2 2 , •••  , i'n ) T =M ( x i ,  x 2 ,  • - •  ,  x jr.
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Second, b) corresponds to  the  change of time-space variables of the  type :

N ote th a t if  some space variables disappear from (1.1) by  these  opera tions, they  can
be regarded as  param eters for the  so lu tion  of the  reduced equa tion . F ina lly , c) corre-
sponds to the change of unknowns :

(
2 17 1172, f ig t )T - = T  1(1 1 1 , U 2 > > U n t ) T •

Combining the  above operations a), b) and c), we are led to the following definition.

Definition 2.7. M atrix  fam ilies <A1 , A2, ••• , A .> and <B 1 ,  B 2 ,  •  • •  B . , > a re  called
equivalent i f  there  ex ist a  nonsingular m atrix T  and tt ., R  ( j= 1 , 1 ,  • • ,  n )  such that

— T-1A2T — p 2 I, • •• ,

= < B „ B 2 ,  • • •  B . , >

A nd w e denote th e  equivalence relation by

<A,, A 2 , •••, B 2 ,  •  •  ,  B . , >.

Rem ark. Note th a t i f  o n e  o f  th e  equivalent m atrix  fam ilies is sim ultaneously
symmetrizable then  the  others a re  also simultaneously symmetrizable.

B y using th e  above operations a) and  b), it is easy  to  see  that any  m atrix  fam ily
is equivalent to  som e <131, ••• , B .> w here Bi, B2, ••• , B . a re  linearly independent and
none of their nonzero linear com binations is equal to any scalar m u ltip le  o f  identity.
L et us define a  w ord indicating this property fo r  later convenience.

Definition 2.8. A  m a tr ix  f a m ily  <A ly  A 2 >  •  ••  A n >  i s  c a l l e d  nondegenerate if
I, A i , A 2 ,  • A n  a re  linearly independent over reals.

N o te  t h a t  t h e  definitions i n  th is  section are valid for the square m atrices of an
arbitrary  size , th o u g h  w e  lim it o u rse lv e s  to  s tu d y  3 x 3  m a tr ix  fa m ilie s  w h ic h  are
uniformly or non-uniformly real-diagonalizable. A nd w e  sh a ll trea t th e  problem purely
as th e  o ne  in  th e  m atrix  theory and sh a ll n o t re fe r  to  th e  differential equation (1.1)
any  more.

3 .  Matrix families with multiple eigenvalues

W e  s tu d y  f ir s t  t h e  real-diagonalizable m atrix  fam ily  <A i , A2 ,  • • ,  A .> such that
A(e) has a m ultiple eigenvalue fo r some a n d  s tu d y  la te r  m a trix  fam ilie s  w ith
r e a l  d is tin c t eigenvalues. H o w e v e r , w e  h a d  b e t te r  c i t e  t h e  fo llo w in g  re su lt of
Friedland, Robbin and Sylvester a t  th is  stage.

Theorem 3.1. Let A , B , C  be arbitrary  real 3x3  m atrices. T hen it is im possible
that <A, B , C >  has real distinct e ig en v a lu e s .
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F o r  th e  proof, see Friedland-Robbin-Sylvester [2] where these authors treat the
problem for square matrices of arbitrary size.

Let us tu rn  to  the matrix families with multiple eigenvalues. For such a  family
<211 , A 2 , ••, A n >, changing th e  basis if necessary, we may assume A 1 h a s  a multiple
eigenvalue. If this multiple eigenvalue is triple, the 3 x 3  m a tr ix  A , must be a  scalar
multiple of identity and we m ay ignore it (see Definition 2.7). So we may assume A i

h a s  a  doub le  e igenva lue . B y  u se  o f the  similarity transformation diagonalizing A,
and the addition of an appropriate scalar multiple of identity, we have

<A,, A 2 ,

, , , <B 1 -=,

•••

1
0
0

An>

0 0
0 0
0 0

, B2, B3, ••• , Bn>

with certain B 2 , B 3 , ••• , B .  W e now  reduce  B 2 b y  the similarity transformation with

1  0  0
T = 0

0 1

where U  is a  nonsingular 2x2 m atrix. Note that this type of similarity transformation
leaves B, invariant and reduces the right-lower submatrix o f  B 2 t o  one of the follow-
ing canonical forms.

[ a  0 1  ra  0 1  [ a  11 a  131
[ 0  a Y [ 0  P I_ 0 a l  [ —,8 a [•

By use of th is sim ilarity  transformation, <A 1, A 2 , A n> a n d  <B„ B 2 ,  • • •  B n >  are
equivalent to one of the following.

<
1 0 0 
0 0 0
0 0 0

1 0 0

0 b, b2

, b, 0 0
b, 0 0

0 b, b2
< 0 0 0 , b, 1 0

0 0 0 b , 0 —1

1 0 0 0b 1b 2
< 0 0 0 , b, 0 1

0 0 0 b, 0 0

1 0 0 0 b, b2
< 0 0 0 , b30 1 • ••>

0 0 0 b, —1 0
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where 1)2 , b 2 , b 3 , b, are certain real constants.
Let us consider each case separately, first for familes spanned by two matrices.

Proposition 3.2. The m atrix

A =

fam ily

1 0 0
0 0 0
0 0 0

<A,

,

B> spanned

0b 1b 2
b ,  0 0
b, 0 0

by

#0

is  real-diagonalizable if  and only  if

b1 b3 -Fb2 b4 >0.

Proof .

(3.1)

It suffices to find out under what

CA-FB=

condition

b11)2
b, 0 0
b, 0 0

-
is similar to a  rea l diagonal m atrix  fo r  a n y  e e R .  T h e  characteristic equation of
eA ± B  turns out to be

det(-11-FeA±B)=0,
(3.2)

—2(A2 —e2—b 1 b3 - 1 4 4 )=0.

W e split the case into three; bib,+b z b ,>, = , <O . W hen b1b3 ±b2b4>0, (3.2) has three
real distinct roots (zero, positive, negative) for any C R and (3.1) is similar to a  real
diagonal matrix. W h e n  b1l3±b2b4<0, (3.2) has im aginary  roots for When
bi b3 +6 2 b4 =0 , (3.2) with e= 0 has 0 a s  a  t r ip le  ro o t b u t  0A + B # 0 is not sim ilar to
the zero m atrix . T hus w e have completed the proof.

Proposition 3.3. Let the

A =

m atrix  fam ily

1 0 0
0 0 0
0 0 0

B =

<A, B> spanned

0 b1b 2

b, 0 0
b40 0

by

#0

be real-diagonalizable. Then it is sim ultaneously

r1 0 0

symmetrized by

0 1 0 

som e T  as follows.

0 0 T - V 3T =a 1 0 0T - 'A T =L  0
0 0 0 0 0 0

where a  is som e real constant.

P ro o f .  From Proposition 3.2, w e have

b1b3 -1-b2b4 >0.
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Setting
a= Vb1b3+b2b4

1 0 0
0  bs la — b2/a
0  64 1 a b i la

we obtain the conclusion ,

Proposition 3.4. The m atrix  fam ily  <A, B> spanned by

1 0 0 0 b1 b2
A = 0 0 0 , B = b3 1 0

0 0 0 b4 0 — 1

is real-diagonalizable if  and only if

sgn sgn 1)3 a n d  sgn b 2 -= sgn b4

P ro o f . It suffices to find o u t under what condition

b2
(3.3) M - E - B = b ,  1  0

b4 0  --I

is similar to a  real diagonal matrix fo r any e E R .  Now th e  characteristic equation of
eA +B  turns o u t to be

det(-21+eA+B)=0,
(3.4)

(e 2)(2 2 - 1 )+ bib3(2-1- 1)+ b2 b4(2 —I)= .

First we consider the  case when bi b3 * 0  and  b2b4
-# 0 . In  this case, (3.4) has never

a s  roots, its graph in  2, e-plane is  th e  same a s  that of

(3.5) 14 . 3b 2 1 2 4  e = 2  2 -1  2 + 1

L et us p lo t the  graph o f (3.4) in  th e  form o f (3.5), noticing (3 .4 ) has at most three
real roots (counting their multiplicity) fo r each fixed C. F ro m  F ig . 1.(a), (b), (c), (d),
we have the  following. I f  61 63 >0 a n d  Nb4 > 0  then (3 .3) with any C R  has three
real distinct eigenvalues and  is similar to a  real diagonal m atrix . I f  b1 b3 <0 o r  b2N<0
then (3.3) with som e m  R h as ju st o n e  rea l eigenvalue a n d  two imaginary ones.
Thus the proposition is proved when b1 b3 * 0  and  b2b4 #0 hold at once.

Each o f remaining two cases is much simpler because (3.4) has a lw ays 1  o r  —1
as a root when b1 b3 =0 o r  62 b4 =0  respectively. This root islrepeated w hen =—b2 1)4 /2+1
(resp. e=b 1 b3 /2 -1 )  and corresponding eigenspace o f (3.3) is  2-dimensional i f  bi =b 3 =-- 0
(resp. b2=b4=0) a n d  1-dimensional i f  b1 #0 or ba #0 (resp. b 2 #0 o r  1)4 # 0 ) . This and

T =
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E

A

(a) b1 b3 >0, b 2 b4 >0. (b) b1 b3 >0, b 2 b4 <0.

(c) b 1 b3 <0, b 2 b4 >0. (d) b1 b3 <0, b2 b4 <0.
Fig . 1.

the following facts complete the proof of the proposition. If one of 14 3 a n d  b2b4 is
zero and the other negative, then (3.4) has just one real root and two imaginary ones
for some EER. 0

Proposition 3 .5 .  Let the m atrix  fam ily  <A, B> spanned by

1  0  0 0  b, b3
A =  0  0  0

0  0  0
, B = bs 1 0

b4 0 —1
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be real-diagonalizable. Then it is simultaneously symmetrized by some T  as follows.

1 0 0 0 a te
T A T = 0 0 0 , T 'B  7 . =-- a 1 0

0 0 0 p  o —1

where a, 18 are some real constants.

P ro o f . From Proposition 3.4, w e have

sgn bi -= sgn 1)3 a n d  sgn b2=sgh b4.
Setting

a =  Vb,b 3 , 13=Vb2b4,
=-- a/b i( i f  b1b3 >0),

=1 (if b1 =b 3 =0),

r=g/ 62 (if b2 b4 >0),

1 (if b2 =b 4 , --- 0),

1 0 0
T =  0  u  0

0 0 v

w e have the desired  resu lt. 1=1

Proposition 3.6. The m atrix  fam ily  <A, B> spanned by

1 0 0 0 bs b2
A= 0 0 0 , B = bs0 1

0 0 0- b4 0- 0 -

is  real-diagonalizable if and only if one of the following holds.

1) b1b2>0 and b 4 =0.

2) b2 b4 > ( )  a n d  1)1 =0.

P ro o f . It suffices to find out under what condition

(3.6) eA +B =

    

is similar to a  real-diagonal matrix for any E E R . Now the characteristic equation of
ell-1-B turns out to be

det( —11+ B)=0 ,
(3.7)

22( --.2)+ (b1b3-Fb2b4)2+ b3b4-=0.
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We first consider the case b1b4 0. In this case, the graph  o f (3.7) in  A, e-plane is
the same as that of

b1b3+b2b4  
+  

b1b4 (3.8) e=2 A' .

From  Fig. 2.(a), (b), w e  ob ta in  tha t for some e, (3.8), namely (3.7) has just one real
root and two imaginary ones.

Let us go on to  the case b1b4 = 0 .  In this case (3.7) turns to be

(3.9) —2(22—e2—b1b3—b2b4)=0 .

S o  i f  b2 b4 -=0 and b1b3H-b2b4>0 then  M d-B fo r a n y  e R  h a s  th re e  re a l distinct
eigenvalues (zero, positive, negative) and is  s im ila r  to  a  real diagonal m a tr ix . If
b1b4 = 0  and  b1b3±b2b4<0 th e n  0A+B (i. e., e = 0 )  h a s  im a g in a ry  e ig e n v a lu e s . If
b1 b4 = 0  and b1b3 ±b 2 b4 = 0  then B=0A-F-B has 0 as a triple eigenvalue but is not similar
to  the zero matrix.

We have proved <A, B> is real-diagonalizable if and only if

b1b4 = 0  a n d  b1b3 +b 3 b4 >0.

From this, the conclusion follow s. D

Proposition 3.7. The following holds.
1 ) Let b1b3 > 0 . Then

_
1 0 0 0 b 1 b 2 1 0 0 0 1 0

< 0 0 0 b30 1 >--< 0 0 0 1 0 1 >
0 0 0 0 0 0 0 0 0 0 0 0

(a) b1 b4 >0. (b)
Fig. 2.
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2) Let b2 b4 >0. Then

1 0 0 0 0 b2 1 0 0 0 1 0 
< 0 0 0 , b, 0 1 >,--< 0 0 0 , 1 0 0 >

0 0 0
-

b,
-

0 0
-

0 0
-

0 0 1 0 

And both matrix families are non-uniformly real-diagonalizable.

Proof. We begin with 1). Setting

a=

T =
0

1/a
0

—b2/b3

V b ,

11b,
0
0 0 1

we obtain

1 0 0 - 0 0 -
0 0 O T = O 0 0
0 0 0 0

0 b1 b2 0 10 -

T b, 0 1 T =a 1 0 1

0 0 0 0 0 0

The case of 2) can be reduced to the  transposition o f 1) because

1 00 1 0
-

0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 = 0 0 0 
0 1 0 0 0 0 0 1 0 0 0 0 

„ -
J. 0 0 0 0 b3 1 0 0 0 b20
0 0 1 b3 0 1 0 0 1 b40 0
0 1 0 b, 0 0 0 1 0 b, 1 0

To end the proof, we have only to show the real-diagonalizabilty of

1 0 0 0 1 0 -
4 0 0 0  + 1 0 1  E R )

0 0 0 0 0 0 

is not uniform . For this purpose, it suffices to calculate its three eigenvectors and
construct a  diagonalizer. See Kasahara-Yamaguti [3] for detail. E

Proposition 3 .8 .  Given a m atrix  fam ily  <A, B > spanned by
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1 0 0 0 b1 b2
A = 0 0 0 B = b3 0 1

0 0 0 b, — 1 0

where b1, b2, b3, b, are arbitrary  real constants. Then <A, B> is not real-diagonalizable.

Proof. It is sufficient to prove, for e large enough,

Cb , b,
(3.10) $A +B = b, 0 1

b, — 1 0

has imaginary eigenvalues. Now the characteristic equation of eA -I-B turns out to be

det(-21H-eAd-B)=0,
(3.11)

(22 4-1) ( e— 2)±(bib,±62b4)2±bib4—b,b3=0

The graph of (3.11) in 2, C-plane is clearly the same as tha t of

(b i b,±b 2 b4 )-kb i b,—b2 b3(3.12) e =2 22+1

It is easy to see from  Fig. 3, (3.11) has just one re a l ro o t and two imaginary ones
when e  is  large en o u g h . 0

Combining the results obtained in this section, w e have thelfollowing theorem.

Theorem 3 .9 . Let <A , B > be a nondegenerate 3x3 m atrix  fam ily . T hen the follow-
ing holds.

Fig. 3.
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1) Suppose that <A, B> has multiple eigenvalues and is uniformly real-diagonalizable.
Then <A, B> is simultaneously symmetrizable.

2) S uppose that <A, B> is non-uniformly real-diagonalizable (consequently, <A, B>
must have multiple eigenvalues). Then <A, B> is equivalent to either

1 0 0 0 1 0
< 0 0 0 , 1 0 1 >

0 0 0 0 0 0

or its transposition

     

1  0 0
<  0  0  0

0 0 0

 

0 1 0
1 0 0
0 1 0

>.

     

4. Real-diagonalizable families spanned by three matrices

In this section, w e  s tu d y  nondegenerate real-diagonalizable families spanned by
th ree  m atrices. From Theorem 3.1, such a  family, say <A, B, C>, contains a certain
member which has a double eigenvalue (recall that the nondegenerate <A , B, C> does
not contain I). Therefore

<A, B, C>--<
1 0  0
0  0  0  B', C'>
0 0 0

  

the propositions in Section 3, we maywhere B', C' are appropriate m atrices. From
specify B' as one of the following.

•0  1  0 0 b, b ,
1 0 0 ,   b ,  1 0
O. 0  0 b , 0 —1

- -

0 1 0
, 1 0 1

0  0  0

We begin with the first two cases, when every member o f  th e  m atrix  fam ily  has a
right-lower 2X2 submatrix sim ila r to  a  re a l d iag o n a l o n e . Changing the basis if
necessary, such a  matrix family must be equivalent to one of the following.

1 0 0 
_-

0 1 0 0 Cl C2

(4.1) < 0 0 0 1 0 0 C3 0 O >
0 0 0 0 0 0 C4 0 0

1 0 0 0 b, b2 0 C1 C2

(4.2) < 0 0 0 , b, 1 0 C3 0 0 >,
0 0 0 b20 —1 C4 0 0



1  0  O-

A =  0  0  0
0 0 0

_
0  1  0 0  c i  c 2 _-
1  0  0  ,  C = c s 0  0
0  0  0 c ,  0  0

, B =

1 0  0
<  0  0  0

0 0 0

0 1 0 0  a  1
—a 0  0  >

1 0 0
1 0 0

0 0 0
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1 0  0 0  a  p  -  0  a  b
(4.3) <  0  0  0  , a l 0 , c O e >

0  0  0 13 0  — 1 d  f  0

w h e re  e f > 0 .  T h e  p ro p e rty  e f >0  o f  (4 .3) is  d e r iv e d  a s  follows. Because every
member of (4.3) m ust have a right-lower 2 x 2  m atrix  sim ilar to  a  r e a l  diagonal one,
e = f = 0  o r  e f > 0 .  B u t (4 .3 ) is  r e d u c e d  to  (4.2) if  e = f = 0 .  Let us further reduce
(4.3). B y use of the sim ilarity transformation with

1 0 0
T = 0 + 1  0

0 0 e
(4.3) is equivalent to

1 0  0 0 b i

(4.3') <  0  0  0 b3 1 0
0  0  0 64 0  — 1

Let us trea t (4.1), (4.2), (4.3') separately.

0 C I  C2

C 3  0 1 >
C 4  1 0

Proposition 4.1. The nondegenerate m atrix  fam ily  <A, B , C> spanned by

is real-diagonalizable if and only if

<A, B,
1 0 0
0 0 0
0 0 0

0  1  0
1 0 0
0 0 0

0 a  1
, —a 0  0  >

1 0 0

    

where 0<a<1 is satisf ied. And in this case, <A, B, C> is uniformly real-diagonalizable.

Rem ark. The m atrix fam ily in the proposition

is not simultaneously symmetrizable when 0< a< 1 as w ill be proved in  th e  following
Lemma 4.2.

P ro o f . It is easy to  see

<A, B, C>=<
1  0  0 0  1  0
0 0 0 , 1 0 0
0 0 0 0 0 0

0 C  C2

- C 0 >
C4 0 O ]

  



1 0
O (7 —a)/ç —C/v
0 CRD (72+aC)/w

1 o o
0 1 0
0 0 1

s(n, C)=-

S(0, 0)=1=

f o r  (72, C)*(0, 0),
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for some c E R .  Applying Proposition 3.2 to  the real-diagonalizable subfamily

1 0
-

0
 - 

0 C C2

< o 0 C O O >
0 0 0 _ C4 0 0

w e have

(4.4) c2c4>c2 0.

Using the similarity transformation with

1 0 0 -
T = 0  + 1  0

0 0  V c 4 / c 2
we obtain

1 0 0 1 0
 _

0 a 1
(4.5) <A, B, C>--< 0 O 0 , 1 0 0 , —a 0 0 >

0 0 0 _ _0 0 0 1 0 0

w h e re  0 a < 1 . The last inequality follows from (4.4) because a is determined by

Ici a= = = .-v c2c4

Let us now prove the  right side family o f (4 .5 ) is uniformly real-diagonalizable.
We set

qr--so(n, 0—En2 +(1—a2 )C91 1 2

Thus we obtain the uniformity of S(72, C) and S(72, CY' as well as

S(72, CY' { eA+72B+CC}S(72, C),

c('2, C) 0 -
so(n, c) o o

o o o

  

Thus eA+72B+CC is uniformly symmetrized. Therefore <A, B, C> is uniformly real-
diagonalizable.

Lemma 4.2. The m atrix  fam ily  <A, B, C> spanned by
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A =
1
0
0

0
0
0

0
0
0

, B=

Yorimasa

0 1 0
1 0 0
0 0 0

Oshime

C=
0

—a
1

a 1
0 0
0 0

(a#0)

is not simultaneously symmetrizable.

P ro o f . In order to prove the lemma by contradiction, w e assume there  exists T
such that

T " A T  ,  T 'B T  ,  T " C T

are simultaneously symmetric. So we can diagonalize r i A T  by an orthogonal 0  as
follows.

1 0 0 •

0 - 'T 'A T  0 = 0 0 0 =A .
0 0 0 

This m eans A  and T O  commute. Hence replacing T O  by its appropriate scalar
multiple if necessary, we may conclude it has the following form.

TO==
1 0 0
0  a  b
0  c .  d

(ad—be #0).

   

We set another orthogonal m atrix 0 1 .

1 0 0

a —b0   Va 2 -1-b2 V a 2 +6 2

a 0  A/a2 -1-62 V a 2 -1-62

Then T 1 = T00, has the following form.

1 0 0
0  a '  0
0  c ' d'

where a '> 0, c', d ' are certain real constants. Because

TV B T 1 = (0 0 0 - 7 - 1 BT(001)

is symmetric, its (2, 1)- and (1, 2)-entries are equal and so are its (3, 1)- and (1, 3)-entries ;

1/a'=a'>0

—e'/a'd'=0.

From this we have a'=--1 and c '= 0, tha t is , T 1 h a s  the following form ;

0 1 =

T 1 =
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1 0  0  -
T 1 =  0  1  0

0  0  d'
On the other hand,

T j ' C T 1 =(0 0 1 ) - 1 T 'C  T (0  0 ,)

must also be symmetric. However, its (2, 1)- and (1, 2)-entries are not equal because
they  a r e  a  a n d  — a  respectively (recall that a * 0  by assumption). W e are thus led
to  a contradiction.

Proposition 4.3. The nondegenerate m atrix  fam ily  <A, B, C> spanned by

1 0 0 0 b, b2 0 CI C2

A = 0 0 0 , B= 1 0 , C= ca 0 0 *0
0 0 0 b, 0 —1 c, 0 0

is real-diagonalizable if and only  if <A, B, C> is simultaneously symmetrizable.

Proof. W ith any fixed sER,

1 0 0 0 bid-cis b2±c 2 s -

<A, B-HC>=< 0 0 0 b3 d-c 3 s 1 0 >
0 0 0 b4 -}-c4s 0 —1

is  real-diagonalizable. So, from Proposition 3.4,

sgn(6 2 4-c3 s)=sgn(b 1 4-c 1 s),
(4.6)

sgn(b4+c4s)=sgn(62+c2s)

for any s E R . Notice that two linear polynomials have always the sam e sign if and
only if one of them is a positive multiple of the o ther. F rom  th is fac t and (4.6), there
exist positive constants k ,>0 and k 2 >0 such that

b,=k i bi , c3=k1c1,

b4 =k 2 b2 , C 4 -  k 2C2 •

This means <A, B, C> is simultaneously symmetrizable by the similarity transformation
with

1 0 0
T =  0  vk—, 0

0 0  v E 2

Thus the proof is complete.

Proposition 4.4. The nondegenerate m atrix  fam ily  <A, B, C> spanned by
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1 0 0 0 bi b, 0 cl C2

A = 0 0 0 B = b31 0 , C= c 3 0 1
0 0 0 b4 0 —1 c4 1 0

-
is  real-diagonalizable if  and only if  <A , B , C> is either simultaneously symmetrizable or

-
[1 0 0 0 a 0 0 p r

<A, B, 0 0 O , a 1 0 p' 0 1 >
0 0 0 0 0 —1 _ _ r 1 o

where
1 pz

a > 0 ,  r>--
( 
a+ r'> 1

l ; 2)•
) .a 2 

A lso in the second case, <A, B , C> is uniformly real-diagonalizable.

Rem ark. The matrix family in the proposition

1 0 0 0 a 0 0 18 7
< O 0 0 , a 1 0 , 18' 0 1 >

0 0 0 () 0 —1 7' 1 0
with

a>0,

is not simultaneously symmetrizable

P2 P
t:T>--(a+ ) r> 2

1 (a+ ) .

i n  Lemma

2 a

when (p', r)*(p, r) as will be proved
4.5.

Proof. Let us begin with the  necessity. For any fixed sE R , the  subfamily

<A, (s 2 -1)B +2sC>

1 00 - 0 b1(s2 —1)-1-2c i s  b2(s 2 —1)-1-2c2 s
(4.7)

=< 0 0 0 b3 (s 2 -1)-1-2c 3 s s2-1 2s
0 0 0 b4 (s 2 -1 )+2c 4 s 2s --(s 2 -1 )

is also real-diagonalizable. Using the similarity transformation with

1 0 0
T = 0 s —1

0 1 s

we know that (4.7) is equivalent to
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0 f i(s) f 2(s)
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>s 2 + 1 0

0— ( s °+1)

- -1 0  0
< 0  0  0  ,

0 0 0

where
-

f 1(s)-=(s 2 —1)(b is+ b2)+2s(c is+ c2),

f 2(s)=-(s 2 -1)(b2s—bi)+2s(c2s— ci),
(4.8)

f 3(s)=(s 2 -1)(b3s+b4)+2s(c3s-i-c4),

fi(s)-=(sz —1)(b4s —1)3)±2s(c4s — c 3 ) .

From Proposition 3.4,

(4.9) sgn f i (s)=sgn f 2( s )  a n d  sgn f2(s)=sgn f 4 (5).

These equalities hold f o r  a n y  sE R  ( re c a ll th a t  w e  h a v e  chosen s  arbitrarily).
Especially, th e  cubic equations f 2(s)=0 and f A(s)=0 have the same real roots one of
which we denote by s o. So, using the similarity transformation with

-

1 0 0
T = 0 so— 1

0 1 so
w e have

<A, B, C>

, <A, (s o ° —1)B-I-2s o C, —2s o B +(s 0
2 —1)C>

1 0 0 -
_
0 * 0 0 * *

--,< 0 0 0 * so
2 +1 0 * 0 s0

2 +1 >
0 0 0 0 0 —(50

2 +1) _ * 502 +1 0
_

1 0 0 0 * 0 0 * *
= < 0 0 0 * 1 0 , * 0 1 >

0 0 0 0 0 —1 * 1 0
- -

where each * stands for a certain real constant.
From the result just obtained, we may assume 62 =1)4 =0 in  B  from the beginning.

And (4.8) is reduced to
f. i(s)= s(b1s2 +2c Ls —bi -I-2c o ) ,

f 2(s)=(—bi-E2c2).s 2 —2c i s + b i ,

f o(s)=s(bos 2 +2cos—b3+2c4),

f 4 (s)=-(—b o -1-2c4 )s2 -2c o s-1-1)3.

,
_
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From  (4.9), w e  have
sgn{(-61+2c2)s2-2e1s+k1}

(4.10)
=sgn{(—b3+2c4).32-2e3s+b31

for an y  s E R .  There are only  tw o cases. In the f i r s t  case, th e re  e x is ts  a positive
constant k> 0  such that

(—b1±2c4)s 2 -2e3s+b3==-4{(—bi+2c2)s 2 -2c1s-i-bi}
which means

13 =kb 1 , c 3 =ke 1 , c 4 = kc 2 .

Therefore <A, B, C> can be sym m etrized by the similarity transformation with
-

1/ V k  0  0
T =  0 1  0

00 1

Let us go on to  the other case w here (4.10) h o ld s . In th is  case,

(--b 3 ±2c 4 )s 2 - 2 c 3 s+h 3

have the same constant sign  and they  do not vanish for a n y  s E R .  T hus w e  have

(4.11) c12<b1(-61+2e2),

c32 <b3( - 63+2e4)•
W e set

a-=Vbib3
-

- +Vb 1 /b3 0  0
T= 01 0

00 1
-

w here the s ig n  +  is taken appropriately. W ith  th is T  and (4.11),

1 0 0 - O a 0  - O j S ï

T - IAT= 0 0 0 , T - 1 B T = a l 0 , T - 'C T = 0 1

0 0 0 0 0 —1 7' 1 0

w here the constants a, p , p ', 7 , 7 ' satisfy

(4.12) a > 0 ,  74 - (a+  A  ) ,  r> 2
1 (a+ ex

'2 )
•

a

In order to complete the proof, w e have only to prove the uniform real-diagonali-
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>
0 0 0 0 0 —1 7' 1 0

with (4.12). Let us symmetrize

1 0 0 0  a 0 0jS r
M(e, 72, o o o + (2 _ 2 ) a 1 0 +272c 43' 0 1

0 0 0 0 0 —1 r, 1 o

a(2 2_ c2)+ 2 pnc 27,77c
a()72_.C2)+2/nC n2_C2 27/C

2r, 72c 2nc _ 722+C2

Notice that (.)2 , ) 2 _ 2  anC) maps R 2 on to  R 2 because

(H-CV - 1)2 = )22 —C2 +277CV- 1.
We set

V(72, C)=

1 0 0

0 —11
v e +c 2 v e_f_c2

o V 722.+C2 v 7) 2±C2

1

w(y, C)=
6 2± 2 P' 72C+(2 r — a) 2  11 ' 2

L an2 +2P72C4-(27-67)C2

0

(2r—a)722-21SinCH-ac2 11/2
L (27— a)722 - 2PnC+4 2

for (72, c)#(o, 0) and
1  0  0

V(0, 0)=W(0, 0)=/= 0 1 0
0 0 1

We set also
S(n, C ) = V ( 7 ,  OW(72, C).

Thus we obtain the symmetricity of

S(n, () - 1 M(e, C)s(v, C)
as well as the uniformity o f  S(72, C) and S(72, Cyi. Because M(e, 72, c) is uniformly
symmetrized, it can be uniformly real-diagonalizable. The proof is complete.
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Lemma 4.5. Let the m atrix  fam ily  <A, B , C> be spanned by

1  0  0 — 0 a 0  - 0 p r -

A = 0 0 0 B = a l 0 , C= o 1
o 0 0 0 0 —1 r' 1 0

w here a>0 and (43% 7/ )*(13, 7). Then <A, B , C> is not simultaneously symmetrizable.

P ro o f .  In order to  prove th e  le m m a  b y  contradiction, w e  assum e there  ex ists
T , such that

T1-1CTi

a r e  sim ultaneously  sym m etric . T h e  sam e procedure a s  in  th e  proof of Lemma 4.2
shows tha t w e m ay  assume T , has the following form.

1 0  0
T i =  0  1  0

0  0  d'

Because the (3, 2)- and (2, 3)-entries of T 1 C T , are equal, w e have

1 /d '=d '.

From  this w e obtain d '=+1 , th a t  is , T , must actually have the following form.

1 0 0
T , =  0  1  0

0  0  + 1

W ith  th is T ,, however, T i - iC  T , is not symmetric because of (/31 , r ')* ( i  r ) .  W e are
thus led  to  a  contadiction. D

Let us now  w ork o n  th e  la s t  ty p e  o f  real-diagonalizable fam ilies m entioned at
the beginning of th is  section, namely,

(4.13) <
1
0
0

0
0
0

0
0
0

0 1 0
, 1 0 1

0 0 0 
C>

w ith som e m atrix  C  o r its transposed fam ily . W e shall consider only  (4.13) without
loss of generality . C hanging the basis if necessary, we m ay assume (4.13) is expressed
as follows.

1 0 0 0 1 0 0 CI c2

(4.14) < 0 0 0 , 1 0 1 , c3 c4 0 >
0 0 0 0 0 0 C5 C6 C4

w here el, c2, c3, e4, es ,  c6 are certain  real constants.
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Proposition 4.6. The nond egen era te m atrix  fam ily  <A, B, C> spanned by
_

1 0 0 0 1 0 Cl C2

A= 0 0 0 , B= 1 0 1 , C= C3 C4 0
0 0 0 0 0 0 C5 C6 - C4

is (non-uniformly) rea l-d iagonalizable if and only i f  C  is a scalar multiple of

0 A  - 7
fi(1— a) 1 0

— 2 a  0  — 1

where 0<a<1, 1>,82/8 are satisfied.

Proof. Taking an arbitrary sE R , the subfamily
-  -

1 0 0 0 S + C l C2

<A , sB-FC>=< 0 0 0 , S ± C 3 C4

0 0 0 C5 C6 - C 4

is also real-diagonalizable. From Propositions 3.2, • , 3.8, the 2x2 submatrix

[ C4 S

C 6  - C4

must have only real eigenvalues for any fixed s R.T h i s  means

C6 =0.

Let us now prove c4 0  by contradiction. W e assume c4 =0. Because th e  sub-
family

1 0 0 0 c1s-I-1 c5 s
<A , BH-sC>=< 0 0 0 cas+1 0 1

0 0 0 c5 s 0 0

with any fixed s R  is real-diagonalizable, Proposition 3.6 is applicable. So we have

co(c 1 s-I-1)=0

(c i s+1)(c 5 s-F1)+c 5 c,s 2 >0

for any s E R .  This implies
c 5 = 0 ,  c1 =c 5 =0

and C  has actually the following form.

C=
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This contradicts the (real-)diagonalizability of C.
Combining the above results, we find that

_ 0  C 1  C 2

C=,  C 3  C 4  0

C 6  0  — c4_

with c 4 # 0 .  So, multiplying C by a  scalar if  necessary, we may assume

- 0  c i C2  -

C =  c3 1  0
c ,  0 — 1

Let us consider again the real-diagonalizability of

  

- 0 s d -c i c2

sH-c 31
C50 —1

 

<A, sB+C>=<
1  0  0
0 0 0 ,
0  0  0

>.

    

By the similarity transformation with

1  0 0
T =  0  1  —s/2

0  0 1
w e have

   

- 1 0 0
<A, sB+C>rs., < 0  0  0

0 0 0

1 cis2  0 s + c ,  - -
2

—  s+ c,2

(1+ ).sd—c31 0

C50 —1

>.

   

Thus Proposition 3.4 is applicable and w e have

sgn(s+c 5 )=sgn{(1+ )s+ c 3}

sgn c,=sgn{— —  s d - c 2 }
c i

w ith any s E R . This means

c ,> - 2 ,

c5 < 0 ,  c 1 2 +8c2<0.
Putting

C5
a = P = C i  7=--c 2 ,
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we have the desired result. 0

Summing up the  results of this section, we have the following theorem.

Teeorem 4.7. Let <A, B , C> be a  nondegenerate 3x3 m atrix  f am ily . T h e n  the
following statements hold.

1) <A, B, C> is uniformly real-diagonalizable and is not simultaneously symmetrizable
if and only i f  it is equivalent to either

<

- .-

1 0 0
0 0 0
0 0 0

- _
0 1 0

, 1 0 0
0 0 0_ _

-0 a 1
, — a 0 0

_ 1 0 0_

> (0<a< 1)

Or

1 0 0 0  a 0 o p r
< 0 0 0 , a 1 0 , IS' 0 1 >

0 0 0 0 0 —1 _ r' 1 0_
w ith real constants

a>0 , r> - (a+ Pa2 ) '  r i >  21 ( a + P:  ) '  (19' r) ' (18 ' ' .
7

'
) .

2) <A, B , C> is non-uniformly real-diagonalizable i f  and only  i f  it is equivalent to
either

1 0 0 0 1 0
_

0 i3 —7,

< 0 0 0 , 1 o i Is(1—a) 1 0 >
0 0 0 0 0 0 —2a 0 —1

w ith real constants 0 <a<1 , 18, r>I3 2 /8 or its  transposition.

5. Real-diagonalizable families spanned by four or more matrices

The goal of this section is the  following theorem.

Theorem 5.1. Suppose that a nondegenerate 3x3 m atrix  fam ily  <A 1, A2, ••• , A .>
(n_>_4) is real-diagonalizable. Then <A 1, A 2, ••• , A .> is simultaneously symmetrizable.

We shall prove this theorem by several lemmas. First, by the  same argument as
at the beginning of section 4, we may assume

_1 0 0
A 1=-- 0 0 0

_ 0 0 0

Lemma 5.2. Suppose th at  the sam e hypotheses as in  Theorem 5.1 are satisfied.
Suppose also that
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- 1  0  0
A 1 =  0  0  0

0  0  0
-

Then every member A ( )  of  < A 1 , A 2 ,  • •  •  ,  A .> has a real-diagonalizable right lower 2 x 2
submatrix.

Pro o f . In order to prove the lemma by contradiction, we assume a certain member
h a s  a  right-lower 2x2  su b m atrix  w hich  is  no t s im ila r to  any  rea l 2x2  diagonal
m atrix . B y  the same procedure a s  a t  th e  beginning of section 4 ,  w e m ay further
assume

0  1  0
1 0 1
0  0  0

-
Recalling the com m ent just before Proposition 4.6 and applying the proposition itself
to  <A 1 , A 2 , A 3 >  and < A 1 ,  A 2 ,  A 4 > ,  we may assume

0  *  * 0  *  *
(5.1) A 2 = •  1  0 •  1  0

• 0 — 1 •  0  — 1

where each *  stands for a certain r e a l .  On the other hand <A1, A2, A 3 —A 4 > m ust be
real-diagonalizable. From (5.1), A 2 -21 4 m ust have the form

0  *  *
A 2 — *  0  0  * 0

0  0

because A 2 a n d  A 4  are  linearly independent. This contradicts Proposition 4.6. 111

With this Lemma 5.2 in mind, we repeat the same argument as the one just before
Proposition 4.1. Thus, we know <A1, A 2, • • • /  A .> is equivalent to one of the following.

<
1 0 0
0 0 0
0 0 0 

0
,

*
0
0

*
0
0

*

0
0

*

0
0

0

, *
*

-

* *

0 0
0 0

•••>

1 0 0 O * * 0 * * O * *

< 0 0 0 1 0 , 0 0 0 0 •••>
0 0 0 0 —1 0 0 0 0

_ _
1 0 0 -  O * * * * * *

< 0 0 0 1 0 , * 0 1 0 0
0 0 0 0 —1 1 0 00 _
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where each *  stands for a rea l num ber. W e trea t each  of the cases separtely.

Lemma 5.3. Suppose that the matrix family <A1, A2, - , A.> (n 4) spanned by
_

1 0 0 0 b1 b2 0 C1 C2 0 d 1 d2
A 1 = 0 0 0 A2= 63 0 0 , A 3 = c3 0 0 d, 0 0

0- 0 0 - b4 0 0 - e4- 0 0 d4 0 0 _
is real-diagnaliz able. Then A 1 , A 3 , ••• , A ,  are linearly dependent.

P ro o f. Assume the con tra ry . A pp ly ing  Proposition 4.1 to  <111 ,  A2, A3>,
assume

1 0 0 -  0 1 0

-  0

 a l
A 1 =  0  0  0  ,  A 2 =  1  0  0 , A 3 =  — a  0  0 (0 a< 1).

0  0  0 0  0  0 1 0  0

On the other hand

w e m ay

<A„ A4+(—d1d-ad2)A2—d2A3>

must be real-diagonalizable. However, since

A 4 +(— d 1 -kad2)A 2— d3A 30

has vanishing (1, 2)- and (1, 3)-entries, w e g e t a contradiction:from Proposition 3.2. C l

Lemma 5.4. Suppose that the nondegenerate matrix family <A „ A2, ••• A n > (n_>_4)
spanned by

.4 i =
1 0 0
0 0 0
0 0 0

, A2=

0
b3

b,

b3

1
0

b2
0

—1
, A 3 =

0 el
e30
c4 0

C2

0
0

, A c=

0

d 3

d,

d l  d2
0 0
0 0

is real-diagonaliz able. Then <A ,, A ,, ••• , An > is simultaneously symmetrizable.

P ro o f. For any fixed s, t, u, ••• eR,

<A i , A 2±sA 3-EtA 4d-uA 5+•••>

is  real-diagonalizable. W e assume n =4  fo r  sim plicity  because the  a rgum ent remain
the same for the other c a s e . From  Proposition 3.4,

sgn(b i + ci s+. d 1t)=sgn(b 3 + c,s+d,t)

sgn(b 2 + c2 s d2 t)—sgn(b 4 + c4 s± d 4 t)

for an y  s ,  t E R .  Regarding these linear polynomials as ones in  t  w ith  s E R  arbitrarily
fixed, w e have

c is +b , _  c 3 s+1. 3

d, d3sgn d i =sgn d 3 ,
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sgn d2 =sgn d 4 , cas+b, c4s+b4 
d, d4 •

Because the last equalities hold for any fixed sE R , we obtain

c,=k i c i , d3 =k 1 d 1 ,

b4=k2b2, c4 =k 2 c2 , d4=k2d2

with some k i >0 and k 2 > 0 .  Therefore <A 1 , A2, 243, A4> is simultaneously symmetrized
by

1 0
T = 0 'Vk i 0

0 0 Vk,

Thus the proof is complete. El

Lemma 5 .5 .  Suppose th at the nondegenerate m atrix  fam ily  <A i ,  A 2 ,  • • •  An > (n.>:4)
spanned by

241 =

1
0
0

0
0
0

0
0
0

0
b,

b4

b,
1

0

b2
0

—1
.713 =

0

C3

C4

C1

0
1

C2

1
0

0

d,

d 4

d l  d2
0 0
0 0

'

is  real-diagonalizable, T hen <A 1 , A2, •-• , A n> is simultaneously  symmetrizable.

P ro o f .  For any fixed s, t, u,

(5.2) <A1, (s 2 —1) A2+2s A 3 -kt A4+ u A5+ • • •>

is  real-diagonalizable. We assume n=4 for simplicity because the argument remains
the same for the other cases. Using the similarity transformation with

1 0 0
0  s —1
0 1 s

we know that (5.2) is equivalent to

     

1 0  0
<  0  0  0  ,

0  0  0

 

0 f  4 (s )+tg i(s )  f 2(s )+tg 2(s)

f 3( s )+ tg2(s) s2+1 0
s2 +1

f4(s)-Ftg4(s)0 —(s2+1)
s2 +1

where

   

T =

1(s)=(s 2 -1)(b1s-Fb2)+2s(cis - Fc2),

f 2(s)--(s 2 -1)(Ns—bi)+2s(czs—c1),

f  3(s)=(s 2  —1)(b3s-Fb4)+2s(c3s±c4) ,
(5.3)
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f 4(s)-=(s 2 -1)(b4s—b3)-1-2s(c4s—c3),

g 1 (s)=d 1 s± d 2 ,

g2(s)=d2s— d1,
(5.4)

g 3 (s)—d 3 s-i-d 4 ,

g 4 (s)-=d 4 s— d 3 .
From  Proposition 3.4,

sgn f  ,(s)-Ftg i (s)} =sgn { f  g (s)d-tg,(s)}

sgn {f2(s)-Ftg2(s)}=-- sgn{ f  4 (s)± tg 4 (s)}

for an y  s , tc R . Regarding

f  i (s)-k tg i (s), f  3 (s)-kt g,(s)

as linear polynomials in  t  for an  arbitrarily fixed s ,  w e  have

sgn g i (s)=sgn g 3 (s),

f1 (s )  _  f 3(s)
g i (s) g 3 (s)

for any fixed s e  R .  H ence:there exists a positive constant k >0  such that

63 = kb i , b4 =k b 2 ,

c3 -=kc i ,

cl,=k d i , d 4 =k d 2 .

Therefore < / l ,  A 2 , "13, A4> is simultaneously symmetrized by the similarity transformation
with

T =

 

T hus the proof is complete.

Proof  o f  Theorem 5.1. F irs t, use Lemma 5.2. N ext, use one of Lemmas 5.3, 5.4,
5.5. T hen the claim follows.

6 .  Matrix families with real distinct eigenvalues

I n  t h is  section, w e s tu d y  m a trix  fam ilie s  w ith  rea l distinct eigenvalues. From
Theorem 3.1, w e know  such a  family is spanned by two matrices, sa y  A  and B .  Thus
the cubic equation in  2

(6.1) det(-21-1-eA+22B)=0

has three  rea l distinct roots for any choice of (e, )7)*(0, 0).
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Let us consider how the  equivalence relation between matrix families is expressed
in  term s of the characteristic polynomial :

(6.2) det(-21-1-$A+72B).

The general form  of m atrix fam ily equivalent to <A, B> is

<T - l(c 1 1 A+c 2 1 B—c0 1 1)T, T - 1 (c 1 2 A±c 2 2 B—c0 2 1)T>

w here c11c22—c12c2 1# 0 .  For this fam ily, (6.2) becomes

det{ --(2-F cote+ c0 2 72)/+(c 1 1 e+ c1272)A+(c21 + c 2 2 77)Bl

w here c1ic22 —c 1 2 c2 1 0. T he la st polynomial can also be obtained from  (6.2) in another
way, th a t is , by use of the new  variables 2', e', 72' determined by

(6.3) e=

)7= cne'd-c2277' •

So w e shall use th is  type of change of variables to reduce the  cubic polynomial (6.2).
Concerning the property of (6.2), there are  tw o  c a se s . In  th e  f ir s t  case, (6.2) is

reducible and can be fatorized as a polynomial in 2, e, 72. In the second case, (6.2) is
an  irreducible cubic polynomial in 2, $, 72. W e begin w ith the  first case.

Lemma 6 .1 .  Suppose that a matrix family <A, B> has real distinct eigenvalues.
Suppose also that the cubic polynomial det(-21±$A+77/3) in A, e, can be factorized.
Then there exists a matrix family <A', B'> equivalent to <A, B> such that

det(---21-1-$11/ ±72B / )= -2 {2 2 -kk1e2—e2 —k2)72 }

where k1 and k2 >0 are real constants.

P ro o f .  F irst w e  show (6.2) det(-21+$A+77/3) is  the product o f  a  lin e a r  factor
a n d  a n  irreducible quadratic  o n e . T h is  is  the case because otherwise it would have
three linear factors and det(-2I+$A+72B)=0 as an equation in  2 would have a repeated
root for certain ($, 77) (0, 0).

The linear factor must have the form

2+coled-c02)7 •

So using the new  variables 2', e', 72' determined by

2'-=2+ coo') ,

w e have (6.2) is  the product of A' and an irreducible quadratic polynomial in 2', $',
Because (A', $', 77' )  corresponds to a certain matrix family <A', B'> equivalent to <A, B>,
w e now  drop primes from  2', C', 77', A', B' for simplicity. T h e re fo re  w e  m a y  assume
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(6.2) has the following form from the beginning.

(6.4) det(-21+Md-nB)=-2{22+(que+4,202+(420V+g2ien+422772)}

where qjj are certain real constants.
We now show q 2 0 e 2 + 4 2 1 7 ) ± 9 2 2 7 7 2  on  the  right side of (6.4) i s  a  negative definite

quadratic form  in  e ,  n .  First w e notice that it does not vanish for any (e, 72)-,L.(0, 0)
because otherwise det(-21-FeA+77B)=0 would have 0 as a double root for som e pair
o f  parameters (e, 72)-,L-(0, 0). S o  q2 0 e2-Fq2 1 en+q 2 022 i s  positive  o r negative definite.
A ctually  it m ust be negative definite because otherwise det(-2I+eA+ 77B)=0 would
have imaginary roots for the pair of parameters (e, 77)#(0, 0) satisfying q11 ed-q 1 2 n=0.
Thus we have shown the quadratic form is negative definite.

F rom  th e  results just obtained, w e can introduce again new  variables 2', e',
determined by

2'=2

ciie+c,272

C21 - 1- C2272
such that

det(-2'I.-1-e'A-En'B)= — 2 1 2 '2 + k —kg2'21

where k 1 a n d  k2 > 0 are real constan ts . A nd  this (X , e', n') corresponds to another
matrix family <A', B '>  equivalent to <A, B > .  The proof is now complete. CI

By virtue of Lemma 6.1, we may limit ourselves to study matrix familes <A, B>
satisfying

(6.5) det(-21-FeAd-nB)=-
2 ( 2 2 + k 1 e 2  e2—

 k 2 2 )

where k i  a n d  k2 > 0 are real constants. Substituting (e, n)=(1, 0) in  this equation, we
know A has a zero, a positive, a negative eigenvalues. Using a  similarity transform-
ation which diagonalizes A, we may assume

0 0 0
A =  0  — a  0

0 0  1 / a

for some a>0.

Lemma 6.2. Suppose
0 0

-

O bi2 613
A= 0 —a 0 , B = b21 b22 b23

0- 0 b31 b33 b33

where a > 0  and b 1 are real constants. T hen

(6.5) det(-21+eA-H2B) -23—k1e22+(e2+k27)2)2
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holds for some real constants k1 and  k2 > 0  i f  and only if  th e  following 1), 2), 3), 4)

hold at once.

1) b11—b22—b33-0,

2) b12b21=a 2b13b31,

3) b121723b31-Fb13b21b32-0,

4) b12b21+b23b32-Fb13b31>0.

P ro o f .  Comparing the coefficients of e'ri, 22 72 and 2e72 of the  both sides o f  (6.5),
w e have

- 0

b11 4-b 2 24-b 3 3 - 0 ,

(a
1

) bl l - -
1

b22-kab33=0
\

a a

which implies
b11=b22-= b 3 3 = 0 .

Substituting this in (6 .5 ) and comparing the coefficients of eri 2 ,  vs  and 4 2 on  the  both
sides, we have

b 1 3 b 2 1 n (1E/nun — v
a

b12b23631-Fb13b21632=0

b12b21-i-b23b32-i-b13b31(—k 2)> 0 .

The converse is  c le a r . Thus the proof is com plete. 0

Using Lemmas 6 .1  and 6 .2 , w e have the following proposition.

Proposition 6 .3 .  A  matrix family <A, B> has real distinct eigenvalues and the cubic
polynomial det(-21-1-eA + 17B ) in 2 , e , yi is factorizable if and only if <A, B> is equivalent
to one of the following.

1) < 0

0

0 0

—a
0

0
0 - 0 a 1

, a 0 jS >
1 —13 0

where the real constants satisfy a>0 and 132 <a 2 +1.

2) <

0

0

0

0

—a
0

0  
_

0

1/a

0

, 0

0

p r
0 1 >

1 0



0 V b i 2b21 0
b12

b 3 b 3 I

- -

0 0

b 1 3
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where f9 and  r are arbitrary real constants.

3 )  The transposition of 2).

P ro o f .  From Lemma 6 .1 , we may assume (6 .5 )  i s  valid. Hence Lemma 6 .2  is
applicable and we have b11=b22=b 33= 0 .  We split the situation according to

b12b21 # 0  o r  b12 b21 = 0.

We begin with the case b12 b21
- 0• From 2 ) of Lemma 6 .2 , we have

sgn b i z b„=sgn b 13 b21 #  .

From this and 3 ) of Lemma 6.2, sgn b23=—sgn 6 32 which means

b 2 b 3 2 0 .

The last inequality and 2 ) and 4 ) of Lemma 6 .2  show

(1± a 2 )bi3b3i=b12b2,-Ebi3b31>—b2 3b32 0.

Thus we have proved b22b21>0 and b12 b33 >0.
Using the  similarity transformation with

if  necessary, we can reduce the situation as b12=b21>0 and b12==b31>0. Multiplying a
positive scalar if  necessary, we may further assume

bi a =b 3 i = l•

From 2) of Lemma 6 .2  and b13 =b21>0 and a>0,

b i2 =b 2 i=a .

From 3 ) of Lemma 6 .2 , there exists some 13 such that

b23—p, b 3 2 — •

From 4 ) of Lemma 6.2,
a 2—p2 + 1 > 0 .

Thus we have 1) of the present proposition.
Let us go on to the case where

I,
 1 2 b21=a 2 b13b3i - - 0 .

From this and 4 ) of Lemma 6 .2  with

b 2 3 b 3 2 >  0  •

Using the  similarity transformation with

T =
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T =

and an appropriate scalar multiplication, we may assume

From this and b1 2 b2 1
, b1 3 b3 1 =0 and 3) of Lemma 6.2, we have

b1 2 =b 1 3 = 0  o r  b2 1 =b 31 =0.

Thus we have 2) or 3) of the proposition. D

We now go on to the case where (6.2) is an irreducible cubic polynomial in 2, e, 7).
In  th is case, (6.1) defines a  nonsingular cubic curve in  R P ' because it has three real
distinct roots for any fixed (e, ri) (0, 0).

Lemma 6 .4 .  Suppose that a matrix family <A, B> has real distinct eigenvalues.
Suppose also that the cubic polynomial det(-21-Fe44-72B) in 2, e, 17 is irreducible. Then
there exists a matrix family <A ', B'> equivalent to <A, B> such that

det( — 21 e A' d-03')=— 2{22 +(k le+ k 07)2— k 3772 }- k 4n3

where kl , k 2 , k3 and k4
,A0 are real constants.

P ro o f. First we notice that every nonsingular cubic curve in  R P ' has just three
real inflection p o in ts  a n d  s ix  imaginary ones (see p 92 of van der W aerden [6] or
Prop. 14 of Brieskorn-Knôrrer [1]). We denote by (20 , e„ ,70) one of the real inflection
p o in ts . It is easy to see

(e0, no)#(0, 0)

because there are no points of det(-2I-1-eA+17/3)=0 in  R P ' satisfying e = n = 0 . And
its tangent line at the inflection point (20, e0, 770) must have the form

(6.6) 2-Fci +co7-=-0

where c , a n d  c , a r e  rea l constants. L e t  u s  prove this fact by contradiction. We
assume the contrary, namely, that the tangent line at (20 , e o , no) is

770e— e072= 0 .

The definition of tangent lines and inflection points shows

det(-21±eA-1-72B)--=(720e—e.0Q(2, e, 72)—(2-ka-kbn)3

where Q(2, e, 72) is a  quadratic polynomial and a, b  a r e  re a l co n stan ts . From this,
det(-2I+ eA ± nB )= 0 would h a v e  a  t r ip le  root when (e, 77), (e 0 , 72°)#(0, 0). This
contradiction shows the tangent line at (20, (), no) has the form (6.6).

Using the above 20 , $ 0 , no, c „  co, we introduce new coordinates 2', 72'  as
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=2+cie-1-co

C'==e o e + 7 2 .7 7

noe—Con.

With these coordinates, the tangent line is expressed a s  2'=0 and the inflection point is
expressed as (0, 1, 0)=(0, e02 +77,2 , o)E R P '.  Therefore the cubic polynomial is expressed
as

—2' {2' 2 +(q11e'+91277')2'+920e' 2 +421eY+92277 / 2 } +43372"

where qi , are real constants. Notice that q3 3 b e c a u se  o th e rw ise  the cubic polynimial
cou ld  be  fac to rized . B y  v irtue  o f  th e  next Lemma 6 .5 ,  w e a lso  have q20 < 0 .  So
introducing new coordinates of the form

2 11_ 2 ,

e/i= c11v+c1272'

y ) „ _

we can make q2 0 = - 1 a n d  q 2 1= 0 .  Because <2", e", 72"> corresponds to a certain family
<A ". B"> equivalent to <A, B>, w e have the desired result.

Let us prove Lemma 6 .5  used in  the proof of Lemma 6.4.

Lemma 6 .5 .  Given a cubic polynomial Q(2, e, 77) in  2, e, 22 as

Q(2, e, 77)= -2 { 2 2 +(que+41202+q20e 2 +421e72+9227/9+43377 3

where q 3 3 * 0 .  Suppose that Q(2, e, 72), as an equation in 2, has three real distinct roots for
any (e, 77)#(0, 0). Then

q2.<0.

P ro o f . Let r o denote the middle one of the three real roots o f Q(2, 1, 0 )= 0 . Let
also r(e) denote that o f Q(2, e, 1)=0.

We first show r 0= 0 by contradiction. Assume r 0 # 0 .  It is easy to see

. r(e) lim =ro#0.

So r(e) has the opposite sign  accord ing  to  C --±  0 0 . Consequently r (e )= 0  f o r  some
CE R. I t  m e a n s  Q(2, e, 1)= 0 has 0  as one of its roots for such C . T h i s  contradicts

Q(0, e, 1)=433#0
for all eE R.

Because r 0= 0 is  the middle root of

Q(2,1, 0)—=-2(22 4-g 112+q20)=0,

one of the remaining roots is positive and the o ther negative. This means the desired
inequality
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q 2 0 < o .

Thus the proof is complete. ID

Notice that we m ay assume also in the present case

0 0 0
A =  0  — a  0 (a>0)

0 0  1 / a

repeating the same argument just before Lemma 6.2.

Lemma 6 .6 .  A m atrix  fam ily  <A, B> spanned by

0 0 0 611 623 b13
A =  0  — a  0 (a> 0 ), B =  6 2 1  b22 b23

0 1/a 1)33 b32 b33

has real distinct eigenvalues and satisfies

det(-21+eA+72B)=-2122-1-(kie-1-k27))2-2— k 372 21 +k 4 .,23

for some real constants k l , k 2 , k 3 and k4 #0  i f  and only  if the following four conditions
hold at once.

1) b11 = 0 ,

2) b32b23=a 2b33b33,

3) b22=a 2b33,

4) d e ti-2 1 4 ( a - - -c-e1 )2 A + B } = 0  has three nonzero real distinct roots including a

positive one and a negative one.

P ro o f . Substituting (e, 77)=(1, 0) in

(6.7) det(-2/-1-eA+0)-7=-2{22+(kie±k2n)2—e2—k3)22 }+k4n3

w e get the  characteristic polynom ial of A . So we have

(6.8) a .

Comparing the coefficients of en, en2 and Aen o n  th e  both sides o f  (6 .7), we obtain
1), 2) and 3) of the lemma.

In order to obtain 4), w e plot the graph of det(-214-eA +72B )=0 in the 2, e-plane.
Substituting n=--1 in (6.7) and using (6.8), we obtain

2 1 1 .  2 .2_k A k32—k,
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—det{ — I I +  ( a - -al  )2A±B}

Solving this with respect to  Ç, w e have

1 1 1/2
( a - -1 )2A+B}12 a

_ 1  a l \ 2  + 1- 1V  2a + k
2\ a ) 2 a )  2

2

4  + k 2 2 — k 3 r 2 .

We plot det(-21+ eA + B)= 0 in  the  last form, taking account of the curve :

= .F (2 ).— det{-21+-12- ( a - -a1 )2A+.13}.

Observing Fig. 4(a), (b), (c), we obtain 4) of the lemma. El

Let the conditions in Lemma 6.6 be satisfied. Then we obtain

(6.9) b12b31*0 o r  b13 b21 * 0
as fo llow s. F irst w e have

(6.10) (b12, b13 )# (0 , 0 ) a n d  (b21 , b31 )#(0, 0)

because otherwise k4 = 0 would hold and contradict Lemma 6.6. Hence (6.10) a n d  2)
o f  Lemma 6.6 show (6.9). In addition, the second case in (6.9) can be reduced to the
first case b12 b31 # 0 .  This is done by the similarity transformation with

1 0 0
0 0 1
0 1 0

T =

det(---21+A+B)=0
Fig. 4(a)



974 Yorimasa Oshime

det(-2J+CA+B)=0
F ig . 4(b)

det(-2J-FM+B)=-0

F ig . 4(c)

and the replacem ent of a(>0) by 1/a in

<-7 - 1 AT , T'B T>

From th e  last argum ent, we m ay assume

(6.11) b i2 b 3 1* 0  •

L et us now reduce B by a  scalar m ultiplication and a sim ilarity transform ation with
a diagonal T .  Note th at T'A T = A .  Using 1), 2), 3) o f Lemma 6.6, B is reduced to
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one of the following.

0  ( a 2 + 1 )/ 2  (a 2 +1)/2a 2

a  (a 2 + 1)/2 (a 2 +1)1)/2a 2

a  (a 2 + 1)c/2 (a 2 +1)/2a 2

0  ( a 2 +1)/2 0
o (a 2 -I-1)/2 (a 2 +1)b/2a 2

1  (a 2 + 1)c/2 (a 2 +1)/2a 2

0  ( a 2 + 1 )/ 2  (a 2 +1)/2a 2

1 0 (a2+1)b/2a2
1  ( a 2 +1)c/2 0

0 (a 2 + 1 )/ 2  (a 2 +1)/2a 2

—1 0 (a2+1)b/2a2
— 1 (a 2 H-1)c/2 0

0  ( a 2 +1)/2 0
0 0 (a2+1)b/2a2
1 ( a 2 +1)/2 0

0  ( a 2 -I-1)/2 0
0 0 (a2+1)b/2a2
1 0 0

where a#0, b, c are re a l constants. H ere det B= 0 because of the assumptions of
Lemma 6 .6 , especially W e  c o n s i d e r  e a c h  of the above cases separately, some-
times putting b=-- 3-1-s, c=3—s for convenience of calculation. But we write a detailed
argument only for the first one because the others can be discussed almost in the same
way.

Lemma 6.7. The m atrix  fam ily  <A, B> spanned by

0 0 0 0 (a2+1)/2 (a' +1)/2a 2

A = 0 —a 0 , B = Î (a2+1)/2 (a2-1-1)(3±e)/2a2
0 0 1/a Î (a 2 +1)(3—s)/2 (a2+1)/2a2

which satisfy  a>0 and detB# 0 has real distinct eigenvalues if and only i f  there exists
I9#0 such that

7'0 -1 ) . 2<m ino— g , 0),
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—13+1)(3+13-1)> O,

s2 = 0 ± 2 L - 13+1)(3-1- 13 -1 ).

Remark. In order to determine adequate parameters, we have only to d o  in  th e
following w a y .  First determ ine a>0, 13=0 and 7= 0 arbitrarily. Next, determ ine 3
satisfying the above two inequalities. Finally, determine s  by the last equality.

P ro o f .  By virtue of Lemma 6.6, w e have only to find the condition such that

det{-2/± 1 (a— zr .1 )2A +B }

—2 (a2+1)/2 (a2+1)/2a2
= d e t  r (a 2+1)(1 2)/2 (a 2+1)(3± s)/2a'

(a 2+1)(3 — 6)/2 (a 2+1)(1-2)/2a 2

— 2 1 1
(a 2-1-1)' d e t  r 1 -2  3 +6  =04a 2

T 3 — s  1 -2

has three nonzero roots including a positive one and a negative o n e . T h e  equation in
question is simplified as following.

— 2 1 1
d e t  r  1 -2  ci+ s  =0,

(6.12) r  5— s 1-2 -
_ _ _ 2 3 + 2 2 2 + ( 2 T + 3 2 — s 2 _

1)2+2r(5-1)=0.

W e begin with the necessity . Let P=0 be the middle one of the three real roots
of (6.12). Substituting 2=13 and solving (6.12) w ith respect to  s 2 ,  we obtain

(6.13) 62=45+ 1 —p+1)(3±13-1).
2 19

Note tha t the right side of (6.13) must be nonnegative. And in this case where (6.13)
holds, (6.12) is factorized as

— (2 — P )I2 2 ± (P -2 )2 +  
2r(3-1)}

(6.14) =O.

Because the two roots of (6.14) other than p  have the opposite signs,

(6.15)
2r(6-1 )  

a < 0
1
.



s=
193

IF-219 2 H-S-3
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Because p is  the middle root of (6.14),

(6.16) 132+ 0 2 ±   4(5-1) 

Conversely if  (6.13), (6.15) and (6.16) are satisfied for some 19#0 a n d  r*O , (6 .12) has
three nonzero roots including a positive one and a negative o n e .  Simplifying (6.13),
(6.15), (6.16), we obtain the conclusion. El

Also, in  th e  o th e r  c a se s , th e  sam e argum ent holds, introducing again a  new
parameter 13 as the middle root of

1 ( 1a---(-x-)2A+B}=0.

So let us write down only the results omitting their proofs.

Lemma 6.8. The m atrix  fam ily  <A, B> spanned by

0 0 0 0 ,(a2 +1)/2 0
A= 0 —a 0 , B= 0 (a 2 +1)/2 (a 2 -1-1)3/2a 2

0 0 1/a 1 (a 2 +1)6/2 (a 2 +1)/2a 2

which satisfy  a> 0  and det B*0 has real distinct eigenvalues if and only i f  there exists
p#o such that

—
a

<min(213-2/32, 0),

Lemma 6.9. The m atrix  fam ily  <A, B> spanned by

0 0 0 0 (a2+1)/2 (a2+1)/2a2
A = 0 —a 0 , B = 1 0 (a2+1)(6+s)/2a2

0 0 1/a 1 (a 2 -1-1)(5— ) /2 0

which satisfy  a>0 and det B O has real distinct eigenvalues if and only i f  there exists
13#0 such that

13

62=-0-H3)0—,84 ,1).

Lemma 6 .1 0 .  The m atrix  fam ily  <A, B> spanned by
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0 0 0 0 (a2+1)/2 (a2+1)/2a2
A = 0 —a 0 , B= —1 0 (a2-1-1)(6±E)/2a2

0 0 1/a —1 (a 2 4-1)(3—€)/2 0

which satisfy a> 0 and det B *0  has real distinct eigenvalues if and only if  there exists
such that

Lemma 6.11. The matrix family <A, B> spanned by
-

_ O 0 0 0 (a 2 +1)/2
^

0
A= 0 —a 0 , B= 0 0 (a2+1)3/2a2

_ 0 0 1/a _ 1 (a 2 +1)/2 0 _

which satisfy a>0 and det.B 0 has real distinct eigenvalues if and only if  3 >
holds.

Remark. Proceeding in  the  same way as in  the  proof of Lemma 6.7, we have

Is' -< 19< -1 , 3--=
p + 1

•2

From this, the  statement of the lemma immediately follows.

Lemma 6.12. The matrix family <A, B> spanned by
_

_ o- 0 0 0 (a 2 +1)/2 0
A= 0 —a 0 B= 0 0 (a24-1)5/2a2

0 0 1/a 1 0 0
- - -

is not real-diagonalizable for any a>0 and 5.

P ro o f. Clear from the  fact that B  is not similar to a  real diagonal matrix. ID

We shall summarize Lemma 6.7, •-• , 6.12 not in  th is  se c tio n , b u t in  th e  next
section as a part of the summary of all the present paper.

- -

27
4

-

7 .  Summary

In this section, we summarize all the results obtained in  the  present paper. F o r
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th e  sake  o f  th e  completeness o f  th is  section, let us first reproduce Theorem 5.1 as
Theorem 7.1.

Theorem 7 .1 .  Suppose a nondegenerate 3x3 matrix family <A i , A 2 ,  •  • •  A n > (n>_4)
is real-diagonalizable. Then it is simultaneously symmetrizable.

From  Theorem  3 .9 , Theorem 4 .7 , Theorem 5 .1 , w e  h a v e  t h e  following two
theorems.

Theorem 7 .2 .  A  uniformly real-diagonalizable 3X 3 matrix family is neither simul-
taneously symmetrizable nor equivalent to any family with real distinct eigenvalues if and
only i f  it is equivalent to one of the following 1), 2).

0  1  0  -
1 0 0
0 0 0

- 0 a  1
— a  0  0  >
1 0  0

1  0  0
1 )  <  0  0  0

0 0 0

where 0<a<1 is satisfied.

1 0 0 -  0  a  0
2 )  <  0  0  0  ,  a  1 0

0  0  0 0  0  — 1

     

where

  

a>0, r > -

1

(a+  132r >  1 ( a + ) 1 18' PI +  —rl>02 a  ' 2 a

are satisfied.

Therem
i f  it is equivalent

7.3. A
to

1 0 0

3x3 matrix
one of the

0 1 0

family is non-uniformly real-diagonalizable if and only
following 1), 1'), 2), 2').

1) < 0 0 0 , 1 0 1 >.
0 0 0 0 0 0

1') The transposition of 1).
-

0 0 0 1 0 0
2) < 0 0 0 1 0 1 p(1—a) 1 0 >.

0 0 0 0 0 0 —2a 0 —1

where 0<a<1 and 7>13 2 /8  are satisfied.

2') The transposition of 2).

We now summarize the  results concerning 3x3  m atrix fam ilies w ith real distinct
eigenvalues. Recall that each of such families is spanned by two matrices (see The-
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orem 3.1). First we reproduce Proposition 6.3 as Theorem 7.4 fo r  th e  sake  o f  com-
pleteness of this section.

Theorem 7 .4 .  A 3 x3  m atrix  fam ily  <A, B> has real distinct eigenvalues and the
cubic polynomial det(-21+EA+72B) in  A, e, 77 is factorizable i f  and only if <A, B> is
equivalent to one of the following 1), 2), 2').

1) < 0
0

0 0
—a
0

0
0

1/a

0
a
1

a
0

—18

1
/3 >
0_

where the constants satisfy  a>0 and Pa<a 2 +1.

2) <
0
0
0

0
—a
0

0
0

1/a

0
0
0

A r
0 1 >
1 0

where 13 and r are arbitrary  constants.

2') The transposition of 2).

Now we summarize the  results of Lemma 6.7 to  6.12.

Theorem 7 .5 .  A 3 x3  m atrix  fam ily  <A, B> has real distinct eigenvalues and the
cubic polynomial det(-2I-PeAd-riB) in  A, e, 72 is irreducible if and only if <A, B> is
equivalent to <Ao , B o > where

0 0 0
0  — a  0 (a>0)
0 0  1 / a

and B o i s  one of the following 1), 2), 3), 4), 5).

0 (a'+1)/2 (a2-F1)/2a2
1 )  B o =  r (60+1)/2 (a2+1)(3-i-s)/2a2

r (a2 +1)(6-6)/2 (c0-1-1)/2a'

where there exist 13#0 and r #0 such that

r(3 —1) <min(/3 —/32 , 0),

(o+
2 

p+ 1)0+ 0,
 /3

E2 =0 +21 - — p +00 + IS —1)

A o =
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are satisfied.

0 (a 2 +1)/2 0
2) B o = 0 (a 2 +1)/2 (a 2 +1)5/2a 2

1 :(a 2 +1)e/2 (a 2 +1)/2a 2

where there exists P  0  such that

a
<min(2)3-2p 2 , 0),

6 = 33-2/32±P —5
Pa

are satisfied.

0 (a2+1)/2 (a2+1)/2a2
3) B o = 1 0 +s)/2a7

(a 2 -j-1)(5—)/20

where there exists 13  0 such that

are satisfied.

0 (a2+ 1)/2 (a'±1)/2a2
4) B o = —1 0 (a2+1)(5+s)/2a2

—1 (a 2 +1)(3—E)/2 0

where there exists 9 #0 such that

(a+p)(a—p--2 ,

2 (0+p)(0 p 2 )

are satisfied.

0 (60+1)/2 0
5) B o = 0 0 (a2+1)5/2a2

1 (6E2 +1)/2 0

981
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where

is satisfied.
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