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A necessary condition for H>-wellposed Cauchy
problem of Schrédinger type equations
with variable coeflicients

By

Shigeomi HARA

§1. Introduction

The linear partial differential operator of second order
(1.1) L= l.(')t—i ﬁ) 3. (g7 ()0, )+ é b(x)d, ,+c(x) (teR', x&R")
[ 2% k = j

is called Schrodinger type operator with variable coefficients, where g’*(x), b’(x), and
c(x)= 8=(R™). We suppose that g’*(x)=g"*(x) (j, k=1, .-, n) are real valued and
satisfy the uniform ellipticity

(1.2) 51 plPs kz g ()p;ps| <81 p1%,  for any x, peR",
jo k=1

for some positive constant 4. In this paper, we study the necessary condition in order
that the Cauchy problem

(1.3) Lu(t, x)=f({t, x), u(0, x)=uqx)

is H>-wellposed (see Definition 1.1). In [3], W. Ichinose succeeded to find and verify
a necessary condition for L2-wellposedness of (1.3) using the Maslov’s method of [6].
Here we apply his idea to H*= case under an assumption below. We denote the set of
all H=(R™) valued continuous functions in t=[0, T] by &[0, T]; H*(R™).

Definition 1.1. We say that the Cauchy problem (1.3) is H*-wellposed on [0, T,]
(Ty>0) (resp. [T, 0] (T,<0)), if the following is valid for any T<(0, T,] (resp. T
[T, 0)). For any u,(x)=H>=(R") and any f(t, x)=&X[0, T]; H*(R™)) (resp. &[T, 0];
H=(R"))) there exists one and only one solution u(¢, x) of (1.3) in &X[0, T]; H=(R™))
(resp. «[T, 01; H=(R™))).

We shall define a Hamiltonian function by
1 n )
(L.4) H(x, p)= -Z*jélg’k(x)l)ff’k

and the canonical equations for the Hamiltonian function H(x, p) with an initial value
(x, p) at t=0 by
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dX; _oH X, P).

OH Py
dt  dp;

ST
(X, P)li=o=(x, D).

By the uniform ellipticity (1.2), we can see that for each (x, p)=R?" there exists one

and only one solution (X(¢, x, p), P(t, x, p)) of (1.5) for all t&R. For the present we

do not know much about the property of the solution of (1.5) in general. So we

consider subsets FCR"X S"~' which satisfy the following propery [A].
[A] There exist constants ¢, C, m>0 such that

(1.5) Z—gﬁ(f\’, P), (J, k=12, -, n),
Xk

(1.6) max sup {[9% ,X(t, x, P)I+105 ,P, x, P} =CA+[t])"

lal=1 (2. PYEF,
for any t€R. Here we denote
F.={(x, p)e R*XS""'; there exists yeR" such that (y, p)F and |x—y|<e}.
In Remark below, we explain a little more the reason why we consider such F.

Theorem. [f Cauchy problem (1.3) is H=-wellposed on [0, T,] (T:>0) or [T, 0]
(Ty<0) for a T.,+0, then for any FCR"XS" ' which satisfies [A], there exists a
positive constant M such that

(1.7) sup

(z, p)EF

S‘ﬁ: RD(X(s, x, p)Py(s, x, p)ds| <Mlog(1+1t)+M, for any t=R.

0j=1

W. Ichinose [2] and J. Takeuchi [7] studied the necessary condition for H>-
wellposedness of the Cauchy problem (1.3) in the constant coefficient case, that is,
g’*(x)=04;, (Kronecker’s delta) in (1.2). Our result is a generalization of their one to
the variable coefficient case (see Example (1)).

Example. (1) H(x, p)=(1/2) 3%, p% (the constant coefficient case). Then X(t, v, p)
=y+pt, P, v, p)=p. In this case, [A] holds for F=R"XS""'.

(2) Let n=2 and H(x, p)=(1/2){ p:+a(x.)p3}, where a(x,)= B=(R) satisfying 7' <
a(x,)<0 for some 6>1. By the canonical equations (1.5), we have

(1.8) H(X(, x, p), P, x, p)=H(x, p)  for any (¢, x, p)eRXR*XS".
From (1.2) and (1.8), we get

(1.9 o' |P(t, x, p)I=0.

Noting that Py(t, x, p)=p., if we set for some positive constant H<1

F={(x, DER*XS"; | p:|<67'V b},

then we have from (1.9)

(1.10) [Pit, x, p)| =6 V1—b for any (¢, x, p)ERXF.
Let z be one of x;, x,, p, and p,, then using (1.8) we have

Pl(atazXl)_(atPl)az)(l:azH(x’ p)_gé_[ (X: P)a])2

The right side of above equation is bounded uniformly in (¢, x, p)eRXR*XS', and
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we denote it by f,(t, x, p). So we have
0., x. N=P(t, x, PIPTX0, x. p+] 165 % IPGs, x, ptds).

By (1.9) and (1.10), we obtain from this equation
sup 0. X,(t, x, p)ISC(1+1t]) for any tER.

(z.p)EF

And we can easily prove that 9,X,, 0,P, is also estimated by the polynomial of ¢ for
(x, p)eF.

(3) Let n=2 and H(x, p)=1/2{p?+(¢(x)x3+1)p3}, where ¢(x,)& CF(R) satisfying
¢=0 and ¢(x,)=1 (if |x,|<7r) for a constant »>0. For any e=(0, r) and be(0, 1),
we set

F={(x, p)ER*XS"; (| x,|+&)2+(p1/p2)?<r? o1 |po| <67V b},
where 6 is a constant satisfying (1.2) for this case. When |p,|<d '+ b, we can
adopt the argument of example (2). When (| x,]4¢e)+(p./p.)*<#? we have
Xi(t, x, p)=x,cos(pat)+(pi/p2) sin(p.t),
_ X1p1 1 p? 1 _ ' .
Xet, 3, ) =xat 2y (et gy xthert =)tk (R ) sin (2at)
—(x1p1/2ps) cOS (2 pot),

Pl(t; x; p):—-leZ Sin(p2t)+])lcos(p2t)r PZ(tv xr p)':ﬁZ-

Hence [A] holds for this F.

We shall explain the outline of the proof. Following [3], we prove it by con-
tradiction. At first we change a variable ¢ to r=Aa¢ with a large parameter A1=1.
Then the operater L is changed to

1 1 oz 1 e 1 I | .
(1.11) AZLIEP[TD.-%-?L;:I7D.x»,-(g”(x)TDr,,)—(zl)“g)l1)’(x)70x,—(12)‘20(X)],

where D.=(1/i)d., D.;=(1/)0.,(j=1, 2, ---, n). Suppose that the Cauchy problem (1.3)
is H=-wellposed on [0, T',], we can obtain a priori estimate by Banach’s closed graph
theorem. Next assuming that (1.7) is not valid, we can construct asymptotic solutions
for the equation

(1.12) L;v(r, x)=0,

which contradict the a priori estimate. Thus we obtain Theorem.

Remark. W. Ichinose [3] proved that if Cauchy problem (1.3) is L2-wellposed on
[0, Ty] (Ty>0) or [Ty, 0] (T,<0) for a T,#0, then

[ 5 KX (s, 5, IPs, 5, p)ds|<-+eo

sup
(r,p)ERNxSN-1
ter

must be fulfilled. In its proof, it is enough to construct asymptotic solutions on a
bounded interval of . On the other hand, in the proof of our Theorem, we must
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construct asymptotic solutions on [0, o] for any o>0 (see (d) in Lemma 2.2 and (4.2)
in the present paper). This leads to the difficulty, so we consider subsets FC R X S"-!
satisfying the property [A].

Through this paper we use the following notations. NV is a set of all natural
numbers. R,={teR;t=0}. For xeR" and a>0 we set |x||=max |x;|, and Q,(x; a)
1sisn

={yeR"; |ly—xll<a}. For ¢(x)eS(R") (Schwartz’s rapidly decreasing functions),
we denote

loe=({ . leorrax)", lge=( =
lp()ls= 2 sup |9z¢(x)],

laiss xER

5 lose())”

lee|s8

for each s N, where «a is the usual multi-index. Let K={ky, ky, -, Bi}AZ kR, <k, <
-+<k;<n) be a subset of {1, 2, ---, n}. We denote the complementary set of K in
{1,2, -, n} by K’. We denote |K|=/, and

R P

0 0 1 0
te=Cre o) g0 =G0 gl g )

Let f(x)=(fy(x), folx), -+, fm(x)) be a C* function on R" with values in R". We

denote

of

11,2, -, m
af( )——('af (x); ), Df(“() detf f(\) (if m=n).

7_;1y 2y eom
We set
h'(x, p)=(X(, x. p), P, x, p)),

F(x, P)“ h (s,

g(t, x, )=\ KFh"(x. )0,

The author to express his sincere gratitude to Professor S. Tarama for valuable
advices and encouragements.

§2. Lagrangian manifold

Lemma 2.1. For any 2n dimensional multi-index a(|a|=1), there exist positive con-
sitants C, and m, which satisfy

2.1) ) S;})gp {102 , X, x, pl+10% P, x, PITECa(l41t])"n
for any t=R.
Proof. We shall consider only about 0% X, and 8% P; (=1, 2, ---, n). Others can

be proved in the similar way. For the sake of simplicity, we shall denote

2
Qxaah—‘n:Xk(t X, /))_ lllm(t Ay f)) kr [r 771:1, 2' T, N etc..
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By (1.5), we have

d . = "
—d_t_X:;l:k=1Hpj1k(X’ P)Xgl-l_ Ealjpk(X’ P)Pily
d n n
E?P‘él:_ElHIj‘rk(X’ P)XkII—ElHijk(Xv P)P.k;:l:
(22) d X n . n .
X ey = 3y (X, PXA e 5 oo (X, PP it 2, D),

d i n n
Epilxl:—EIHIjzk(X' P)Xilrl_ElHljpk(X’ P)Pilzl"‘gj(t; X, P),
]':]-7 2: N,

Here, f;(t, x, p) and g;(, x, p) include only at most first order derivatives of X, P in
X1 So, from (1.6), we get

@.3) Jsup (1f5 X P lgt x, PIFSCA+IID™  for (eR,

for some positive constants C, m.
In view of (2.2), we can see that (X, ., P.:,) satisfies the system of ordinary
differential equations which has the same principal part as one for (Xz,, Pz,). We set

Z(t, X, ,‘D):(X.rlzly Prlzl)y
b(t’ X, p):(fl» oy fnv g1, gn)'

X, P)
i, x, p)= ax )
Then, from (2.2), we have
2.4 2, v, =Y, DG, x 0, x, pds.

From (1.6) and (2.3), there exist constants C and m independent of (¢, x, p)ER'XF.
such that

2.5) (T, x, P, 16, x, pISCA+(t)™  for any (¢, x, p)ER'XF..
From (2.2), we have

det¥(t, x, p)=det¥(0, x, p)=1 for any (¢, x, p)ER'XF..
So, we obtain
(2.6) [T@, x, p)y- 1 <CA+tH™ for any (¢, x, p)ER'XF.,

where constants C’ and m’ are independent of (¢, x, p) e R'X F.. Therefore, from
(2.4), (2.5) and (2.6), we obtain

lz(t, x, pI=C"A+tH™  for any (¢, x, p)ER'XF,,

where constants C” and m” are independent of (¢, x, p)&R'X F.. This is the estimate
2.1) for (Xz 2, Priz)). q.e.d.
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Lemma 2.2. [f the inequality (1.7) is not valid, then for any veN we have
(05, x, p)eR. X R*™ which satisfies the following.

(a) (Case-P) (x®, p™)eF,
or
(Case-N) (x, p)=h=rx(y™, q®*)  for some (y, ¢*)EF.
(b)) ¢, x, p*)>vlog 14p.)+v.
©) ¢lp,, x@, P2z, x>, p®)  for any [0, p.].
(d) lim p,=+oo.

Yoo
Proof. In view of (1.4) and (1.5), we have
2.7) (X(=t, x, p), P(—t, x, p)=(X(, x, —p), =P, x, —p)).
Therefore we may assume for F that
2.8) (x, p)eF  implies that (x, —p)eF.
If (1.7) is not valid, then for any v= N there exists (¢, x, p)RXF such that
(2.9) |, x, p)|>vlog (1+t))+v.
Hence, if we note the following two equations;
¢, x, P)=¢(—t, x, —p),
o, x, p)=—¢(t, ', p')  for (x', p)=h""(x, —p),

which are derived from (2.7), then we can obtain (a) and (b) by (2.9). In order to
make (c) hold, we have only to change p, in (b) into g, such that

O(p,, X, pO)= max ¢(z, x>, p).
]

TEL0, oy

(d) is clearly obtained from (b). The proof is complete. g.e.d.

In view of (d), we denote by v, the number which satisfies p,=1 for any v=v,.
The reasoning in (Case-P) is a little different from that in (Case-N). To argue
(Case-P) and (Case-N) in parallel, we introduce the following notations.

2., (MN=(X(, 3, p™), P(z, y, p**))  (in Case-P)
=(X(t—p., ¥, ¢, P(t—p., ¥, ¢*))  (in Case-N)
(T, Y)=(t, N, (3))
Following [3], we denote
AP ={n, (ERTp; yER"},
Amtr={n(r, Y)ERLT,; t€R, yER}.
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It is well known that A»* is a Lagrangian manifold in R%*,, that is,
édpj/\de———O on A;—"p.
j=1

Lemma 2.3. There exist positive constants C and m such that for any (t, y, p)=RXF

2.10) max | DXl 2 D Pt 3, D5 oy g p)m,
KC(1,- 1) Dy

Here the constants C and m are independent of (¢, v, p).
Proof. As we have seen in the proof of Lemma 2.1, we have

We apply Laplace expansion theorem (see e.g. [4], p. 238) to (2.11), then we have

for any (¢, y, p)e R*"*'.

DXk, Prey) D(Xxi, Pri)

(2.12) Kl.K2§1.~-'.nl EK K, Dy Dp =1,
K1 +1Kgl=n

where ex,k, is 1 or —1. From (1.6) and (2.12), we can see that there exist positive
constants C, m and K,, K,C{l, 2, ---, n}(| K\|+|K,| =n) such that

@213 | P&, f;)); Piyt, 3, b))

2CA+t)™ for any (¢, y, p)ERXF.

Here K, and K, may depend on (f, v, p). Let (¢, y, p)ERXF be fixed. We set A} ,=
{(X(, x, p), P(t, x, p)); xR"}, which is a n dimensional Lagrangian manifold in
R%*,, that is,

(2.14) S dp;Adx,=0 on AP,
j=1
By (2.13), (xx,, px,) becomes a local coordinate system in the neighborhood of &=
(X, y.p), P(t, y. p)) on A!',. Now let i€K,NIK,. If such i/ does not exist, the
. . . 0 0
roof is lete. We shall substitut f ~— ——
P 1s complete € shall substitute a pair of tangent vecters (( axt) y <6‘p,~ )e>

to (2.14), where (xx,, pk,) is now considerd as local coordinate system near & on A},
then we get

D(x;, pj)
2.15 At P =0.
( ) jGI\%\K’Z(D(xiy /)i)>€+1 0

Therefore there exists de K{N\K, such that
1 2

D(-xd’ pd)
(2.16) ot p5MZ imk 2

Hence we have

(2.17) max{ ‘ (gzd )

ard

ap,

II\/

G

16

z 7
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. 0 1
For example, if l(—az‘f—)e\g—yg. then we shall employ the new local coordinate system

(x&%,, px,) where K'l:(Kl\{z'})u{d}, then we have

’ D(Xz,@, v, ), Pr,(t, ¥, p) I

Dy
_|(DGry b)Y || Pk v 9 Pt 3 ) | C
—.(D(xl\'ly pKZ))J | Dy —\/Z(l_i't) .

We can treat other cases similarly. Repeating this argument, we obtain Lemma 2.3.
q.e.d.

Proposition 2.4. For each v =y, and 7,=[0, p.], take KC {1, 2, .-, n} which
realized the inequality (2.10) with (¢, y, p)=(te, X, p)e R X F (in Case-P) (=(ro—p.,
¥y, g)eRXF (in Case-N)). Then, there exist positive constants a, b, d and C in-
dependent of v which satisfy the following (a)-(d).

(a) For t satisfying |t—7,| <(14p.)"", the mapping

v (Xg:(r, ¥, p*), Pr(c, y, p*)) (in Case-P)
(y—> Xk (c—ps, ¥, ¢), Pr(t—p., v, ¢*)) (in Case-N))

becomes diffeomorphism in C= class from Qn(x®; (14p,)") (in Case-P) (Q.(»;
(14p,)"*) (in Case-N)) into R".
(b) For t satisfying |t—1,| <(14p.)"", it holds that

Qu(Xgo(z, x¥, p®), Pr(r, x*, p)); (14+p.)7")
C{( Xk (z, ¥, p), Pr(z, v, p); ly—x[<(1+p,)""} (in Case-P),
(C{( Xk (t—pu ¥, ), Pe(t—p., ¥, ¢); Iy—y1<(1+p.,)"}  (in Case-N)).
(¢) For t satisfying |t—t,| <(14p.)"", it holds that

0 Xk (z, v, p), Pr(z, 3, p)

> ~d
‘det Jy \ =(14+p.)
for any yeQ,(x®; (14p.)"") (in Case-P),
e N (\C— Oy ) e
‘det a(XK (va’ yr (/ “)’ PI\(T p y (] )) ‘;(l-l'pl)_d
0y
for any y=Qu(y*; 1+ (in Case-N).

(d) For s and t satisfying 0=<s<t=<p,, il holds that
iSrgleF(m,g(y))d()—grﬂcF(h"(x‘”, p“)))dﬁ‘ <C
8 8
for any yeQ.(x*; (1+p,)"*  (in Case-P)

(yEQ (¥ ; (14+p,)"%) (in Case-N)).

Proof. By the inverse mapping theorem, we can see that the width of the neig-
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hborhood, on which the mapping becomes diffeomorphism, is determined by the upper
estimate of the derivatives of the mapping and the inverse of Jacobian matrix of the
mapping. We note that in Lemma 2.1 constants C, and m, are independent of (¢, x, p)
€R'XF. and in Lemma 2.3 constants C and m are independent of (¢, y, p)eR'XF.
So, using Lemma 2.1 and LLemma 2.3, we can prove this proposition by the inverse
mapping theorem and the direct calculation. q.e.d.

We shall construct the open covering of the path {(z, 17(x*, p*))}oscsp, On A"*"*
for v=2y,. We denote by s, the minimal positive integer such that p,/s,<(14p.)"“.
Let d,=p./s, and 7{°=jd, (=0, 1, ---, s,), then clearly (1/2) (14+p.,)" *<d, =(14+p.)"".
We set

Q5= {n.(e. Ne A" @, D=, s <d.] (in Case-P),
(@5={m(e, DS (@, H—(f, Y <d) (in Case-N),

(=0,1, -+, s,). We denote KC{l, ---, n} which realizes the inequality (2.10) for
(t52, x, p)eR. X F by K3 in (Case-P), (in (Case-N) (c§?—p,, ¥y, ¢)ERXF). It
clearly holds that

{ .Q’jf\(o, jl;,""):@ for ]:l’ e S,
(2-18) .Q_’;m(p“ A;:;L):Q for ]:O, 1, . Sy_l
QD=0  for |i—j|22.

We set

a()((!f;)’(fr y: p(L))v PK;'(Tr y: p(”)) .

jK;(r):‘det — \ (in Case-P),
! dy
0 Xeky>(t—p.. 3, ¢%), Prs(t—pu, ¥, ¢)
(:ldet il A i | (in Case-N))
dv
for r=n.(r, y)=2j.

By (¢) in Proposition 2.4,
(2.19) ij,(r)g(l—i—p,)'” for any refj.

In view of Proposition 2.4, the mapping r=(z, x, p)=2; to (z, Xy, Pry)ER™! be-
comes the diffeoomorphism. The inverse diffeomorphism is denoted by i, that is,
rry(T, Xy, pry)=r. For r=(r, x, p)eA"*"*, we denote its projection into R***' by

(F(r), Z(r), p(r)).
Let feC3(2%). It follows from Lemma 2.1 and (2.19) that for any nonnegative
integer s

2.20)  A+p) "l f(nlx, Ns=1 Sy, -, Dls
S(+p)™ | (e, Nls, for any re(r’—d,, tj0+d.),

is valid for a constant m,>0 independent of v, j and r.
We set

A= {e, 3); €0, p.], |y—x2)<(4p)"'}  (in Case-P),
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=iz, 3); €0, p.1, Iy —yI<A+p.)"*}  (in Case-N)).

Here a constant a’(>a) independent of v will be determined in the proof of Lemma
3.4 (see Appendix (1)), where a is a constant in Proposition 2.4. Now we can easily
construct the partition of unity {ef(r)};j%, corresponding to {3}3%,:

1) eP(eCi@),  0=ef<l1;
@.21) @) ie;v>(r)=1 for any rednti:,
p2

Q) ez, NIs=A+p)"s for any r€[0, p,] and seN,

where the constant m; is independent of v.
Following [3], we can see that

dpNdx—dH Ndr=0 on A"thr,

By Poincaré’s lemma, we obtain real valued C* function S®(r) on A"*"* such that

(2.22) dS®“=pdx—Hdr on A",
If we set
(2.23) Sy (=81 =Zxy(r)-pry(r)  for refy,

then we have

0Sky(ry(T, Xy, i)

:P(K”j)'(r),

ax(K’})’
aSK’}(”K”j(T, XCkY>s )
(2.24) apK»j J =—Xgy(r),
0Sk (rgv (T, Xy, Px¥))
9ox5(x; arczfj) KY —HEO, B,

for any 7’:7’1(’3-(1', XYy pK’})EQ;'

§3. Canonical operater

We shall omit the suffix v=y, up to Lemma 3.1. For 1=1 We define Ai-Fourier
transform and inverse A-Fourier transform over a part of variables by

Fi oo (U] =(2/20) 2o oo P () d

3.1 )
Pl e D] =(3/20) 512 e ese PR p)d

for u(x), u(p)eCy(R") and KcC{l, ---, n}.
Let £, be a component of the open covering {£23}3%, constructed in section 2, and
(z, xky, ij)E(‘L', IKJ) be a local coordinate on 2;. Following [3], for ¢eC%(f2;) we
define pre-canonical operater X(£2;, Ig;) by
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eiASKj(r)

JC('QJ" IKj)SD(T’ x)=gf.’p,{jax,(][7]=l{;(—r)¢(7’)| r=rKj(r,zK} R ij)] .

Lemma 3.1. For ¢=C%(8;) and t=(c{’—d,, t;°+d.), we have the following.
(@) K (2;, 1k )z, o=z, Dlo-

(b) For any nonnegative integer s there exists a constant m;>0 which depends only
on s such that

[ H(R;, 1k Jo(r, D<A+ p)"s [T, s
Proof. (a) By Parseval’s formula,

K (825, IK]-)‘P(T’ 1k

={ | EXPGAS N kPN PG 1o 2y e p | 5y D
:SR"ISD(VK](‘[’ xK;; ij))lz./Kj(rKj(rx xK"ir ij))_lde:j dej

=, lo0ne, 1.
(b) By Lemma 2.1, (2.19), (2.20) and (2.24), we get for any multi-index a(|a|<s)

105{ K (25, 1x )z, )}Ho

. 1ASk ;
l)‘;‘(ﬁ‘;',{; [2{37(5:?;«])@2@(7” r=rKj(r.l\”]~.ij)]
§23(1+P»)ms|¢(77u(7~', ’))'x

for some constant m;>0 which depends only on s. q.e.d.
We shall define a first order linear differential operator W on C=(A"*"*) in-
dependent of A by

:lll&l

~ ~
L2R™ R (a—axj, a —aK'j)
TKjPK;

d ;
W20 ={—— = F (.. oD }e(nie, )

at r=n.(t, yyeA"* for p(r)eC=(A"*"*). Following [3], we now introduce the can-
onical operator K. acting on ¢(r)e C(A"+"¥) by

Kige, 1)= 3 e P A, Le)lef (e, )

Here o(£25)(0<j<s,) are real constants that are given by ¢(2%)=—Vi1 a(Q% 2i.)),
(1=5<5s), 0(£25)=0, where real constants o(2%, Qi)=—0a(Qi1, 2% (k=1, -, s,) will
be determined in Lemma 3.4 below.

Proposition 3.2. For any A=1, v=v, and @(r)€ C3(A"*""), it holds that
N-1
(a) LiKp(z, x)= Z GO KW Pe(N](x, 1)+ R ¢, x)

for N=1,2, -
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where W{ (122) are linear differential operators in A"+ of order al most 2! independent
of A Furthermore for any nonnegalive integer s and N =1, there exist constants m, s
and g, (2<!<N) independent of v and 2 such that

(b) [WPe(nr, Ns=L4+0)" 0510z, Dl
© IR @, =2 ¥**(1+0)" ¥ (T, *Dlgy.,

for any v=y,, 2ZISN—1, and z<[0, p.].
Using the following two Lemmas, we can prove this proposition by the similar

argument as Proposition 3.4 in [3]. We shall give the proof in Appendix (2).

Lemma 3.3. For any j{0, 1, ---, s,} and N=1, we can see

(3.2) LK (@25, 1x)p(z, x)

= (@, Le)| G2 W)+ S G0 90, Lo (e, )

+ R w25, L)z, x)  for any (€ CT(2y),
where P(8, ]K‘j‘) (2ZISN-—1) are linear differential operators of order at most | in
variables IK;z(x(va,,, p,{z.) and are determined independently of A. Furlhermore, for

each nonnegative integer s and N=1 there exist constants m, ;2=I<N) and qy s in-
dependent of v and A such that

3.3) | DDy, IK»’)go(m(r, Na=U+p)"  lour, “Dls+,
(3.4) | Ry, n(£2%, 1K’})§D(T; M2V (L4 0)" Y Lo, Nlay. s
for any v=vy, 2=ZISN—1 and r<[0, p.].
Proof. (3.2) is the same equality as that in Proposition 4.1 of [3], which is in
essential proved in the similar way to the proof of Theorem 8.4 in [6]. We can
obtain the explicit forms of D" (£2y, Ixy) and R, ~(82%, Ixy) in the argument to prove

(3.2) along the argument of [3] and [6]. Then we can prove the estimates (3.3) and
(3.4) by using Lemma 2.1, (2.19) and (2.24). q.e.d.

Lemma 3.4. Let QiN\Q24+@ and i+j. Then, lhere exist real constants a(§2%, §2%)
satisfying o(Q%, Q9)=—a(2y, 29 such that for any @(r)eCT(DBNBNA"+">) and any
N=1 we have

(B5) K% Ixy)ep(r, x)=e'"1IP K(R2Y, k)

{1+ B @ vty o) |, 0+ Rastliey, Lot ),

where V‘”(]va, Igv), ASISN—1) are linear differential operators of order at most 2!
in variables (x, p) and are determined independently of A. Furthermore for any non-

negative integer s and N1, there exist constants m, (1=I<N), and qy s independent
of v and A such that
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(3.6) IV(”(IK;, L )e(n(, N (L4+p)" S lo(pT, Dlsses
3.7 ||R2,N(1K"j’ Lew)p(, M=V (140" Y lo(n(T,  Nlay. s
for any v2v,, 1SISN—1 and r<[0, p.].

This Lemma is also proved in the similar way to the proof of Proposition 4.2 in
[3]. We shall give the proof in Appendix (1).

§4. Proof of Theorem

Following [3], we prove Theorem by contradiction. Namely we shall assume that
(As. 1) the Causchy problem (1.3) is H>=-wellposed on [0, T'] (Tx>0) or [T, 0]
(Ty<0) for a T,+0,
and
(As. 2) the inequality (1.7) is not valid.
Then, we may assume without loss of generality,

(As. 1) The Cauchy problem (1.3) is H=-wellposed on [0, Ty] (T(,>0),
instead of (As. 1).

Similarly to the proof of Lemma 3.1 in [3], we get

Lemma 4.1. Assume (As. 1)'. Then there exist constants C(T,)=1 and nonnegative
integer q such that for each A=1 and each T<(0, AT,] we have the following. If
vi(r, x)EEX[0, T): H*(R")) and Lvi(z, x)=&¥[0, T]; H=(R")), then the inequality

4.1) max [[vi(r, )= C(To)(lva(0, lg+4* max [ L,vi(z, )iy
05T 0grsT
is valid.
We shall construct asymptotic solutions of equation (1.3) with f(¢, x)=0 in the form
4.2) v =K B epole » e, 0l xery
=

where o (r)e Ce(I"*+*) (0<j<q+1. v=y,) and ¢ is a constant determined in Lemma
4.1. We shall determine ¢;”(») by using (a) in Proposition 3.2. We obtain

4.3) L (r, \)=04"K.[W» e (N, x)
FEO KW o)+ W Pei(1)](e, x)

+EO DKW P ogh(n)+ - +W 808 (1)) (z, x)
+ S5 GRG0 ).
We determine ¢;”(r) (0<7<¢+1) by the solutions of
(4.4) W» e (r)=0,
W»ReP@)+W2ei (=0,
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WP+ - +Wpi?(r)=0,  for any re"+",
with the initial conditions

@200, ¥)=g(9),

4.5)

o290, )= --- = (7.0, ¥)=0, for any yeR",
where
(4.6) g2()= 1 G(U+p)"(y—x¢7)  (in Case-P),

(=IL6@+p)" (=) (in Case-N))

Here a’ is a constant in the definition of A"*"* and GeC%((—1, 1)) is not identically
Zero.

Lemma 4.2.

4 0820z, =g exp| Fn,. ()0,
(4.8) (e Co(A™ ) for j=0,1, -, g+1.
Furthermore for each j=0, 1, ---, g+1 and any nonnegative inleger s, there exists a

positive constant m; s independent of v and t such that

4.9) Lo (T, Ns<(L4p,)" 222 for any 7€[0, p,] and any v=y,.

Proof. From (4.4) and (4.5), we can easily obtain (4.7) and
4.10) (0.7, ¥))

= _50 g W2 o (9o, y))exp{S;F(m, o(y))dO}do-

for each j=1,2, ---, ¢g+1. In view of (4.6), (4.7), and (4.10), we see that (4.8) holds.
We shall prove (4.9) by induction. By (d) in Proposition 2.4 and (4.6), we obtain (4.9)
for j=0. Suppose that (4.9) are valid up to j—1. Then, using (d) in Proposition 2.4,
(b) in Proposition 3.2, and (4.10), we can see that there exist positive constants mj} s
and m; ; independent of v such that

l@i(nulT, Nls
<(+0)" S 1920na, Dliexp{] RF x>, p)db}do
S(L+p,)" 0 sepen =0,
This completes the proof. q.e.d.
By (4.3) and (4.4), we have

q+1 .
Lvf(z, x)=j§) (@A) Re-jusps” (T, X).
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Noting (c) in Proposition 3.2, we have

a+1 .
I Lav3 (e, ')Hqéng"lll\’q-mso}”(f, g

q+1
S (140" ,23 @i (uT, Dlus
where m and p are positive constants independent of v, r and 2. Hence, by (c) in
Lemma 2.2 and (4.9), there exists a constant m¢>>0 independent of v, ¢ and A such that
(4.11) L, DS Aa 1 +p,)" Vet s®r)  for any [0, p.], v=v, and A=1.

By (4.5), we have
v2(0, X)=K(%, 1xy)Lps ()10, x).

Hence, by (b) in Lemma 3.1 and (4.6), there exists a constant m‘® >0 independent of v
and 2 such that

(4.12) 04200, <A1+ p,)*®  for any v=y, and 1=1.

On the other hand, noting (2.18) and (a) in Lemma 3.1, for any v=y, and A=1
we have

1020 o2 K. Lo (P)(per o= 2 27 IELpS (o -l

=llei(nos, Nlo— j‘i 2Nei (s Nllo-

By (d) in Proposition 2.4, (4.6) and (4.7), we obtain

(. Ma=lg) exp | Fn..o(-)d0ly
Z(14p.)"" exp(g(p., 2, p)),
and by (4.9) for each j=1, 2, -+, ¢+1
s (nu(ov,  Nle=(14p.)"i exp(P(p., x&, p)),

with some positive constants m and m; independent of v. Hence, there exists a con-
stant m >0 independent of v and A such that

(4.13) lvios oz {4007 "V =271 (140.)" "} exp(P(p., X, p))
for any v=v, and A=1. Inserting (4.11)-(4.13) into (4.1), we get
(4.14)  (A4p) "
S+ )" P+ CTHA(L+ 0.)" Fem90n 2@ 0D g1 (149 )P}
By (b) in Lemma 2.2, we have
(4.15) e 9D (1L p ) for any y2v,.

Now, we set A=(1+p,)" ’+*" P+ Then, noting (d) in Lemma 2.2 and (4.15), we can
see that (4.14) cannot hold, if v is large. This completes the proof of Theorem.

g.e.d.
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Appendix

(1) Proof of Lemma 3.4. Let a and b be constants in Proposition 2.4. For j=
0,1, -, s, and re(rf’—d,, {’+d.), we set

E ey = Qu(Xaeypr(, £, p®), Pys(r, 19, p); (140,07,

~ 2
EK’:i.r:Qu«X(K?.)'(Tv x®, p?), PK”j(T, X, pe)); §(1+pu)_b),

- 1
By = Qul(Xuyr(5, 52, p2), Prey(e, x2, p)); 314007,

We determine a constant a’(>a>0) in the definition of 4"*"* which is independent of
y, so that (z, x, p)eA"+"* implies (’“”*'ff)" pK»j)eEf,{;,,. This is possible by Lemma
2.1. We can easily construct the cutoff function X,(»j_,,(x<,‘-3;),, /)K»j)e C";(EK»j,,) satisfy-
ing that

(A.l) XK’},J-EJ. on EK':].,: and |XK",.,1(‘y ')|s§(l+Pv)"""

for any nonnegative integer s, where the constants m; is independent of = and v.

In what follows, we shall fix ¢ satisfying |t—7&’], lt—e? 1 <d, (7, j=0,1, -, s,,
|i—j|=1). For simplicity, we set Q=023 2=25, K=K% K=K3 and a=KNK, b=
KNK', c=K'NK, d=K'NK'. We have for ¢(r)eC3(2NQ2)

(A'z) '-K(Qr IK)(/J(TJ x)

eilSK(r)
Zgi,‘png,;ﬂgA,x,?—.p,?"fff,lp,(qz,([\/—jT—(;;—):SD(”)l r=r‘K(r,1K',pK)]
eiZSK(r)
:gf,lp,;v-x,fg2,zc»pfgf,‘pb-zb[:/ﬁ(TTSD(rﬂ r=rK(.',xK’,]JK):|

A \Goi+ien/e ; (( iddczo pricsartip e £(r)
:(27;) 9’1,‘1)12~.,»,:»[X/e.r(/\1z'v /),2)35(; Hcre Ty

: } r=rK(r.J:K'.1)K)dpbdij|

A \Gbi+ic/e [ idbCoo ppitizprpp
+(g> gl,lpkﬁrk[{l—XR_g(xﬁ’- /)R)}SSQ ADCxe Pt TR DR
()
0\7%(;77[)—:1'}{(?‘1‘]\', ])K)dpbdxC]

=1,(z, x)+1y(z, x),

where
D(xe, po; T, Xir, PR)=—De X+ X po+Sk(rx(r, Xx, DK)).
At first we shall estimate I,(r, x). By (2.24), we have for any (xk., px)E
,SuppSD(TK(T, “ '))
o0

Txc(xc’ Pos T Xgr, Pi)

L) i
+(—GE(X“ Doy T X, Pi)
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=|—pe+Prr(r, xxr, PN+ x0—Zs(rg(z, xx, Pl
=|—pr+Patre(c, xx, P+ xp —F&(rx(t, xg, pr)l.

The last equality follows from the property of the projection (#(r), ¥(r), p(r)). Noting
that suppp C A*'+ and the definitions of A**'*, Ez, and Eg. for (xx, px)E
supp o(rx(t, -, ) and (x4, pR)SR"E¢ . we have

I(Z&(re(T, xx*, Pr)), Palrk(t, Xk+, px))

~Xale, £, pO). Pale, x2, pONI> U+,

2
I(xzr, pR)—(Xi(z, x©, p), Pi(z, x, P“"))I|2§(l+pu)‘”.

Hence, there exists a constant m>0 independent of v and = such that

0 00
(A.3) Ti(x“ Dot T, Xiv, I)R)“l‘“a’}); (Xey Doy T, XRey DR)
>(14+p) " {1+ 1(x5, pR)—(Xp(r, X, p), Pr(r, x*, p)I},

for any (xz, pA)E€R™E¢ . and any (xx., px)Esuppe(rx(z, -, -). Set

o0 |2 |80 30 00
T=(| 55 2 ETS ) (axc Drct 55, - Dy,).

and we have Te??=2¢'*?. Using this formula, we take integral by parts in Iy(z, x).
Then we obtain the following estimates from Lemma 2.1, (2.19), (2.20), (A.1) and (A.3).
For any nonnegative integer s, N’ and any v=y, we have

(A'4) ||12(Tv ')”sgz-Nl(l"i_py)ms'Nl |S0(7]L(T- '))"th' ,

where the constants m; y+, qs. 5~ >0 are independent of v=v,, 121, and [0, p.].

For I,(r, x), we may consider that (xz, pz)=suppXs -CEz .. Set r=rg(r, Xz, Pr)
e2n0. Following [3], we can easily obtain the following results. For any (xz, pr)
=Eg - fixed, ®(x., p»; T, Xz, pi) has unique stationary point (%.(r), p»(r)), and we have

(A.5) D7), Pur); T, xz, pRI=Si(r).

Moreover, setting

020 o %P ]
g—z(xc(r), Po(r); T xz, D) FI¥ TR (Re(r), Do(r); 7. Xz, PR)
An= I
2 0*®
| apax. (Ze(r), Do(r): T, X0, i) o 2(xc(r) Po(r); 7. X2, P&) }
we have
(A.6) \det A(r)| = LEO)

/I\(r)

Now we apply the stationary phase method to the integral in /,(r, x). Since, we need
the explicit form of each term in the asymptotic expansion to obtain (3.6) and (3.7),
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we will use the argument in page 70 to 73 of [1]. Then, using (A.4) and (A.5), we
get for any N=1

A7) Iz, x)

L

:eirl(.Q.Q)JC(.(:), ]ﬁ)[(ﬁ(r)+\/7;(?)— Mlvél 7

@i (Day py A1) Dy, )

Aestemerunten> F (rite, xi, DO} nemsecrrmyetoers | T Riv(e, 552,
where (R, Q)=(w/4)sgn A(r) (sgn A(r) denotes the sygnature of matrix A(r)), and
B(x., po; T, &0, PRO=D(Xe, po; T, X&r, PR)— Sk (1)
— 2 (e ), P BAW) - (xe— £, o Bl

The remainder term Rjy(r, x; A) has the following estimate. For any nonnegative
integer s there exist constants my s, ¢n, s independent of v=v,, A=1, and 7= such that

(A.8) [Rin(r, + D<A V(140" Y lo(ut, Nlay. -
From (A.2), (A.4), (A.7) and (A.8), we can obtain Lemma 3.4. q.e.d.

(2) Proof of Proposition 3.2. Here we omit the suffix v. Using 94(2;, I« ) in
Lemma 3.3 and V(Ik,, Ix,) in Lemma 3.4, we set

N-1
DNy, Lk )= Wit B (DD, ),

Vallx, Tx)=14+ 8 GO VOUx, Ixy).,
for N=1,2, ---, and ¢, 7=0,1, ---, s,, |7—7| <1. By Lemma 3.3, we have
(A9) L;:(Ko)(z, x)
:%ef”(gj)J((Qj, Ik )Dn(8;, IKj)e,«(p-l—jsé)e""gi)R,,N(Qj, I e
Now, it is easily seen that there exist differential operators
Vo, Ik )i=1,2, -+, N=1) and V<(Q;, Ix )'=N, -, 20N-1))
acting on C%(2;) such that for any f(r)eC%(2;) we have
Sy 2(N-1) ~
A1) 3Vl Ixden?u(@ I )f=(14 3, GO 7Oy, 1 ))f
where we set
Va(Q), 1 )=1+ 3 DV, ).

From (3.6), we can easily see that there exist constants m;, and ¢, independent of
v such that

(A.11) |V, Tk De(nur, Ns=L+p)" " @(nu(r, Dlay.»
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(A.12) V(R Ix Jp(nu, DIs=(1+0)" 0 L@, *Dlay.»

where goeC?.“(ij\/T"“'”), 7=0,1, ---, s, and [=1, 2, ---. Using (A.10) and Lemma 3.4,
we obtain from (A.9)

(A.13) LiKo)z, x)= Iél(iz)‘ll( W)z, x)+ Ryp(c, 1),

where for (=2, 3, -, N—1

SV -1
(A.14) W,(p:jgo mz=117<"1>(9,, Ix )9 (25, Ik ey,

2(N=-1) Sy
(A5)  Ryp= 3 (,,z)—ljg

0om

N-1
B, KV, L )o@y, Lxcesp

Sy
- ei"(gm’Rz,N(]Kj, IKm)@mVN(Qj, Il(j)ﬂ)zv(gp Ik Jesp

Jjrm=0

(N-1) Sy ) ~
—21;;; j;o(il)_le”(gﬁﬂ(gj, T VO, 1 )Dn(R;, 1k esep

Sy
+§09”(Q-f)1\71,1v(9;‘, Ik e
Here, we denote for o= C3(2;NA"*")
Vo, Ik )p=¢ and DDy, Ix)o=W.p.

From this, we get (a). Estimates (b) and (c) also follow from this, using (2.21), (b)
in Lemma 3.1, (3.3), (3.4), (3.6) and (3.7). q.e.d.
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