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Functional law of the iterated logarithm
for lacunary trigonometric and some gap series

By

Katusi FUKUYAMA

0. Introduction

The purpose of this paper is to prove the functional law of the iterated logarithm
for lacunary trigonometric series and some gap series under probability measures with
some regularity.

Let us first recall two limit theorems for a sequence of i.i.d. random variables.

Theorem A. Let {&;} be a sequence of i.i.d. with mean 0 and variance 1 and put
S,=&++&,. Then it holds that

lim sup

oo ;727'nloglogn~:1 a.s.

Theorem B. Let {&;} satisfy the same conditions as those of Theorem A and let us
denote by {X,} a sequence of C[0, 1] valued random wvariables such that X.(s)=(Stns1+
(ns—[ns1)&rns1s)/V 1. Then the sequence {X,/~2loglogn} is relatively compact in
C[0, 1] and the set of all clusters of this sequence coincides with K, almost surely, where

K={xeC[0, 1]: x(0)=0, x is absolutely continuous and S:xZ(z)dt.gl}.

Theorem A is the classical version of the law of the iterated logarithm (LIL) due
to Hartman-Wintner [9] and Theorem B is its functional version due to Strassen [23]
which is called Strassen’s law of the iterated logarithm or functional law of the
iterated logarithm (FLIL). There are various extensions of these results to the case
of dependent sequence of random variables, for example, mixing sequences, martingale
difference sequences, lacunary trigonometric series, some gap series of functions and
multiplicative systems. We shall here state two results due to Takahashi on lacunary
trigonometric series corresponding to Theorem A and B resprctively. In the following
two theorems, lacunary trigonometric series are regarded as random series on the
probability space ([0, 1], dx).

Theorem C. Suppose that sequences {n;} of integers and {a;} of real numbers
satisfy following conditions.
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Mg/ n;>14+cy™ for some ¢>0 and 0<a<1/2,
Al=a%+ - +al —> o and a,=0(A.n"“w3') as n —> oo,

where w,=(logn)(log A,)'+(log A,)* and B>1/2. Then, for any sequence {r;} of real
numbers,
lim su ~—S#——l a
o P VAT loglog 4, &%

where S,=3%_a;v/ 2 cos 2rn;x47;).

Theorem D. Suppose {n;} and {a;} satisfy
ny/n;>1+cj=  for some ¢>0 and 0<a<1/2,
Ai=al+ - +ai —> oo and a,=0(A,n"(logA,)*f) as n — oo,
where 8>1/2, and {r;} be arbitrary. Let X, be a C[0, 1]-valued random variable such

that

2 2 2
(0.1) X,,( j; )=—jf— and X, is linear in [%, ‘;j;‘] G=1, -, n).

Then the sequence {X,/~21log log A,} is relatively compact and the set of all clusters
coincides with K, almost surely.

Takahashi [27], [28] proved Theorem C using a method of multiplicative systems
in essence and Theorem D was proved by Takahashi [29], who derived it as a corol-
lary of almost sure invariance principles using a method of martingale approximation
and Skorohod embedding. Theorem D was first proved by Berkes [1] under restrictive
conditions.

The first aim of this paper is to extend Theorem D to the case in which the
probability measure in question is not necessarily the Lebesgue measure.

Theorem 1. Let Q=R and P satisfy
(0.2) | P(u)| =0(|u|~**) as u—> oo,
where P is the characteristic function of P. Suppose that {a;} and {B;} satisfy
0.3) B:>0, B/Bi>l+ci* (jeN)  for some ¢>0 and 0=a<l1/2,

0.4) A —> 00 and a,=0(A,(logA,)*n " *(14+alogn)?) as n —> oo,

{rs} be arbitrary and {X,} be defined by (0.1) using S.(@)=37%-,a;4 2 cos(Bw+7;).
Then {X,/~ 21loglog A,} is relatively compact and the set of all clusters coincides with
K, P-almost surely.

Theorem 2. Let Q=R, P satisfy
(0.5) Pl{low, o+hl} SMh* (e, h>0)  for some M>0 and p=(0, 17,
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and {B;} satisfy (0.3). Then, there exists a subset E of R with Lebesgue measure 0 such
that for any t€R\E, any {a;} satisfying (0.4) and any {7;}, {X./~v/ 2log log A} is
relatively compact and the set of all clusters coincides with K, P-almost surely, where
{X,} is defined by (0.1) using Sp(@)=2"1 a;v/ 2 cos(Bjtw+7 ).

Theorem 3. Let @=R, P satisfy (0.5) and a sequence {¢(j)} of positive numbers
satisfy

0.6 >0, §G+D—g()zdi™ (JEN, for some d>0 and 0§a<é—).

Then, there exists a subset E of (1, o) with Lebesgue measure 0 such that for any x&
(1, o\E, any {a;} satisfying (0.4) and any {r;}, {X./~ 2log log A,} is relatively com-
pact and the set of all clusters coincides with K, P-almost surely, where {X,} is defined
by (0.1) using Sy@)=3%-1a;v/ 2 cos(x¢Pw+7;).

We can easily prove using Fubini’s theorem and Theorem 1 that there exists a
subset £ of R with Lebesgue measure 0 depending on {a;} and {r;} such that X, in
Theorem 2 obey the FLIL. But this conclusion is weaker than Theorem 2, since in
the last two theorems, the exceptional set £ dose not depends on {a;} and {r;}.

There are, however, important singular probability measures satisfying (0.2) or
(0.5). For details, we refer the reader to Wiener-Wintner [31], [32]. Under the same
conditions, mean central limit theorem was proved by Fukuyama [8], and originally
the central limit theorem was proved by Takahashi [30] assuming a gap condition of
stronger type.

We next state the classical LIL for some gap series of functions due to Takahashi
[24]. Here again, gap series are treated as a random series on a probability space
(Lo, 11, dx). Let Lipa be a class of a-Lipschitz continuous functions with period 2x.

Theorem E. Let f=Lipa (0<axl) satisfy
©.7) S:"f(x)dxzo and SZ”fZ(x)dxzzn,
and {n,} satisfy ny./np—o0 as k—oo. Then,

lim sup =1 a.s.

ne /21 log log n
where S,=3p, f(n,x).

Various papers are written on the limit theorems of gap series. For details, see
Berkes [3]. The second aim of this paper is to prove the following three extensions
of Theorem E.

Theorem 4. Let @=R, P satisfy (0.2), {a.} satisfy
(0.8) A, —> o0 and a,=0(A,(logA,)2logn)?) as n—> oo,
{rs) be arbitrary, {B:} satisfy
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0.9) B:>0,  Brsw/Br—> 0 as k—> oo,

feLipa(0<axl) satisfy (0.7) and {X,} be defined by (0.1) using Sp(@)=2 1 a:f(Brw
+7%). Then {X,/~/2log log A,} is relatively compact and the set of all clusters coin-
cides with K, P-almost surely.

Theorem 5. Let Q=R, P satisfy (0.5), {B.} satisfy (0.9) and feLlipa(0<a=l)
satisfy (0.7). Then, there exists a subset E of R with Lebesgue measure 0 such that for
any teR\E, and {a.} satisfying (0.8) and any {1}, {Xa/~ 2]log log A,} is relatively
compact and the set of all clusters coincides with K, P-almost surely, where {X,} is
defined by (0.1) using Sp(w)=200, arf(Brto+74).

Theorem 6. Let Q=R, P satisfy (0.5), {¢(k)} satisfy
(0.10) o(1)>0, o(k+1)—d(k) —> 0 as k—> oo

and feLlipa(0<axl) satisfy (0.7). Then, there exists a subset E of (1, o) with Lebesgue
measure 0 such that for any x&(, o)\E, any {a.} satisfying (0.8) and any {7:},
{X./~ 2log log A,} is relatively compact and the set of all clusters coincides with K,
P-almost surely, where {X,} is defined by (0.1) using S,(w)=3) arf(x?®w+7s).

To prove these theorems, we use the following result for weakly multiplicative
systems. Here, we prepare some notation to state our results. For a sequence {§;}
of random variables, let us put

biy i, =EEi61,), bi,....:,=E((&1,—1)--(§%,—1)),
Eil.m.iT:E((Egil—l_1)"‘($§i,—l_l))v zi,.n-.iT=E((3§il—1)"'(§§tr'—1)),
b;ek;i,.m.irzE(ezi,-x‘"(&%ik-l"‘l)"'fzi,—l), bl’r;’.;,.m,i,=E(Ezi1"'($§ik—1)“'Sﬁr)y
let B,, B,, B., B., B*, B** be infinite vectors such that
Br:(bi],u-.i,»)il<»~<iry B'r=(b§l.---,i,.)il<~-~<i,, Br:(Ei‘.m,i,)il<~~~<i,.»

B.=(b; el )i <o Iﬁ'f:(b;f;i st )1sksr_f <Ly B"r‘*=(b7ak;"§ s d )1;k5r,i <oLig s
1 T 1 r 1 T 1 r 1 T 1 T

and |-, denotes the /;-norm. For example, |B,[i==i<.<i, (104, |

A sequence {&;} of random variables is called a multiplicative system or weakly
multiplicative system according as B,=0or B, is nearly 0 in some sense. For details
and history of these notions, we refer the reader to the survey by Moricz-Révész [18].
Our result is as follows.

Theorem 7. Suppose that a sequence {&;} of random variables and a sequence {c;}
of real numbers satisfy

0.11) 1By =019 as r —> o for some O6€[1, 2),
(0.12) 1B 4", | B, I¥"=0(r"?) as r —> oo
(0.13) | BXlle, 1B¥*|l.<eo,
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Ci=ci+ - +ci —> 0 and c¢q, Calléalle=0(Cy(log C,)~ A4 g p —> oo,

where 4=2/6—1. Let {X,} be defined by (0.1) using S,=2%-,c:&:; and {C,} instead
of {A,}. Then {X,/~ 2log log C,} is relatively compact and the set of all clusters
coincides with K, almost surely.

The FLIL for weakly multiplicative systems was first proved by Berkes [2] under
the restrictive conditions ¢; =1, |fil« < BGEE N), 335.,1B,li<cc and 32, Bl < co.
Fukuyama [6] improved this results to the case ¢,=o(C; %) as n—oo, ||§i]l-=<B(FeN),
I1B.}¥"<B and ||B%||l/"<B (r&N) for some d<[1, 2) and ¢>0. These results are not
included in Theorem 7, since another condition (0.13) is assumed in Theorem 7. But
we can prove another version of Theorem 7 which include these results completely.

Theorem 8. Theorem 7 remains valid if we replace (0.13) by
(0.14) E&<B (neN).

Acknowledgement. The author would like to express his hearty thanks to Prof.
N. Koéno for his advice and encouragement.

1. FLIL for weakly multiplicative systems

We first prepare some lemmas. Let {{;} be a sequence of random variables, {u;}
a sequence of positive numbers and put S, n=Cusi+ - +&n, Un m=tps1t+-+itm.

Lemma 1. Suppose that there exist C>0, L >0 and A=1 such that
(1.1) lu, | =C* A% (ne[N, M]),
(1.2) Eexp(AC'S, n)SLexp(LAC U, n) (1214, n, me[N, M]).
Moreover suppose one of the following conditions:
(1.3) E(US, *1S1nD)SLU Uy m (0, I, me[N, M]),
(1.3") E(San )= LU w  (n, m€[N, M]).

Then there exists an L’>0 such that, for all y&0, L A'?),

P( o, 5. ZC3) S L{exp( o, )+ ity

Proof. By (1.1), we can take a sequence {n:},sxsx such that
N=n,<n,<<ng=M, CAVZU,, ., <2042 (1<k<K).
Put M, n=maX,<i<m(|Sxz.:| ASi ml). Usual argument yields (Cf. Billingsley [4] Ch. 12),

max |Sy | <|Sw.n,., |+ max |[S
np-1<isnyg np-1<isny

éISN.nk_1|+|Snk_,.nk|+M7;,‘._,.n/¢
§2|SN.nk_ll+[SN,nkl"l'Mr:k_,.nks

nk_l.il
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which consequently proves

;nax [Sw, ,|£3 max [Sw, ,,k|+ max My, 0,
<isM

When |y|<LAC?U, ., putting A=yC%/(2LU, »), (1.2) yields

CZyZ

P(|Sn. | 2Cy)<2e"*VE exp(AC~'S, n) <2L exp(—ZfU— )

Thus if we take |y| <L A%, using Theorem 1 of Mdricz [17], we have

P(,rsr’,,as}E{lSN‘"klg%)éL, exp(— L’;]j::M)'

If we assume (1.3) or (1.3’), using Theorem 12.1 or 12.2 of Billingsley [4], we have
P( a2 >< Unkl"k.
Noting 3K, U3, .2, <2C*A7*U y y, we have the conclusion. =

By the assumption (0.11), (0.12) and (0.13), we can take B>1 such that

(0.11") |B-ly"<Br*-'%  (r&N),
(0.127) \B I |1 B,y <Brt  (reN),
(0.13") I B¥lls, | B¥*|.<B.

Lemma 2. Suppose (0.11’) and
SA=1, 14ISBA, 1<l and [A&|<BA.
Then there exists L >0 depending only on B such that

(1.4) | g:lziEe,.[ <L

(15) \E SA+8)|S2 (HISLPAY).

Moreover, if we suppose (0.12'), there exists L >0 depending only on B such that

(1.6) E( T Z%(é%—l))zéLP ,
.7 E exp(tigllifi) <4 exp(2f* %:113) (ICN, |t] S(LAGmA)1y
(1.8) ] E exp (it 3 4&:)— exp(—fzz— +it 3 ,ZiEé,)t

SL@AIEP 2D [2]2) (18] KLY,

(L.9) B(Ea&) <L,
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(1.10) l E exp(it g‘; 148.)—exp (—g)

SLQIEH2ACD 124 2411]) (18] S(LADM)™,

Proof. We have already proved these inequalities in [8]. (1.4), (1.5), (1.6), (1.7)
and (1.8) are (1.1), (1.5), (1.2), (1.7) and Lemma 6 in [8]. (1.9) is proved in the proof
of Lemma 1(1) of [8]. (1.10) is clear from (1.4) and (1.8). m

Let us put

Skm= 2 ¢k, S¥a= 3 cbi, Cin= 2 i and CiR= 3 ci.
n<ism n<ism

n<lism n<lism
i:odd ireven i:odd i:even

Lemma 3. (1) Under the conditions (0.11), (0.12") and (0.13"), it holds that
ES3SE)SLCECY (nSI<m)

for some L>0 depending only on B. It remains true if we replace S¥% n by Si¥n and
Ch.m by Chln

(2) Under the conditions (0.117), (0.12’) and (0.14), it holds that
ESHn<LCHn  (n=m)

for some L>0 depending only on B.

It alsoremains itrue if we replace Sk n by S
and C% . by C¥*,

Proof. (1) Expanding the expectation, we have

E‘(St,zlsal.‘,zm):4 Z csctcquEExSLEuév'l'z CcCccﬁEEsftEfA
ns<tls n<s<tsl
l<u<os1n I<usm
8, t, u, v: odd s, t, uzodd
+2 2 cic,c, EE¥ v+ € HH X3
l<u<vs1n ln<<ucssm
8, u, v: odd s, u: odd

=43,+23:+23:+ >, (say.).
Estimation of 3}, follows from the bound of | Bi|.:
1/2
Zuls( 3 ciciciet) I BulaS16BCEICER

n<8
<u
8. t.u. vodd

Noting E&.£.52=FE&:& + E&:£,(£2—1), we shall divide X, into two summations :

N g{ S cicictEEE,
i

2 2
+l ﬁg%slcscque,g,(gu 1)‘
usm

s, t, u:odd

8, t,u:odd
s, %ﬁ(,@ c,c,) ||Bgnz+( 2 c‘) ( 2. 1et)" 1B,

odd

=(@2B*+B)CHCY,
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> is estimated in the same way and by the same bound as X,. Noting E&%:=
EE—1)E2—1)+ 14+ E(E2—1)+E(E2—1), we shall divide 3, into four summations :

S| B acE@-1xe-n|+ 5 e
n<ssl n<ssl
I<usm I<usm
s, u:odd s, u: odd
+ 2, acE@-n|+| 2 aaEE-D
n<ssl n<ssl
<usm i<usm

s, u :odd 8, u :odd

/2
<( 3 etet) 1B+ CECE
n<ssl

I<usm
8, u :odd
/2 — . 4 1/2
+( 2 ) 2 ) MRl 2 ) B et) 1B
I<usm n<ssl n<ssl <usm
u :odd s :odd 8 :odd u rodd

<(2B*42B+1)C¥,C¥, .

Thus we have the conclusion.
(2) Theorem 1 of Mdricz [16]. m

Now we are in a position to prove the relative compactness of {X,/+/ 2 log log C,}.
Retaking B large enough, we have by the assumption of the theorem,

max |¢;|, max|c||&ille<BC(log C,)~EVetrdn
isn isn

From now on, we denote by L a constant depending only on B which may be different
line by line. If we put

Cq

An=(log C,)~ Ve, Zn,l:{ﬁ

0 it i>n,

if i<n and,

{&:}, {Aa.s}ien and 2, satisfy the assumptions of Lemma 2 for each nN. Hence by

(1.7), we get

2s2C¥2,
C:

K exp(—g—S;“_ m) <4 exp( ) (I<mZn, |s| L (log C)Y.

By this and Lemma 2 and 3, we see that we can use Lemma 1 for S¥, putting C=
C,. u;=c} and A=L"'(log C,)* and conclude that for y=(0, L-'(logC,)*) and N<M <
n, it holds that

A P(max 1581 2Cr) S (x4 aa g )-

Now take #>1 arbitrary and let {g(n)} satisfy C2,<6"<CZiy+,. For given ¢>0
and >0, we must estimate the probability of the event

_ N X ()= Xgiry(8)]
Arle, 5)—{us-lillos& v/ 2log log Cycr) >E}'

For large enough », we can take {mj} ..., such that O=m,<m, <. -<m,=q(r) and
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0<(Ch,—Ch, )/ Cin=20(1<7<p). It is easily seen that p=1/0 holds.
In general, we have

P{sup Y(O-Y(®)zs} S B P{ sup 11(9-V(todiz5)

Li_1s8sty

if YeC[o, 1], 0=t,<t,<--<t,=1 and t;—t;_;=20 (1<i<p). Applying this and noting
[Sa—Sal ISk m|+S5k1. we easily get

P(A(e. )< 2 P{ max [Sk, | Z % v2ZCiy log log Cucrs}

i= mj_,<ismj
p

+,21P{m,m3?§n |S#5-il2g * V2C%,, log log Cq(r)}
= _i<i L

This and (1.11) yield
€ chr) log log Cq(r)

» 64C*2
A (e <L _ooTakr) TES TFS AT Mmj-1.Mj
P =L B (exo(= = TgT e M S o Coc s o Tog Cacn )

D ezcz(7) lOg lOg C q(r) 64C1"7‘l’f21 mj
+L 2 (exo(= " “gopm )t o iog Crcs on o Cor )

64
<2l (5= emriy sty )

where L, depends only on B and #. Since the last term is summable in 7 if
we take & small enough, by Borel-Cantelli lemma and Ascoli-Arzera theorem,
{X,rr/~ 2log log Cycry} is relatively compact almost surely. On the other hand, it
is easily seen that

max sup IX,.(t)—Xn(S)I<0 sup. qu(r)(t) KXocr($)]

q(r -DHN ST 1L-81<

holds, and these two facts lead us to the conclusion.
Next we shall argue on the set of clusters. After the method of Koéno [13], we
use the following theorem due to Kuelbs [14].

Theorem F. Assume that {X,/~ 2loglog C,} is relatively compact in C [0, 1]
almost surely. If for any signed measure v on [0, 1] with bounded wvariation,

S‘Xn(z)u(dt)
lim sup

L
n-w 4/ 2loglogC, Koy as.,

then the set of all clusters of {X,/~/ 2loglog C,} coincides with K, almost surely, where
1 2 16
K2 o=E([weno-uan)={"orx 117dx.
0 Jo
(W(t) denotes the standard Brownian motion.)

Let v be a signed measure on [0, 1] with bounded variation and suppose that
v#0 since there is nothing to prove in case v=0. Put N=|v|([0, 1]),
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2

0 for te[o, CC;‘]

Sa )= C:z Ci i C%
?(t— C:l) for tE[ Ci%l, c%],

1 otherwise,
du={ $oOdD) and Clo= 3 (eidn, o

We have X,(t)=Cz' 2% cifa, «()E; and SX,,(t)u(dt) Ci' 3%, ¢id,, & using these nota-
tion. We have proved the following formulas in [6]:

. C:, 1
(1.12) 1‘121° ol =K}, and lrlglom tg cidirin, =K% 0.
We shall here prove
(1.13) lim sup—— E(Ctdq(r) LPSKZ, a.s.

T —00

If » is large enough, we have by (1.12), C? 4 =K?2 ,C%;,/4 since K% ,>0. Therefore,
(1.13) follows from

th E(Ctdq(r) D& —1)=0 a.s.
oo Uy gqcry =1
Putting
Cu_.]q(r)ctdq(r),t i§Q(7')y
(1.14) Ar=(log Agr)™® and 2, .=
otherwise,

we have that
|A- | 2N |¢; | K1 Coty S2NBK 1A, and |2, 4|16l <2NBK i

Thus the assumption of Lemma 2 is fulfilled if we retake B large enough. Hence we
can use (1.6) and get
1
E( 2

v.q(r) =1

5V (€idacr, NE—D)) S Lalr—1)

Thanks to Beppo-Levi’s theorem, (1.13) follows from this. In the same way, we can
also prove
q(r>

(1.15) lim sup —;——— 2 (cidger+ny, £ SK2y a.s.

T o0 q('r+l) =1

Now we are in a position to prove the upper bound estimate. Take ¢>0 arbitrary
and put a.=K;1v2loglog Cyrr. Since maXigocr|a@rcidgers, €1/ Cocry| £1/2 for large
enough r, we can use exp(x—x?%/2—|x|)<14x (|x|<1/2) and get

ad e
exp( Cq(r) 2 Cidqgcry. ii— chm 2 cidicrs, &2 — —E |Ctdq(r),i§1:]s)

= q(r)

<E'[T (1+ar, $0=2,



Iterated logarithm 977

where 4, ; is defined by (1.14) and the last inequality is by (1.5). On the other hand,
by (1.12), we get

at o B!\/aTA, cal aw
Cacn i‘? [¢idacrs, iil” = K..Cir E (Cidacrs. &)= 2Chry § (cidgcrs,ie)

for large enough ». Thus we have

qr) 1+4+¢ acr . (1+E)[(,,?:1
E exp[a (a Cq(,-) 1.21 C; dq(r) 15' ch(r 1@ (Cidq(r) 151) ‘2—)]

<2 exp(— l—é—e K? ,a?)

<2((r—1)log 6)'-¢.

It implies by Beppo-Levi’s theorem that

. 1 W 14¢ 9 (I+e)K2,
2f . - 2 5 —__
!rl_l:llar( arcq(” Ex Cldq(l),lél ch(” lg (C dq(r) 151) 2 ) © - a.s.

This and (1.13) prove that

1
Xocr(Du(dt)
lim sup— <K,, a.s.

T -s00 \/ 2 log lOg Cq(r)

Noting the relative compactness of {X,/+ 2log log C,}, we have (Cf. Fukuyama [5])
that

Xa(tv(dt)
IIT..iup\/z log 10g C. <K,, a.s.
We mention here that the following (1.16) can be also proved in the same way using

(1.15) instead of (1.13).

1 qr)

(1'16) hm sup\/zc ¢ 5 log log c ¢ 5 21 cidq(rn) IEIS]{V n a.s.
T qCr+ qCr+ i=

Let us proceed to the proof of the lower bound estimate. Here after we take
1

0>1 so large that K?,— f,,;:g /o(u[x, 11)2dx >0 holds. Put A, my=(log C,) @V
1

D2 q(n+1) Zdz 1 e+ J
n_i=q§)+16i q(n+1), iy Na= Dn i=q(n)+lci q(n+l).i$i,
_s .
\/sz__HTb—ctdq(nﬂ),i gm<iZg(n+1),

X(n.m),t t )

I \/4'sz—_|_t2bCidq(n+m+l),i gn+m)<iZqg(n+m+1),
n+m
0 otherwise,

for given s, teR. It is clear that s77,,—|—t77,,+m=«/§2—|—t2 2351 A, my, &1 holds. Since we
have 2%, n.m>.«=1 and 2w, m>. il 12cn mo, i [ 1€l S2NB(K2  — K2 ) *An. my by (1.12),
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we can use Lemma 2 for large enough n, taking B>1 sufficiently large. By (1.10),
we have

(1.17) [ fa m(s, H—g(s, )]
SLT P+ s ID)+n2@E+s)+n 't +1s]) (], [sISL7'n)

where fa m(s, )=FE exp(isn,+ithan), &(s, H=exp(—(s*+1?)/2) and L is a constant not
depending on n and m. We shall here prove that

(1.18) sup | Fy m(x, )—G(x, y)ISLn~*logn

z, yeR

where F, . is the two dimensional distribution function of (9., §a+m), G is that of
two dimensional standard normal distribution and L is a constant not depending on n
and m. After the method of Révész [21], using Corollary of Theorem 1 of Sadikova
[22], we have

fn.m(s’ t)_g(s» l)
st

Is‘gepkl Fyonlx, y)—G(x, )| éC(S:STT

+{

-T

‘dsdt

fr.m(s, os)—g(s, 0) ld”S:I S0, t;—g(o, ) ‘dH%)

for all 7>0, where C is the absolute constant, fp m(s, =Fn n(S, )—Sn n(s, 0)X
fna0, 1) and g(s, )=g(s, t)—g(s, 0)g(0, ). Put T=L"'n* and we divide [—T, T]X
[—T, T] into two parts U and V by U={(s, t); L™'n*Z|s|, [{|L'n?} and V=
[T, TIX[—T, TINU*. Since g(s, t)=0 and

|7 n.m(s, D=1 Eu(E o (e72@ — g1 ) B, (g T +m (D — gl insm ) |
SIstl E(Ew |92(@) =00 Eu | 90 sm(@) = nim(@)])
SAISt EV R E P hen
<L|st|

(the last inequality is by (1.9)). we get ngl(fn,m(s. B)—g(s, t))/st|dsdt<Ln% Noting

| Fam(s, )—&(s, DI [ n(s, D—8(s, )+ Fn m(s, 00—g(s, 0)|+ /7 0, )—g(O, t)] and
(1.17), we have

z - L-1n2 L-1p2
SS Jn.m(s, DB, 1) ‘dsdigLS ﬂg (n~8s®+n-8s+n-*ds
U st L-1n-4 ¢ Jo
<Lntlogn.

Since two other integrals can be estimated by Ln~% in the same same way, we have
(1.18). Now take £>0 arbitrary, let {{;} be a sequence of i.i.d. with the standard
normal distribution and put

Un={n.2v@2—¢)log log Cony} and V,={,=+v(2—¢)log log Cocn>} -

We shall now show that U, occurs infinitely often almost surely. Although {U,} is
not a sequence of independent events, we can use the following generalization of
Borel-Cantelli lemma. (Cf. Rényi [20])
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Lemma G. We have P(lim sup,..A,)=1 if

0

P(A)=c0 and liminf3) 3 P(A,nAk)/( 3! P(A,~))2:1.
1 j=tk=1 ji=1

n= 1L =00

Since we have by (1.18) P(V.N\V,) =PV )PV, |PUNUm)—PV .NVa)=
Ln2logn (n<m)and |PWU,)—PV,)I<Ln*logn (neN) by (1.18), it is easy to prove
the following :

LM:
VD2 Gog iy

M

M M ;
—> o0, 'EIP(U,,)/EIP(V,,)——)I as m— oo,

n

"

X

3 (PUWNU )~ PUDPWU)E Lllog MY .

n

From these, we can prove that 7,=+/(2—e¢)log log Cqsy infinitely often almost surely.
Thus, we have by (1.12),

1 gCr+1)

lim sup

i S cd G (K2 —KZ2p)? a.s.
=00 \/ZCg(TH) log log Cycrary i=aCrr+1 idocrin, &= (K2, 20)

Since this and (1.16) prove

PAGYCD
lu}}qiupmziﬂ , a.s.

by usual argument (Cf. Fukuyama [5] or [7]), we have come to the end of the proof.

2. FLIL for lacunary trigonometric series

In this section we prove Theorem 1. Theorems 2 and 3 are proved in a similar
way. For necessary techniques, see [8]. First, we cite some results of [8]. In [8]
we derive the mean central ilmit theorem under the same condition except for the
condition on {a;}. In [8] we assumed

o —>0, ApppToo as n—>co and
=1, |a,|ECpAun *(14+alogn) (neN).

and we are now treating the special case pg,=(logA,)"®. To state the necessary
results in [8], let us introduce sequences {p(k)}, {l(k)}, {m()} and subsets J; of N by

0 k=0,
p(k):{ )

max{j; B;<2*} ReN,
I(R)=[(8/ap) log, p(k)+4+log, (1+1/c)],

O i:07
m(i)={ min{k; p(k)>0} i=1,

max{k; k—Il(R)<m({E—1)} =2,
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Ji={7eN; pmi—1)<j < p(m@)}.

Put {(@)=+/'2 cos (Btw+7,), ci=(Abimer»—Abmai-1»)"* and &:=ci'Sjes,a,{;. We shall
here show that {&;} and {c;} fulfill the assumption of Theorem 4 and the correspond-
ing C[0, 1]-valued random variable Y, (here we use Y instead of X to avoid con-
fusions.) obey the FLIL. From now on we denote constant not depending on n and r
by D and it may be different line by line. Rewriting (2.8) of [8] using the above
notation, we have maxX;s,|c;|, maxXs,|c; | 1€ DptnApcmanr- In the proof of the last
inequality we used

2.1 max 2} |a;| SDpaApiminy -

isn jeJdg

In [8], we have proved that there exists a constant D not depending on r such that
IB-AY", 1B, |B.|Y"<D (r&N).

As to (0.13), we can obtain the following stronger results.
Lemma 4. There exists a constant D not depending on r such that
I BXI, |B¥*li/r<D  (r&N).

Proof. In a similar way as the proof of the estimate of |5i1.-~».ir| in [8], we have

[b%5),t, |DT 2 = 2 | P((Bj,+eBi)+er-1Bi, .+ - +eifi)l,
s=h-ljeedaig-1 cy=1,-1
(@=1,-+7-1) (g=1,71-1)
Jr v €Jei,-1
vty
and the case k=1, ---, r—1 is similar. We have shown in [8] the following estimate :

I1B.1h=D" = D By, =B )= By A B = (BB

We can easily see that a similar estimate holds, i.e.

|B¥ll,=rD" 3 = [(Bs,—Bi)—(Bs,_,+Bs_ )= —(Bs,+Bi)lP"
[EASISLIF M /ACY P
(@=1,+,T)
3*>ir

<rD"ED".

Since this estimate is also valid for ||B**|, by the same method as that in [8], we
have the conclusion. m

Applying Theorem 7, we can prove that {},/+ 21log log C,} is relatively compact
and the set of all clusters coincides with K, almost surely. Because of ||Y ,— X,y llcro. 13
< pcmenyy Which follows from (2.1), we can easily see that {X,cmen»/v 2 10g log Apcmenr}
is relatively compact and the set of all clusters of {Y,/+/2 loglog C,} and that of
{Xpmnn/~v 2log log Apcmanyt coincide. In case p(m(n—1)<n=p(m(n)), we have
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Af
)-

t——
2
A mnn

A min
Xn(t): _ELTQ)“ Xp(m(n))(

Since we have

1> An > Ap(m(n—l))
- Ap(m(n)) - Ap(m(n))
and
A min-1n 1 2 .
0<l——1 =73 (2|ajl <D*pi—>0 as n—co,
Ap(m(n)) Ap(m(n)) JEJn

we can conclude that {X,./~/ 2 log log A,} is relatively compact and the set of all
clusters of {Xpcmcny/v 2 10g log Apcmen»} and that of {X./+/ 2 log log A,} coincide.

3. FLIL for gap series

In this section we prove Theorem 4. Theorems 5 and 6 are proved in a similar
way. For necessary techniques, see [8].

Let us put f(t)=%-1d;v 2cos(jt+7)) and ¢,()=2Ljsa dsv/ 2 cos(jt+77). Since
feLipa, there exists a constant L>1 such that

3.1 \f—onle=Ln *logn,
(3.2) Ji‘, di<Lne,
(3.3) 1 fllo llonle<L  (nEN).

(Cf. Zygmund [33].) First we shall prove a lemma.

Lemma 5. Under the assumption of Theorem 4, it holds that

. 1 n
— + <
hT—-iUP\/ZAﬁlog log A% Elahf(ﬁ,,w THS2 a.s.

Proof. Here after let L denote the absolute constant which may change line by
line. Let us put 7y(@)=0csay(Brw+7:) and introduce a sequence {pn} of integers
satisfying 1<p,<n, p,—o and 4, /A,—0 as n—oo. Since we have

S (Brotro—ex@)| SL S laslk™ logh+L 3 laslk™ log
k=1 kspp Pp<lksn
o 1/2 oo 1/2
<LA, (3 k¥log kY) +LA,,(k=Zz}'nk (log k)"

=0(A;) as n—> o

by (3.1), assertion of the lemma is equivalent to

. 1 n
. <
lim sup- g Tog AL 2, 14742 8.5

Let 2, be the minimum integer 7 such that d,#0. Since 7,=0 if k%<7, we may
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restrict our consideration on {r#}s2ia. Neglecting first finitely many terms, without
loss of generality, we may assume S,21, B.1/Be22¢Xk) (kEN), where {¢(k)} is an
increasing sequence satisfying ¢(1)=1. Let us introduce a sequence {m(s)} of integers
and a sequence {/;} of subsets of N by

m0)=[:§], m@E+1=m@i)+3+[(5/pa)log, m(z)] (i€N),
Ji={keN; mG—1)<ksm(i)} (EN).

Because of m(i+1)/m(z)—1, we can take L=1 such that

(34) m(i+1)/m@=< L,

(3.5) |Jil=L log, m(i)< Lm(i) (I€N),

where | /| denotes the cardinal number of J. Put

ci=< 2 ap 2 d;)l/z’ Ci:l S, and Ci=cid o 4cl.

ked;  jgrlla Cikedg

Clealy Aniyd;y=<Ci<A, . Since we have by (3.3) and (3.5) that

lim-—C =1, lim X3 di=l

{00 Am(i) k-oojskl/a

and

max > apTe
neJym@i-1<ksn

SL 3 lar |l =0(Anwlog Anwy)™®),
o0 kEJ

assertion of the lemma reduced to

1 n

i — (i .S.
(3.6) llr,rllﬂiup /2C%, log log C,,, g}x cubusl a.s
and
3.7) lim sup L i} Cri-iles =1 als.

nee - A/2C%,_, log log Con_, i1

We shall here prove (3.6) using the method of weakly multiplicative systems. (3.7)
can be proved in the same way. The above argument proves

(3.8) lenl, [eallCale=0(Cr(log C.)™*)  as n—> 0.

We need an inequality similar to (1.7). First we shall show 33; <.<i, | Elos,+Cos | SL7.
(L does not depend on r.) Using Holder’s inequality, we can easily have

V2T
|E62i1"'C2tr]§‘T 2 2[
2, 2y kg€Jgiq qukq/"
@=1, 7))@=l 1)

lawax dyd; |Ecos(Be, ir+78,.5,) cos(Be,ir+74. )]
\/2_7 /2
é—( = > ai,ai, 3;"!13,)
Caiy i Cai k€21 Jqsky!®
@=1,"% 1) (g=1""T)
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N 12
X( > > EzCOS(.BkrJr+T£’,,j,)"'COS(.3k1]:+Tf'z'1.j,))
kg€ giq  Iqskyl"
@=1." 1) (@=1,"" 1)

g%zz >

kg€J3ij JFqskyl" ‘a= !
@l By QL Ly =l =D
e Jr r=1Pk .r—l 19k ‘1
|Ecos({Be, Jrter-1fi, Jroit - +efejilo
SR VAP STy ¢ AN ST - ¢ AR D1

where 74 ;=77:+7}. Because of |E cos(Bo+7)|<|P(8)|<L|BI-*?, the summand is
estimated from above by LIBr,jr+erafe, Jrot - +&Be,gil7?%  Thanks to
Braim (E)S Bueiepp2 mErDImbrjo log b <8 /4, we get

Br jreteraiBu, Jrat o FeiBe g
ZBnci,~vn—(Brai,_snt+ - FBnaeirn)/4
22Bmei,-n— P, n(1+H47+ - )/4
ZBnci,-»
> 2% (m(24, —2)m(24, —3) - m(1))> e

by the definition of {m(i)}. Thus we have
VECos,+Loi | SLT | Joi 1 e, o 1o | Jaa, [ (mU24 2 )m(2i 7)o m(20,))
X (2% (m(22, —2)m(24, —3) - m(1))B1e )01z,

Because of m(2i,)<Lm(2i,—3) and (3.5), we get |Eluy, L, |SL727°%. From this
estimate, we have finally proved

3 1EG - Cu, | SLT 3 a2 Lr

i<ty (r—=1!=r

Noting this and (3.8), we can apply (1.5) and have

|EL (1425 Ga)| <2 (ST Al 11 SL7(log €.

Can
Using exp(x—x*)<14x(|x|<1/2), for IC[1, n] and |{|<L-Y(log C,)" we have

(39)  Eexp(a— Seule)

C,, ict

N t 2t 5 2 212 2 vo
=Eexp (E;:;Zalcziﬁzi— C—ﬁ,,tgzc”C”) exp (Egg}mcn)

21 4 42
12 o 2 72 ) [1)2 2 72
=E'”exp ( Con tECZLC2i ct. %mcm)b €xp ( Ct. iglcthm)
2tcy; 412

/2 1/2 2 P2
SE UL (145 o) B exp (- S etilhi)

— 412
<V 2EW exp(c2 ieE[C%icgt>-

2n
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Next we shall estimate the last expectation. We must divide {3; into three parts:

. 1
Gi=75 2
Cai 5“”&1?{225) Jqskl % @=1,2)
"B g1t efRydel2Bmai-n

X @y, Qrydjdy, coS({Be,fiFeBr ot @+ {TE, 5+ €70y 5,})
2

- P
Cai kqe.fgi(q=l,2) 7 skll® g1, 9)
Jgsrg (@=1,
Fike gy 1= B R, de1<Bmi-
X aklakzd,-ldjg COS({ﬁkljl_ﬁkz.iZ}w-l- {rl{cll,fl_rilz.jg})

1
+5 3 X aid]
Ca; kEJ2ijshll
=&i+n:+1 (say).
Here 7; is small in the following sense. Since the condition |Br:di—BryJel <Bmezi-v
implies |7,—72B,/Be,| <Bmci-1»/Br,<1/2, introducing a notation [x]*={neN; n—1/2

<x<n-+1/2}, we have

2
[9:1= P ]aklakzd[.lgﬂkzlﬂkll‘djgl

Coi kg€EJ 21 (q=1,2) rlla
21 Rq&v2i Q@ jos
¢ ki<kgy ’ 2

2 . 1/2 . \!?
= = laklak2|( b dtjzﬁ,,zlﬁ,,lr) ( = djz)
Jpskyl @ Jpsk}l®

€34 kqeT2iG=1,)
k1<ky
Since (3.2) gives Ejggké/ad%jzﬂkz/ﬁk 1+ < LY 2¢p(m(2i—1))"2«k2-kD | we get
1

<L 1 m(2i)—én(2i-l) 9 (2 1))) ar m2i)-r l( 2 & 1/2
il =L — mlst— - ara )
|771|_. C%i A ( ¢( b= T 1341 I kU k+T isahe J

T=

1 m@id-m2i-1

<1""% @ m(2i—1))
2% r=1

me2i)-r 2 1/2 m2i)-r . 2 1/2
x( 3 ak) ( DI DY dl)
k=m(2i-1)+1 k=m(2i-1)+1 jstk+m)lla
<L *(m(2i—1)).

As to &;, we shall prove
S |E&y & ISLT.

<<y
USing I.Bkl].1+519k2].2| gﬁm(ziq-l) and ﬂk1j1+5,3k2]'2éZﬁmmq)m”“(Ziq)§,Bm(2iq+n/2, estimat-
ing in a similar way as before, we have

|E&sy &, | SLT Jaa, 12 Taiyo 120 L aa, |22 Jm(2d 7 2 )- - m(220)) 1
X(2¥r(m(2i , —2)m(2i, —3)-m(1)10%) 012,
SLro-ire,

This yields the above estimation as before.
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Because of |&;|<1+ |71+, we have c}i, ckil&ill«=0((log C,:)™°). Using (1.5)
again, we get

e (G

ol =2 (IC[l, n], Is|=L"'(log C.n)?).
2n

This yields

S s S e | SCis
Eexp (g Betdi— g B etdt) SELL (145 6) S2.

Noting this and

L9|C%i

§i< L(log Con)*€: =(log Con)*(§s+2 191 +2),

2
2n

we have
Eexp ((—o(D) = Sebée)s2 (CIL n], 5] L " (log Con)).

This and (3.9) gives, for large enough n,

t - 21% 41*
(3.10) Eexp (g Zeuder) SV Zexp( G Sehl+Ind ) BV exp (- Zekide)

ar ) \
Sek) (CLL nl, 11 <L7Y(log Cun)?).

szep ¢y 2

Let us next pUt Sn,m:C2n+2+”‘+C2m and Un.m:c§n+2+”'+(:gm- We shall prove
(1.3). We can easily get

ESin=2 3 CzilczigEC211C2i2+n<tESmC%iEcgi

nli<igsm

1/2
<2 3 (3 Elulen) +, 3 B+ 7]+

nLism

1/2

/2
2. . . 2 4. 28
<2 3 ok 3 Bl +L 3 et (3 o) (3, E%)

nlism
SL 3 it 3 chZIE&|
nism ngism 2
SLU, m,

and consequently we can obtain

ES}nShaS EStn( 3 chil+1741))

+ES%,m(2 > CztlcziZsz,Cztz'i-mgélcngi)-

m<i<igsl

The first term is trivially estimated by LU, »,U.; and the second term is also estimated
by the same bound by expanding and estimating in a similar way as before.

(3.10) and (1.3) enable us to use Lemma 1 and prove the relative compactness of
{Y./~/21log log C,} where Y, is defined by (0.1) using S,=3%_,¢;{; and C, instead
of A,. Since we only need the upper bound estimate, we can go through the proof
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of upper bound estimate in Theorem 7 in case y(dx)=d0(dx) in the same way except
for the proof of (1.13). Here we prove (1.13) in case d, ,=1. Since {&;} is weakly
multiplicative, easy calculation gives
1 2
B(ga—, 5 i) =0(log Cun)™) a5 r—»oo.

ey 2idgir)

This yields the following by Beppo-Levi’s theorem :

lim fz 2 c§i§i=0 a.s.
r—w Cgcry 2isar

Thus we have

lim sup 3}

ra - Clery 2idqer)

. 1 .
<limsup—— X c¢};+limsup——

2 H 2
c3;mi+1lim su c3:&;
—00 Cg(r) 2igq(r) T =00 cg(r) 2is§(r) tnl r—soo p 215!

C?I(r) 2i2q(r)

A

]-y

because of lim;.«/%:lle=0. Thus we have proved the conclusion. m

In the proof of this lemma, we have also proved the relative compactnes of
{X,/~ 2log log C,} where X, is defined by S,=3%-,¢;{;. In the same way as before,
we can prove that {X "/« 2log log A,} is also relatively compact where X¢” is defined

by S,=2F a:f(Brw+7:). By lemma 2, we can easily prove

. 1 i
WP o Tog Tog A, on | B/ (BrotT| =2 as.
Thus we have lim sup,.«l|¢2 X lceo.11=2[ /1. a.s. for f€Lipa with S“f(t)dt:O and
z - 0
S:'fz(t)dt>0, where ¢,=1/+/2log log A,. Consequently, if we take me&N arbitrary,

the set of all clusters of {¢,X =’} is included in the centered ball with radius
2|lf —Sull;, and by Theorem 1, the set of all clusters of {¢,Xm’} coincides with K
almost surely. Because of X{"=Xm 4+ X5 and limp-cllf —S»ll.=0, we have the
conclusion.
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