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Elliptic 3-folds and Non-Kahler 3-folds
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§ O . Introduction

The purpose of this paper is to study the relationship between Calabi-Yau 3-folds
with elliptic fibrations and com pact non-Kdhler 3-folds with K=0, b 2 = 0 , q = 0 . The
non-Kàhler 3-folds referred to here have firstly appeared in  Friedman's paper [3 1 .  In
this paper he has shown that if  there are sufficiently many (mutually disjoint) ( -1 ,
—1)-curves on  a  Calabi-Yau 3-fold, then one can contract these curves and can deform
th e  resulting variety to a  smooth non-Kdhler 3-fold with K2 =0, b 2 = 0 , q = 0 . For
example, in the case of a (general) quintic hypersurface in  P 4 , o n e  can  d o  this pro-
cedure for two lines o n  it .  T h is  phenomenon is analogous to the one for (-2)-curves
on a K3 surface . In  fact a  (-2)-curve on  a  K3 surface often disappears in a deforma-
tion and this fact just says that one can contract this (-2)-curve to a  p o in t  a n d  can
deform the resulting variety to a  (smooth) K3 su rface . By this phenomenon, we can
explain the varience of the Picard numbers of K3 surfaces in deformations a n d  it  is
well-known that a  general point of the moduli space of K3 surfaces corresponds to a
non-projective (but Kdhler) K3 surface on which there a r e  n o  (-2 )-c u rv e s . Taking
such a non-projective surface into consideration, one has a  famous theorem that two
arbitrary K3 surfaces are connected by deformations. There is , however, a  difference
between Calabi-Yau 3-folds and K3 surfaces, that is, a ( -1, —1)-curve never disappears
like a  (-2)-curve in deformations. This is closely related to the  fact that Calabi-Yau
3-folds have a large repertory of topological Euler numbers. For the speculation around
this area, one may refer to M .  Reid's paper [12].

The main result of this paper is the following :

Theorem A .  L et X  be a Calabi-Yau 3-fold which has a n  elliptic libration w i th  a
rational section. Then the bimeromorphic class of X is obtained as a semz-stable degenera-
tion of  a compact non-Kdhler 3-fold with K=0, b 0 =0 and q=0, i .  e. there is a surjective
proper m ap f  of  a smooth 4-dimensional variety  X  to a  1-dimensional disc zi such that

1) f - '(t) is a compact non-Kiihler 3-fold with K=0, 6 2 =0, q=0 f o r ted*,

2) f - 1 (0) ,  1 ± X i  i s  a norm al crossing div isor of  X , andz=o
3 )  X 0 i s  bimeromorphic to X  and other X i 's  are  in the class C.

Here we will explain the motivation of the formulation in Theorem A . If  there are
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sufficiently many (-1, —1)-curves on X  in the Friedman's sense explained in  the  above,
one has a flat m orphism  f  o f  a  com plex analytic  variety  a ' to  a  d isc  J w hose central
fibre is  the  variety obtained by contraction of these curves and whose general fibre is
a non-Kdhler 3-fold w ith K =0, b 2 = 0 ,  q = 0 .  In  this situation, X , := f  - 1 (0) has a  number
of ordinary double points, but one m ay assume th a t the  to ta l space a ' is sm ooth under
a  su itab le  condition (e. g. (1.1) in th is p a p e r ) . N ext blow  up these p o in ts .  T h en  the
central fibre consists of a number of irreducible components, namely, th e  smooth variety
1' 0 o b ta in e d  b y  t h e  b lo w in g  u p s  o f  th e  ordinary double points on .X 2 a n d  th e  P 3 's
corresonding to each point blown u p .  H ow ever th is is not yet a semi-stable degenera-
tion because th e  multiplicity o f each P 3 is  tw o , H ence , tak ing  a  suitable base change,
one has a semi-stable degenera tion . T h is  is  a  typical example o f  Theorem A.

W e shall briefly explain th e  c o n s tru c t io n  o f  th e  p a p e r . In  § 1  tw o  m a tte rs  are
treated. O n e  i s  th e  F riedm an 's construction o f  a non-Kdhler 3-fold w ith K =0 and
1)3 = 0 .  T h e  o ther is  th e  canonical resolutions of W eierstrass models (for the definition
of a W eierstrass m odel, see (1.2)). After these prelim inaries, in §2 we reduce Theorem
A  to Theorem  A ' w hich is concerned w ith W eierstrass m o d e ls . T h e  remaining sec-
tions 3, 4 and  5  a re  devoted to th e  proof o f  Theorem  A'.

Finally the  author expresses his thanks to Professor A . F u jik i who inform en him
of the article  of R aoult [ l l ] ,  o f  w hich result is used in §2.

§ 1 .  Preliminaries

In  th is  paper, a Calabi-Yau 3-fold means a  smooth projective 3-fold with 7r, finite,
q = 0  and K  t r iv ia l .  Since 7r, is finite, those 3-folds a re  excluded which are, up to étale
covers, Abelian 3-folds. Here we will briefly review th e  Friedm an's construction of a
non-Kdhler 3-fold w ith K =0, b 2 = 0 . A ssu m e  th a t X  is  a  smooth compact 3-fold with
K 1  trivial and that mutually disjoint (-1, — 1)-curves C i , • •• , C,, a re  given on X . H e r e
a  (-1 , — 1)-cu rv e  m eans a  sm ooth  ra tional curve  P  whose normal bundle Npl11  i s
ism orphic  to  p l ( - 1 ) 0 0  p i (  — 1). Then one can contract these curves to  points to  g e t a
compact 3-fold X  with ordinary pouble points : 7r : X — a . F or simplicity we will write
P i =7r(C i ) ,  Z = H P , and  C = H  C ,. W e have the  following exact commutative diagram :

0 1-11(7r*Ox) 1--P(e1 ) H° (R 1 r c * 9 x ) ---> 11 2 (7i-  * e x ) --> H 2 (9 1 ) — > 0

a
0 —  H '  ( T  - - >  T  - - >  H ° ( T H2 (T ) T 0

In  the  above diagram , the m ap a  is interpreted a s  follows : F i r s t  w e  h a V e  a n  ism-
morphism j3: H° (7 ",7 )-4 i(T  1.) by using the  exact sequence defined locally at each P, :

OT o x —  >  x  — > T  - - >  0 .

H ere w e note th a t (X, P,) can be embedded into (C 4 , 0) because P i is  an ordinary double
p o in t. By the isomorphism 13, a  is identified with th e  natural m ap Ll(T )—>H 2 (T D. In
our case it is easily show n that 7r * 6 x = T ! ),7 . N e x t  u s in g  the Leray spectral sequences :
H .&(Rq7r,Kex) H rg (ex ) and  HP(Rq7r *

9 1 ) HP'a(9 x ), w e  h a v e  Hi(T1).--_:H2 , (e 1 )  and
/12 (T°A,) - H2 (e 1 ), w hich im ply that the  above map is identified with the following maps :
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118(0x) > I-12 ( e )

0
/I(S 21)  1-12(Q1),

w here the vertical identifications come from th e  fac t th a t K x  i s  t r iv ia l.  I f  th e  map 0
is  surjective, then  w e have 17,? = 0 . O n the o ther hand, 1-1°(T",„)-- H i(T I) H 6(Q I) are

isomorphic to a n  n-dimensional vector space 4 )C , w h e re  e a c h  factor corresponds to

C1.  0  is  n o th in g  b u t th e  map which associates each basis o f  th e  above vector space
w ith  th e  fundamental class o f  C , in  X .  Sum m ing up these results, w e h a v e  th e  fol-
low ing fact (1.1):

(1 .1 )  L et X  be a Calabi-Y au 3-fold and C i , ••• , C„ mutually disjoint (-1, — 1)-curves
on X. We employ the same notation as above. Then since 1.12 (Q1)=H 4 (X ,C)=11,(X , C)
by the  Hodge decomposition and the Pozncare duality, the map 0  can be identified with

the map i* : j)11,(C 1 , C ) .  In particular, i f  i*  is  surjectiv e and there is an
1=1

element (a i , •-• a n )EKeri *  such that a i * 0  f o r all i ,  then X  is deformed to a smooth
compact non-Köhler 3-fold with K =0, 6 2 =0  and q=0.

The m ain  points in  the  argum ent of {3] a re  to  e lim inate  th e  se c o n d  deformation
object T 1  a n d  to  g iv e  a  geometric Interpretation o f  th e  m ap H°(T lx )-+H 2 (T 1 -) . Here
we consider a  re la tive situation in  w hich a  Calabi-Yau 3-fold X  has a  fibration f :
P 1 , Then w e have :

(1.1)' Proposition. Let f : be as above and set F = ix E X  ; f  is not smooth
a t  x i .  A ssume that dim F= 0 ond O ) = 0 ,  where X , is a generic fibre of  f .
Moreover assume that there are  mutually disjoint (-1, — 1)-curves C i , ••• , C i ,  on X  such

that 1 )  each C i is mapped to a point by f ,  an d  f  is a smooth map around C i ;  2) the
following sequence is exact:

0  --> Ker ,Q1)* 1-11(X, ,(2' 1 )* --> 1 11(P1, Q 1 1 ) *  ---> 0

and 3) there is an  element (a i , ••• , a n )EKer such that every a i is non-zero. Let r  :
be the contraction of these curves, and f  a natural f ibration from  X  to P 1 . Then there
is a flat deformation f : I-->4><P 1 with LI a sufficiently small 1-dimensional disc such that

A) 1- '0 :=I - '({0 } XPI)=X;
B) fo : Y o—>{ 0} x P i  coincides with f ,  and
C ) X t is smooth for tE d *  (Punctured disc).

P ro o f .  L et us denote  by T and  T local and global deformation objects of
X  o v e r  P 1 ,  respectively. I n  o u r  c a se , th e y  a r e  isomorphic to e X t i ( p lï i p l ,  y . )  and
Ext'(Q,1r ,p,, r ). T h en  w e  have the  following exact commutative diagram :
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• 0

Ker Ker p 0

1 1 ° Crv/p1) --a - --> 112(rop,) 2 p

1w 1P
H° (T'y ) H2 ( T  )

 

I 0 2

2
,y

 

O

H ere  t h e  in jectivity o f  0 2 a n d  t h e  surjectivity o f  0  fo llo w  f ro m  t h e  fa c t th a t
f*Op t )= 0 .  W e see I-P(X, I*Opi)-=0 by  the Leray spectral sequence and the fact

t h a t  R if * O r = 0 ( th is  is  b e c a u s e  R i f * O r=R I f *O x =R i f * K x  i s  to rs ion  free  and
Ht(X ,2 , Ox )= 0 ) .  W e get Coker /3=1-11(Pi, QI,i)*, considering th e  following exact com-
mutative diagram :

0 .7*ep, T's fp I - - > 0

and taking cohomologies. In  fa c t , since dim (supp T 1,/ ,)= 0 , w e  have dim(suppC)=0,
w hich im plies that 1/ 2 (K )=1-12 (P e p i )=H 1 (7*Qp i )*=H 1(PI, f21,1)*. Note th a t 112 (T 1)=
112 (n )  (see [3 ] or the  argum ent above (1.1) o f th is  paper) and th a t  th e  natural m ap:

112(TD=H 1(t21)*--*H 1(f21,i)* is obviously su rjec tive  in  o u r  case. H ence w e have
Coker )3=H '(Pi, WO*.

Claim 1 Ker decIm a.
P roo f. T h is  follows from th e  injectivity o f  0 2 .

Claim 2. I m ( 0 .0
P roo f. Since w is  surjective, th is  fo llow s from  a  geom etric  interpretation of

(see [3 ] or the  argum ent above (1.1) in th is  paper) and the assumption 2).
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By Claims 1 and 2 , a  is  surjective, w h ich  im plies tha t 7'12 , = 0 .  B y  t h e  snake
lem m a w e infer that th e  m ap Ker go--->Ker /3 is  surjective.

N o w  l e t  u s  d e n o te  b y  P,, •••, P„ t h e  ord inary  d o u b le  p o in ts  o f  X  a n d  write

1-1°(T 43IC , w h e re  C , i s  a  copy o f C .  L e t a ••• , aJ b e  th e  element in the

assumption 3). T hen  there  is  a n  element esEH°(Tio ,„) such  tha t yo(a)=a. It follows
th a t aM EKer IS because ç ( a ) = 0 .  If  a (d ) is  no t ze ro , then  a(11-Fa')=-0 fo r  a  suitable
element a ' in  Ker go because the  m ap Ker go-4(er /3  is  su r je c tiv e . S e t b = e i+ a '. Then
b comes from TI /p, and (p (b )=a. Since 7"x,, p ,= 0 , th is  im p lie s  th a t th e re  is  a  g loba l
smoothing o f  X  which preserves a  fibration over I ' .  Q. E. D.

A  typical example o f  (1.1) is  a  general quintic hypersurface X  in P 4 and two lines
o n  it . In  th is  case, since Pic (X )= Z , it is  ra th e r easy  to  check the conditions in (1.1).
B u t  in  general it is very  difficult to  find the  curves satisfying the conditions in (1.1)
even if  a  Calabi-Yau 3-fold X  is  g iv en  ex p lic itly . In  another se n se , (1.1) supplies us
w ith  a n  interesting exam ple where the  class C is not stable under small deformations.
In fact, X is a Moisnezon space, and  hence is in  the  class C .  However, the  non-Kdhler
3-fold V  obtained by a  small deformation o f  X  is  n o t in  the  c lass C .  T h is  is shown
a s  fo llo w s. F irs t one has h° 2 (V) 0, because h '''(V )=0  a n d  Kv = 0 .  I f  V  i s  in  th e
class C, th e n  it  is  bimeromorphic to some compact Kahler manifold Y . S ince  10. 2 (V)=0,
we have h " (Y )= 0 . In  fac t, b y  the  desingularization theorem  [4 ] , w e  have  a  complex
m anifold "f7" w hich dom inates both V and  Y , birationally and  properly . U sing  spectral
sequences and Chow lemma [5 ]  fo r (7 , V ) and ( V', Y ), w e  have  the  result. H ow ever,
h° 2 (Y )= 0  im plies that Y  is  a  p ro jec tive  m anifo ld . Since th e  algebraic dimesion o f  V
equals to 0, th is  is  a  con trad ic tio n . So V  is  n o t in  the  class C .  Since K(X)=-0, this is
a  counter-example to a  question posed in  [2].

(1.2.) Definition. A  W eierstrass model W(..C, a, b) o v e r  a  v a r ie ty  S  i s  a  closed
subvariety i n  P8(0E)..C 2 e i l  d efin ed  b y  t h e  equation  Y 2 Z = X 3 -kaXZ 2 -kbZ 3 , where
_CEPic(S), aEH°(S, Z - 4 ), bEH°(S, .L . - 6 )  and

Z :0 -->OED.L' 2 0.1 3

X: £ 2 --->00)..C 2 a.C 3

Y: --> OED.L 2 ED_C3

a re  natura l injections.
W e  d e n o te  b y  I  the  section of W (..C, a , b) over S defined by X = Z = 0  and denote

b y  7  the  natural projection of W(..C, a, b) to S.

(1.2.) Definition. W ith  the  sam e notation as above, consider a  vector field VA ,  o n
W=W(..C, a, b) defined by

o n  {Z#0}cW

o n  {Y#0}CW
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a a —Z/X  Y/X  o n  {X O }C Wa(z/x) a ( y / x )
S et P=P8(0(1).C 2 (D.C3 ). T h e n  X  is  considered  a s  a n  injection :  Op— >Op(l)OP * -C- 2 ,
w here Op(1) denotes th e  tautological line bundle o f  P , and  p  is  the projection of P  to
S .  T h en  w e  can  d e fin e  X 'v x -EH°(P, ep18OP*X 2 ) because v 1 c l -1° (P, ep, ). Here
Hp,s  i s  the  re la tive tangent bundle of p :  P— S. W e  w r ite  a/ax for X 'v x . Similarly,
we can define a/ay and a/az fo r vy  a n d  vz , respectively.

N ext le t X  be a  Calabi-Yau 3-fold which has a n  elliptic fibration w ith  a  rational
section. T h e n  b y  [8 ] (T h . 3.4), X  is  birationally equivalent to a W eierstrass model
W=W(Ks, a, b) w ith only canonical singularities, w here S  i s  o n e  o f  th e  following :
P ', E t (0 i_.12). T h is  is  a  sta rting  point of the proof o f  Theorem  A .  Since W has
singularities in  the  case  S = I  (3<i _12) even if  w e  tak e  a  a n d  b generally , w e must
se t u p  th e  following definition :

(1.3) Definition. L et W=W(Ks, a, b) be a Weierstrass model over S = I i

T hen W is called general if  th e  following two conditions holds
(1) W has singularities only o n  F = {p E W  p E r - f(Do), X=Y=--- 0}, w here Do i s  a

negative section of S.
(2) L et mDo a n d  nDo b e  the  fixed components o f  1K V ! a n d  1K,i6 I , respectively.

L e t  div(a)=G+mD o a n d  cliv(b)=H+nD o b e  the  decompositions into movable parts and
fixed components. Then G (resp. H ) intersects Do transeversely. Moreover, (GnD o )r)
(HnD0)-- -95.

L et W=W(..C, a, b) be a  W eierstrass m o d e l ov e r S. T h e n  W  is  o b ta in e d  a s  a
double cover o f  P 8 (OED_C2 )  branched over B={X 3 ±aXZ 2 +bZ 3 = 0 }U {X = Z = 0 } . I f  W
has singularities, then we consider their resolutions

(1.4.) Canonical Resolutions. L et Y  be a  sm ooth variety an d  B  a reduced Cartier
divisor o n  it . A ssu m e  that O (B )=L® 2 f o r  a  line bundle L  o n  Y .  T h e n  w e  h av e  a
double cover X  of Y  branched along B .  To resolve the singularities on X , we consider
the  following process o f  blowing-ups.

(1) Y,)
, Y , B0=13

(2) v, : 17 2+1— >Y 2  (0 im ) :  a  blowing up along a  sm ooth center Di cB i c Y ,
(3) B,=4_ 1B1,
(4) Ei=vil l-i(Di-i)•
L et /3.=/1-1-E pJE , be  the  decomposition o f th e  divisor B „, into the proper trrans-

form  B o f  B and other exceptional p a r t s .  P u t  /-3- „,= / 3 +  E H e re  assum e that
odd

L3- ,„ is sm ooth (possibly w ith m any com ponents). Then w e have a double cover of Y r„
branched along B . and obtain a  sm ooth variety )Z . S ince  th e re  is  a  birational mor-
phism :  Yt— >X, is  a  resolutiin o f X .  If  w e  have K r= z*K x , then  the  above pro-
cess is called a canonical resolution of X .  Note th a t a  canonical resolution is not unique.

L et W-=W(Ks , a, h) b e  a  general Weierstrass m o d e l o v e r S = I (3 < iS 1 2 ) in  th e
sense  o f  Definition (1.3). Then w e can perform  a  canonical resolution o n  W . In  our
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case, it  is  e a s ily  v e r if ie d  th a t  Sing(W)= iqEP; qEp - '(D0), X=0 Y=0} , w h e re  P =
P 5 (06)K geK g), D o : negative section, and th a t the  singularities a re  locally triv ia l de-

formations o f  a  rational double points except fo r  a  finite number o f  p o in ts  w h ich  are

so-called dissident points. S o  t h e  problem  is how to overcom e th e  difficulties which

arise a t these  d issiden t po in ts . F o r example, consider th e  c a se  w h e re  i = 5 .  (In  the

case w here i=3, 4, 6, 8, 12 there  are  no  d issident poin ts.) Since G  and H never vanish
simultaneously at a point q o f Sing(W) in  Definition (1.3), we m ay consider two cases :
(1) o n ly  G  vanishes at q and (2) only H  vanishes a t q. It fo llow s tha t q is  dissident
only in  the  case  (2 ). H ence w e m ay consider th e  s itu a tio n  w h e re  q=(0, 0, 0, 0), W :
y 2 =x 1 ± t 3 x +st 4 i n  (x , y, s, t)-space (=C"). T hen  a  process o f  a  canonical resolution
w ill be found in  (F igure  1) below (1.5).

(1.5) P ro p o s it io n . Let W =W (Ks, a, b) be a Weierstrass m odel ov er S , w here S  is
one of P 2 , ( 0 , i 1 2 ) .  Then:

(0 ) K w =O w

(1) In the case S =P 2 or  X  (0 a general W eierstrass model W  is smooth and
Pic(W )=7*Pic(S )EB Z [Z ]. Moreover W  is simply-connected.

(2) In the case S =Z i (3_<i 12), a  general Weierstrass m odel W  has canonical
singularities such that Sing(W) P I  and  that they  are locally  triv ial deformations of

rational double points except fo r  a f inite num ber of points. W  has a canonical resolution
p:W --+W . In the case where 3 iS8 or i=1 2 , p  has the following Properties:

a) 137.—>s is a flat morphism.
b) K J,T, =0
c) I f  we regard W and W  as f ibre spaces over P 2 b y  the ruling S-->P 2 ,  th e n  p t:

t i s  the minimal resolution of a surface w ith rational double points for a general
point t  o f P 2 .

In the case where 9 iS11, p has the following Properties:
a )  p  is factored through a normalv variety  W  and W  has the following properties:
a l )  W -6  is a flat inorphism.
a2) There are mutually disjoint rational curves C ;  (L.< j  12—i) on W  and IV  has

locally trivial deformations o f A i -singular points along these curves as the singularities.
a3) FT7--a  is a resolution of the singularities in the triv ial manner.
a4 ) I f  w e regard W  as a fibre space over P 2 , then 11 is the minimal resolution

of a surface w ith rational double points for a general point t  o f P 2 .
b) K , î = 0 .
For details, see Figures 1 and 2 below.
(3) For an arbitrary  Point t _ll) 2  except for a  countable num ber of Points, Wt i s

naturally  an elliptic K 3 surface and its M ordell Weil group is triv ial.
(4) L e t  E i  (1 j m )  be p-exceptional divisors. T hen Pic(W )=- (rop)*Pic(S)ED

Z [E i ].

(5) W  is simply-connected.

P ro o f . Since (0) and (1) w ere proved in  [8], w e w ill p rove here  (2), (3), (4) and
(5). C onsider t h e  com plete  linear system  I ..C1 o n  P =P s  coeKIEBK.u, w here ..E=
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Op(3)07r*K;i 6 and  op(1) is  a  tautological line bundle o f  P(0(d)K K EK g). L e t  A  b e  a
sublinear system  o f  I I  w h ic h  c o n s is ts  of the elements of the  following form :

wiY2 Z-FT2X 8 ±ço3XZ 2 -1-iO4Z3 =0 ,

where g5,, E /4"(S, Os), yo3e1--P(S , K V) a n d  ça4 H°(S,1-C -.3 '). A n im portant re su lt is
th a t  To an d  ço, alw ays have zeros on the negative section of S  as a  ruled surface over
P ' .  Then it is easily checked that the base locus Bs(A ) of A  is  E = 1 q c P ; q p - i(D0),
X=0 YZ =01, w here  p  is  a projection from  P  to  S  and D o i s  a  negative section of S.
By the theorem of Bertini, a general element of A  is sm ooth outside B .  On the other
hand, since  Ig E P ; X =Z =0 }  is  a section of a W eierstrass model WE A, W  is smooth
on th is  lo cus. Hence a  general element W A  h a s  s in g u la r it ie s  o n ly  o n  E i =iq E P ;
qDp - l(Do ), X = 0  Y = 0 }  . Other claim s in (2) follow from straightforward calculations
if  we consider a  canonical resolution (1.4). H ere w e mention that the canonical resolu-
tion is not unique. Two different such resolutions are connected by a certain sequence
of f lo p s . For details see Figures 1 and 2.

Figure 1 (examples o f  canonical resolution)
If W =W (Ks, a, b), S =E , (a>3) is g iven , then  the canonica resolution in (1.5) (2) is

not un ique . Two different such resolutions are connected by a certain composition of
flops. W e w ill illustra te  the  process of one of such resolutions for E o , E., and E,-case
(i. e. the cases where Sing (W) is  a  locally trivial deformation o f a  rational double point
o f  ty p e  E 6 ,  E 7 ,  E o ex cep t for a  finite number of points). In the figure, the real lines
illustrate the proper transform  o f  B  a n d  th e  d o tte d  lin e s  illu s tra te  th e  exceptional
divisors. The numbers associated with exceptional divisors mean the  multiplicities in
the total transform  of B.

E,-case

B : /10+1 3 X-I-st 4 =0

s
Bo

s 0
B,

(1)
cusp

blow up at qblow up  a t  p

(2) ,G , o : exceptional divisor
3 -

P tangent to  2nd order q, tangent to  3rd order

b low  up  a t p, blow up at ()I



(4)

G 8 0

P3

b lo w  u p  a t p 3

(5) 83

4
12,

G 4 . 8 G,

B.

G4 . 0 1 G ,

st0s = 0

(1)

T  b lo w  u p  a t  p I  b lo w  u p  a t q

q.
G1,0

T  b lo w  u p  a t  q1T  b low  up  a t P I

(3) G2.0

E v -case
B : Xs +sts Xd-tt".--=0

tangen t to  2nd order

3

51
T  b lo w  u p  a t  q2

Pz
I

T  b lo w  u p  a t  p,

(2)

I G2. s
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new  excep tiona l d iv iso r
(3)

P2

T  b lo w  u p  a t  P2

G2,0 4
92

G2,8

3

b lo w  u p  a t  q0

4

3

G3.,8

T  b lo w  u p  a t  q,

In  (5), w e  m ay  ta ke  a  doub le  cove r b ranched  a long  B+ G i .



(2)

3

T  blow  up at q

I b lo w  u p  a t  q,

I  b low  up  at p

0

T  b ow  up  a t p l
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1 /1 kœ5

.i• I ./1
■ q3 i /

/  :Psz , 1_1- - 1  3

G 3,0 91G  3 ,5

I  blow up at P: 1  b low  up a t  q3

9 4 1  1 195
1 4 - - - 4 - - - - - -  —1- — —G s

i i
i 51

3 4 — —
1

I  b low  up  at in order of I blow  up at in order of
P.,. P5 (J4 ,  (15

10 ,  6
G5,0 N _ , _ _ -

/ ) / - G6 . ,
I z /

G5.0- - - .-- -  \  -

G, ,  - 1 , N . i
I-  - - - - - -  -jr.,x , 14I 5

-,  - 3
Pc1 q,1,9

-Î blow up 4t p„ T blow  up at q,,

(7)
;/,-/ G6  0.

.
10N 13,
--..,—/G5,0

G 5 .  - ‘ f \/ Bo .1 , .  
.

/
14

-4
1.  I Gc.0----..,-- ! 5. I . , I

G7.„`i,
1

G 7 . 8 N i
1

I N INN
i I ...,

G3.01 . .-- G,,0 - - - - - - - - - r  S I L\._ _ _ _
3

_ _ G ,.,,,,. I N
9 12

In (7), w e m ay take a double cover branched along B+GH-G 2 H-G3 .

E 4-case

B: 20-1-14 X+st 5 -=0

(1)
s= 0 s 0

(4)

(5)

(6)

PS P5
G 4 0
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(3) G2,0

3

(4)

G2 , 0

P2

b lo w  u p  a t  p2

G3, 0

PS

6
T  b lo w  u p  a t  q2

/,-.
z

z
/  1 9 ,

5 /
11-- G 2 . 0

3 -  - - - - - - - - - - +

q3T  b low  up  a tb lo w  u p  a t  p3

(5) 5

G 4- 1 5
94

3- 4  - - - - - - - - -
19

(6)

q5;

P7 (17T  b lo w  u p  a t q3 , q c and

H e re  w e  note th a t  G 2 0 = F + G 5  0.

T  b lo w  u p  a t  p 5 , pb and

I

T  b lo w  u p  a t  p T  b lo w  u p  a t  q,

116 51
G 5 , 2 1

24  2 0 / - 1G2,2
- - - - -  -

G 4 , 2

G7, ,  \
x

N s , 19
N

G3, 2  1 z

3 - - - - - - - - - - - - - - - -
ZG6. s G.].

12

15

G R , G 2

16

(7)

G7 0

I

F

GI, 0
G0, 00



( -2 )
( 0 )
(  0)
( -2 )E,
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In  (7), w e tak e  a double cover branched along B-1-G 1 ±G3+G.±G2 T hen  w e  have
th e  I-47  in  (1 .5). Since G2,0=G2,04-F in  our case, G , intersects B .  Furthermore we can
check that G 2 intersect B  along F  transverse ly . H ence it fo llow s that W has a  locally
trivial deformation o f  a  rational double point of A 1-type a s  its singularities.

F igu re  2 (C onfiguration of p-exceptional divisors)

(A 2-type)

The double curve is th e  negative section of each E,'

i=4 (D 4 -type)

(  0)
(-2 )

E,

E2

E4

i=5 (E 6-type)

E,

E,

E ls  a re  ruled surface.
The double curve D  is  a multi-section of deg2 o f  E2

-
 1 ,  and D ' is  a  sec tio n  o f

both  E 3  and  E4 . T h e  branched points on D  correspond to  the dissident points of W .



(-4 )
(+ 2)
( - 2)
( 0)(0)
(-2 )
(+ 2) /(-4 )(0)
(- 2 )

E.

E2

E
3

E
G

Elli
3-folds
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i - 6  (E 6 -t y pe)

1
_7 (F7-type)
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i= 8 (E T-type)

(-6 )
(+4)
(-4 )
(+2)
(-2 )
( 0)
( 0)— (-2)

/
( 0)
(-2)
(+2)
(-4 )

i= 9  (E s-type)

m, m2 ..---
m3

( - 1 )  
F, F2 F3

. . , '

. . . . . . ' '.........._ ______ ........
. . . "

(- 3 )
(+1)

(-1)
(- 1 )

(+1)
(-3)

(+3)
(-5)

2

E3

E4

E,

E7

3

E,

E,

E,

E,

If we blow down Fi  (1:<iS3) to  the curves ni 1 , then w e have W. E , intersect with
E1 a long the curves m, (1
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i=10 (E R-type)

/ ----- ,
(-2 )
( 0)
( 0)
(-2 )

(+2)
(-4 )

(+4)
(-6 )

If w e blow  dow n Fi (1 i_.<2) to  the curves mi  (15i_<.2), th en  w e  have W.

i =11 ( E 6 -type)

•4
F,

(-1)
(-1)
(+1)
(-3)

(+3)
(-5 )

(+5)
(-7 )

If w e blow  dow n F, to  the curve m,, then  w e have W.

E,

E5

E s

E,

Eg

E,

E s

E,
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i=12 (E 8-type)

(-4)
(+2)
(-2)
( 0)
( 0)
(-2)

( 0)
(-2)

(+2)
(-4)

(+4)
(-6)

(+6)
(-8)

Proof  o f  (5). L et us view  W as a fibre space over 13 1 , -W-->P1 . Then its general
fibre is a  K3 surface. Suppose th a t W is not sim ply connected, then by [211, there is
a  n o n -tr iv ia l étale cover o f W, 0: V -47 V- , T aking  the S tein  factorization o f  vo0, we
have a  finite cover h: C— >P`. I f  h  is  an isomorphism, then  w e  have a contradiction
because a  general fibre of u  i s  a  K3 surface and hence is sim ply-connected. H ence h
is  a  finite cover o f deg.__2. Pick up a section D  o f  v. T h e n  13 P 1 ,  a n d  0 - '(D)=
H P 1 because 0 i s  étale. Every component o f 0 - '(D) is isom orphic to D  by  0. On
the other hand, each component o f 0 - '(D) has a surjective m ap  to  C, which contradicts
the  fac t th a t deg  h 2. Hence W is simply-connected.

Proof  o f  (3 )- 0 ) :  (Case 1 ) 3 S i8  o r  i=12 : Let be  a  line bundle on W. Then
afte r  tensoring w ith  o(mf), In Z, w e m ay assume th a t (..C. f )= 1  fo r  a  genera l fibre
f  o f  r o i l .  T hen  Ff* .L' is  a  reflexive sheaf o f  rank 1 by [16] (Cor. 1.7), where ie :=rop .
Hence 77-* ..0 is  a  line bundle o n  S .  Since we have an injection  * * ..0 ,  w e obtain
a non-zero section s  o f  ....COFE*(Fe* ...C)_l. By (3), z op has no other sections o ther than I.
So w e have d iv (s)=Z +iE * H + m ,E „ m,_(), w here H  i s  an  e ffec tiv e  d iv isor o n  S,
which implies (4).

(Case 2): 9 i 1 1 :  W e  c a n  a p p l y  th e  sam e argum ent as above to th e  IT i n  (2).
Then w e obtain the  result comparing Pic (W) with Pic (W).

Before proving (3), le t  u s  prepare four lemmas.

E,

E,

E,

E,

(1.6.) L em m a. Let f :  X—>C he a fam ily  of  K3-surfaces over a curve C and h: S—>C
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a P'-bundle ov er C . L et g: X -->S  be an elliptic f ibration w ith a section X cX  such that
f  =hog. (H ence w e can v iew  f  as a f am ily  of  elliptic K 3-surfaces.) For a given point
t0 C , w e  d e n o te  b y  l,  • • ,  l .  th e  reducible f ibres o f  g t o : X 00 --- S t o  a n d  consider sm all
neighborhoods of  l i  in  X t o :(X t o , t i ). A ssum e that f  giv es a triv ial deform ation o f  each
(X, o , l i )and  that the M ordell W eil group S(X t o /S t o )  of  g t o  i s  trivial. T hen S(X 0/S 0)  is
triv ial f or every  tE C  except f o r a countable number of  Points.

P ro o f .  L et us consider a n  irreducible component H  o f Hitb x / e  which generically
parametrizes ( -2)-curves D t CX t which are sections of g t .  Let JC be a universal family
over H .  Assume that H  dominates C  and that ,gCh f o r  a  general p o in t hEH,
where p  denotes the  natural morphism o f H  to C  and  E p ( h )  denotes th e  restiction of
E to X p ( h ) .  Since H  is projective over C , there is a  p o in t h o E H  such that N h o c X t o .
For every point h=,&120 sufficiently near h  A•- 0, r— h is a  (-2 ) curve on X ( h ) .  As a cycle on
X t o  we have SCh o =E ta f E i ;  a 0 ,  where E t o  is  a  restric tion  o f I  to X t o  a n d  each0
E i  is  an effective divisor contained in  a  fibre  of g t o  because (4C,4 0 , Ox t 0

-•=1 for a general
fibre 1 o f g t o  a n d  S(X t o /St o )= {id} . Since Cg,, i s  a  (-2)-section o f  g n ( h ) : X p(h)--+S puo
which is different from E n ( h ) , we have (M h o , and (SC,, o , E i ) 0 fo r every i  from
our assumption. T h is  contradicts, however, th e  fact that (S6, 0)2 -= —2. Hence I I  does
not dominate C , which implies our lemma.

(1.7) L em m a. T h ere  are  elliptic 1( 3-surfaces 7C : S --4 1 '  w ith sections which have the
follow ing properties:

(1) it has on ly  one reducible f ibre l  and 1 is  of  ty pe II* (resp. III*, IV *, I 1, IV);
(2) T he Mordell Weil group  Z (S /P ')  is triv ial.

P ro o f .  In  the cases where 1 is of ty p e  II* and 1 is of type IV, there are examples
with th e  properties (1) and (2), respectively ([17] §2. ( I ), §2 . (II) 8°). A s  fo r  th e
remaining cases we can construct the desired dxamples by deforming the above example
o f  ty p e  I I* . In  th e  sequel w e w ill explain th is. L e t 7C : S 0 - P '  b e a n  elliptic K3-
surface with a section and assume that it has only one reducible fib re  o f type  II* and
that S(S 0/P ') is trivial. L e t  ( V ,  0) be a  Kuranishi space o f S o . Here S o corresponds
to the point O. L et us fix a n  isometry

: L :=LIEDUEDLIEB(—E 8 )ex— E 8 ).

Since th e  P ic a rd  lattice fo r S , is isomretric to U(i)(— E,), we may assume that for a
suitable isometry 0 , L  is  the  d irec t sum of the  P icard  lattice a n d  UEDUED(—E8) ([18]
(C or. 2.6) o r  [19]). We remark here that th e  lattice (—E8 ) contains (— E7), ( — E6),
(—DO a s  sublattices. Set

Q =  [w ]cP(L c); (w , (0)=- 0, (0), 6 - )>01 .

Then there is a  period map p  fo r  a  marked K3-surface (S ,, 0)

p :  v Q.

L et us write [(14]---=p(0). By the local Torelli theoem, p  is a n  isomorphism near the



916 Yoshinori Namikawa

p o in t  0 . I f  we choose a  suitable point [w ] n ea r [wo ] ,  then the Picard lattice w in H " R

becomes U ( — E7) (U(—E6) o r  U ( — D 4) , re sp ec tiv e ly ) b y  t h e  next Lem m a (1.8).
L e t  S  b e  a K3-surface corresoponding to  [0 ) ] . T h e n  S  also  has an  elliptic fibration
w ith  a section E .  Moreover, th e  lattice U  is  g en e ra ted  b y  a  f ib r e  a n d  I ,  and  the
la ttice  ( —E7) ((—E 9 ) or (—D4), resp.) is generated by the  (-2)-curves which have no
intersection w ith  b o th  I  a n d  a  genera l fib re . In  fac t, the  P icard  lattice U ( — E 8 )  of
So is  g e n e ra te d  b y  a  fibre, a  unique section, and the (-2)-curves in  a  reducible fibre.
U  is generated by the  fibre an d  th e  u n iq u e  sec tio n  an d  ( —E 8 ) is  g e n e ra te d  b y  the
( -2 ) -c u r tre s  in  a  reducible fibre w hich have no intersection w ith  the unique section.
Let _Co be a  line bundle corresponding to a  fibre f  ( i.e . Oso (f )-=-E0). Then _C o can  be
extended to a  line bundle ..E o n  S  because U  is  in v a rian t in  th e  P ica rd  lattice under
th e  deform ation o f  So t o  S .  B y the Riemann-Roch theorem, X(..C)=-Z(5 0 )= 2 .  Since
/22(...00 )=--h°(..f ,V )= 0 , it  fo llo w s  th a t h '(5 0 )= 0 , w h ic h  im p lie s  th a t h°(..00 ) =h°(_C)=2.
From  this, w e deduce that a n  elliptic fibration is preserved in deformations. Next con-
sider a  (-2)-curve C o n  So . Let ,9/ 0 b e  a  line bundle such that Os o (C)=--- ,T o . I f  .31,, is
e x te n d e d  to  a  line bundle  ,92 o n  S, then  by  the Riemann-Roch it fo llow s tha t (-2 )-
curve C itself extends to  a  (-2 )-cu rve  on  S .  In  our situation, we m ay consider a s  C
a unique section or (-2)-curves in  a  reducible fibre which h av e  n o  in te rsec tio n  with
the  unique section . T hen  using  th e  above fact, w e  have the claim  for (-2)-curves.

F inally  w e rem ark that S (S /P ')=  {0} follows from [20]. Q. E. D.

In  the  next lem m a, w e use  the  following notation :
L :=U E 8 )E1)U EEX— E 8 )  a n  Euclidian lattice

L1L 2
L c  := L O z C

:= {[(0 ]; [w ]CP(L), <w , w >=0, <co, c7i> >0}
P„, :=the C-linear space spanned by w and Co, where cocL t

1=1 :=the orthogonal space fo r P,o

e„ e 2 , e 2 , ••• e l o : a  basis o f  L , such  tha t et , e2 i s  a  basis o f U  and that
e3 , ••• , e 1 0 i s  a  basis of (—E 2 )  a s  follows :

C3 e, e, eo e, eo e,

0

( —E 7 ): a sublattice of (—E s) generated by e 4 ,  • • ,

( —E o ) :  a sublattice of (— E 2 )  generated by eo , ••• ,
( — D .,): a sublattice of ( —E 2 )  generated by eo , e„, e 2 , ew,

eii, ••• , e 2 2 : a  basis o f  L,

(1.8) L em m a. L et wo be a non-zero element of  L .  A ssume that LnPk,,=- L i . Then
there are  curves J  (i. e. 1-dim complex analytic space) in  Q whIch pass through [co o]  and
satisfy the following:

(1) Fo r each [co c ] 4 , L n P 1 DUED(—E7) (resp. U(—E 6), U(—D,)),
(2) LC1P,-,,==U ( — E7) (resp . U (— E 6), (Je(—al)) f o r each paint [ah]EJ except
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f o r  a  countable number o f p o in ts .

P ro o f .  Write Let (T 1 ,  • ',  T 2 2 ) be a  homogeneous coordinates system

of P ( L ) .  Then [a)0]=(a1, •••, a22)= : a .  Since [w 0 ]C S 2 , w e have

*) Z<ei, e1>a 1 ai=0

Since <ei , e > = 0  fo r 1 1 S j5 2 2 ,  * )  can be written a s  follows:

*/) E  < e i , e f >a i a.i+  E  <e i , e f >a i co=-0Is i.J10 11 1 . / 2 2

The condition that z=-(z 1 , •••, z j i )e l o is written a s  follows:

**) E  <ei , ei>a i z i+ 1.- ] (ei, ei)oiz i=0
l i . j g 1 .0 11 2 ., 22

E  <e i , e f >d i z i -F- E  <ei , e 1 >ii 1z i =0
1 j 1 0 I 1g 2. j 2 2

Since LnP---L i, we have

ek>a-=0 , 1 k 10
i= 2

i=1 
<ei, ek>ci1=0, 1 5 k 5 1 0 .

Thus we have al= •••-=a10=0 because L 1 i s  unim odu lar. Choose i ;  11•5_.i 22 such that
a i  # 0 .  Set U i = { T i O } C P ( L c )  and consider the projection from t r i =C "  to C "  defined

( T ,  Ti_, T i + , T 2 2 )  (T ,  T 1 0 )

T i ' "  T i T i "  T i  •
p: S2, — >C" the restriction of the projection to Q2 .  p  is  a  flat morphism and  P([0)03)=

(O. •••, 0). Here choose some (p i , •••, 13„,)ER" and set

(ai .( l) \_ (<e , : et> ••• <elo el>) - 1

1,2,0 ( 0 1  \<ei, eio> •" <eio, eio>) \PI»
where t  is a  parameter. Then we have

1 k 10
i-1

<es, ek>di(t)=Akt , ki=1

We can modify th e  lattice

(z „ •••, zio) Z " ; Ak tz k =0,
k=i Akizk = 0} .

k=1

by changing 9=(9 , ••• 131,0• L e t C  be a  curve o n  C "  defined by (al(t), •••, a10(0)
through t h e  o r ig in .  Then there is a  curve 4 o n  D i  passing through [oh ] such that
p(4)=C  because p  is a  f la t m orp h ism . T h is  curve is a  desired one  in  this lemma.

Q. E. D.

by P u t  Di =u i n Q  a n d  denote by
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(1.9.) L e m m a . Let r :S—>P' be an elliptic K 3 -su r fa ce with a  section such that 7r
has only one reducible fibre and it is o f type II*, III*, IV *, I t  or IV. Then r  has a
W eierstrass model Tr :  3 -4 3 '  which is defined by Y2 Z=X 3 d-aXZ 2 -kbZ 3 n  P := P (O ea
ICI.,E)1“,), where X, Y , Z , a, b  are similar to the ones in Definition (1 .2 ). Moreover we
may assume that a and b  have the following form according as the reducible fib re  o f 77

is o f type II*, III*, IV*, I t  or IV:

a = r , ;a ' ;  a'(0 : 1)#0

b=Tgb' ; b'(0:1)#0

where (T o : T ,) is a homogenous coordinates system a f  P I

type of a reducible fibre the condition for a and b

  

a 4, b=5
a=3,

b=3
a= 2  or b=3

b=2

  

P ro o f. Since S  has a section X , w e  c a n  c o n s id e r  t h e  ra tio n a l m a p  Ø o f  S  to
Ppi(7r*Os(32")) over P l .  It follows that 08(31') is 7r-free and that 7r* O(32')=0(1).KI,I3K.
The image of S  by  th is m ap  is a W eierstrass m o d e l S .Ø  co n trac ts  the  (-2)-curves in
a  reducible fibre o f  77  w hich have no intersection w ith  X .  In  our case, 3 has only one
singular point w hich is a  rational double point of type E s , E,, E s , D , o r  A, according
a s  t h e  t y p e  o f  a  reducible fibre is II* , III* , IV*, I t  o r  I V .  L e t  be  the  fibre of
passing through the  singular point.

C la im  e  has a  cusp singularity.
P ro o f .  Before the  proof w e rem ark that e  has a singular point only on the singular

point p  o f S .  L et (T o : T ,) be  a  homogeneous coordinates pystem o f  13 '.
Changing th e  coordinates : X.—X4-cZ fo r  a  suitable c , we may assume that

t has a  singularity on X = Y = 0, T ,= 0 and th a t S  is defined by F:=Y 2 Z —X' — eX2 Z —
fX Z 2 —gZ 3 = 0 .  H e re  Z = 0  defines a  section of 3 . Thus w e m ay consider the open
se t w here Z # 0 . T hen  S  is considered a s  th e  affine variety defined by

F = r— r— eX 2 —fX—g=0

around the  singular point p .  Since both F and i t s  Jacobian vanish on X=Y=0, T 0=0,
w e have f(0, 1) , g(0 , 1 )= 0 . If  1 has a  node a s  th e  singularity , then e(0 , 1 )*0 , which
im p lie s  th a t p  is  a  rational double point of type A „ . I f  p  is  o f  ty pe  A, and 1 has a
node, then S  m ust have a  singular fibre o f type  12 . Therefore , w e have the claim.

Q. E. D.

L et us re turn  to  the original situation, that is, S is defined by YzZ=X 3 -1-aXZ 2 --FbZ3 .
L et q  b e  a  s ing u la r p o in t  o f  3. W e  m a y  assum e t h a t  q  is  co n ta in ed  i n  a  fibre

frr- VO : 1)), w here (T o : T ,) is  a  homogeneous coordinates system o f  11 '. Since the fibre
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1 passing through q has a  cusp singularity  by th e  C laim , it fo llow s that a(0 : 1)=b(0 : 1)
=0, w h ic h  im p lie s  th a t q  is  d e f in e d  b y  X=Y=0, T 0 = 0 . L et us w rite  a(To, T1)=
T(0/(T, T) and b(T o , T i)=Tflb / (T 0 , T1), whre a'(0 : 1)#0 and b'(0 : 1)#0. T h e  remaining
ta sk  is  to  d e te rm in e  a  a n d  b  according to the  type  o f the  singular point q. B y [18]
(II, 8 pp. 61-44) w e  have the  following :

q : E 8 -type <=> a 4 ,  b=5

E7-type <=> a=3, b 5

E 6 -type <=> a 3 ,  6=4

D 4 - t y p e  => a = 2  o r  b=3

A 2 ,typ e  = >  a 2 ,  b = 2 . Q. E. D.

Proof  of  (3) o f Proposition (1.5) L et S  be a  su r fa c e  w hich  is  isom orph ic  to
w ith  35i512. L et Do b e  a  negative section of S , an d  le t m D , an d  nD o b e  the  fixed
components of the linear system s IK,VI and respec tive ly . A  genera l Weierstrass
m odel W  o v e r  S  has singularities w hich a re  locally triv ia l deformation o f  a  rational
double points except fo r  a  fin ite  num ber o f  p o in t s .  W e  w ill  c a l l  t h e  ty p e  o f  this
ra tiona l d o ub le  p o in t th e  " typ e  o f singularities o f  W ". L et p : -1/9—>TY be a  canonical
resolution. Viewing W and  W a s  fibre spaces over I '  via w e  have a minimal
resolution o f  W,, p t : W,-W, f o r  a  general point tE / '''. L e t Ct b e  a  fibre o f  S—>P'
over t. T hen Wt h a s  a n  elliptic fibration w ith  a section o v e r  C ,= - P '.  T h is  elliptic
libration h a s  o n ly  o n e  reducible fibre and w e call the  type  o f this reducible fibre the
"type  o f a  re so lu tio n " . T h en  m, n ,  the  type  of singularities o f  W a n d  th e  ty p e  o f  a
resolution a re  a s  follows according to i ; S = I i .

List (1)

type of sing. type  o f resolution

3 2 2 A , IV
4 2 3 D, I

5, 6 3 4 E, IV*
7, 8 3 5 E, 1111*

9, 12 4 5 E s II*

L et Y  be a n  elliptic K3-surface w ith  a section w ith  the properties (1) and (2) in Lemma
(1.7). L et V  be  a W eierstrass model o f  Y .  N ote th a t  Y  is  a m inim al resolutiin o f  Y.
H ere  w e consider the  problem  when 17  is  rea lized  as a  fib re  o f W--, P 1 . In ou r case,
by Lemma (1.9), th e  above list and straightforward calculations, we see that :

I f  Y  has a reducible _fibre of type IV ( re s t .  I t, IV*, III*, II*), then fo r  i= 3  (resp .
i=4, 1=5, 6, i= 7 , 8, 1.9, 10, 11, 12) V  is realized as a fibre of where W  is a
(not necessarily general in the sense o f Definition (1.3)) W eiers tra ss model over S= E ,.

H ere  w e rem ark  again  tha t V has only one singular point and that it is a rational
double point of type A 2 , D 4 , E 6 , E7, E s according a s  Y  has a  reducible fibre of type IV,
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I t ,  IV*, III*, II*.

(1.10) L em m a. L et i  be an integer such that 3 i 12. L e t  W =W (lf ,,, a, b )  b e  a
W eierstrass m odel ov er X .  L e t  1.): W -->P' b e  a composite o f  7r and 2;1 - 4)'.
Assume that i=3 (re sp . i=4 , i=5  or 6 ,i=7  or 8 , i= 9 , 10 , 11  or 12) and that for a point
tE P ',W , has only  one singular point q and it is a rational double point of type A 2 (resp.
Di , E 2 , E ,, E8 ). Then there is a sufficiently small open neighbourhood 4 ( in  th e  usual
topology) o f  tall' such  that

(1) the singular locus Sing(W 4) of  W  :=1) - 1 (4 ) is a curve F passig through q which
is isomorphic to 4 by v;

(2) W 4 has a  triv ial deform ation o f  a  rational double Point q c W , along F  as
singularities.

Pro o f . It suffices to show  that I): W4-4_1 induces a trivial deformation of the germ
(W 8, 9) of  W i a t  q  because W , has no other singularities than q. W e will only prove
the case i= 3  here, b u t th e  proofs o f other cases a re  sim ila r. S uppose  t h a t  i = 3  and
th a t  (W  9 )  h a s  a n  112 -s in g u la rity . T h en  b y  L ist (1), m =2 and  n = 2 , which implies
th a t W , has a t least a n  A,-singularity along the locus X = Y = 0 fo r each p o in t  s c P '.
From  this and  the  deformation theory of rational double points, it follows that 7.) induces
a  triv ia l deformation of (W 8 , q). Q. E. D.

(1.11) L em m a. L et W  and W i  b e  the saine as abov e. L et c14)—>E be  a  deformation
of  W  as a  W eierstrass model over X i , i.e. consider the following diagram:

Pf ,(0ex KtdxE

Cu)

 

f ,x 5

 

P '><

: Y 2 Z =X 3 -FA X Z 2 +B Z 3A E H ° ( f i xE,

cf4)0 :-=g - 1 (0 )=W  f o r OEE BeH°(E 1 x ,3', MK?)

Then cf,11— >P 1 X E induces a triv ial deformation of  (W ', q) near qELIP.

P ro o f . T h e  proof is quite sim ilar to Lem m a (1 .1 0 ) . T h e  m ain  p o in t i s  t h a t  the
indices m and  n  of L ist (1) a re  restricted.

L et Y  and  )7 .  b e  the  sam e a s  above and  le t q  b e  a  ra tio n a l d o u b le  p o in t o n  V.
Assume th a t V  is realized as a  fib re  W , of : W ---*P' w here  W  is a Weierstrass model
W(Kz i ,  a, b) o v e r  I , for some i; 3 i 12. C onsider a deformation of W as a W eierstrass
model over X  cf ,1)—> 17, like in Lemma (1.11) such  that cl1)8 i s  a  general W eierstrass mocel
o v e r  / ,  in  the  sense o f  Definition (1.3) fo r each point s# 0  o f  E  which is sufficiently
near 0. W e w ill em ploy here the diagram  and the notation of Lemma (1 .11 ). Then by
Lem m a (1 .11). g : cf,P-313 ' X ,23 induces a  triv ia l deform ation  o f  (W ,, q). N o te  that
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g - i(t, O) W 1 . W e  c h o o s e  a  po in t ( t ',  s )  o f  PixE , sufficiently near (t, 0). Consider a
curve C  passing through (t, 0) and (t', s) in  P 'x S .  T h en  w e  h a v e  a  fam ily  o f  sur-
fa c e s  o v e r  C .  A t  e v e ry  point near (t, 0) in  C, th e  member o f  this fam ily has only
one singular double point of the sam e type by Lemma (1.11). T h u s  i f  w e  s h r in k  C
around (t, 0), w e  h a v e  a  simultaneous resolution o f  these su rfaces. L e t  f :  b e
such o n e . Here f - - 1 (t, 0)=X ( I o )  i s  a m inim al resolution o f W1 . O n the  other hand, Wt
coincides with and  Y  is  a m inim al resolution o f  Y . H e n c e  X ( 3 , 0 )  coincides w ith Y .
Since the  elliptic surface Y  has triv ia l Mordell W eil group, we can apply Lemma (1.6)
to  f :  X—›C. Since X",,,, is  a m inim al resolution o f  g - i( t ',  s ) , we conclude that :

Consider a general W eierstrass model Ws an d  let 1., :c1V8 — >P' be a  natural f ibration
w hich is the composite of cws —>Ei  and T hen the f iber 14)( t

, ,, )  o f  I., over t '  has
the following properties.

(1) B y  the map V s --- I i , 14) ( t
, , 8 ,  has an elliptic f ibration  with a  section.

(2) A  minimal resolution of  clf) ( ,,, 3 ) has also an elliptic f ibration and its .11/lordell Weil
group is trivial.

(3 ) L et q  be a rational double point on 1V c t
, ,,,. Then ¶413 has a trivial deformation

of  this rational double point around q  as the singularities.

W e can consider a  canonical resolution o f V , b y  (2) of Proposition (1.5) and again
apply Lemma (1.6) to  ca"3 -41-". T h en  w e  have the claim  of Proposition (1.5) (3).

Q. E. D.

(1.12) P ro p o s it io n . L et S  be a surface isom orphic to I (3 i 12) an d  C  a  curve.
Consider the follow ing f lat fam ily  o f  W eierstrass models over S :

P5(06)KM ) Khx C

 SxC

c14): PZ =X 3 -1-aX Z 2 -EbZ 3 , a E H " ( S x C ,  ptKi 4 ),

beH°(SxC, pt:K, 6 )

Assume that cl128 is general f o r every tE C  except for a finite number of points it,,•••
Then there is a projective resolution such that t i t :  0 1-->V8 becomes the resolu-
tion in Proposition (1.5) f o r every tO ••• t d .

P ro o f . W e m ay do  the  sam e th ing as  (1.4) for

'TV P s (Off.) K .4)x C

 

Ps(O@Kb

\instead for
P 'xC
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H ere w e follow  each step in  the case S = 2 ', .  In Figure 1 , this case corresponds to
the E s -ca se . S e t 2 =  {X' -FaX Zz 4-br =01U {X= Z =-01 cPs(06)K,i)XC . L et 2 ,  denote
the  first component o f  . 2 .  According to F igure  1, we m ay blow up the P 8 (0 0 9 K )x  C
in  order o f  th e  following :

(1) Blow u p  a t 2 , w here 2  is the irreducible component with the reduced structure
of Sing (2 ,) which dominates C b y  p: P s ( o @ K I ) x  c , c .  In  th e  fiber (of p) level, this
step corresponds to  (1) in  F igu re  1. In  the  remaining, the  index ( j )  fo r each blow up
corresponds to  th e  blow  up from  ( j )  to  (1+ 1) in  F igure  1.

(2) Blow u p  a t 2 , := g 1(1 2 1 ,  w here g , is a exceptional divisor which dominates C,
and  2 ,  denotes th e  proper transform  o f  2 1 b y  th e  b low  up in  (1). Here 2 ,  is g iven
th e  reduced struc tu re  as a  scheme.

(3) Blow u p  a t g' s := g 1 n 2 1 . H ere 2 ,  is  th e  proper transform  o f  th e  2 ,  i n  (2),
a n d  g i  i s  th e  proper transform  o f  g ,  in  (2) In  th e  rem aining, we em ploy th e  similar
notation b y  abuse of notation.

(4) Blow u p  a t 2 3

(5) Blow u p  a t 2 4 : =.g4n-B1
(6) Blow u p  a t 2 5 : = g ,n g s

Blow u p  a t 26:=.g3r1g4
Blow u p  a t 27:=g2ng4

Finally  w e blow  up at g 2 n 2 1 . In  th is situation, we can construct a suitable double
cover, and obtain V .  T hen  cr,T, has no singularities over a  general p o in t  o f  C . N o te
th a t the  above procedure induces a  canonical resolution fo r  a  general fibre of g :
Therefore, if  w e resolve th e  singularities o f ca, , then  have the result.

§ 2. Reduction o f Theorem A  to Theorem A'

In this section we will show that Theorem A is reduced to the following Theorem A'.

Theorem A ' .  Let W and W be a general Weiertsrass m odel and its resolution as
abov e. I f  we choose a and b generally , then we have:

(1) In the case S = P 2 o r  X i  (0 < i< 2 ), there are m utually  disjoint ( -1, —1)-curves

C 1 , ••• , C 4  on W  such that i * : (1)14(C i , C)—>H2 (W , C ) is surjective and that one can ob-

tain, by  the Procedure o f (1.1), a  smooth compact non-Kiihler 3-fold with K=0, 1) 2 =0 and
q=0.

(2) In the case S = E i  ( 3 i 1 2 ) ,  there is a sm ooth Moishezon3-fold -147 ' biratzonal to
W  which has the following properties:

a) W ' is obtained from  W  by  a succession of f lops of (-1, —1)-curves.
b) There are mutually disjoint ( -1, —1)-curves C 1 ( 1 5 j n ( i ) )  w ith n (i) a  number

which depends on  i such that i 
n(L)

* :  ED 1-12 (C . i , C ) is surjective.
.7=1

c )  One can obtain a smooth compact non-Kiihler 3-fold w ith K =0, 6 2 = 0  and q=0
f rom  WI' by  the procedure of (1.1).

In  the  remaining o f  th is  section w e assum e the theorem  above. Let X be a Calabi-
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Yau 3-fold which has an  elliptic libration w ith  a  rational section. T h e n ,  a s  is m en-
tioned before, X  is  birationally equivalent to a Weierstrass model W with only canonical
singu la ritie s. W is  no t genera l in  the  sense o f  Definition (1.3). T h o u g h  W  has only
canonical singularities, its singularities a re  possiblly w orse  than  th e  ones described in
Definition (1.3). Setting _C=Op(3)07r*K. 6 w i t h  Op(1) t h e  tau to log ica l line  bund le  of
P(OEM"([34K1), le t u s  consider th e  linear system  12 J o n  P(OEI9KKDK). L et A  be  a
linear subsystem of I w hich consists o f  th e  elements o f  th e  following form :

'‘)117 2 Z-F-w2X3 H-ço3XZ2 +ÇD4Z3 =0 ,

where ÇDi , go2E1 P(S, 0.3), y03E 1-1° (S, K.V) and ço4 EH°(S, K.V). Then consider the universal
fam ily over T=P(A ), g :c1P--*T . Assume t h a t  g -At o ) , W .  I f  w e  c h o o se  a  general
point t o n  T , then cW1 =- g - 1 (t) has th e  property in  Theorem A '.  L e t  C be a curve in T
passing through to a n d  t. T h e n  w e  haue a  fam ily  o f  W e ie rs tra ss  m o d e ls  o v e r C,
w h ic h  w e  d e n o te  a g a in  b y  g:(74)—+C. In  th e  c a s e  w here S=13 2  o r  I ,  (0 a
general fibre of g  is  sm o o th . I f  S=T i (3  iS12), then  a  general fib re  has singularities
b y  Proposition (1.5) (2). In  th is  case w e can  use (1.12).

T hen  w e h av e  a  flat projective morphism : cfP- ->C whose general fibre is smooth.
F or a general point /E C , cff), satisfies Theorem  A ', (2), th a t  is , th e re  is  a  sequence of
flops of (-1, —1)-curves D,CcWin :

cis,10) - LM 2 )

I

  

and there a re  (-1, —1)-curves on  e t ' to  b e  co n trac ted . Let us consider the irreducible
component H o f Habfv / p w hich contains [D o ]. Note th a t  iii/bqp/p is  étale o v e r  C  at
[D o ]  because Do i s  a  (-1, —1)-curve on  cW0. Hence H is determined uniquely and H is
etale over C a t  [D o ]. T aking  a  suitable finite cover o f  C, w e m ay  assume th a t H r e d

is  birational to  C .  T h en  w e  have the  following diagram :

g  C

w here .00 i s  a  (-1, —1)-curve on  cfP, fo r every point tEC* : a Zariski open subset of C.
Restrict : to  C* and consider k*: cfP*-->C*. T h e n  b y  [1] (Cor. 6.10), w e can
perform  a  flop o f  g *  relatively over C* and g e t g( 1)*: 0W( 1)*—*C*. Here 9.17,'" )*  is  in
general not a  scheme, b u t an  a lgebraic  space . W e can  compactify cfP ) *  b y  [11] and
h a v e  a  proper surjective m ap g'(') : 0 W ( 1 )  is assum ed to be sm ooth by [4 ] and
cr l )  is birational to cfP over C .  Since O t o  contains a n  irreducible component birational
t o  W  a n d  b o th  cff; and cf,P(') a re  smooth, (IPioi) a lso  conta ins a n  irreducible component
birational to  W . A s  a  consequence, by repeating this process, w e  m a y  assum e from
th e  f ir s t  th a t  th e r e  a r e  (-1, —1)-curves to be contracted on  ciPt . In  the case where
S=E i (3 5 i1 2 ), we consider k : 0W-->C w hich is obtained by repeating above process.
In the case S = I "  o r  2' 1 (0 Si 2), w e consider the original g :  71)-->C. Then we come
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to Theorem  A  by using th e  follow ing, after the base change by  a  f in ite  cov e r o f  C
if  it is necessary.

(2.1.) P rop osition . L et h: Qj—>C be a proper f lat morphism  with connected fibres of
an irreducible smooth 4-dimensional algebraic space q j  to a smooth curve C . L e t  t o E C  be
a f ixed Point and W  an  irreducible component o f  V .. A ssum e that there is a proper flat
fam ily  o f  curves in

C, C (1)

flat propel\
C

such that for a general Point t EC, (1)C 1 (l i n) are mutually disjoint (-1, — 1)-curves
on ctjt , (2) these curve satisfy the condition in  (1.1) and (3) we can obtain from  q i, a  non-
K dhler 3-fold with K=0, 1) 2 =0  and q =0  by  the process in  (1.1). Then there is a proper
surjective morphism o f  a 4-dimensional complex manifold X  to  a  1-dim ensional disc
such that

1) f ( t )  is a compact non-K ahler 3-fold with K=0, 1) 2 =0  and q =0 , f o r tE 4*,
2) f - 1 ( 0 ) =  Wi  a s  a  normal crossing divisor of  X ,1=1
3) Wo i s  bimeromorphic to W , and
4) each W i i s  in the class C.

P ro o f . L et C* be a  suitable Zariski open subset in  C .  T h e n  b y  [1 ] (Cor. 6.10),
w e can contract CVs on  cl-j* relatively over C* and obtain crj*. We can compactify -4)*
and have proper flat morphism of norm al algebraic space a) to  C .  T h e n  cTj i s  bira-
tional to  cy o v er C .  Consider th e  function field K  o f qj an d  le t y  be  a  discrete valua-
tion ring  w hich corresponds to  W . L e t  L  be a  suitable Galois extension of K .  Then
th e  normalizations o f  aj and 0) in  L  become schemes by the argument of [11] (Proposi-
tion 1 ) .  Denote them by X  an d  X , re sp ec tiv e ly . T h en  qj (resp. cy) is  the quotient of
X (resp. 1 ')  b y  the Galois group G =G al( L /K ) . Let yi , ••• , y k b e  the extensions of y
in  L .  Then each elem ent g E G  induces a perm utation of yi 's. I f  g  sen d s y ,  t o  y,,
th e n  w e  w ill w r ite  j = g ( i ) .  B y [7 ] (p . 153), fo r  yi , the re  is  a  Variety birational
to such that (1) is  projevtive over Y ,  (2 )  X ,D {z E  ; is isom orphic to X  at
z}, a n d  (3) if  y, dominates a  p o in t y  o f  a' „  ,  and  a  po in t y ' o n  X , then 0 ,  dominates
0, .. I n  th is  case w e m ay assume th a t Y ,, an d  1 ' a re  isom orphic at every p o in t  ex-
c e p t  fo r  p o in ts  o v e r  to C .  W e denote a' by X i  a n d  define fo r each g E G  by
the  following fibre product :

O n the other hand, view ing l ' g 's a s  Y -schemes, we have :
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(* )

birat̀
— — y R , g

G=il, ,g1, • , g,}

T ake  a :closure of the graph of (*) in H  Y , and embed into  H in such a way

th a t z — *H z . T hen  th e  n a tu ra l prolection f ro m  H 3Tg t o  fT 1 ' induces a  pojective

morphism of to  T .  Consider the action of G  on f l  - ' defined in such a w ay that g

sends g i -th factor of H  '  t o  gg i -th factor T  of H  Y and th a t th is  m a p  o f  T  to

itself coincides w ith the natural g-action on C learly  I"  is  stable b y  th is  G-action
and this action coincides with the original G-action on T .  If  w e tak e  a  normalization
o f  2 ,  th e n  the action of G  naturally  extends to  that o n  i t .  H ence w e m ay assume
T  is  no rm al. T hen  the quotient al o f I '  b y  G  is  an a lg eb ra ic  sp ace  b y  [6] (p . 183,
1.8) and w e  have a birational morphism of Tj to  cy. This morphism is an isomorphism
over a general point tE C .  B y the construction, -ctit o  conta ins an  irreducible component
birational t o  W .  T h u s , f ro m  th e  first, w e  m ay  assume th a t (Tho h a s  an  irreducible
component birational to  W . N ow  le t us consider the Kuranishi space (ci), u ,) o f  (Tho ,
w hich is a  complex space and has the versai property at every point u near u0 [13, 14].
On the other hand, 'Tjt can be deform ed to a  non-U hler 3 -fo ld  w ith  K=0, 1) 2 = 0  and
q=0 for every point t  near t „ w hich im plies that there is a flat deformation f :  X--±4
such  that f  - 1 (0)-- =Qjto and  that f t ( t )  is  a  non-Kdhler 3-fold with K=0, b 2 =0 a n d  q=0
for a point t  of J* • T h e n  the semi-stable reduction for f  is  a  desired one.

§ 3 . R ational curves on W eierstrass models

Let W =W (K s, a, b) be a Weierstrass model over S , where S = I „  0._i512 or S = P 2 .
In th is  section w e w ill study  the  rational curves C  i n  W  s u c h  th a t  (C. 1 )= 0  o r  1,
w hich w ill be needed to prove Theorem  A'.

(3.1) P roposition . L et W  and S  be as abov e. L et D  he a smooth rational curve on
S  such that (DP_O and let CCW D  b e  a section o f  71Tv13 : WD.-=.7r- i (D).—>D. A ssume that
the Kodaira- Spencer map:

95: 7 '  [D]. P(110 (0s(D))*) 111(C , IV 01 C)

is injective, where P(H°(es(D))*) is considered as a Parameter space of  the linear system
11)1 on S  and where T-  CD]. P C 1 1 0 ( 0  s ( D ) ) *  is the tangent space at [D ]. T hen w e have

Nww=Op1(-1)0310e1(- 1) .

Let cU b e  th e  u n iv e rsa l fam ily  o v e r P(H°(0 5 (D))*) a n d  consider th e  following
diagram.
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1-
C CIIT D  C  W  W

D  C  > S

[D ] E  p (Ho( o s ( D ))* ) =  pr +1 7r . _ ( D 2 ) s

where V  is  the  fibre product of and  W  over S .  Before th e  proof o f (3.1) w e w ill
prove two lemmas.

(3.2) L em m a. Notation being as above, the following are  equivalent.
(1) Nc l w  =0 pi( - 1)(1)0 pi( - 1)
(2) Nciffp=Opi(- 1)ED ••• eOpi(-1)

r+2

P ro o f .  L et us consider th e  following exact commutative diagram :

0 0 0

N c /w D  - - >  M v 0 p ,(r)  0

0 ma C/W D N C  VW N W  / W IC = 0; '
I
.+  0

O
Î
K e r O ( - 1 ) e • ' •  O p i ( - 1 ) 0

0

(1) (2):
Since Arc/ w D =Opi(— r — 2), degN c /w = — 2 and d e g N c r w - - r - - - 2 .  I f  Ncrw is not iso-

m orph ic  to  O ( —l) ••• @ o p ,( - 1 ) ,  th e n  Nc/T
, c o n ta in s  a  line bundle isom orphic to

O k a ) ;  a 0  a s  a  d ire c t  f a c to r . T hen  the com posite of the homomorphisms Opi(a)C
N crw  and  Ncru•

--
4N cor is  a  zero-map by (1). S o w e have O p i(a )C K e r . O n  th e  other

hand, the horizontal m ap at th e  bottom of the diagram is an inclusion into p i (  — 1)ED • •

90p1( —1), w hich is a  contradiction. Q .  E .  D .

(2) (1):
I f  Ncvw is  n o t iso m o rp h ic  to  0 pl( - 1)EDO p i (  —1). th e n  s in c e  d e g N c / w =  — 2 , Neill-

contains a  line bundle O pi(a); a < - 1  as a  direct factor. Then since Ncur1•=0P1(
-

1)@
Ncru, — ' Nciw  is  n o t surjective, w hich  is a contradiction. Q. E. D.

(3.3) L em m a. Notation being as above, assum e that N c i v 0p1(-1)({ )•-•ED0p,(-1).
Then there is a  1-dimensional subfamily 13: g-34  of  V — >P(H°(0 s (D)*):

14/D c g  c

[D ] E 4 c  P(11 0 (0s(D)*),



Elliptic 3-folds 927

where LI is a  1-dimensional smooth curve defined around ED] which Passes through [D]
and where g is the restriction of  cIP over 4 .  Moreover, f or the  g ,  the exact sequence

0  - - >  N c iw ,  - - >  Ne / g  - - >  Nwp/9. 1c  — > 0

is a trivial extension.

P ro o f. Since N e / w D =Opi(—r —2), w e  have an  inclusion

H °(Ncim) - - >çb 1 1 ° (Nw Tdc) •

Since Nc1ir#OPI( - 1 )ED • •• EDOpi(-1) and deg Arc /T H- —r —2, w e have a non-zero element
72EH "(N e rw and  hence a non-zero element 0(77) o f H °(N w p r c ) .  B y th e  natural iden-
tification o f H°( Nw p /rwle) with H°(D, Ne/s)=- TED],pcifocos w » . ) ,  w e  have  an  element 0#0
o f T :1)3, P<H0(0 s(D))*) corresponding to 0(72). L e t i3 : g"--Z I b e  a  subfam ily o f  c14) with
respect to  O .  B y th e  construction, we have 1-1°(Nc1g)#0. Consider the exact sequence :

0 — —› NC 1141 D NC Ig  — >  NW DIgiC 0

0  —r —2) op ' .

T hen  H°(Ne / g -W )  im plies that th e  sequence is a trivial extension. Q. E. D.

Proof of  (3.1). Assume th a t  C  is  no t a  ( -1 , — 1)-curve. T h en  b y  (3.2) and  (3.3),
w e have  a  1-dimensional fam ily g .  L et O e lP (T w D ) be the Kodaira-Spencer class of g.
T hen  for a contraction morphism ;r : W  D  of C:

0 :  TP(T w D )--> H°(/?';r * T w D ),

w e have 0 0 )= 0  by  (3.3). M oreover, we have f l °(12 '7t*Tw D )=FP(T w e lc). In fact, first
b y  the  form al function theorem , w e have

H°(R 17r* T w D )=Iim i r ( T , D 0 0 w ,//n),

w here I  is  the  defining ideal of C  in W D .  Next consider the  exac t sequence

0 -->  T H,D O /n// ' — >  T w D (30//n+' ---> T w D (30//n --> O.

T o prove that H °(R 'r * TwD ) =1 -P(Tiv p lc), it suffices to show that 1-P (T w D O/n/n ." )= 0  for
each n > .1 . T h is  is easily checked using th e  f a c t  th a t  ///2=O p i(r+2 ) a n d  th e  e x a c t
sequence :

0 — > T c 1 V c i w  D  — > 0.

Consequently, we have 0 (0 )=0  in  HAT H,D ie ) , which contradicts the assumption of (3.1).
Therefore C  is  a  ( -1, — 1)-curve on W. Q. E. D.

(3.4) Proposition. Let X c Y  be a projective 3-fold locally o f  complete intersection
i n  a  smooth projective v a r ie ty  Y . L e t C  be a smooth rational curve on X  such that
(K 1 . C )=0  and that X is smooth around C. L e t  a  a n d  iS denote th e  natural maps
H °(Nx1y) -4 1 1 "(Nx1y1c) and TP(Oylc) ---*H°(Nxiylc). Assume that
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(1) TP(Nc/ y )=0 ;
(2) the Hilbert scheme Hilb y  is sm ooth at [X ];
(3) C  is isolated in  X ;
(4) IP(Nriylc) is generated by  Im a  and IrrO .

Then there is a Pair o f  small deformations (displacements): (X t, CO of (X, C )in  Y such
that C , is a  ( -1, —1)-curve on X .

Pro o f . The idea of the proof is due to  L . Ein [22].
W e use the following notation:
I :  the irreducible component of Hilb y  w hich contains [X],
f : the universal fam ily over I,
B :  an irreducible component of H/b1 1 1  w i th  the reduced structure which contains

[C ].
T h e n  the n a tu ra l m a p  B—*I dom inates I  because X(Nc / 1 )= 1  (w hich follow s from
(K 1 . C)=0 and C=1 1 )  and C  is isolated in X .  In fact, if we choose a smooth curve
LI in I  passing through [X ], then w e obtain a 1-dimentional family of 3-folds
T hen  w e  have

0  - - >  ArcLy - - > >oc — >  O,

from which we deduce X(Nc1x 4 ) = 1 .  Since C does not m ove in X , this im plies that C
goes out of X  in  X j. A s  a  consequence B  dominates I.

Since C  is  a sm ooth rational curve, a general point of B  param etrizes a  smooth
ra t io n a l c u rv e . Let H  b e  an open subset of B  which parametrizes smooth rational
curves. C onsider the following diagram:

X X x D  :  the universal fam ily over II

I  < 
1
1/

Note th a t  p  dominates I. Let t be  a general point of I .  Let H, denote p- v). Choose
zeH t  su c h  th a t zeT/—Sing(H). T hen  w e  have a surjective map:

dp: T 2 ,1 1 - 3 . T 1 , 1 —H°(N1 1 1 1 ),

w here X t i s  the 3-fold which corresponds to  t. Let C t b e  a  sm ooth rational curve
w h ich  corresponds to  z .  W e m ay assume th a t  t is sufficiently near [X ], and th a t Xt
is sm ooth around C l . On the other hand, since [X ] is  a smooth point of /,h°(N1 1 1 )
i s  constant a t  e v e ry  point t around [X ] .  Let [C ]  denote the point of H  which cor-
responds to C .  T h en  w e  have

(f 11 )*A T 12 1111Y 2110 k ([C ])= 11° (X, Nyme).

Moreover, ( f H )*N i x i f f / y „H ® k ( [C ] )  i s  a  locally  free s h e a f  a t  [ C ] .  Next consider
(f m)*enailsr• Since IP (N ciy )=0  by (1), w e have H i (ey1c)=0 by the exact sequence:

o e„— ,  eyle ,  ATC/y - >  O.

Hence we have ( f eI I , *  -  Yx111.4/0 k ( E C 1 )
= H

( eY 1 C ) and ( f  11) e , ,<,, is  a locally free sheaf
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Then we obtain :

 evIct
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a t  [C ] . T h e re fo re  a  a n d  13 a re  factored a s  follows:

( f  H )  N 1, 1111Y y ll O k ( [ C ] )

( f H°(N x iric)

17)*Hy ,, Ø k  ([C])

Hence the  assumption (4) im plies that gc• is  su r je c tiv e . Therefore ço is  an isomorphism.
From the above considerations, it follows that th e  assumptions (1), ••, (4) are  valid for
X t a n d  C t .

F o r CO3 consider th e  following exact commutative diagram :

  

dp
 I-1°(Nx t iY )Ø°c t

 Nx t lylc, 

 

0 — ÷  N e t iy t

  

* 0

  

Taking Ho o f th e  above sequence, we have

dp
 //a(Nxity)'r,

•1,
iat

2H°(N 01 ) H °(Al.x t iric,) 1-11(Nctixi)

1, Z p f t
IP(e y ,e d

0

Since Im a ,  and Im Pt g en e ra te  H °(Nx t ty lc,), and  dp is  surjective, we conclude that
is  surjec tive . Hence Fr(N c,t1 0)= 0 .  Since (K 1 0 . C OA-1 =0 , deg Ara t i x t = —2, which implies
th a t  C 0 i s  a  ( -1, —1)-curve on X . Q. E. D.

(3.5) Corollary. L et W =W (K s , a, b) be a W eierstrass m odel over S .  L e t  C  b e  an
isolated sm ooth rational curve on W . A ssum e that W  is sm ooth around C . I f  S  an d  C
have one of  the follow ing properties (1), (2) and (3), th en  th e re  is  a  p a ir o f  sm all de-
f orm ations (W 0, C O  of  (W , C ) in P=Ps(O @ K K B IQ ) such that C 0 i s  a ( -1 ,-1 )-c u rv e
on W 0 .

(1) S=E i (0 iS12) and there  is  a section D of  S — *F' with (D) 2=i such  that C  is
contained in W D :=7r -1 (D) as a section of 1rl D : W D -->1). M oreover, (Z . C )=0  o r 1.

(2) S—*P 2 an d  there is a  sm ooth rational curv e D on S  with (D) 2-=k ; such that
C is contained in W D as a section of  irI D : W D — *D. M oreover, (f. C )= 0 .
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(3 ) S = E  (0  i.< 1 2 ) and there is a f ibre I  o f  S -4 )"  such that C is contained in W
as a section of  711 : W1—>1. Moreover (E. C)=0 or 1.

P ro o f . In Proposition (3.4), put X=W, Y = P .  W e m ay prove that the conditions
(1), ••• , (4) a re  satisfied in  each c a s e .  F irst w e w ill p rove in  the  cases (1), (2).

Case ( a ) :  S an d  C satisfies (1) o r (2), and ( I .  C)=0.
Condition (1 ) :  B y the  exac t sequence:

0 ec epl a  ->  N a lp  ----->  0,

w e m ay prove that H ' ( e p l 0 ) = 0 .  T h i s  follows from th e  following exact sequences:

0 -->Oplc —> 7 * (0 * )0 0 P(1)1C ePIS 0

0 epl,Sia ( )PIC e e S I C  - >  0

where e=o@KKDK,g, and  e* is  its  d u a l .  First w e have //'(2r*esl c )=0 because I-P(9D)
=0  and 1/1(ND/s)=0. N ext w e have  1 /1(ep islc)=0 b e c a u se  w e  h a v e  H'(C, 7c* (e * )0
op(1)1c)=1-P(r*(e*)10= 1-P(D, e*Ic )= 0  b y  th e  fac t th a t (E. C)=0 and 0 p(1) , = 0 w(32').
A s a  consequence we h a v e  Fr(epl c )= 0 .  Condition (2 ) is  sa tisfied  because  W  i s  a
C artie r d iv isor o n  P  a n d  //11(0 p )= 0 . Condition (3 ) is contained in  th e  assumption.
Condition (4 ) is satisfied because a  is already surjective in our c a se . In  fa c t , NWIP=

Ow (3E)07c*K. 6 .
Case ( b ) :  S an d  C satisfies (1), and (X . C)=1.
L et us denote by J  th e  natural map of H ° ( e p i s l c )

 t o  H ° (Nwiplc). From now on, we
will prove that Im a  and  Im J  generate H ° ( N w i p l c ) .  I f  th is is show n, then clearly  Im a
and Im g generate H°(Nw i pi c ). In  the  remainings, w e sh a ll w rite  Nw i p=e w (W).

L et F=Y 2 Z —(X3 - aX Z 2 +bZ 3)  be  the defining equation o f  W  i n  P. W e w rite
Op(1)1c=0c(1) and

1 1 ° (7 * E* 00c( 1 )) = 1P(Oc( 1 ))(1311P(Oc( 1 )0 7 * K V )V P (O c( 1 )0 7 * K -s-3 ).

T hen  J  is given by

(11, 12, 12) - ->  (,(apyazIod-c2(aRaxlc)+13(aF/aylc)11.(0,(w)),
where

1,EH°(ec(1)),
12EIP (O C ( 1)0 7r* K V ),
13E T P (0 a( 1)0 7r* KV) •

Note th a t  CcW D C W . In  th is  situation, {aRaHl,y ,= 0 } is  a  divisor o n  WD which has
no  in tersections w ith  S k y , .  H e r e  flw p  denotes the  restric tion of 2" to W D . Hence
faF/aZl c =01 consists o f  18+6i points (w hich m ay contain m u ltip le  p o in ts .) . L e t Vz
denote the im age of H°(0 c (1)) in  IP(Oc(W))=H ° (0p0(21+60) under J .  T hen  the  linear
system defined by Vz  consists o f  18+6i fixed points and 3 points w hich m ove freely.
In particular, dim Vy = 4 .  O n the  other hand, w e  have

laF/aIl iw n =01=--3Elly,+(effective divisors which have no intersections w ith  Eliv,)•

L e t  Vy  d e n o te  the  im age  o f H°(0 c,(1)07r*K -.53)  in  H°Oc (W)) under J .  Then dim Vy=
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10+31. Finally le t U  b e  th e  subspace o f ImH °(0w(W))C/P(Oc(W)) w hich  defines the
linear system o n  C o f th e  following type:

9E1 c +(12+6i points which move freely).

W e have dim U =-13+6i. W e shall consider the intersection of Vy  and U . {aRaylc=0}
consists o f  12+31 points; 3Elc (one point w ith m ultiplicity 3) and  9+ 3 i points R I, •••
R 9, 3 i n o n e  o f  w hich lies on  E .  Hence every section sEV y cH °(0 c (W)) m u st b e  zero
a t  th e s e  12+ 3 i points. O n  t h e  o ther hand, we deduce from  the  definition o f U  that
s+ UcIP(Oc(W)) must be zero at El c and that its m ultiplicity  is at least 9 .  Therefore,
w e conclude  tha t fo r every  section sE v y n u ,  { p c ;  s  is  zero a t  p} =9E1c+Ri+ •••
+ R „ , i + o th e rs . This imdlies that dim (V y n U )S 4 + 3 i. Since dim Vy =10+3i and dim U
= 1 3 + 6 i, w e  h a v e  dim(V y n U ) 1 9 + 6 i .  O n the  o ther hand, every  section of Vy +U
must be  zero a t  X  a n d  th e  multiplicity 3. T h u s  w e  o b ta in  dim(V y +U)S19+6i.
Consequently, dim (V y +U)=19+6i and dim (Vy nU)=4+31.

N ext w e shall consider the intersection of  V .  a n d  (V y + U ) .  Every sec tio n  in  Vz
i s  z e ro  a t  { F / a Z 1 c = 0 }  (w h ic h  c o n sis t o f  18+61 po in ts  different from  f l c ). On the
other hand, every section in  V y + U  is  zero a t  Zi c  w ith  th e  m ultiplicity_3. Thus w e
conclude that dim Vz n(V y + U )= 1 .  From  this we obtain

dim (V z+Vy+U)=dim V z  +dim (Vy +U)—dim (Vzn(Vy+U))

= 4+ 19+ 6 i-1

=22+6i.

Since dim (V i -j- Vy +U)=dim I -P(Oc(W))=dim H°(Op0(21 +6i))=22 + 6z, Vz +V y + U  coin-
c ides w ith  1-P (O (W )).  T h is  im plies that l in ]  and I m ( L P ( O w ( W ) ) C I P ( O c ( W ) )  generate
H°(0c(W )). Therefore  w e have proved that Condition (4) is  sa tis f ie d . Condition (1) is
verified in  the  sam e w ay as case (a).

case ( 3 ) :  L et us consider th e  ruling S-4- n ,  and define th e  linear subspace  V (a .b)
o f  H(IVI v i p) a s  follows:

V (a,b)=-{sEl-P(Nw f p); s=Sca(T, s)xzz+sgpc,r, syz3}
w here  T = (T o , T 1)  is  a  homogeneous coordinates system o f  P ', S = (S o ,  S i )  a re  natural
injections:

So: Op' — >  0 piCDO

S1: o,( — i)0  p 1 0 0

a, b  a r e  in te g e rs  w ith  1 S a 5 4 , 1 5 1 )5 5  and neither a(T , S) n o r P(T, S) is not iden-
tically zero on Do := IS 0 = 0 1 . W e w ill prove that the im age o f  V am  under a  a n d  Im p
g en era te  H°(Nw1P1c) in  th e  c a s e  (3) o f th is collorary . R em ark here  that by L ist (1),
V (4 ,5 ) is necessarily  a  linear subspace o f  H°(Ni y /p) fo r  each i ;  (0 i 12). W e  w i l l  use
th e  following notation:

{5 17 (4,5); S=Sta(S, T)XZzl

V2= V(4, 6) ; s=S8I3(S, T)Z31



932 Yoshinori Namikatua

V x = {sEH ° (Nwl plc): s= e 2aF/aXl c , €2G 1 I ° (0c(1)(8)n*K -s-2 )}
V y = isEll'(ArwIrlc); s=e saF/aXl c , €3E 1 P(Oc(1)07r*K.V)}

V x=IsEH ° (Niviplc); s=t i aRaXlc, €1E 1 P(Oc( 1 ))}

P0-=Cn7 - 1 (D0), Do : negative section of S

I n  o rd e r  to  p ro v e  th a t  a ( V ( 4 ,5 ) )  a n d  Im p  g e n e ra te  H 2 (N1 1pi c ), w e m ay prove that
a(V i)±a (V2)+Vx-f-Vz+Vx= 1 P(Nwiplc).

Case (c): . C)=0
Conditions ( 1 ) ,  • • • ,  ( 3 )  of Proposition (3.4) a re  valid  in  th is  c a s e . F irst note that if

then 1-1°(Nw  p)—H ° (Nw plc) is  surjective because 112(K r l 1)  is  surjective for every
positive in teg e r r an d  fo r a  fibre 1. Hence we m ay assume t h a t  3 i 1 2 .  T h e n  the
zero locus {apyax=-3X2—aZ2=0} never contains C . In  fact since i 3, a E I-1°(S, KV)
has zeros along Do .  W always have singularities o n  {X = Y = 0 }n r - '(D0 ). Since C does
not pass th rough any  singular points, either X * 0  o r  Y * 0  m ust holds at Po . I f  C  is
contained in  {aRax,-3X2—aZ2=0}, then X =0  a t  Po because  a  vanishes at D o . On
the other hand, W is defined by F=y 2Z —X' —aXZ 2 —bZ2 =-0, and b also vanishes at D,.
If w e  replace X ' b y  —1/3 a Z' , then  w e have Z(Y 2 -2/3 aXZ —bZ 2) = 0 .  Since {Z=0 }
on W does not dontain C , {(Y 2 - 2 / 3  aXZ —bZ 2)= 0 }  m ust contain C .  So w e have Y=0
a t  Po b e c a u s e  b o th  a  a n d  b  v a n ish  a t Do . Consequently, we have X=-Y=0 a t  P,,
w hich is a  con trad ic tion . Therefore, C is no t conta ined  in apy8.x=-_--3X2—aZ2=0}.
From  (X. C)=0, w e have Nwiplc=Opi(12), O c (1)07*K, 2 =opi(4),

a(V 2)--=. 1sEH 2(01, 1(12)); (s)0=5P0-1- (7 points which move freely)}

V x = {sEH°(opi(12)); ( s ) 0 = - ( 8  fixed points apart from  P0)
+ (4  points which move freely)} .

L et us consider an  elem ent s o f a(V 2) ( l V x .  T h en  s m ust have a  zero  a t  Po a t  le a s t
o f  o rd e r  5  a n d  h a v e  a t  l e a s t  8  p o in ts  a p a r t  f ro m  Po a s  its  z e ro  lo c u s . Since sE
H 2 (0p1(12)), this implies that s = 0 . Hence it follows that a(V 2)n V x = 0 .  Since dim a(17 2)
=8 and dim V = 5 ,  w e  have H ° (,Nwiplc)=a(V2)+Vx• Q. E. D.

Case (d): C)= 1
If O i 2 ,  th e n  w e  c a n  use  the  same argum ent in case (b), that is, the linear space

generated by Im a, Vx  a n d  V , c o in c id e s  w ith  H ° ( N w i p l c ) .  T h e r e f o r e ,  assum e that
3 i 12. T h e n  w e  c a n  p r o v e  th a t  C  is not contained in  opyax,-3X2—aZ2=0} in
the  sam e w ay a s  a b o v e . Conditions (1), •', (3) o f Prop. (3.4) a r e  v a lid  i n  t h i s  case.
From  (X. C )=1 , w e  have the  following :

Nw  pi c=0 pi(21), 0 a(1)07r* K =0 pi(2r +3)

a(17  ,)= {sEH°(Op1(21)); (s)0=72:1c±4P0+ 6-fixed points which
a re  apart from  TIc and Po +  4 points which move freely}

a(V 2)=  Is ETP(0,1(21)) ; (s)0=-9I1c+5P0+ 7 points which move freely}

Vx=-1sEH ° (01, 1(21)); (s)0 = 2 X +  12-fixed points w hich are  apart
from  2:1c+7 points which move freely}
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Vy = {sEH°(Opi(21)); (s)0=3E1c+ 9-fixed points w hich a re  apart
from  f j c  a n d  Po +  9  points which move freely}

Vz = IsEH °(0p1(21)); (s)0=18-fixed points w hich a re  apart
from  Xlc+3 points which move freely}

Note tha t ou r argum ent below  is valid even though Elc coincides with P o . We define:

U= isEH 0(Opi(21)); (s)0=9271c+ 4 P0+ 8 points which move freely}

T hen U is contained in  a(V 1 +17
2). Indeed, dimU=9 and dim a(V 2)= 8 .  O n  th e  other

h an d , th e re  is  a n  element sE V , such  tha t (s*) 0 =9E1c+4P0+8 points w hich a re  apart
from  El c  a n d  P o . Clearly Cs*-ka(VOCU. S ince  s *  is  n o t  c o n ta in e d  i n  a(V 2), the
dimension of Cs*H-a(V 2)  is  9 , w hich im plies that Cs±a(V 2)= U .  Hence U is contained
in a(V 1 +V 2). From now on, we will prove that U ,V x,V y  a n d  Vz  generate H ° (N ip )
=1-1"(0p1(21)). First w e have :

dim (U+ Vy )=dim U +dim Vy —dim (UnV y )

=9+10-0=19

In  fac t, le t s be  an  element o f  UnV y . T hen (s) 0 m ust have 9E1 0 +4P0 +(9-fixed points
which a re  apart from  Eic and  P o , a s  i t s  z e r o s .  T h is  im p lie s  th a t  s= 0  because sE
IP(Op1(21)). Hence dim (UnV y )= 0 .  Noxt we have:

dim (U+ Vy + V x) (U+ 1=20 .

T h is  is because there is a n  elem ent s  of V 1  su ch  th a t (s) 0=2E1 c +19 points apart from
lc, w hich is not contained in  U+V y . Finally we have:

dim ((U+ Vx+ Vy)(1V z ) - 2

In  fac t, fo r every elem ent s o f U+Vy+Vx, (s)0 has 2/10 a s  its fixed components, and
fo r every elem ent s  o f  Vz , (s) 0 h a s  18 fixed points w hich a re  a p a r t  f ro m  E l c .  Since
dim (U+V y +V x )_>_20, dim V z =4, it follow s from  the  above inequality that

dim (U+Vy+Vx+V z )_ 22.

Since U+V y +V1+V z cIP(Op1(21)), this im plies that the inclusion is in fact an equality.
Q. E. D.

(3.6) Corollary. Let A  be a linear subsystem o f  1..f I  on P = P s (O e n E D U  which
consists of the elements of the following form:

w1Y 2 Z-d-go2X 8 -1-ço3XZ 2 -kw4 Z 3 =0 ,

where S i  (0 ._i512), _C=Op(3)0P * K V , :  P—S and X,Y , Z are the same as in (1.2).
Consider the family 7 r: 9W—P(A) of Weierstrass models over P (A ) .  Then there is a
dense subset T  o f  P (A ) which is obtained by excluding a countable number of proper
closed subsets (in the sense of Zariski topology) from P (A ), and T  has the following
property:

Let C be a smooth rational curve in  WI , te T  which satisfies:
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(1) W, is smooth around C;
(2) . C)=0 or 1, w here X  is the canonical section of  W ,
(3) 7 2 (C ) is a f ibre 1 of  S—>P' and C is contained in  riA l) as a section of ri - i(1)—>l.

Then C is always a ( -1, —1)-curve in W 2 .

P ro o f . B y Proposition (1.5), (3), w e conclude that for a general Weierstrass model
GI', th e  curve C cW  w ith  th e  above properties (1), (2), (3) is  a lw a y s  iso la te d . S in c e
the  numerical condition : (X . C)=0 o r  1 is fixed, w e have finite number of such curves
in  W . L e t  u s  deno te  th is num ber by  n0 (W ) o r  ni(W ) according a s  ( I . C )= 0  o r  1.
R unning W  i n  a  f a m ily  V , w e  ta k e  i t s  maximal value w hich  is w ritten  n, o r  n2.
T hen  fo r  a  general point tE P (A ), n(W 2 )=n 1 . T hus from  th e  f ir s t  w e  m a y  assume
th a t  nt (W )= n , By (3.5), if  w e deform  W  to  a  suitable direction, these curves a re  all
assum ed to be ( -1, —1)-curves. Therefore, w e have the result. Q .  E .  D .

§ 4 .  Examples

In  th is section we will give som e exam ples o f  ( -1, —1)-curves on  a  W eierstrass
model W=W(Ks, a, b) over a  surface S = 1 7 , (0<z<12) or P 2 . T o  p ro v e  T h e o re m  A',
w e  m u st f in d  a  num ber o f  ( -1, —1)-curves C I ,  ••• C „ o n  IZ ' such that they span

C ).  B ut a t the m om ent, the existence of such curves depends on  the  examples
in  th is se c tio n . A t th e  first reading, one had better skip th is  section and go to  § 5.

(4 .1 ) W e employ the  sam e notation as in  (3.1). L et us consider the same diagram
as in  (3.1):

P' P:=Ps(OsEDKN)K)
(./

WD C

[DIE P(H°(05(D))*)=-: Pr + 1 ,  ( 1) 2 )5

Here P ' is  the  fibre product o f  cu and P over S .  It can be easily shown that f :
is  a  fibre bundle w ith pworeKkDen,) a s  a  ty p ica l f ib re . W e  d en o te  b y  P D  this
typ ica l f ib re  fo r  sh o r t . L e t  4 " - I be a  small neighbourhood o f  [D ] in P r ', and  take
one trivialization P D xZr+ ' o f  P ' over 4' + 1 . T hen  crT) is considered a s  a  subvariety of
PDX 4 r + 1  o v e r  J r . " . In  this situation, w e obtain th e  following diagram:

(4.1.1)
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SI)
r+1,[D]

HI(Tw D) IP(TH,

1
H'(H I, r )

Here the vertical sequence of the right hand side is exact and 0 is the Kodaira-Spencer
map in (3.1). We have H i ( T y p I c ) = C + 1  from the exact sequence :

0 T  — >  T  y c — >  N D ly p - > O,

a n d  th e  fac t th at Nc/y 0 -10p1(—r —2). I f  112 (ep p lc )=0 , then the  injectivity o f 0  is
equivalent to the statement that the  linear subspace V  o f  H°(Ny p i pp lc ) generated by
Im (a .0  and Im (p) coincides with H°(Ny D / pp lc ). We will apply (3.1) in this form, as a
criterion for (-1 —1)-curves, to each example in  this section.

(4.2) Example. Consider a Weiertrass model IVD=W(Opi(-2 —i), ao, bo) over D = P '.
Take a  homogeneous coordinates system (T o : T,) o f  P ' .  By the definition o f  Weier-
strass models we have doEIP(P ', OP1(4 (2 - Fi))) and bo EH°(/'', Opi(6(2 - Fi))). W D  is defined
by the equation

F=172 Z — X' — ao XZ 2 — bo la=-0

in P D =  p l(0  p i@ O  pl( - 2(2+2))(1)0 pi( - 3(2 +OD
Set

ao=r4(2+')
J0=502,

50=(Tg( 2 +z) -71( 2 +0
)

2

C= IwEW D ; X=0, 17=-5Z1 .

Then C  is a section of WD-+D and, in  particular, i t  i s  a  smooth rational curve. C
does not intersect with the  canonical section of  W D .  By the ruling g :  S-->P 1 , we con-
sider the homogeneous coordinates system (T o : T,) o f the  base  space P '  as that of C.
Since (E. C )=0, we have Oc(1);----f0c, where Oc (1) denotes Opp (1)1c. (Opp (1) is the tauto-
logical line bundle o f P D .) If  we choose a  suitable isomorphism between Oc (1) and 0 ,
then we have Z Ic = 1 . Then we have :

aF = Y 2 —2a o XZ I c= —2b0Z 2 c-=  — 2b0az c

aF 
ax --= —3X2 —a 0 Z'l e= — aoZ z e=  — ao

aF  
c

=2YZ c =250Z I c=250ay

I P ( e

a
H°(NR,D 1 1 ,D ) IP(Nw n ipple)

Since a o a n d  bo h a s  n o  common zeros, we infer that C  does not pass through any
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singular points of W D . In  our case it is shown that H i (ep p lc)=0.
S et S= E i  ( 0 < i< 1 2 ) .  We put :

U: 0 pi 
(4.2.1)

V: 0  p i( -  i )  - >  0  p i E D O  p i ( -  ,

where U  is a  natural injection (id, 0) an d  V  is a natural injection (0, id ) .  Then define:

A ell° (S , K -S4 )=H ° (S , es(8D0+(8+401))

(4.2.2) A =a0(t)U8±a1(t)U0V + ••• +a(1 )U 8 - "Vn

t=(T o : T1)

4  if z=9, • • , 1 2

5  if  i=5, •-• , 8
n=

6  if i= 3 ,4

8  if  i= 0, 1 ,2

B eH °(S , K s 6 )=H°(S , O s (12D0 +6i)1))

(4.2.3) B=b0(t)U12±b1(t)U"V ± ••• +1).(t)U 1 2 - niVm

,  7  if  i =7, ••• , 12

8  if i= 5 ,6

n =  9  i f  1=4

1 0  i f  1=3

1 2  if  i=0, 1, 2 ,

where D o is  th e  negative section of S , and I  is  a  fibre. W e se t W =W (K s, A, B )  and
D= { x e S  ; V =0 }  . Then we have the commutative diagram (4 .1 .1 ) .  In  this case we
h a v e  r=i.  From now o n ,  w e  w il l  u s e  t h e  sam e n o t a t i o n  a s  i n  (4.1). Let
(S_ 1 : S o : S 1••• : S 0+1) be a  homogenous coordinates system o f P(H °(e s (D))*) which para-
metrizes the elements o f  th e  linear system in  such a  way that S_ 117 —S 0T6U—S 1T riT 1

— • •• —S1 T 1 = 0 . With respect to this coordinates system, [D ] corresponds to (1: 0 •-• 0).
Therefore, we employ th e  coordinate (s o, • • ,  sk  = S k / S ,  as a  loca l coordinate of a
neighborhood o f  [D ] .  L et us denote by 41

+ 1 a  polydisc with the coordinates (s o , •-•
and with [D ]= (0 , 0 , • • ,  0 ) .  We restrict c14) and to W4n+1=-1)Xpi+14"' an d  cli4i+1=
cUxpi+14 i - " -,  respectively. We denote P i X p c n o c o 5 ( D ) . ) ) 4 i + 1  by P . W e w ant to give an
explicit trivialization :

In  order to do that, first we give the  following triv ia lization  o f  GU4

Ii
D x J ci_14

(11 (11
(x , s) 
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w here g: S— )P' is  the  fibration a s  a  ruled surface  and  D , deno tes th e  s e c t io n  o f  g
which corresponds to  sG4.

W e denete b y  q: D X 4—>S the composition of the m aps: D  X  J C S X  S x and
denote by r: ci>4-6 the com position of the m aps: c U 4 c S x 4 , S x 4 -6 . L e t Os(1) be
th e  tautological line bundle of g :  S = P p 1 (0 (1 )0 (-0 )--P '. L e t L  be a  line bundle on S.
T hen  w e  can  w rite  /—_- _'Os(n)Og*Opi(m) fo r su itab le  in tegers n  a n d  m .  I t  is  c o s ily
s h o w n  th a t  p * r * L  a n d  q* L a r e  (non-canonically) isom orphic to each other. I f  L =
g*Opi(m), we have a canonical isomorphism between p*r*L and q*L because goq= go ro p.
Therefore, to  give a n  isomorphism between p*r*L  and  q* L , w e m ay g ive  a n  isomor-
ph ism  betw een  p*r*O s (1 ) a n d  q*Os (1). W e have given a n  injection: U : O s —>Os (1) in
(4.2.1). Pulling back this injection b y  rop and q, w e  have:

A /)*.* s(1)

q* °s
( 1 )

Since  D  i s  d is jo in t from  D o = 1xES ; U = 0 } and 4 is sufficiently sm all, both A  an d  72
are isomorphisms. Therefore, we have an isomorphism e between p*r*Os(1) and q*o s (1)
such  tha t the  above diagram  is com m utative . F rom  this e, we obtain isomorphisms:

K -sldlox4 -=.-'P* (K -s-'2.41v4)

K41Dx4=--- P* (K41v4)•

T his g ives rise  to  a  trivialization

P D x  P .

L et us p rove  tha t f-1°(Nw p i pp lc )  coincides w ith  t h e  linear subspace generated  by
Im(a.cp) and 1m13 fo r  suitable A  an d  B .  W e employ th e  sam e notation as in the proof
o f  Corollary (2.5), case (3). (Replace W  by W D, a n d  P  b y  P D )  T h en  w e  have

V y = {yEH°(P', Opi(6(2+i))); y  is  o f  th e  following form:

E a3(2+i)-j, fTÔT1+(ao, 3(2+1) —  a3(2+i), 0) 7 1 ( 2 +  I ) 71 ( 2 - " )

h>j
k +j=6(2+i)

+ E ( — ak, 3(2+0 - k )7.1,1Ti„ a k  J ECI
k+JIV2+i)

V x = iyE H °(P l, 0 1.1(6(2+0)); y is  o f  th e  following form:

E k  717-1, P h , ; GC}
: 4 (2+1)

k+j=6 (2+1)

Therefore, w e have:
2(2+ 1) 6(2+ 1)

(4.2.4) V x C  TV" -E  CTV 2 +i ) - 1 Ti,
j = 0 j = 3 ( 2 + i )

+13(2 ) - 1

e  z c( T v - i , -.71 -71 (2+0 -./Tr+ i)+J ) .
:7 = 2 (2 + 0 + 1

Since c0d1mH0(Nw p i pp ic
)(V x + V y )= i+ 1 , I-P(epplo)=0 an d  1-11(Tw p Ic) -- --C i +1, we conclude

th a t Im P ,V x+ V y .

0 cht.1
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Next consider the m ap (cx,T ) .  Let T k  be the  1-dimensional subspace o f  T4i-1.1.[D]
w hich is generated by a/as k . W e denote by (a.O k the restriction of (aoço) to T k ,  and
w rite  T k =lu k (a/as k ), u k

W ith respect to  the  trivialization explained in  the  above, w e have:

(a`V)A  ask
, a \) — a i ( t ) 7 1 - k ri'(XZ 2 1c)+ b i(OT T IC Z 3 c)

= b i (t)Tt -  k T1(Z 3 I c ) ,

where a 1(t) (resp. b,(t)) is  the one in (4.2.2) (resp. (4.2.3)).
put b1(t)= T r 7 TP+5 ,  then  by  (4.2.4), w e infer that

IP(NwpipL Ic)=Im 13+ (a.0k(Tk)

=Imp+Im(aoyo).

A s a consequence, C is  a  (-1. —1)-curve on W such  that (1) (C. Z)=0 (2) D=n-(C ) is
a section of S  w ith  (D2 )8= i, w here S=27,, and (3) C  is  a  section of WD -+D.

(4.3) E x am p le . W ith  the sam e notation as in (4.2), w e set

F=Y 2 Z — X3 — aoXZ 2 —boZ 3 =-0

ao =250T1÷3

5 o =Tv+b

W e denote by 1V,°9  (resp. WL) the open set of WD defined by T 0 #0 (resp.
L et C  be a  sm ooth rational curve w hich is a section of and is defined by

the following equations:
On In

7-6X=7 6Z , T;',Y= ( T  -"+5 0 T )Z

On W b
TF,X=T 0 +6 Z , =(T"-kb-oTt)X

By the ru ling g : S—>P', we consider the system  o f homogeneous coordinates (To : T,)
of the base space P ' as th a t of C P 1 . T h i s  is equivalent to  taking an identification
o f L  w ith  g*Op1(1)1c, w here  L  is  the line bundle on  C w hich  is a  positive  generator
o f  Pic(C)=- Z .  H ence the identification i s  unique u p  to  constan ts. If we choose a
suitable (non-zero) constant, then we may assume that (XI c )= T V "T o , (Y  c)=( 7 1 " 9 +EoTt),
(Z1 c )=- 7 1 .  Then w e have:

aF  :_-_--TK3T1""-1-250TtTi3+)ax c

c  
=271(71'9+500n

C

=Tli+"-25,7171"9-2-071

Hence, for example, if  we

aF
ay
aF
az
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It can  be  checked  tha t C does not pass through any singular points of W D and that
(E. C) = 1  for the canonical section I  o f  WD.

In  th e  sam e w ay  as (4.2), we construct a Weierstrass model W and consider the
diagram in  (4 .1 ). We employ the same trivialization

PD X zi

as (4 .2 ). T he  similar calculations to (4.2) show that

H°(C , pplc)/Im a= g C [Tg i + " - k  T in

On the other hand, w e have
a (a. ço)k ( a s  k )— a 1 (1(T T / (X Z 2 1c)±b 1 (t)T6 - kTI(Z 3 1,)

=a ,(t)fl -

Therefore, for example, if  w e put a1 (0=0 and b1 (t)=T8i -"*TT, then we infer that

H °
(Arivpipplc)=Im Pd- (a.ço)k(T k)

=Im (a.9))

A s a  consequence, C  is a (-1, —1)-curve on W such that (1) (C. E)=1, (2) D =7(C ) is
a section of S = E , w ith (D2 )s= i, and (3) C  is a section of WD- 4).

(4.4) Example. Consider a Weierstrass model WD =W(Kpi, 0, o v e r  D =P '. T a k e
a  homogeneous coordinates system (T o : T 1) o f  P '.  W D  is defined by the equation

F=Yz Z — X' —pr =0 in P D := P p i ( O p l e n e k i l l ) .

Let C  be a  smooth rational curve on  PD  which is defined by

X —b(t)Z =0 , Y — a(t)Z =0 ,
where

a(t)=37171+T 1
b(t)=271+7 . 1

H ere i f  w e se t IS= —KT —3TilT1, then C is contained in W D as a section of WD- - D.
It is shown that (X. C)=0 and that C does not pass through any singular ponints of W.D.

Set S = E i  (0 W e put U  and V  in  the sam e w ay  as (4.2). Furthermore
le t  s=(S 0 : S ,) be a  homogeneous coordinate of the base space P '  w ith respect to  the
ruling g: S - -> P '.  Then define :

A H°(S, If -s- 4 )=H°(S, Os(81)0+(8±4i)1))

(4.4.1) A= a o (s)U 8 a ,(s )U 7 V an(s)U8-nV°.

s=(S o : SI)

+7 71i+k + 6 + b1 (t)T6
-
 k
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/4 i f  i= 9 , • , 12

n=
5 if 1=5, ••• , 8

6 if 1 = 3 ,4

8 if  1=0, 1, 2

B E H °(S , K )=H °(S , Os(12D0 ±(12+601))
(4.4.2) B =b0(s)U"-Eb,(s)U"V ± ••• ±b,,(s)U" - InVm

7  i f  i=7 , • • •  12

8  if 1 = 5 ,6

n =  9  if 1 =4

1 0  i f  i=3

1 2  if  i =0, 1, 2 ,

and we consider the W eierstrass model W =W (K s , A , B ) over S .  Let us define f = g o r.
T hen  f  is  a  K3-fibration over P ' .  W e w ill investigate how  to define the coefficients
A  and  B  o f W in  o rder tha t WD is realized a s  a  fibre o f  f  ( i.e . D  is  a  fibre o f  g  and
7r-  i(D)-:;'W D ).

(4 .4 .3 ) L et W be  a s  above an d  se t P(K s):=Ps(O seD K R D K .). Let p be the projec-
tion of P(K s ) to S .  Denote by Sz (resp. P4) the inverse image  g '( 4 )  (resp. (g .p) - i(4)),
w h e r e  4  is  a  sufficiently small neighborhood o f  x E P 1. W e w ant to  g ive  a n  explicit
trivialization :

(go  p) - 1 (x)x

First w e can define th e  natural trivialization between g - '( x ) x 4  and S j by using U and
V .  I n  fact w e can define th e  isomorphism :

0  JED° p i ( —  Old 041ED04 O P114=04

such that (joU)(1) , (1, 0), V)(1)=(0, 1). T h is  isomorphism induces th e  trivialization
77: g'(x)X  4 -6 4 .  L et q  b e  the composition of the maps: g - 1 (x )x L IC S x 4  and Sx4-->S.
L et r  be the  m ap S i c S .  L et Os(1) b e  th e  tau to lo g ica l lin e  b u n d le  o f  S =  P p l ( O p l e

p iO ( - i)). L e t  L  be a  line bundle on  S .  T h en  w e  can  w rite  L O s(n)O g*O pi(m ) for
suitable integers n a n d  m . W e w ant to  g ive  a n  isomorphism between 72* r* L  an d  q*L.
B y  th e  above homomorphism j ,  w e have a  natural isomorphism between them i f  L  is
of the form Os ( n ) .  S ay  x =(x 0 : x l ) with respect to  th e  homogeneous coordinates system
s=(S 0 : S ,)  o f  P ' .  T h e n  x o * 0  o r  x ,* 0  m u st h o ld . A ssu m e , fo r  in s tan ce , x o *O.
Consider the injection

So: Os --> g*Opi(1),

and pull back the injection by  (r..72) and q , respectively . Then w e have:
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K *g.op,(1)

Og - 1 ( x ) .1

q*g*Op, (1)

Since x0 *0  and  LI is sufficiently small, both  and w a re  isomorphisms. Hence there
i s  a n  isomorphism between er*g*op ,(1 ) an d  q*g*Op,(1) such that th e  above diagram
com m utes. A s a  consequence we have an  isomorphism between ii * r* L  a n d  a *L  for
every LEPic(S), which, of course, induces a n  trivialization o f  P j.

(4.4.4) L e t x = (x o : x0#0. Let LI be a  small neighborhood o f  x , a n d  we
employ s=S 1/S0 a s  a  l o c a l  coordinate fo r  LI a t  x .  Then th e  trivialization o f  P 4 in
(4.4.3) induces a n  isomorphism between W  := - W X pi,Z1 a n d  W which is defined by

17 2 Z = X 3 -1-(a0 (1: s)U8 +a 1(1 : s)U 7 V +  ••• +a„(1 : s)U 8 - 7 1 1/79XZ 2

+(b 0 (1 : s)U"+b 1(1 : s )U "V +  ••• +b„,(1 : s)U 1 2 - ntV'n)Z 3

in  Ppi(OpiEDKI.IEBKMXLI, where X , Y  and  Z  a re  injections:

X: O p ia h ja lq i

Y: OpiERKf.leigi

Z : O p t  -  >  0  p la K I , 1031K1»1

a n d  (I V )  i s  th e  r e la t iv e  homogeneous coordinates o f  P l x 4 .  F o r  example, if
x1/x0)= 0  for every j ,  and  b0 (1 : x 1/x)= —8, 13 4 (1 : x 1/x0 )= —3, b(1 : x 1/x0 )-=- 0 for

every le*O, 4, then we know that f - 1 (x) --.z.WD . We can prove th e  following fact:

(4 .4 .5 ) (1) In the above situation, if we choose suitable A  and B, thenwpis realized
as a fibre of f :W=W(Ks, A, B)—).P` ov er at least 12+2i points: IP 1, P l2 + 2 i )

(j. e. f - l (P,i) WD).
(2) Let C ;  denote the smooth rational curve on f - '(P;) which corresponds to C on WI).

T hen w e m ay  assume that ev ery  C;  i s  a (-1, —1)-curve on W.

Proof  o f  (1 ) :  Since W D  is defined by

P Z = X 3 -1-(-8T, 2 -3 T tT i)Z 8 ,
we m ay put

a1(s)=0 fo r every j,

bk (s)=-0 fo r every k

bk (s ) has zeros at 1P, 1, P12+2J

boa: xli ) /xV ) ) = - 8

b4 (1 : xl i ) /x(V) ) = — 3

where (x ji):  x ') = - P .  W e can  easily  check from the condition for the degree o f each
bk (s) that there a re  such bk 's. Q. E. D.

Proof  of (2 ) :  We apply th e  criterion o f (-1, —1)-curve i n  (4 .1 ). O f c o u rse  we
mploy th e  trivialization o f P i  explained in  (4.4.3). First, by a straightforward calcula-
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tion, w e have for each C1 :

c u 0 v 1 2 - k ee(4U"V±U 7 175)(BC(12U 11 V—U3 V9)
le#1e'1,11

N ext w e have for each C 1 :

/  a \ /dbk  
( a * ç 5 U .) = , d s  ( 1 :  s )

is _x p i x v ,)u12-k Vk

Therefore, if  we choose bi su c h  th a t  b, has a  zero o f order 1 at each P1 , then we have
Im fi+Im (a.yo)=H ° (Nwpipplc i )  fo r  each j. Note that it fo llow s from  the condition for
the  degree o f  b, tha t such  a  b, exists. Q .  E .  D .

(4.5) E xam ple . Consider the W eierstrass model WD=W(Kri, a7, b 0) which is defined
by

F=Y2Z—X3—a0XZ2—b0Z'

in  P D :----- Ppi(OpiEDICIEDKM. T ake  a  homogeneous coordinates system (7' 0 : TO  o f  I"'
and we set :

W e denote by W;1
3 (resp. W)) )  the  open set of WD defined by 0 (resp. T 1* 0 ) .  Let

C  b e  a  sm ooth rational curve w hich is a section of WD — OD  a n d  is defined by th e  fol-
lowing equations :

on  W2,
7 V (= T Z  , T 'Y 0 =(T?+5 ° Tt,)7,

o n  WL
7 X=T7Z , T °TV' =(71+5 ° 71)X

It can be checked that C does not pass through any singular p o in ts  o f  WD a n d  that
(E. C)w p = 1  fo r the  canonical section 2' o f W D . A s in  (4.4), we consider a Weierstrass
model W=W(Ks, A, B) on S = E  (0<i<12). Let us define f= g o lr .  Note th a t a  general
f ib re  o f  f  i s  a n  elliptic fibration. T hen  if  we choose suitable A and  B , then  WD is
realized as a fibre of f  (j. e. 7r(D) coincides with g - 1 (x ) fo r som e xE.13 '  and 1/17 p=-1 - 1 (x)).
M o reo v e r, w e  m ay  assume th a t  C  is  a  (-1, —1)-curve o n  W . T h e  proof is done by
using the criterion (4.1) and  the  trivialization described in  (4.4.3). T hen  the  calculation
is  a lm o s t s im ila r  to  th a t of (4.3) because the defining equations o f C  in W D  is almost
o f the  same form.

(4.6) Conclusion fro m  (4.2), (4.3), (4.4), (4.5). I n  t h e  ab o v e  ex am ples , w e  have
constructed fo u r  (-1, —1)-curves o f  different numerical types on special Weierstrass
model W over S=2", (0 i S 1 2 ) .  Since a  (-1, —1)-curve is  stable  in  deformation of the
ambient 3-fold, we know th e  following.

Let W =W (K s , a , I)) be a W eierstra ss model over S=E i  ( 0  z 5 1 2 ) . I f  we choose a
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and  b  generally , then  W  contains ( -1, —1)-curves C1, C2, Cu),P ••• , CP+ 2 "  C ,  of  the
following numerical classes .

( I .C ) (Hi. C) (H,. C)

c l o o 1
C2 1 o 1

CV ) o 1 o
c l 1 1 o

w here H , denotes 7*D 0 (D o  is the negativ e section of S = Z i )  and H, denotes r * l  (I is a
.fiber o f  g :

T he  above examples give, however, no informations about the arrangements of the
curves on W (e. g. th e  problem  w hether these curves can be chosen such that they are
mutually d is jo in t) . T h e  next example and Proposition (4.8) are designed for the purpose.

(4.6.1) D efinition. A  ( —1, —1)-curve C  on a, b) with S = I i  (0<i.<12) is
called o f  ty p e  I  (resp. H, III, IV) if C  h a s  t h e  sam e num erica l c lass a s  th a t  o f  C,
(resp. C2 , Cs, C4).

(4.7) E xam ple. T h is  exam ple will assure that w e can take tw o (-1. —1)-curves of
ty p e  I  a n d  II m utually d is jo in t . W e use the notation of (4 .2 ) . D efine a W eierstrass
model W =W (K s , A , B ) over (0-_<i<12) by setting

A =TV 81P+(—TP+ 8 + 2 T r l r ) l 7 7 11

B_(711,6 +Tv+7Tr +5
u + ( 2 7 ' ' T V + 6  —

Tv+77,7i-F5+Tti+12)ulov2

Let D I =  1x S  V=0} and {x E S : V = T W } . Then WD1 := 7r- l (D1) is isomorphic
to  the W eierstrass model W I o v e r  P l which is defined by

17 2 Z = X 3 + T 0 +8 A.Z 2 + (n + 6 -7 1 1 +6 )2 Z 3

inPpi(Oplei0p1( - 2(2-ki))EBOr1(-3(2-ki))). Similarly W D2 is isomorphic to the Weierstrass
model W2 o ver P 1 defined by

Y 2 Z = X 3 +2TO+ 3 7T+ 5 XZ 2 + 7 r - " Z ' .

in  Pp i(0  p i e °  p i (  —2(2+0)(1)Opi(-3(2-1-0)). L et us consider the  sm ooth rational curves
C+ (resp . C_) o n  W, defined by

X=0, Y= (71' 6 —T11 +6 )Z  (resp . -(71-6-7T + 6)Z ).

By abuse of notation, w e denote  by  C + (resp . C_) the rational curve on W Di correspond
ing to  C+ (resp . C _ ) .  T h en  b y  (4.2), C+ i s  a  (-1, —1)-curve o n  W . S ince  W  h a s  a
involution w ith  respect to  2 ' and  since C+ a n d  C_ a re  conjugate w ith respect to this
involution, C_ is a lso  a  (-1, —1)-curve o n  W . R em ark that both  C+ a n d  C _  a re  o f
ty p e  I (see  (4.6.1)).

Next consider th e  smooth ratoinal curve C ' o n  W, defined by
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71,V=TV"Z , TlY , ( T r 9 H-For ) Z  on W ,

T-i x=71=+.z , T ,Tgt +6 Y =(TV+ 9 +5 0T1)W on W92,

where I/I/ (resp. WO denotes the  open  se t of W, defined by T o *0 (resp. T#0).
Here we remark that W , is the W eierstrass model obtained from t h e  exam ple in

(4.3) by exchanging T o a n d  T „  and that C ' is obtained from C in  (4.3) by th e  same
w a y . By abuse of notation, we denote by C ' th e  rational curve o n  WD, corresponding
to C '.  Then by th e  remark, in  order to check w hether C ' is a  (-1, —1)-curve on W,
first we may replace

To by T1,

T , by T o ,

V  by Vd-TfU ,

U  by U

in  the  defining eqnations o f W an d  C' and  next we may apply th e  calculation o f (4.3)
directly. Then it fo llow s that C ' is not (-1, — 1)-curve o n  W .  W e c a n , however,
p ro ve  th at th ere  is  a  small deformation (Bi t , CO of (W, C ') in  Ps(OsEBAIEBKD such
that C; is a (-1, —1)-curve on W ,. T his small deformation induces a  small deformation
(W t, C-,0). Since C_ a re  (-1, —1)-curves on  W, C_,, a re  also (-1, —1)-curves on Wt.
O n  th e  other h a n d , it is easily  checked  that  C_fl,C ' Ø i n  W .  H ence w e have
c_, 0nc,=.0 in  Wt . Therefore, w e infer that W t contains mutually disjoint (-1, —1)-
curves C_,, and C .  M oreover, C_,, is o f  ty p e  I  a n d  C; is o f ty p e  Il.

(4.8) Proposition. L et W=W(Ks, a, h) be a Weierstrass model over S=.17, ( 0  i _<12).12).
L et D  be a section of  g: S—›P' with (D)i=1 and let I be a  fiber o f  g .  L e t  C  be a
smooth rational curoe on WD :=W x8D which is a section of  WD -4 3 . Let C' be a smooth
rational curve on WI :=Wxs1 which is a section of 147

1—> 1. Assume that
(1) both C and C ' are  ( -1, —1)-curves on W,
(2) (C. f )= 0  or 1
(3) C n C '

Then there is a small deformation (Wt, C ,, C;) of (W  C , C ' ) in P=Ps(O se)M V Q ) such
that Ct nC;=-125.

P ro o f .  The case where (C. Z )= 0 ) : Since (X. C)=0, th e  natural map: H°(N 1 ) -
H ° ( N 1 )  i s  su rjec tiv e . O n  th e  other h a n d , since H° (Nc/w)=-Er(Nciw)= 1 -11(Nc/w)=0
b y  (1 ) , w e  h a v e  a n  i s o m o r p h is m / - P ( N c / p Y = ."1 -1 9 ( N w i p l c ) .  T h erefo re , w e  h av e  a  map
0 : H°(Nw i p)-->H°(Arc l p). If  w e note that C is  stable under deformations o f  W , then 0
can be interpretted geometrically a s  a  correspondence between an infinitesimal displace-
ment o f W  in  P  and  an  infinitesimal displacement o f  C  in  P.

Here first we consider th e  following commutative diagram :
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I10(1), Op(1,17 )) -  - - - - - - > N w / p )

'1‘ I
Ho(P, 0 p(W)03,,i(o) > H°(W , Ni i/I p®Ow ( - 7 - 1 (1()),

A çb

H°(P, Op(W — p- V)))

w here p is  the projection of P  to  S and w here c9,-1( t )  d e n o te s  t h e  defin ing  ideal of
7- 1 (/) i n  P .  N o te  t h a t  H°(P, 0 p(W)03--1 ( 1 ) )  corresponds to  th e  linear subsystem of
10p(W)1 which consists o f  th e  elements W t su c h  th a t  W t co n ta in s  7 - (/). g5 is  surjective
because  w e  have 111(P, p-1(0))=0, w hich follow s from  the spectral sequences of
Leray:

0 H'(S, O (— l)) H1(P, 0v( - - P - 1 (1)) --> H°(S, R 1P*Op®Os( - 1))

0 111(P1, O ( — l ) )  H 1(S, O s (— l)) -->  H °(P 1, g * O5 ®Op1(-1))

N ext le t u s  w rite  q = C n C ' and  consider th e  m ap k : 11°(Nc  p)—).Nc  pO k (q ). Then k is
surjective because Nclp is generated  by  its g loba l sec tions. In  fac t, this follows from
1-1i(Nc 1w O0p1(-1))=- 0 because C  is  a  rational curve an d  Ncvw  i s  a  d irec t su m  o f  line
b u n d le s . H i (Nc1iv®Op1(-1)) can be com puted by using the  exact sequence which are
obtained from th e  following by tensoring pi( - - 1) :

O —> @PIC

0 ----> eris c — >  &DI c -->  7 * es c — › 0

0 ---> ()D - - - ->  es/D - - - ->  N D / s 0

0  -->  Oc  — >  7 * (e* )0 0 P(1 )1C - - >eP/Slc — › O,

where e :-=0.3G)KieM, and e* is  its  d u a l sh e a f . Then since the  restric tion 1-1°(Nw 1 c

®Ow(-7 - '(/))) - - 4 -P(NwiplcO0c( - 7 - '(/))1 is  surjective, w e  have:

W(Nw POOlv( — r - 1 (1))) C  H a (NwiP)

W(Nwiric®Oc( - 7 -
1 (/))) C  11° (N1v11»lc) - - - >-> NcIwOk(q) C'

codim 1

L et V  be the im age of Oc , O k(q ) b y  the com position of the m aps Oc , Ok(q)CepOk(q)
---› Arc ,p 0 k (q ).  T h e n  dirne V = 1 .  B y  th e  above d iag ram , w e  in fe r  th a t  th e re  is  an
element aGIP(Nw/POOw( - 7 T- 1 (/))) w hich is m apped to an  elem ent pENcnvOk(q) with
pE V .  O n the o ther hand, since 0  is  surjective, w e  can  take  a  f la t  fam ily  i n  P x J ,
f :cW-->4 1=  iteC  ; tl < s }  s u c h  th a t  (2 ) f 1 (0 )=W , (2 ) go(a/at)=a, where go : TE0J,41—

H°(Nw i p) is  th e  Kodaira-Spencer m ap w ith  respect to  go a n d  (3 ) f o r  e v e ry  teZP, W
contains 7r- 1 (1). T h is  im plies that o n  W , (t*0). C, a n d  Ct(---.C') a re  mutually disjoint.

THE CASE WHERE (E . C )= 1  : Consider th e  following commutative diagram:
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a
11° (P*e*O0c(1))

H°(Ncip) H°(iVwip■c)

Ii
f iH

H °(Nris,c) IP (H plc) BANivipic)

H°(Nw / p)

H°(P,op(W)0s,-,(1)) H u (NwIp®Ow(-7r - '(1)))

W e will find an  elem ent O H°(1■Iw i p®Ow ( - 2r- '(1))) such that 1) there is an element
rE H °(P*e*O0o(1)) such that Ar)=-.i1..i2(0), 2) (13-a)(r) H ° (8 p lc ) i s  n o t  z e ro  a t  q=
C n C .  If  we find such a n  elem ent, then w e have our assertion . In  fac t, consider the
diagram:

0

o

Nc,pok(q)

isco
ep,sok(q) epOk(q) p*OsOk(q) 0

h

e e ,( q ) 2 O C O k

0

Here note tha t Im (h .i 1)r\Im (hoi 2)--=- 0  in  p*OsOlz(q). S ince  now  w e  h a v e  fr3(4).a(9)(0)
r O and h. fi(q).a(q)(0)=0, w e in fe r th a t p(q)(0) is not contained in the vector subspace
eo , 0 0 4 )+ 0 o 0 k (g ) o f  ep O k (q ). Since th e  map çb is surjective, there  is a  flat family
f :5V-->ZP=ItEC ; Itl<s} i n  P x 4  such that (1) f - 1 (0 )= W  (2 )  ço(6/30=e and (3) for
every tE4 ', W2 con ta ins 7r- 1 (1), where ço Tc03,41—}H °(N w ir is the Kodaira-Spencer map
w ith  respect to  f .  T h is  implies our result.

L et us s ta r t  the  proof of the existence of 0 w ith  th e  p ro p e r t ie s  w e  w a n t . Note
that Nw i p®Ow ( -77 - '(1))a-..0w (9E)Or*Os(12D o d-(6i+11)1). H e re  w e  d e f in e  t h e  vector
subspace V o f H°(W, Nw i p®Ow ( - 7 - 1 (1)))cH °(W , N 1 1p) a s  follows:

Gti+11
V :=IsEH °(N w i p ); (s) 0 = 9 Z + r -1(12D 0)+ 7 - '(/) ±  E  7 - 1 ( 1 k )k =1

each /k i s  a n  arbitrary fiber o f  g :  S--*P,}

W e write Vc-=j i (V) fo r sim plic ity . W e w ill prove in  each case of
(CA sE 1) q02',
(C A sE  2 ) g E f

Proof  zn (CAsE 1): W rite  go --, C n E .  Then w e have:

Vc =  IsE H °(Nwiplc); (s) 0 =q+9g0+(6i+11)-points which move freely)} -

J  and (f30a) are defined by
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He)(op1(3)(Bop1(7 +2i)eopi(9 +3i)) H°(Nwiplc)

€ 2 ,a F (aF (aF 
(es,

€ 3 )  
+e2 +e3az c ax c ay 1c)

where F=Y 2 --X 3—aXZ 2— b r , and
Poa

H°(Opi(3)(430p1(7-1-2i)EDOpi(9+30) —> H°(& p)

( t h  €2 , £ ) € ' (  'a9Z  c ) + € 2 (  ax
For the notation a/az, a/ax, 8/Dy , see (1 .2 .1 ). Therefore, it suffces to find an element
r=(€1, £2, €3) such that

7 a
 Z  c) + € 2 ( aaa x(a) a 

c)+ €a( ay c
) ( )  a t q,

( b ) t i (  aF (aF+ezaz c ax c)-Ft ealy c )

has a zero of o r d e r 1  a t  q , and has a zero of order 9 a t  go .

First w e w ill investigate the condition (b). For example, se t 7=(t 1, 0, Ea). On one
hand, since ((aF/ay)1) has a zero of order 3 at qo a n d  ((aF/aZ)I c )  is not zero at qo , t i

must have a zero of order a t  go . On the other hand, since tEH°(0p1(3)), t i h as no
zeros other than go . Fix such an  t i . Then the condition (b) for t ,  is represented by
at most 7 equations of degree=1 in the vector space H°(Op1(3i+9)). Therefore, we find
a non-zero t ,  which satisfies (b). Next we investigate the condition (a). Since q0 2 ',
we have X#0 o r Z #0 at q. If X * 0  holds at q , then we have:

a 
az

a
+e3c ay c  

4 -0  at q.

In fact, if X#0 at q , then we can consider (Y/X, Z/X) as local coordinates at q .  Then
(Aoce)(T)=(ti/X)(a/a(Z/X))+(es/X)(a/a(Y/X)) at q. S ince t 1(q )* 0 , (13.a)(z)#0 at q. In
the case where X=0, ZrPO at q , we consider r'= (0 , €2 , 8 3). We will divide the problem
into 2  cases: (case i) X=0, Y  Z O  at q , (case ii)  X = 0 , Y = 0 , Z # 0 . In (case i),
first we take an  t ,  such that t ,  is not zero at q  and has a zero of order 3 at q0 . Since
Y #0 and Z#0 at q, we have (aF /aY )(q )*O . Next, for the t , ,  we take an  t ,  such that
(A .a)(r')= t 2(aF/aX)I c -Ft 3 (aF/aY)I c  has a  zero of o r d e r 1  a t  q  and has a zero of order

at qo . This is possible. In fact, both t ,  and (aF/aY)Ic already have zeros of order
3 at qo . Therefore, the condition for t ,  in  H°(0p 1(9±3i)) can be represented by 7 linear
equations (6 equations for q , and one equation for q). Hence we can find such a n  t , .
We take (X/Z, Y/Z) as local coordinates at q. Then since t 2(q )* 0 , we have

a(A.a)(1')—€2  ax c + €3 aay
= (€2/Z) 

 a(x
a
/  Z ) a ( Y

a
/  Z )  

*0+ (€3/ z)

at q. This completes the proof of (case i).
In (case ii), first we take an  t ,  which has a zero of order 1 at q  and has a zero of
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order 3 a t  g o . N ext, fo r th e  €2 ,  w e  ta k e  a n  E3 w i t h  € 3 ( 4 ) * 0  s u c h  t h a t  (13-a)(r') -=
eaF/ax)1,+e3(apyay)h, h a s  a  ze ro  o f  order 1 a t  g  and  has a zero of  order 9 a t  40.
T h is  is  p o ssib le . In  fac t, since (aF/aY)(q)=0, we have (130a)(1-,)(q)=0 however €3(q)#0.
T hen  w e can  use  the  sam e argum ent as above. C onsequently , w e have o u r  assertion
in  th is  case.

P r o o f  in  (CASE 2 )  T ak e  (X/Y, Z/Y) as local coord ina tes a t 4. T h e n  f ro m  the
fac t tha t X = Z = 0  a t  q, it follows that

a a 
(4.8.1) ° a)(r)(q)---- €117- 1 - € 2 / Yacz/Y) a(X/Y) q

F ir s t  w e  ta k e  a n  e , such  tha t e2(0 0. since (aFiaz)(0*0, w e can find an  ei such
that e 1 ( ( a F / a Z ) 1 ) + 2 ( ( 1 a F / a X ) I D )  h a s  a  zero  of order_3 a t  g. T h is  is  possible because
e2E 1 P(Op1(3)). N ext fo r the  e l ,  ez w e take  an  £3 such that £,((aRaz)iod-e2((apyax)ic.)
+€3((aFi8ni c ) has a  ze ro  o f order10 a t  g. T h is  is  possible because ((aF/aY)I D) has
a  zero  o f order 3 a t  g  and the condition for e3 is represented by 7 linear equations in
H°(0p,(9+31)). If  w e  tak e  the  trip le  (ei, e2, e3) th e n  w e  h a v e  a  requ ired  e lem ent of
H°(Nw / p®Ow ( -7r - '(1)). Q. E. D.

(4.9) E xam le. L et W=W(K s , A, B) be a W eierstrass model over S==P'. D efine A
and  B as follows:

A=T0T,f(T0: T1: T2)4-2(T-FT1)T;

B =T 0T ig(T 0 : T 1 : T 2)-1-T 0 ,

w h e re  (T o : T,: T 2) is hom ogenous coordinates o f  P 2 a n d  w h e re  f  (resp. g )  i s  a
homogenous polynomial of deg 10 (resp. 16). Set D,= {T ,,=0 } cS . Then WD0 :=IV X sDo
is isomorphic to the W eierstrass model W(Op,(3), 27'171 TP) o v er P ' .  Sim ilarly  WD,
is isomorphic to the W eierstrass model W(Op1(3), 27'4,Tg, 718) over P ' .  We have smooth
rational curves C o a n d  C, o n  W  D o and  WD,,p l ,  respectively, which a re  defined by :

C0 : o n  W& ,
T a = T 1 Z  , T W = (T 1 2 -1-T P )Z  o n  W2,0 ,

T V = T 1 Z  , T 2711/=(T1 2 ±TP )X
C, : o n  W) 1 ,

T V = T g z  , 71Y =—(T1, 2 H -TP )Z  on W b,,

M = T g z  , T 2Tar=—(TP+TP)X.

Note th a t the  above (WD,, C i )  a re  essentially th e  same a s  (WD, C ) in  (4.3). In  fac t, if
w e  replace T o b y  T , in  (4.3), w e g e t (WD 0 , Co). If  w e  replace T o by  T 2, T , by T o and
Y  by —Y, then  w e  ge t (WD,, c o .  Therefore, w e can use  the  calculations in  (4.3) for
Co a n d  C, o n  W . A s  a  consequence, we see that if  w e  tak e  th e  suitable polynomials
f  and g ,  then both C o a n d  C, a re  ( -1, —1)-curve o n  W . By the construction, we have
C0 n C ,= 0  and (E. C,)=1 (i=0, 1).

(4.10) Exam ple. L et W=-.W(Ks , B ) be a  W eie rstra ss  m o d e l ov e r S = P ' . We
define A and  B a s  follows:
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21=TVT

B , (TV—T1')71+71 8

Write f i  fo r  th e  line on  S  defined by T 0 —plT 1 =0. fi=e 2 " .  Set W i  := W x s G  Then
we have a  smooth rational curve C;  o n  each W ; CW  which is defined by:

T 0 —duiT 1 = 0 ,  X = 0 ,  Y = T .Z .

Let 4 ( ; )  be a  sufficiently small neighborhood o f  [ 6 ]  i n  P(H(Op2(1))*) w ith  loca l co-
ordinates (s i , s 2). T h e  in  th e  way similar to (4.2), 1/1/40 ) :=WxpcHocop 2 (0).)4(J) is  iso-
morphic to the W eierstrass model c14,

5 =W(Op1(3), A .„ B 5 )  with

A5=A((ti'd-s1)T1H-s2T2, T1, T2)

B5=B((1t 2 4-s1)T1±s2T2, T1, T2).

Using the  same notation as in  (4.1), we have

Ho(Nwi ipl, )/im p=c [T rT ]B C C IT T E
Moreover, we have

a (a.w),( 8s
 )= llp1o iT1T

,  a(a.yo.)2( as2 ) - 1 1 p 1 0 .7 1 0 7 1 .

Therefore, we infer that
rp(Ni, 1S_orn(a.0.

This show s that each C i  is  a  ( -1, —1)-curve o n  W . B u t n o te  th a t Ci 's  intersect at
o n e  p o in t o n  W . Here we use  the  following fo r each pair (C5 , CO,

(4.10.1) Proposition. L et W=W(Kp2, a, b) be a  Weierstrass model over P 2 . Let D,
and D 2 be distinct lines on P 2 . L et C1 ((resp. C2 ) be a sm ooth rational curve on 111D1:
=--- Wxp2D 1 (resP. W D 2 )  such that C, (resP. C2)  is a section of  WD, - >DI (resP.
Assume that

(1) both C, and C, are  ( -1, —1)-curves on W,
(2) (C I . 2')=0,
(3) C1 C2* Ø.

Then there is a small deformation (W 2 , C1,2, C2,1) of (W, C,, C 2 ) in P=Pp2(0p20)K2a)M.2)
such that cl,inc2,1=0.

P ro o f . T h e  proof is quite similar to that o f (case (C. Z )= 0 ) in  (4.8). Hence we
om it the proof.

T h e  we have mutually disjoint 11 (-1, —1)-curves on W.

(4.11) Conclusion fr o m  (4.9), (4.10). By (4.9), W=W(Kp2, A , B ) contains at least
two ( -1, —)-curves C, a n d  C 2  which a re  mutually disjoint and (C,. E)=0 (i=1, 2) if we
take general A  an d  B .  Similarly, by (4.10), we may assume that W  contains at least
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11 (-1, — 1)-curves C ,, ••• , C „  which a re  mutually disjoint and (C i . 2')=1 (i=3, •-• , 14).
L et us w rite  D i  f o r  7r(C 4 ). T h en  D , and D , a re  m utually d is tin c t lin e s  o n  P 2 . On
th e  other hand, D,, ••• , D 1 4  a r e  mutually distinct lines o n  P 2 . Therefore we can find
D, andD k  f ro m  D,, ••• , D,, such that D i , D2, D,, D k  a re  mutually distinct lines o n  P 2 .
Here we apply (4.10.1) to the  pairs (C ,, Cs), (CI, Ck), (C2, C ,), (C2, C k ). Therefore, if
w e take general A  a n d  B , then  W=W(Kp2, A, B ) contains mutually disjoint (-1, — 1)-
curves C „ C ,, C 3, C 4  such  tha t ( C,. f)= 0  (1 = 1 , 2 ) and (C 4 . 1 )=1  (i= 3 , 4 ).

§ 5 .  P ro o f  o f  Theorem A'

(5 .1 )  (the  Case S = P 2 ) In  th is  case, w e  take  the  four curves C 1 , « ,  C4 in (4.11).
B y  P roposition (1 .5) (1), P ic(W )=Z [z*O p2(1)16)Z [i]. W rite  H  fo r  7r*Op2(1). Then
the intersections of the generator of Pic(W ) w ith  th e  above curves a re  a s  follows:

H

C,
C.
C3

C,

1
1
1
1

Therefore, the conditions in (1.1) are satisfied.

(5 .2 )  (the C ase 5=2" 4 w ith In  th is  case, w e  take  four curves C1,••• ,
in  (4 .6 ). N ote  here  tha t w e  m ay  assum e th a t th ese  cu rves a r e  mutually d is jo in t. In
fa c t ,  f irs t  w e  c h o o se  th e  f o u r  curves in (4.6) su ch  th a t C , and C 4  d o  no t intersect.
T h is  is  possible because we have at least (12+20-curves o f type  III and  we may pick
the  suitable o n e  a s  C , from  these  cu rves. N ex t from  (4 .7 ) and (4.8), it follow s that
if  w e deform  W  to  W ,, then w e m ay assume th a t th e  fo u r  c u rv e s  a r e  mutually dis-
jo in t. B y  d roposition  (1 .5 ), (2 ), w e  h a v e  P ic  (W )=Z [H i]D Z E H JE D Z E I], w here H,
denotes th e  pull-back o f  th e  negative section on S  and H , denotes the  pull back of a
fibre of g : S - 4 ' .  T h en  the table of intersections is  a s  follows.

H,

C 1 O O 1
C2 1 O 1
C3 O 1 O
C4 1 O

Therefore, the conditions in (1.1) are satisfied.

(5 .3 )  (the Case S=2: 4 w ith  3 ./ ..< 8 )
(5 .3 .1 ) W e  w ill e x p la in  the case here. O t h e r  cases can be treated  in the

same w a y . L e t  do: ft7—W  be a  resolution in  (1 .5 ) . L e t Da b e  th e  negative section of
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g : S — >P '. T h e n  (7rop) 1 (D o) is  illu s tra te d  i n  t h e  fo llow ing  p ic ture . H ere  th e  self-
intersection number of the double curves in  each irreducible component is omitted be-
cause our argum ent does not need such informations.

   

p-exceptional divisors

s tr ic t transform  o f  7 - 1 (D 0 )  b y  p

C,

I n  t h e  fig u r e ,  C , d en o te  t h e  o n e  in  (4.6), and e denotes th e  fibre o f  F  passing
through the point q := C 3 n F .  6 7 i s  the fibre of E , w hich intersects e . T h e  o th e r G s
are  determined in  a  sim ilar w a y .  F irst w e perform  the  flop  o f  C2 . T h e n  th e  s tr ic t
transform  o f g becomes a  (-1)-curve o n  F  (exactly  speaking , th e  s tr ic t transform  of
F ) .  Since ,  this implies that it is a (-1, — 1)-curve o n  th e  new  3-folc obtained
b y  the  flop  from  W . F rom  now  o n , by  abuse of notation, w e  w ill use  the  same nota-
tion fo r the  6, 6,, E, and th e ir  s tr ic t transfo rm s by  a  c e r ta in  f lo p . N ext preform  the
flop of g. T hen  e, becomes a  (-1)-curve o n  E „  w hich im plies that 67 i s  a  (-1, —1)-
cu rv e  o n  t h e  a m b ie n t  3 - fo ld . W e  c a n  con tinue  the  sim ilar p ro c e ss . L e t E , be an
arbitrary  p-exceptional d iv is o r . T h en , from  th e  above observation, w e  know  th e  fol-
lowing.

If  w e Perf orm  a su itab le  com position  of f lops of (-1, —1)-curves, then w e have a
( -1, —1)-curve C on the new  3-f o ld  fT7' obtained by  the composition o f  f lo p s  and C
satzsfies (C, E 1 ) = —1.

(5 .3 .2 ) A  g en era l W eierstrass model W  has canonical singularities and they  are
locally triv ia l deformation o f a  ce rta in  rational double point except fo r  a  finite number
of points. W e call these points dissident. I n  ou r case S-=- E „  the re  is  on ly  one dis-
sident p o in t .  W hen w e construct W from IV, th e  s itu a t io n  o f  p-exceptional divisors
changes o v e r  t h e  p o in t .  L e t  p  b e  a  d is s id e n t  p o in t  o f  W . T hen  w e can  find  9
(-1, —1)-curves • • •  ,  C 8 ) s u c h  th a t  (g o r)(C P )# (g oz )(p ), w h e r e  7:M 7 - 6  and
g: S—>P 1 a r e  th e  natural p ro je c tio n s . T h is  fo llow s fro m  t h e  fa c t  th a t  th e re  a re  at
least 26 (-1, —1)-curves o n  W of type III (See (4.6)). On the o ther hand, we can find
(-1, —1)-curves C i , C2, C 4 o f  o th e r  types th a t C I ,  C 2 , C P ) , ••• , C l ',  C 4  are mutually
disjoint (See ( 4 .6 ) ,  ( 4 .7 ) ,  ( 4 .8 ) ) .  Since th e  resolution p  o f  W  ch ang es nothing around
these curves, w e m ay assume th a t th ey  a re  curves on W .
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(5 .3 .3 ) Here recall (5.3.1). F irst, w e p u t  C3 = C P ), a n d  perform a  flop o f  C,.
Then e becomes a  (-1, — 1)-curve. Next we consider CP) a s  th e  C3 in  (5.3.1). This
tim e , we perform flops i n  t h e  order o f  C,, L . T hen  e, becomes a  (-1, —1)-curve.
We continue these operations for C ' s  ( j 7 )  so that. for CP), e, becomes a  (-1, —1)-
curve . F o r  CP ) ,  we leave a s  it  is. Then w e have 12  mutually diajoint (-1, — 1)-
curves o n  th e  new Moishezon 3-fold :

C1, C2, C r), c4, L, £ 7, € 6 ,  •  •  •  •  e, •

We denote by W' th e  new 3-fold. Then we have that Pic (W)=Z [2:]eZEI -LiEVZ [HO
[E ,] , where E ,'s  are the si-exceptional divisors in  (5.3.1) an d  Hi 

=
e 7 C

*DO, H2 =
)=1

,e.g*n;*/ (D o is  th e  negative section and / is a fiber). It follows that Pic (117') is generated
by the  stric t transforms o f  X, H1, H2, E l ,  ••• , E7. B y  a b u se  o f  n o ta tio n , we denote
them by th e  same symbol as the original ones. Then the intersection numbers between
these curves and  these divisors a re  a s  follows:

H, H2 E, E2 E, E, E o E, E,

C1 0 0 1 0 0 0 0 0 0 0

C2 1 0 1 0 0 0 0 0 0 0
CP ) 0 1 0 0 0 0 0 0 0 0
C4 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 —1

e3 1 1 0 0 0 0 0 0 —1 0
e3 1 1 0 0 0 0 0 —1 0 0
e,
e3

1
1

1
1

0
0

0
0

1
0

0
—1

—1
1

0
0

0
0

0
0

e3 1 1 0 1 —1 0 1 0 0 0
e, 1 1 0 —1 0 1 1 0 0 0

Then it is checked that the curves generate 112 (W' ;  C ) .  Moreover we can find the
elem ent -- - - C1—C2—c3+2c4+e—e 1---€3— €3- 2e4+e5+€6+€7 in  Ker i * . Here i*  i s  the
same one  in  (1.1). Therefore, the conditions in (1.1) a re  satisfied.

(5 .4 ) (the Case where S = E , with 9 i . 1 2 )  We will explain the  case i= 9 here.
The cases where i=10, 11 can be treated in  the same w a y .  Since W  has no dissident
p o in ts  in  th e  c a s e  where i=12. we can treat this case  in  the  same way as the case

A  difference between th e  cases 9 < i1 1  an d  th e  ca se s  3<i_.<8 is that
W7 - 6  is not flat if In  other words, there a re  n-exceptional divisors which
a re  contracted to points by go7r. (7.1.1) - 1 (D 0)  is illustrated a s  follows when i=9.
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E3(--)F, E3
-V 2E 3r)F3

I

I 2 k - I 1\ 1 ,( 1) H i) 1
m2__________

, , )
--

---------____________----' 1—
in, (+3)

m, 1,,,

ot, 17

171 8 S

D (+5)
li (-7)1t, , ,

/

I

CY" C T ' CP' ) C T  C

Since W h as 3 dissident points w hen i= 3 ,  w e  have 3  bad p-exceptional divisors
F„ F2 , F3 .  T hey  a re  contracted to  points b y  g.7. W e perform  flops in  th e  order of

1n 2 , M 4 , m5, ••• in8• T h e n  ni") becomes a  ( -1, —1)-curve. W e do  the  same proce-
dure  fo r  F, an d  F3 .  T h e  w e  have ( -1, —1)-curves m" ) and m( 3 ) . T h ey  a re  also ( -1 )-
curves o n  F .  W e note that, after these flops, the double curve D has self-intersection
num ber —10 i n  F. N ext w e choose 10 (-1, —1)-curves CP) , ••• , CP )  o f type  III in
th e  sam e w ay a s  (5.3). W e leave C r )  a s  i t  is. F o r  each cp) ; 1 we perform
a  suitable composition of flops whchi sta rts  from  CP), as we have done in  (5.3). Then

e5 in  the figure become ( -1, —1)-curve. F o r  Cj9 ) ,  w e perfo rm  th e  flops in
the  order o f  cp), e (see th e  f ig u re ) . W e  n o te  th a t  the self-intersection number o f  D
in  F becom es —1 in  th is  situation. T h i s  im plies that D  becomes a  ( -1, —1)-curves.
O n the o ther hand, w e can choose ( -1, —1)-curves C i ,  C 2 ,  C 4  o f  ty p e  I , II , IV  such
that C,, C2. CP ) , • ••, CP", C, are mutually d is jo in t. A s a  consequence we have mutually
disjoint ( -1, —1)-curves o n  th e  new  Moishezon 3-fold W ':

C 1 ,  C 2 ,  CP ) , C 4 ,  D, m('), ••• , m" ) , €i, ••• es •

O n  th e  o th e r  h a n d , since Pic ( -147 )=Z [Z]El)Z[HJEBIZ[H2iE Z[E1]@AZ[F.,] (H,
and  H, a re  th e  sam e as in  (5.3.3)), Pic (an) is generated by th e  s tr ic t transform s of I ,

112 , E 1 , •'•, E0 , F„ •••, P .  B y  a b u se  o f  n o ta tio n , w e  d e n o te  th e m  b y  th e  same

E,

E, E 2

E,

E,

E7
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symbols as the original ones.
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Then the table of intersection numbers are  as follows:

E 5E 3E , E, E,E 7E 3F , F3F 3

cl 0 0 1 0 0 0 0 0 0 0 0 0 0 0
C S 1 0 1 0 0 0 0 0 0 0 0 0 0 0

CP) 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
9 - 3 0 -1 0 0 0 0 0 0 -1 0 0 0

m(1)

m(2)

in
( 3 )

1
1
1

—1
—1
—1

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1

£8 1 1 0 0 0 0 0 0 0 1 —1 0 0 0
1 1 0 0 0 0 0 0 1 —1 0 0 0 0

eG 1 1 0 0 0 0 0 1 —1 0 0 0 0 1
eG 1 1 0 0 0 0 1 —1 0 0 0 0 0 0
e4 1 1 0 0 1 1 —1 0 0 0 0 0 0 0
£3 1 1 0 0 1 —1 0 0 0 0 0 0 0 0
£2 1 1 0 1 —1 1 0 0 0 0 0 0 0 0
£1 1 1 0 —1 0 1 0 0 0 0 0 0 0 0

It is checked that the curves generate H2(W '; C ). Moreover we can find the ele-
ment

O=2C ,-2C 3-8C3-2C,— D+m " ) +m " ) ±m ( "±e8+t7+66+.66 — g4+3i3+2f2+2gi

in  Ker i* . Here z*  i s  th e  same one in (1.1). Therefore, the conditions of (1.1) are
satisfied.
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