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Elliptic 3-folds and Non-Kaihler 3-folds
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§0. Introduction

The purpose of this paper is to study the relationship between Calabi-Yau 3-folds
with elliptic fibrations and compact non-Kdhler 3-folds with K=0, b,=0, ¢g=0. The
non-Kidhler 3-folds referred to here have firstly appeared in Friedman’s paper [3]. In
this paper he has shown that if there are sufficiently many (mutually disjoint) (—1,
—1)-curves on a Calabi-Yau 3-fold, then one can contract these curves and can deform
the resulting variety to a smooth non-Kihler 3-fold with K,=0, b,=0, ¢=0. For
example, in the case of a (general) quintic hypersurface in P*, one can do this pro-
cedure for two lines on it. This phenomenon is analogous to the one for (—2)-curves
on a K3 surface. In fact a (—2)-curve on a K3 surface often disappears in a deforma-
tion and this fact just says that one can contract this (—2)-curve to a point and can
deform the resulting variety to a (smooth) A3 surface. By this phenomenon, we can
explain the varience of the Picard numbers of K3 surfaces in deformations and it is
well-known that a general point of the moduli space of K3 surfaces corresponds to a
non-projective (but Kdhler) K3 surface on which there are no (—2)-curves. Taking
such a non-projective surface into consideration, one has a famous theorem that two
arbitrary K3 surfaces are connected by deformations. There is, however, a difference
between Calabi-Yau 3-folds and K3 surfaces, thatis, a (—1, —1)-curve never disappears
like a (—2)-curve in deformations. This is closely related to the fact that Calabi-Yau
3-folds have a large repertory of topological Euler numbers. For the speculation around
this area, one may refer to M. Reid’s paper [12].

The main result of this paper is the following:

Theorem A. Let X be a Calabi-Yau 3-fold which has an elliplic fibration with a
rational section. Then the bimeromorphic class of X is obtained as a semz-stable degenera-
tion of a compact non-Kihler 3-fold with K=0, b,=0 and q=0, i.e. there is a surjective
proper map f of a smooth 4-dimensional variety X to a l-dimensional disc 4 such that

1) f-'(t) is a compact non-Kdihler 3-fold with K=0, b,=0, ¢=0 for te4*,

2) f“(O):él})X : s a normal crossing dwisor of X%, and

3) X, is bimeromorphic to X and other X;'s are in the class C.

Here we will explain the motivation of the formulation in Theorem A. If there are
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sufficiently many (—1, —1)-curves on X in the Friedman’s sense explained in the above,
one has a flat morphism f of a complex analytic variety X to a disc 4 whose central
fibre is the variety obtained by contraction of these curves and whose general fibre is
a non-Kdhler 3-fold with K=0, b,=0, ¢=0. In this situation, 2, :=7"'(0) has a number
of ordinary double points, but one may assume that the total space ¥ is smooth under
a suitable condition (e.g. (1.1) in this paper). Next blow up these points. Then the
central fibre consists of a number of irreducible components, namely, the smooth variety
¥, obtained by the blowing ups of the ordinary double points on ¥, and the P?%s
corresonding to each point blown up. However this is not yet a semi-stable degenera-
tion because the multiplicity of each P?® is two, Hence, taking a suitable base change,
one has a semi-stable degeneration. This is a typical example of Theorem A.

We shall briefly explain the construction of the paper. In §1 two matters are
treated. One is the Friedman’s construction of a non-Kihler 3-fold with K=0 and
b,=0. The other is the canonical resolutions of Weierstrass models (for the definition
of a Weierstrass model, see (1.2)). After these preliminaries, in §2 we reduce Theorem
A to Theorem A’ which is concerned with Weierstrass models. The remaining sec-
tions 3,4 and 5 are devoted to the proof of Theorem A’.

Finally the author expresses his thanks to Professor A. Fujiki who informen him
of the article of Raoult [11], of which result is used in §2.

§1. Preliminaries

In this paper, a Calabi-Yau 3-fold means a smooth projective 3-fold with #, finite,
¢=0 and K trivial. Since =, is finite, those 3-folds are excluded which are, up to étale
covers, Abelian 3-folds. Here we will briefly review the Friedman’s construction of a
non-Kéihler 3-fold with K=0, b,=0. Assume that X is a smooth compact 3-fold with
Ky trivial and that mutually disjoint (—1, —1)-curves C,, ---, C, are given on X. Here
a (—1, —1)-curve means a smooth rational curve P' whose normal bundle Npyx is
ismorphic to @p:(—1)POpi(—1). Then one can contract these curves to points to get a
compact 3-fold X with ordinary pouble points: = : X—X. For simplicity we will write
P;=r(C;), Z=]; P; and C:]{I C;. We have the following exact commutative diagram:

0 —> Hi(nxOx) —> (O x) —> H(R'm4O x) —> H¥ (w40 y) —> H*(Ox) —> 0

[24
0—> H{TY) —> TY% —> HATY — HTY) — T% —>0

In the above diagram, the map « is interpreted as follows: First we have an ism-
morphism 8: H(T4})—HETY%) by using the exact sequence defined locally at each P;:

0—> T4 —0Ociy—>0r—T; —0.

Here we note that (X, P;) can be embedded into (C*,0) because P; is an ordinary double
point. By the isomorphism B, a is identified with the natural map HYT$%)—H*T%). In
our case it is easily shown that 7.@y=TY%. Next using the Leray spectral sequences :
H2(Rm40 x) = H2*9O y) and HP(Rm.O x)= HP*(Oy), we have H3(T%)=H*:(Ox) and
HXT%)=H*Ox). which imply that the above map is identified with the following maps :
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H{Ox) —— H*(O)

HgR% HY2%),

where the vertical identifications come from the fact that Ky is trivial. 1f the map 6
is surjective, then we have 7%=0. On the other hand, H(T%L)=H}T $)=HiR}) are

. . . . n
isomorphic to an n-dimensional vector space @C, where each factor corresponds to
i=1

C;. 6 is nothing but the map which associates each basis of the above vector space
with the fundamental class of C; in X. Summing up these results, we have the fol-
lowing fact (1.1):

(1.1) Let X be a Calabi-Yau 3-fold and C,, -+, C, mutually disjoint (—1, —1)-curves
on X. We employ the same notation as above. Then since H¥(Q%)=H*X, C)=H,X, C)
by the Hodge decomposition and the Poincare duality, the map 0 can be identified with

the map ix: é}Hz(C’, C)—HyX, C). In particular, if ix is surjective and there is an
t=1

element (a,, -, an)=Keriy such that a;#0 for all i, then X 1s deformed to a smooth
compact non-Kdahler 3-fold with K=0, b,=0 and ¢=0.

The main points in the argument of [3] are to eliminate the second deformation
object T% and to give a geometric interpretation of the map H(T%)—H*T%). Here
we consider a relative situation in which a Calabi-Yau 3-fold X has a fibration f: X—
P', Then we have:

(1.1) Proposition. Let f: X—P° be as above and set F={x&X; f 1s not smooth
at x}. Assume that dim F=0 ond H'X,, Ox,)=0, where X, is a generic fibre of f.
Moreover assume that there are mutually disjoint (—1, —1)-curves C,, -+, C, on X such
that 1) each C; is mapped to a point by f, and f is a smooth map around C;; 2) the
following sequence is exact:

0 —> Ker —> SJH(C,, Q)* —> H'(X, Q' x)* —> [D(P?, Q'pi}* —> 0
=1

and 3) there is an element (a,, -, a,)EKer such that every a; is non-zero. Let x: X—X
be the coniraction of these curves, and f a natural fibration from X to P'. Then there
is a flat deformation {: X—AX P' with 4 a sufficiently small 1-dimensional disc such that

A) T:=t'({0} xPH=X;

B) fo: ®o—1{0} X P! coincides with f, and

C) X, is smooth for ted* (punctured disc).

Proof. Let us denote by T%,p, and T ,p, local and global deformation objects of
X over P!, respectively. In our case, they are isomorphic to &xt,(2%p1, O5) and
Exti(2%,p1, ©g). Then we have the following exact commutative diagram :
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0 0
! l
Ker¢op ——> Kerf 0

N

Tsipn —> H'T ;) —> HT'%5p) — Thip —> 0

Lo le K Tl:?z

T, —— HYT%) — HXT%)

l l )

0 0 HY(P!, QL)%
0

Here the injectivity of #, and the surjectivity of #, follow from the fact that
H'(X, f*0p)=0. We see H'(X, f*@p)=0 by the Leray spectral sequence and the fact
that R'f,0¢=0 (this is because R!'f4Or=R'f+Or=R'f« Ky is torsion free and
HY(X,, 0x,)=0). We get Coker B=H'(P', 25:)*. considering the following exact com-
mutative diagram :

0 0
N/
c
/7N

0 —> T%p —> T —> f¥Op —> T1pr—> Tt —> 0

N/
K

/N

0 0

and taking cohomologies. In fact, since dim(supp7/,,)=0, we have dim (suppC)=0,
which implies that HX(K)=H*f*@p)=H'(f*Qp)*=H'(P', 25:)*. Note that H¥ T %)=
H*(T}) (see [3] or the argument above (1.1) of this paper) and that the natural map:

HYTH=HY(QY*—H'(QL)* is obviously surjective in our case. Hence we have
Coker B=H(P!, 24)*.

Claim 1* Ker fCIma.
Proof. This follows from the injectivity of #,.

Claim 2. ImB=Im(¢-¢p)
Proof. Since ¢ is surjective, this follows from a geometric interpretation of ¢
(see [3] or the argument above (1.1) in this paper) and the assumption 2).
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By Claims 1 and 2, « is surjective, which implies that 7'%,,,=0. By the snake
lemma we infer that the map Kerp—Ker 8 is surjective.
Now let us denote by P, ---, P, the ordinary double points of X and write

H"(T}?):iEZQCi, where C; is a copy of C. Let a=(a,, --*, a,) be the element in the

assumption 3). Then there i$ an element a€H(T%,,,) such that ¢(@)=a. It follows
that a(@)eKer 8 because ¢(a)=0. If a(a) is not zero, then a(@+a’)=0 for a suitable
element a’ in Ker¢ because the map Kerp—Ker § is surjective. Set b=a+a’. Then
b comes from T and @(b)=a. Since 7%, =0, this implies that there is a global
smoothing of X which preserves a fibration over P'. Q.E.D.

A typical example of (1.1) is a general quintic hypersurface X in P*and two lines
on it. In this case, since Pic(X)=Z, it is rather easy to check the conditions in (1.1).
But in general it is very difficult to find the curves satisfying the conditions in (1.1)
even if a Calabi-Yau 3-fold X is given explicitly. In another sense, (1.1) supplies us
with an interesting example where the class C is not stable under small deformations.
In fact, X is a Moisnezon space, and hence is in the class ¢. However, the non-Kéhler
3-fold V obtained by a small deformation of X is not in the class €. This is shown
as follows. First one has A>%V)=0, because h*'(V)=0 and K,=0. If V is in the
class C, then it is bimeromorphic to some compact Kahler manifold Y. Since A" *(V)=0,
we have h"%Y)=0. In fact, by the desingularization theorem [4], we have a complex
manifold ¥ which dominates both V and Y, birationally and properly. Using spectral
sequences and Chow lemma [5] for (¥, V) and (V, V), we have the result. However,
h**(Y)=0 implies that }" is a projective manifold. Since the algebraic dimesion of V
equals to 0, this is a contradiction. So V is not in the class ¢. Since x(X)=0, this is
a counter-example to a question posed in [2].

(1.2.) Definition. A Weierstrass model W(.L, a, b) over a variety S is a closed
subvariety in Ps(OP.L*P.L*) defined by the equation Y:Z=X*+aXZ*+bZ? where
LEPic(S), acH(S, £, beHS, £ and

Z:0—0pL*PL?

X: L —0pLPL?

Y:L0— 0L PL?
are natural injections.

We denote by XY the section of W(.L, a, b) over S defined by X=Z=0 and denote
by = the natural projection of W(.L, a, b) to S.

(1.2.) Definition. With the same notation as above, consider a vector field vy on
W=W(L, a, b) defined by

0

0
X/YW on {Y=0lCW.
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P P
a(Z/X) —Y/X oY /X)

Set P=Ps(0P.L*PL?). Then X is considered as an injection: Op—0Op(1)RQp*.L 2,
where Op(1) denotes the tautological line bundle of P, and p is the projection of P to
S. Then we can define X-'vyeHY P, Ops@p*.L?) because vycH (P, Op;s). Here
Op;s is the relative tangent bundle of p: P—S. We write /06X for X~'vy. Similarly,
we can define d/dY and 9/0Z for vy and vz, respectively.

—Z/X on {X+0jCW.

Next let X be a Calabi-Yau 3-fold which has an elliptic fibration with a rational
section. Then by [8] (Th. 3.4), X is birationally equivalent to a Weierstrass model
W=W(Ks, a, b) with only canonical singularities, where S is one of the following:
P, 3, (0<7/<12). This is a starting point of the proof of Theorem A. Since W has
singularities in the case S=2; (3</<12) even if we take a¢ and b generally, we must
set up the following definition :

(1.3) Definition. Let W=W(K5s, a, b) be a Weierstrass model over S=23'; (3<:<12).
Then W is called general if the following two conditions holds

(1) W has singularities only on F={peW; per~'(D,), X=Y =0}, where D, is a
negative section of S.

(2) Let mD, and nD, be the fixed components of |K3s*| and |K3*|, respectively.
Let div(a)=G-+mD, and dw(b)=H-+nD, be the decompositions into movable parts and
fixed components. Then G (resp. H) intersects D, transeversely. Moreover, (GND,)N
(HNDy)=¢.

Let W=W(.L, a, b) be a Weierstrass model over S. Then W 1is obtained as a
double cover of Pgs(0P-L?) branched over B={X*+aXZ*+bZ2*=0}U{X=2=0}. If W
has singularities, then we consider their resolutions

(1.4.) Canonical Resolutions. Let Y be a smooth variety and B a reduced Cartier
divisor on it. Assume that ©y(B)=L®? for a line bundle L on Y. Then we have a
double cover X of Y branched along B. To resolve the singularities on X, we consider
the following process of blowing-ups.

1) Y,=Y, B,=B

2) vi: V=Y, (0<i<m): a blowing up along a smooth center D;CB;CY;

3 Bi=v¥.B;,

4) Ei:Vi—-ll(Di—l)-

Let Bn=B+2X p;E; be the decomposition of the divisor B, into the proper trrans-

form B of B and other exceptional parts. Put B,=B+ 3 E;. Here assume that
;lj:O

B, is smooth (possibly with many components). Then we have a double cover of Y,
branched along B, and obtain a smooth variety X. Since there is a birational mor-
phism =z : )?—>X, X is a resolutiin of X. If we have Ky=n*Ky, then the above pro-
cess is called a canonical resolution of X. Note that a canonical resolution is not unique.

Let W=W(K5s. a, b) be a general Weierstrass model over S=2%,(3</<12) in the
sense of Definition (1.3). Then we can perform a canonical resolution on W. In our
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case, it is easily verified that Sing(W)={qeP; q=p~'(D,), X=0 Y =0}, where P=
Ps(ODK:DKY), D,: negative section, and that the singularities are locally trivial de-
formations of a rational double points except for a finite number of points which are
so-called dissident points. So the problem is how to overcome the difficulties which
arise at these dissident points. For example, consider the case where i=5. (In the
case where i=3, 4, 6, 8, 12 there are no dissident points.) Since G and H never vanish
simultaneously at a point ¢ of Sing(W) in Definition (1.3), we may consider two cases:
(1) only G vanishes at ¢ and (2) only H vanishes at ¢. It follows that ¢ is dissident
only in the case (2). Hence we may consider the situation where ¢=(0, 0, 0,0), W
yr=x +x+stt in (x, y, s, t)-space (=C*). Then a process of a canonical resolution
will be found in (Figure 1) below (1.5).

(1.5) Proposition. Let W=W(Ks, a, b) be a Weierstrass model over S, where S is
one of P2, X, (0£i<£12). Then:

(0) KW=OW

(1) In the case S=P? or 3, (0<i<2), a general Weierstrass model W is smooth and
Pic W)=n*Pic(S)DZ[X]. Moreover W is simply-connected.

(2) In the case S=25,; (35i<12), a general Weierstrass model W has canonical
singularities such that Sing(W)=P' and that they are locally trivial deformations of
rational double points except for a finite number of points. W has a canonical resolution
g W—oW. In the case where 3<i<8 or i=12, p has the following properties:

a) W—S is a flat morphism.

b) Ky=0

c) If we regard W and W as fibre spaces over P' by the ruling S—P', then p,:
W,—W, is the minimal resolution of a surface with rational double points for a general
point t of P*.

In the case where 9<i<11, pu has the following properties:

a) p s factored through a normalv variety iV and W has the following properties :

al) W—S s a flat morphism.

a2) There are mutually disjoint rational curves C; (1<7=12—17) on W and W has
locally trivial deformations of A,-singular points along these curves as the singularities.

a3) W—W is a resolution of the singularities in the trivial manner.

ad) If we regard W as a fibre space over P*, then W,—W, is the minimal resolution
of a surface with rational double points for a general point t of P*.

b) Kp=0.

For details, see Figures 1 and 2 below.

(38) For an arbitrary point t€ P' except for a countable number of points, W, is
naturally an elliptic K3 surface and its Mordell Weil group is trivial.

4) Let E; (1<j<m) be p-exceptional divisors. Then PiC(W)Z(ﬂ°/J)*PiC(S)@

2zE).
(5) W is simply-connected.

Proof. Since (0) and (1) were proved in [8], we will prove here (2), (3), (4) and
(5). Consider the complete linear system |.L| on P=Ps (OPKiPKE), where L=



906 Yoshinori Namikawa

Op(3)Qn*K3° and Op(l) is a tautological line bundle of P(OPKIPKE). Let A be a
sublinear system of |.£| which consists of the elements of the following form :

O Z+ 0 X+ X 2P+, 20=0,

where ¢, p,€H'(S, 0s), p.=H(S, K5*) and ¢,€H%S, K5°). An important result is
that ¢, and ¢, always have zeros on the negative section of S as a ruled surface over
P'. Then it is easily checked that the base locus Bs(A) of 4 is E={qeP; gep~*(D,),
X=0 YZ=0}, where p is a projection from P to S and D, is a negative section of S.
By the theorem of Bertini, a general element of A is smooth outside B. On the other
hand, since {¢geP; X=Z=0} is a section of a Weierstrass model We A, W is smooth
on this locus. Hence a general element We A has singularities only on E,={¢cP;
g2p7'(D,), X=0 Y=0}. Other claims in (2) follow from straightforward calculations
if we consider a canonical resolution (1.4). Here we mention that the canonical resolu-
tion is not unique. Two different such resolutions are connected by a certain sequence
of flops. For details see Figures 1 and 2.

Figure 1 (examples of canonical resolution)

If W=W(Ks, a, b), S=2X; (:=3) is given, then the canonica resolution in (1.5) (2) is
not unique. Two different such resolutions are connected by a certain composition of
flops. We will illustrate the process of one of such resolutions for Es, E,and E;-case
(i.e. the cases where Sing (W) is a locally trivial deformation of a rational double point
of type E E. E, except for a finite number of points). In the figure, the real lines
illustrate the proper transform of B and the dotted lines illustrate the exceptional
divisors. The numbers associated with exceptional divisors mean the multiplicities in
the total transform of B.

E;-case
B: X: 4+ X+st'=0

$=0 s#0
) b b
P q cusp
1 blow up at p 1 blow up at ¢
(2) .G\, exceptional divisor Gis

i 3 E
o0 (tangent to 2nd order

AN

1 blow up at p, 1 blow up at ¢,

g,| «— tangent to 3rd order
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3) . .
new exceptional divisor

\ v | o
PzE\ I (lz.o 4 90 Gz.:

T blow up at p, 1 blow up at g.
4 ! 3:
|  a—— |
l i 4
1 ]
G ! 8 ----- N F G s
o \q\g\ .
: j
| I
7 blow up at p, T blow up at ¢,
®) i 3! , 8
T Tkl
: v/ 1 /
[ ey
a yore
S B, 12,
7 / !
Gio !Gl,ﬂ Gis G,
In (6), we may take a double cover branched along B+G,.
E;-case
B: X +st*! X+1*=0
s=0 s#0
oY)
p q
T blow up at p 7 blow up at ¢
2
————————————— Gia o R
P 911 tangent to 2nd order
T blow up at p, T blow up at ¢,
3 L Gao . E—
I
: :Ge,s
_________________________ 3
P |
|
3 51

T blow up at p, T blow up at ¢,
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“4) ' ! 75
1 /+
e E 3 (I/J‘I(/
————— et —— g3
' I
Ic's ] 9:63.3
T blow up at p, T blow up at ¢
(5) ! | l ‘N —i_(]_
| H 145
/)4; | o Gy 14———-:r —————— {I-S——(,“
| |
————— A 3—————-:+—~————————
! 9
T blow up at in order of 1 blow up at in order of
Dis bs 1, Qs
(6) Gs 0 10\ /6
|~ —=, o
// I ~ G . —"h\ /,{ —Gy s
v AN SR S S
/E Goo—===~7— 14 5 ;
e —— N ———gjem e —— — -
pe "9
T blow up at p. 7 blow up at g
(7) //65‘0 I Ny 1_9_1\_ Bx ——/—/—-6—
7 Bl N G =N Al
A N ————te——————— -=—
\\/ : Gc,u N 14\\ : '5
G, K G: s N
'\ l\
| N | N
Giol S ____ RN 3
5.0, ~C —— G, . G - G
9 12

In (7), we may take a double cover branched along B+G,+G.+G..

E;-case
B: X+t X+st*=0
8:0 s;&O

1T blow up at p T blow up at ¢
@

T blow up at p, 1 blow up at ¢,
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(3) “— Gz,o
T G. 5!
_ ]
—_—— 3 ______________ —
___________ _ gz,
p. é
7 blow up at p. T blow up at ¢,
\ Ve
(4) (l:f.n | I | ,// Gz,:
Go.o— AT
ps| [T X
| | € Gx‘x
_____ ‘+—_ 3_______+_______
! 19
1 blow up at p, 7 blow up at ¢,
) R e B , 5
e T T 6uimmdod oo
//Ir | g4
Gio | 4‘
______ T 3 9
T blow up at p, T blow up at g,
(6) |
A N % 5
T T S W i il
|
——d g pr——— :06 A
pu: l(;,, . 9: Gs, G2 R
______ —_,—_—_————— 3_____,_____._.._____
Ds) qs!
Here we note that G, .=F+G;. .
T blow up at ps, ps and p, T blow up at ¢, ¢; and ¢,
) 51
- Gor 1 e
I e i
N e S |
i IG” 0 F (PPN I v Gq.s
S 2
|
e Gorl -
et S s
——————— i 3 —— A -
i 10 //Gt;,a G' 8
|
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In (7), we take a double cover branched along B+G,+G,+G,+G, Then we have
the W in (1.5). Since G, ,=Gs,,+F in our case, G, intersects B. Furthermore we can
check that G, intersect B along F transversely. Hence it follows that W has a locally
trivial deformation of a rational double point of A,-type as its singularities.

Figure 2 (Configuration of p-exceptional divisors)

i=3 (A,-type)

(=1
(=D E,=3

The double curve is the negative section of each E,°

i=4 (D,-type)

E,
(—2)
0
(0) E.
(0
2
(—2) E,

1=5 (E¢type)

E;s are ruled surface.
The double curve D is a multi-section of deg2 of E,=J3,, and D’ is a section of
both F; and E,. The branched points on D correspond to the dissident points of W.
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1=6 (Etype)

E,
(=4
(+2)
(—2)
(o)
« 0
(=2)
(+2)
(=4

£,

=7 (E,;-type)

E,
(—=3)
(+1)
E,
(=3)
(+1)
Es
E,
E,
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1=8 (E,;-type)

(—6)
(+4)
(—4)
(+2)
(=2
(0
0

(0
(=2
(+2)
(=4

E,

E,

E,

1=9 (Estype)

& s
- R F
E, E Pras E,

e m———

E,

(=3)
(+1)
(=1
(=D

(+D)
(=3)

(+3)
(=5)

E,

If we blow down F; (1<i{<3) to the curves m;, then we have W. E, intersect with
E, along the curves m; (1=7/<3).
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i=10 (Estype)

Ir m, {712 E
: F N | 1
e !
______ |
E3 |l _ P Ez \\\\\\ ~~ :
“: “““ — ="~~~ |
E,
y T
()] E
) ’
(=2
E,
(+2)
(—4) ;
(+4)
—6
(—6) E,

If we blow down F, (1<i{<2) to the curves m; (1<i/<2), then we have W.

i=11 (F,type)

n,

e
Eul ______

(=1

(=D
(+1)

(=3)

(+3)

(—5)
(+5)

(=7

If we blow down F, to the curve m,, then we have W.

E,

913
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1=12 (Es-type)

E,
(=4
(+2)
(=2
(0
(0
(=2

E,

E,

E,

Proof of (5). Let us view W as a fibre space over P?, v: W—P'. Then its general
fibre is a K3 surface. Suppose that W is not simply connected, then by [21], there is
a non-trivial étale cover of W, ¢: V—W. Taking the Stein factorization of vo), we
have a finite cover h: C—P!'. If h is an isomorphism, then we have a contradiction
because a general fibre of v is a K3 surface and hence is simply-connected. Hence
is a finite cover of deg=2. Pick up a section D of y. Then D=P! and ¢ (D)=
I1 P! because ¢ is étale. Every component of ¢~'(D) is isomorphic to D by ¢. On
the other hand, each component of ¢~'(D) has a surjective map to C, which contradicts
the fact that deg h=2. Hence W is simply-connected.

Proof of (3)—(4): (Case 1) 3<i<8 or i=12: Let .£ be a line bundle on W. Then
after tensoring with ©@(m?Y), meZ, we may assume that (L. f)=1 for a general fibre
f of mep. Then #4.L is a reflexive sheaf of rank1 by [16] (Cor. 1.7), where 7 :=nop.
Hence #4.L is a line bundle on S. Since we have an injection #*#%4+.L—., we obtain
a non-zero section s of LQ#*(#x-L)™'. By (3). 7-p¢ has no other sections other than .
So we have dz'v(s)=2'+ﬁ*H+§miE,-, m;=0, where H is an effective divisor on S,
which implies (4). -

(Case 2): 9=<i<l1l: We can apply the same argument as above to the ¥ in (2).
Then we obtain the result comparing Pic(W) with Pic(W).

Before proving (3), let us prepare four lemmas.

(1.6.) Lemma. Let f:X—C be a family of K3-surfaces over a curve C and h: S—C
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a P'-bundle over C. Let g: X—S be an elliptic fibration with a section YCX such that
f=heg. (Hence we can view f as a family of elliptic K3-surfaces.) For a given point
t,=C, we denote by Ly, -+, I, the reducible fibres of gi :X.—S:, and consider small
neighborhoods of I; in X, : (X, t;). Assume that f gives a trivial deformation of each
(X, 1s) and that the Mordell Weil group &(X./S:,) of &, is trivial. Then &(X./S:) is
trivial for every t€C except for a countable number of points.

Proof. Let us consider an irreducible component H of Hilby,; which generically
parametrizes (—2)-curves D,CX, which are sections of g,. Let 4 be a universal family
over H. Assume that H dominates C and that 4,#3,c, for a general point heH,
where p denotes the natural morphism of H to C and X, denotes the restiction of
3 to Xpm>. Since H is projective over C, there is a point hy&H such that 4, CX,.
For every point h+h, sufficiently near h,, 4, is a (—2) curve on X,. Asacycleon
X,, we have J{ho:2¢o+§ a;E;; a;=20, where Y, is a restriction of 3 to X,  and each

E; is an effective divisor contained in a fibre of g, because (K ,,, l)xtozl for a general
fibre [ of g,, and &(X,,/S;)={id}. Since 4, is a (—2)-section of gyw>: Xpr>—=Spwm>
which is different from X,,, we have (4, 2)=0 and (4 ,,. £:)=0 for every i from
our assumption. This contradicts, however, the fact that (4, )=—2. Hence /1 does
not dominate C, which implies our lemma.

(1.7) Lemma. There are elliptic I{3-surfaces ©: S—P"' with sections which have the
following properties :

(1) = has only one reducible fibre | and [ is of type I* (resp. W*, IV¥, 1%, IV);

(2) The Mordell Weil group S(S/P') is trivial.

Proof. In the cases where [ is of type II* and [ is of type IV, there are examples
with the properties (1) and (2), respectively ([17] §2. (1), §2. (II) 8°). As for the
remaining cases we can construct the desired dxamples by deforming the above example
of type II*. In the sequel we will explain this. Let n:S,—P!' be an elliptic K3-
surface with a section and assume that = has only one reducible fibre of type II* and
that &(S,/P") is trivial. Let (V, 0) be a Kuranishi space of S,. Here S, corresponds
to the point 0. Let us fix an isometry

$: HXS,, Z) —> L :=UBUBUD(—E)B(—Ey) .

Since the Picard lattice for S, is isomretric to U@P(—E,), we may assume that for a
suitable isometry ¢, L is the direct sum of the Picard lattice and UPUP(—E,) ([18]
(Cor. 2.6) or [19]). We remark here that the lattice (—E;) contains (—E,), (—E),
(—D,) as sublattices. Set

2={[w]CP(Lc); (0, ®)=0, (w, @)>0} .
Then there is a period map p for a marked K3-surface (S,. ¢)
p:V—2Q.

Let us write [w,]=p(0). By the local Torelli theoem, p is an isomorphism near the
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point 0. If we choose a suitable point [w] near [w,], then the Picard lattice w*NH"!}
becomes UP(—E,;) (UP(—E;) or UP(—D,), respectively) by the next Lemma (1.8).
Let S be a K3-surface corresoponding to [w]. Then S also has an elliptic fibration
with a section Y. Moreover, the lattice U is generated by a fibre and 3, and the
lattice (—F,) ((—E®) or (—D,), resp.) is generated by the (—2)-curves which have no
intersection with both Y and a general fibre. In fact, the Picard lattice UP(—E,) of
S, is generated by a fibre, a unique section, and the (—2)-curves in a reducible fibre.
U is generated by the fibre and the unique section and (—FE;) is generated by the
(—2)-curves in a reducible fibre which have no intersection with the unique section.
Let £, be a line bundle corresponding to a fibre f (i.e. Os,(f)=.L,). Then .£y can be
extended to a line bundle .£ on S because U is invariant in the Picard lattice under
the deformation of S, to S. By the Riemann-Roch theorem, X(.£)=X(.L,)=2. Since
h¥(L)=h%L3")=0, it follows that h'(.L,)=0, which implies that h°(.L,)=h%(.L)=2.
From this, we deduce that an elliptic fibration is preserved in deformations. Next con-
sider a (—2)-curve C on S,. Let M, be a line bundle such that Os(C)=M,. If H, is
extended to a line bundle ¥ on S, then by the Riemann-Roch it follows that (—2)-
curve C itself extends to a (—2)-curve on S. In our situation, we may consider as C
a unique section or (—2)-curves in a reducible fibre which have no intersection with
the unique section. Then using the above fact, we have the claim for (—2)-curves.
Finally we remark that &(S/P')={0} follows from [20]. Q.E.D.

In the next lemma, we use the following notation :
L :=UP(—E ) BUBUP(—Es) an Euclidian lattice

Ly Ly
Le:=LR®zC
2:={[w]; [@]CP(L¢), <w, 0)=0, v, @) >0}
P, :=the C-linear space spanned by w and @, where wC L
P} :=the orthogonal space for P,

e, s, €3, -+, €1,: a basis of L, such that e, e, is a basis of U and that
es, -+, e, i1s a basis of (—FE;) as follows:
0, e, e, [ e [ €9

O——O0—0C O JI O O

(—E;): a sublattice of (—FE;) generated by e,, ---, e,
(—Es): a sublattice of (—FE,) generated by es, -, ey
(—D,): a sublattice of (—FE;) generated by es, e,. ¢, €4
€, +, @sp: A basis of L,

(1.8) Lemma. Let w, be a non-zero element of L¢. Assumethat LNP; =L,. Then
there are curves 4 (i.e. 1-dim complex analytic space) in 2 which pass through [w,] and
satisfy the following :

(1) For each [w]ed, LNPLDUD(—E,) (resp. UB(—Eq), UD(—Dy)),

(@) LNP,,=UD(—E,) (resp. UB(—E,), UR(—D,)) for each point [w,]€d except
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for a countable number of points.

Proof. Write wozéaiei. Let (T, ---, T,) be a homogeneous coordinates system
of P(L¢). Then [wo]=(ai, -, az)=": a. Since [w,]C &, we have
*) ?;(ei, eaza;=0.
Since <e;, ¢;>=0 for 1<i<10, 11557522, %) can be written as follows:
*) lsi%m(et, e;)tl.xa;nLusi’Z;s22 e, epaa;=0
The condition that z=(z,, ---, z,)EP;, is written as follows:
k) lsi§510<ei, ej>aizj+”5§i522 (es, ej) a;z;=0

> Les epazi+ 2 Ley, ejdiz;=0
nsiyses

158,710

Since LNPi=L,, we have

Sen eva=0,  1<kS10

Sieo ea=0, 1=k<10.
Thus we have a,= - =a,,=0 because L, is unimodular. Choose 7; 11<7<22 such that
a;#0. Set U,={T;#0}cC P(L.) and consider the projection from U;=C?" to C'° defined
T, Ti. Tiy T T, T, _
by (T T T T )-»(Ti, T ) Put 2,=U;N2 and denote by
p: 2,-C" the restriction of the projection to £,. p is a flat morphism and p([w,])=
0, ==+, 0). Here choose some (B, ---, Bo)ER" and set

(al_(t)) (<21: ey <em: el>)_l(ﬁ_1t)
(11.;(1) B <elr.ell)> <elo;elo> ,B;ol

where ¢ is a parameter. Then we have

A‘_E"l@i’ ewa(t)=But, 1=k£=<10

Do eradi=pf, 1SE=I0.
We can modify the lattice
{(z e, 2)EZLY g}ﬁ tz,=0 %ﬂ iz —0}
1y y 210 ’ = kisp —VY, = k& p—

by changing B=(B,, -, Biw). Let C be a curve on C' defined by (a.(t), -, at))

through the origin. Then there is a curve 4 on £, passing through [w,] such that

p(4)=C because p is a flat morphism. This curve is a desired one in this lemma.
Q.E.D.
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1.9.) Lemma. Let n:S—P! be an elliptic K3-surface with a section such that =
has only one reducible fibre and it is of type U*, W*, IV¥ 1% or IV. Then = has a
Weierstrass model 7:S—P*' which is defined by Y:Z=X+aXZ*+bZ* in P:=POD

DK}, where X, Y, Z, a, b are similar to the ones in Definition (1.2). Moreover we
may assume that a and b have the following form according as the reducible fibre of =«
is of type II*, M*, IV¥, 1% or IV:

a=T%a’ ; a’(0: 1)+0
b=T3%’; b’'(0: 1)+0,

where (T, : T,) is a homogenous coordinates system af P!

type of a reducible fibre the condition for a and b
I* a=4, b=5
l* a=3, b=5
\% az3, b=3
Iy a=2, b=3, a=2 or b=3
\Y% az2, b=2

Proof. Since S has a section Y, we can consider the rational map ¢ of S to
Pr(7:05(32)) over P!. It follows that ©5(3Y) is n-free and that 7,0(32)=0PK 3.DK 3.
The image of S by this map is a Weierstrass model S. ¢ contracts the (—2)-curves in
a reducible fibre of = which have no intersection with Y. In our case, S has only one
singular point which is a rational double point of type FE,, E., Ee D, or A, according
as the type of a reducible fibre is II*, II*, V¥ 1% or IV. Let ¢ be the fibre of 7
passing through the singular point.

Claim ¢ has a cusp singularity.

Proof. Before the proof we remark that ¢ has a singular point only on the singular
point p of S. Let (T,:T,) be a homogeneous coordinates pystem of P!,

Changing the coordinates: Z—Z, X—X+cZ for a suitable ¢, we may assume that
¢ has a singularity on X=Y =0, T,=0 and that S is defined by F:=Y?Z-X%—eX?Z —
fXZ*—gZ*=0. Here Z=0 defines a section of S. Thus we may consider the open
set where Z=0. Then S is considered as the affine variety defined by

F=Y?—X'—eX*— fX—g=0

around the singular point p. Since both F and its Jacobian vanish on X=Y =0, T,=0,
we have f(0, 1)=g(0, 1)=0. If / has a node as the singularity, then ¢(0, 1)+0, which
implies that p is a rational double point of type A,. If p is of type A, and [ has a
node, then S must have a singular fibre of type /,. Therefore, we have the claim.
Q.E.D.

Let us return to the original situation, that is, S is defined by Y2Z=X*+aXZ%?+bZ>.
Let ¢ be a singular point of S. We may assume that ¢ is contained in a fibre
#%(0: 1)), where (T,: T,) is a homogeneous coordinates system of P'. Since the fibre
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| passing through ¢ has a cusp singularity by the Claim, it follows that a(0:1)=0(0:1)
=0, which implies that ¢ is defined by X=Y=0, T,=0. Let us write a(T,, T\)=
Tea (T, T)and b(T,, T)=T'(T,, T,), whre a’(0: 1)#0 and 6’(0: 1)#0. The remaining
task is to determine a and b according to the type of the singular point ¢. By [18]
(0O, 8 pp. 61~64) we have the following:

q: Estype (=) a=4, b=5
E-type =) a=3, b=5
Estype (=> a=3, b=4
Ditype =) a=2, b=3, a=2 or b=3
Aptype => @22, b=2. Q.E.D.

Proof of (3) of Proposition (1.5) Let S be a surface which is isomorphic to 2X;
with 3<i/<12. Let D, be a negative section of S, and let mD, and nD, be the fixed
components of the linear systems | Ks*| and | K5°|, respectively. A general Weierstrass
model W over S has singularities which are locally trivial deformation of a rational
double points except for a finite number of points. We will call the type of this
rational double point the “type of singularities of W”. Let p: W—W be a canonical
resolution. Viewing W and W as fibre spaces over P! via S— P!, we have a minimal
resolution of W,, y,: W.—W, for a general point t=P'. Let C, be a fibre of S— P!
over t. Then W, has an elliptic fibration with a section over C,=P'. This elliptic
fibration has only one reducible fibre and we call the type of this reducible fibre the
“type of a resolution”. Then m, n, the type of singularities of W and the type of a
resolution are as follows according to 7; S=2.

List (1)
7 m n type of sing. type of resolution
3 2 2 A, v
4 2 3 D, ¥
5,6 3 4 E; %
7,8 3 5 E; I
9, -+, 12 4 5 E, NE

Let Y be an elliptic A3-surface with a section with the properties (1) and (2) in Lemma
(1.7). Let ¥ be a Weierstrass model of ¥. Note that ¥ is a minimal resolutiin of Y.
Here we consider the problem when Y is realized as a fibre of W—P!. In our case,
by Lemma (1.9), the above list and straightforward calculations, we see that:

If Y has a reductble fibre of type WV (resp. 1%, IV¥, WI* 1*), then for i=3 (resp.
i=4, 1=5,6, i=7,8, 1=9, 10, 11, 12) Y is realized as a fibre of W—P*, where W is a
(not necessarily general in the sense of Definition (1.3)) Weierstrass model over S=1%,.

Here we remark again that Y has only one singular point and that it is a rational
double point of type A,, D,, Es, E;, Es according as Y has a reducible fibre of type IV,
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L%, IV, 1%, 1%,

(1.10) Lemma. Let i be an integer such that 3<i<12. Let W=W(Ky,, a, b) be a
Weierstrass model over XY;. Let v:W—P! be a composite of n:W—2; and X,—P".
Assume that i=3(resp. i=4, i=5 or 6,i=7 or 8, 1=9, 10, 11 or 12) and that for a point
te P* W, has only one singular point q and it is a rational double point of type A, (resp.
D,, E¢, E;, E;). Then there is a sufficiently small open neighbourhood 4 (in the usual
topology) of t< P! such that

(1) the singular locus Sing (W 1) of W4:=v~(4d) 1s a curve I passig through q which
is isomorphic to 4 by v;

(2) Wy has a trwial deformation of a rational double point qEW, along I' as
singularities.

Proof. It suffices to show that v: W —J induces a trivial deformation of the germ
(W, q) of W, at ¢ because W, has no other singularities than ¢. We will only prove
the case :=3 here, but the proofs of other cases are similar. Suppose that /=3 and
that (W,, ¢) has an A,-singularity. Then by List (1), m=2 and n=2, which implies
that W, has at least an A,-singularity along the locus X=Y =0 for each point s P".
From this and the deformation theory of rational double points, it follows that v induces
a trivial deformation of (W,, ¢). Q.E.D.

(1.11) Lemma. Let W and W, be the same as above. Let W—E be a deformation
of W as a Weierstrass model over X, 1.e. consider the following diagram:

Py ODK: DKL) XE

C
57% Z,-XE bs
g\‘ _ / \
P'xE El
|

W YZ=X+AXZ*+BZ? AeHY (Y, X &5, piKs,)
Wo =g~ 0)=W for 05 BeH (Y, X5, p¥Ks3®)

Then W—P'*X 5 wnduces a trwial deformation of (W7, q) near q=W.

Proof. The proof is quite similar to Lemma (1.10). The main point is that the
indices m and n of List (1) are restricted.

Let Y and Y be the same as above and let ¢ be a rational double point on Y.
Assume that Y is realized as a fibre W, of v: W— P! where W is a Weierstrass model
W(Ky,, a, b) over X; for some i; 3<i<12. Consider a deformation of W as a Weierstrass
model over Y;, W—5 like in Lemma (1.11) such that 9, is a general Weierstrass mocel
over Y, in the sense of Definition (1.3) for each point s#0 of & which is sufficiently
near 0. We will employ here the diagram and the notation of Lemma (1.11). Then by
Lemma (1.11). g: W—P'X % induces a trivial deformation of (W, ¢). Note that
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g7i(t, 0)=W,. We choose a point (t/, s) of P'X 5 sufficiently near (¢, 0). Consider a
curve C passing through (¢, 0) and (¢, s) in P'X 5. Then we have a family of sur-
faces over C. At every point near (¢, 0) in C, the member of this family has only
one singular double point of the same type by Lemma (1.11). Thus if we shrink C
around (¢, 0), we have a simultaneous resolution of these surfaces. Let f:X—C be
such one. Here f~(¢, 0)=X., is a minimal resolution of W,. On the other hand, W,
coincides with ¥ and ¥ is a minimal resolution of Y. Hence X, coincides with Y.
Since the elliptic surface Y has trivial Mordell Weil group, we can apply Lemma (1.6)
to f: X—C. Since X ¢ is a minimal resolution of g~'(¢’, s), we conclude that:

Consider a general Weierstirass model W; and let v:W,— P' be a natural fibration
which is the composite of Ws—3; and X;—P'. Then the fiber W sy of v over t' has
the following properties.

(1) By the map Ws—23i, Wa, s, has an elliptic fibration with a section.

(2) A minimal resolution of W s, has also an elliptic fibration and its Mordell W eil
group is trivial.

(3) Let q be a rational double point on Wy 5. Then W has a trivial deformation
of this rational double point around q as the singularities.

We can consider a canonical resolution of 9, by (2) of Proposition (1.5) and again
apply Lemma (1.6) to 9W,— P'. Then we have the claim of Proposition (1.5) (3).

Q.E.D.

(1.12) Proposition. Let S be a surface isomorphic to ¥; (35i<12) and C a curve.
Consider the following flat family of Weierstrass models over S:

PsODKIDKHXC
¢ N\
W SxC
A c 44 /n\A S

W ViZ=X4+aXZ*+bZ*, acH(SXC, p¥Ks"),
beHY(SXC, p¥Ks®)

Assume that W, 1s general for every t=C except for a finite number of points {t,, - ,1,}.
Then there 1s a projective resolution p:W—W such that p,: W, —W, becomes the resolu-
tion in Proposition (1.5) for every té& {t,, ---, ta}.

Proof. We may do the same thing as (1.4) for

W PsODKHXC W ——— PsoPK)

\ / instead for \ /
P

P'xC
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Here we follow each step in the case S=2,. In Figure 1, this case corresponds to
the Eq-case. Set B3={X*+aXZ*+bZ*=0}U{X=Z=0}C Ps(6PK%)XC. Let 8, denote
the first component of 8. According to Figure 1, we may blow up the Ps(@PK3%)x C
in order of the following :

(1) Blow up at &, where ¢ is the irreducible component with the reduced structure
of Sing (8,) which dominates C by p: Ps(0PK:)x C—C. In the fiber (of p) level, this
step corresponds to (1) in Figure 1. In the remaining, the index (j) for each blow up
corresponds to the blow up from (j) to (+1) in Figure 1.

(2) Blow up at @,:=¢,N\8,, where &, is a exceptional divisor which dominates C,
and @, denotes the proper transform of @, by the blow up in (1). Here &, is given
the reduced structure as a scheme.

(3) Blow up at @,:=¢,N\#,. Here 4, is the proper transform of the 4, in (2),
and @, is the proper transform of ¢, in (2) In the remaining, we employ the similar
notation by abuse of notation.

(4) Blow up at @,:=8;N\3B,

(5) Blow up at &,:=6.N\3B,

(6) Blow up at ®;:=2,N\G,

Blow up at ®;:=84:N\3g,
Blow up at &, :=8¢,N\4g,

Finally we blow up at 2,N\48,. In this situation, we can construct a suitable double
cover, and obtain 9%. Then 9P has no singularities over a general point of C. Note
that the above procedure induces a canonical resolution for a general fibre of g: wW—C.
Therefore, if we resolve the singularities of 9P, then have the result.

§2. Reduction of Theorem A to Theorem A’

In this section we will show that Theorem A is reduced to the following Theorem A’.

Theorem A’. Let W and W be a general Weiertsrass model and its resolution as
above. If we choose a and b generally, then we have:
(1) In the case S=P? or 3; (0£iL2), there are mutually disjoint (—1, —1)-curves

C,, =+, Cy on W such that l‘*IiéHz(Cm C)—-H (W, C) is surjectve and that one can ob-
=1

tain, by the procedure of (1.1), a smooth compact non-Kihler 3-fold with K=0, b,=0 and
g=0.

(2) In the case S=2, (35i<12), there 1s a smooth Moishezon 3-fold W’ birational to
W which has the following properties:

a) W’ is obtained from W by a succession of flops of (—1, —1)-curves.

b) There are mutually disjoint (—1, —1)-curves C; (1=<7=n(7)) with n(i) a number

which depends on i such that iy: néél) Hy(C;, C)»H(W’, C) is surjective.
Jj=
¢) One can obtain a smooth compact non-Kihler 3-fold with K=0, b,=0 and ¢=0
from W' by the procedure of (1.1).

In the remaining of this section we assume the theorem above. Let X be a Calabi-
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Yau 3-fold which has an elliptic fibration with a rational section. Then, as is men-
tioned before, X is birationally equivalent to a Weierstrass model W with only canonical
singularities. W is not general in the sense of Definition (1.3). Though W has only
canonical singularities, its singularities are possiblly worse than the ones described in
Definition (1.3). Setting .£L=0p3)Q7*Ks® with ©p(1) the tautological line bundle of
POEPKIDKE), let us consider the linear system |.L| on P(OPKEIPKE). Let A be a
linear subsystem of |.£| which consists of the elements of the following form:

G2 Z+ @ X2+ X 22+, 2° =0,

where ¢,, 0, H(S, 0s), ;= H(S, K5*) and ¢,€H%S, K5°). Then consider the universal
family over T=P(A), g: W—T. Assume that g~'({,)=W. If we choose a general
point { on T, then 9,=g~%(¢) has the property in Theorem A’. Let C be a curve in T
passing through #, and {. Then we haue a family of Weierstrass models over C,
which we denote again by g:W—C. In the case where S=P? or X; (0<i<2), a
general fibre of g is smooth. If S=J%; (3<i<12), then a general fibre has singularities
by Proposition (1.5) (2). In this case we can use (1.12).

Then we have a flat projective morphism §:99—C whose general fibre is smooth.
For a general point {€C, 99, satisfies Theorem A’, (2), that is, there is a sequence of
flops of (—1, —1)-curves D,CW:

WO === WP ——— > YYD s —— = P

1 '

W, W
and there are (—1, —1)-curves on 9,” to be contracted. Let us consider the irreducible
component H of Hilbs,c which contains [D,]. Note that Hilbg,c is étale over C at
[D,] because D, is a (—1, —1)-curve on 9,. Hence H is determined uniquely and H is
etale over C at [D,]. Taking a suitable finite cover of C, we may assume that H,.,
is birational to C. Then we have the following diagram:

~

D w

C )
N
. e

where 9, is a (—1, —1)-curve on 99, for every point tC*: a Zariski open subset of C.
Restrict g: %—C to C* and consider g*:99*—C*. Then by [1] (Cor. 6.10), we can
perform a flop of 9* relatively over C* and get gV*:gp*C*, Here ™% is in
general not a scheme, but an algebraic space. We can compactify 99“* by [11] and
have a proper surjective map g®: PP —C. PP is assumed to be smooth by [4] and
PP is birational to % over C. Since 9, contains an irreducible component birational
to W and both 99 and 99" are smooth, T also contains an irreducible component
birational to W. As a consequence, by repeating this process, we may assume from
the first that there are (—1, —1)-curves to be contracted on 97,. In the case where

S=2%, (35i<12), we consider g:97—C which is obtained by repeating above process.
In the case S=P*? or X, (0<i<2), we consider the original g: %w—C. Then we come
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to Theorem A by using the following, after the base change by a finite cover of C
it it is necessary.

(2.1.) Proposition. Let h: Y—C be a proper flat morphism with connected fibres of
an irreducible smooth 4-dimensional algebraic space 4 to a smooth curve C. Let t,=C be
a fixed point and W an wrreducible component of Q. Assume that there is a proper flat
family of curves in

a

C, C
flat proper\\ /
o C

(1£:€n)

such that for a general point t=C, (1) C; (1<i<n) are mutually disjoint (—1, —1)-curves
on 9, (2) these curve satisfy the condition in (1.1) and (3) we can obtain from 9, a non-
Kdhler 3-fold with K=0, b,=0 and ¢q=0 by the process in (1.1). Then there is a proper
surjective morphism of a 4-dimensional complex manifold € to a l-dimensional disc 4
such that

1) f-X(t) is a compact non-Kihler 3-fold with =0, b,=0 and ¢q=0, for 1< 4*,

2) f“(O):ing,- 18 a normal crossing divisor of X,

3) W, is bimeromorphic to W, and
4) each W; is in the class C.

Proof. Let C* be a suitable Zariski open subset in C. Then by [1] (Cor. 6.10),
we can contract C¥'s on @* relatively over C* and obtain @*. We can compactify @*
and have proper flat morphism of normal algebraic space @ to C. Then @ is bira-
tional to 4 over C. Consider the function field K of @ and let v be a discrete valua-
tion ring which corresponds to W. Let L be a suitable Galois extension of K. Then
the normalizations of ¢ and @ in L become schemes by the argument of [11] (Proposi-
tion 1). Denote them by ¥ and ¥, respectively. Then @ (resp. 4) is the quotient of
X (resp. X) by the Galois group G=Gal(L/K). Let v, ---, v, be the extensions of v
in L. Then each element g&G induces a permutation of v;,’'s. If g sends v; to v,
then we will write j=g(@). By [7] (p. 153), for v,, there is a variety X,, birational
to ¥ such that (1) ¥,, is projevtive over &, (2) X, D{ze¥; X is isomorphic to X at
z}, and (3) if v, dominates a point y of X, and a point y’ on X, then ©, dominates
O,. In this case we may assume that ¥, and ¥ are isomorphic at every point ex-
cept for points over t,&C. We denote ¥, by X, and define ¥, for each g&G by
the following fibre product:

—~———
—
4
e
———

e
e ™

g%

On the other hand, viewing ¥,’s as X-schemes, we have:
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(%) \ \_ /
T

Take a closure ¥ of the graph of () in [T X, and embed ¥ into [T ¥ in such a way
8 I 4

G={l, g -, &t}

that z—JIz. Then the natural prolection from [I ¥, to II¥ induces a pojective
I'4 g g
morphism of ¥ to ¥. Consider the action of G on [T ¥ defined in such a way that g
g
sends g,-th factor ¥ of JI ¥ to gg-th factor X of [ X and that this map of ¥ to
8 g

itself coincides with the natural g-action on ¥. Clearly ¥ is stable by this G-action
and this action coincides with the original G-action on ¥. If we take a normalization
of %, then the action of G naturally extends to that on it. Hence we may assume
¥ is normal. Then the quotient @4 of ¥ by G is an algebraic space by [6] (p. 183,
1.8) and we have a birational morphism of @ to @. This morphism is an isomorphism
over a general point tC. By the construction, 07,0 contains an irreducible component
birational to W. Thus, from the first, we may assume that @, has an irreducible
component birational to W. Now let us consider the Kuranishi space (U, u,) of @,
which is a complex space and has the versal property at every point u near u, [13, 14].
On the other hand, @, can be deformed to a non-Kdhler 3-fold with K=0, b,=0 and
g=0 for every point t near {,, which implies that there is a flat deformation f:%X—4
such that f~%(0)=%,, and that f~'(¢) is a non-Ké&hler 3-fold with K=0, b,=0 and ¢=0
for a point ¢t of 4*. Then the semi-stable reduction for f is a desired one.

§3. Rational curves on Weierstrass models

Let W=W(Ks, a, b) be a Weierstrass model over S, where S=25%;, 0<:<12 or S=P2.
In this section we will study the rational curves C in W such that (C.X)=0 or 1,
which will be needed to prove Theorem A’.

(3.1) Proposition. Let W and S be as above. Let D be a smooth rational curve on
S such that (D§=0 and let CCWp be a section of nlw,:Wp=n"(D)—>D. Assume that
the Kodaira-Spencer map:

& : Tepr.renocogns —> HY(C, Tywple)

is injective, where P(H%Os(D))*) is considered as a parameter space of the linear system
D] on S and where Tipy pcnocogeys 1S the tangent space at [D]. Then we have

Neiw=0p(—1)POp(—1).

Let U be the universal family over P(H%Os(D))y*) and consider the following
diagram.
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T
cclWw, c w w

l v s

D [

[D] e PHYos(D)y)=P"*,  r=(D%s

where 9 is the fibre product of & and W over S. Before the proof of (3.1) we will
prove two lemmas.

(3.2) Lemma. Notation being as above, the following are equivalent.
(1) New=0p(—1)BOp:(—1)
(2) Neyw=0p(—1)D -+ POp(—1)

—_—

T2

Proof. let us consider the following exact commutative diagram:

0 0 0
f ! f
0 —— New, —> Neyw —— Op(r) > 0

f ! f

0 — Newy Nejw ——> Nypiwie=0g"" ——> 0

f i f
0 —— Ker —— Opl(—l)@"'®0pl("‘]) — 0
[

0

1)=(2):

Since Nejw,=0p(—r—2), deg Ncjw=—2 and deg N¢jqp=—r—2. If N¢sqp is not iso-
morphic to Op(—1)PD --- POpi(—1), then Ngsq contains a line bundle isomorphic to
Opi(a); a=0 as a direct factor. Then the composite of the homomorphisms Opi(a)C
Neyw and Ngjgp— Neyw is a zero-map by (1). So we have Opi(a)CKer. On the other
hand, the horizontal map at the bottom of the diagram is an inclusion into Op(—1)® ---
@POpi(—1), which is a contradiction. Q.E.D.

2)y=@1):

If Ngyw is not isomorphic to Opi(—1)POp(—1). then since deg Neyw=—2, New
contains a line bundle @pi(a); a<—1 as a direct factor. Then since N¢;qv=0p:(—1)EP ---
POpi(—1), Neyov— New is not surjective, which is a contradiction. Q.E.D.

(3.3) Lemma. Notation being as above, assume that N¢;qpZEOpi(—1)PD -+ BOp(—1).
Then there is a 1-dimensional subfamily B: F—4 of W—P(H(Os(D)*):
WpCcgF C w

S

[D] e dc PUIOs(D)*),
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where 4 is a 1-dimenstonal smooth curve defined around [ D] which passes through [D]
and where F is the restriction of W over 4. Moreover, for the F, the exact sequence

0—> NCIWD —> Neig —> MVD/9’|C —>0

is a trivial extension.

Proof. Since Nejw,=Op(—r—2), we have an inclusion

¢
H(Ncjor) —> HO(NWD/fu']c) .

Since NgygpZEOpi(—1)P -+ BOp(—1) and deg No/oy+ —r—2, we have a non-zero element
nEH(Ngiqp and hence a non-zero element ¢(n) of H(Nw,/ar|c). By the natural iden-
tification of H°(Nw ,iwlc) with H(D, Np;s)=Tp1 pcrocogp»», We have an element 60
of T:py, pcoogepyywy corresponding to ¢(n). Let B: F—4 be a subfamily of % with
respect to 6. By the construction. we have H(Ng,g)#0. Consider the exact sequence:

0 —> Newy, —> Neyg —> Nwpiale —> 0

| |

Om(——r—Z) Op1.

Then H°(Ng/q)#0 implies that the sequence is a trivial extension. Q.E.D.

Proof of (3.1). Assume that C is not a (—1, —1)-curve. Then by (3.2) and (3.3),
we have a l-dimensional family ¥. Let §&H'(Ty ) be the Kodaira-Spencer class of &.
Then for a contraction morphism = : W,—W, of C:

¢: Hl(TWD) I HO(RIK*TWD) ’

we have ¢(6)=0 by (3.3). Moreover, we have fI“(R‘;z:*TWD):H‘(TWDIC). In fact, first
by the formal function theorem, we have

HYR 24Ty p)=Lim H (T ,@0w o/ I"),

“n
where [ is the defining ideal of C in W, Next consider the exact sequence
0-— T“,D®1n/ln+l —> TWD®0/1n+l —> TWD®O/1n —> 0.

To prove that H(R'z4Tw,)=H"(Tw,lc). it suffices to show that H(Ty ,QI*I***)=0 for
each n=1. This is easily checked using the fact that [/I*=0Op(r+2) and the exact
sequence :

0—T¢—> Twyle —> New, —>0.

Consequently, we have ¢(6)=0 in H'(Tw,lc), which contradicts the assumption of (3.1).
Therefore C is a (—1, —1)-curve on W. Q.E.D.

(3.4) Proposition. Let XCY be a projective 3-fold locally of complete intersection
in a smooth projective variety Y. Let C be a smooth rational curve on X such that
(Kx.C)=0 and that X is smooth around C. Let a and B denote the natural maps
HY(Ny;»)=H(Nyxvlc) and H*(Oy|c)=H(Ngylc). Assume that
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(1) HY(Ney)=0;

(2) the Hilbert scheme Hilby is smooth at [X];

(3) C is isolated in X ;

(4) H°(Nyvle) is generated by Ima and Im .
Then there is a pair of small deformations (displacements): (X,, C,) of (X, C)inY such
that C, is a (—1, —1)-curve on X,.

Proof. The idea of the proof is due to L. Ein [22].

We use the following notation :

I: the irreducible component of Hilby which contains [X],

f: %—I: the universal family over I,

B: an irreducible component of Hilby,; with the reduced structure which contains

[ca.

Then the natural map B—/ dominates [ because X(Ng,x)=1 (which follows from
(Kx.C)=0 and C=P") and C is isolated in X. In fact, if we choose a smooth curve
4 in I passing through [X], then we obtain a 1-dimentional family of 3-folds 3 ,—4.
Then we have

0~ Neyx —> Neyxy —> 0¢c —> 0,

from which we deduce X(N¢/x,)=1. Since C does not move in X, this implies that C
goes out of X in X,. As a consequence B dominates /.

Since C is a smooth rational curve, a general point of B parametrizes a smooth
rational curve. Let H be an open subset of B which parametrizes smooth rational
curves. Consider the following diagram:

x XX H D4 the universal family over I

oy

I H

Note that p dominates /. Let t be a general point of /. Let H, denote p~'(f). Choose
zeH, such that z& H—Sing(H). Then we have a surjective map:

dp . Tz' H—> Tt_IZI—IO(NXt/I)v

where X, is the 3-fold which corresponds to t. Let C, be a smooth rational curve
which corresponds to z. We may assume that ¢ is sufficiently near [X], and that X,
is smooth around C,. On the other hand, since [X] is a smooth point of I,h°(Nx,y)
is constant at every point ¢ around [X]. Let [C] denote the point of H which cor-
responds to C. Then we have

(f”)*Nxx ,11/Y><H®k([C:|)-_—H°(X. Nyix).

Moreover, (fu)*Ney mivxu®@E([C]) is a locally free sheaf at [C]. Next consider
(Fe)xOyxula. Since H'(Ngy)=0 by (1), we have H'(Oy|c)=0 by the exact sequence:

0—> 0¢ —> Oylc —> Negiy —> 0.

Hence we have (fu)«Op«ulsa@E([CH=H(Oy|¢) and (f;1)xOyxul« is a locally free sheaf
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at [C]. Therefore « and B are factored as follows:

T~

UmsWNx . uw it 0)QR([C)) ———— H(Nyyc)

S u)xlNx . iy, n@R(CI)

'
(f1)+Oy. 11 5 QR([C]) B
Hence the assumption (4) implies that ¢ is surjective. Therefore ¢ is an isomorphism.
From the above considerations, it follows that the assumptions (1), ---, (4) are valid for
X, and C,.
For C,, consider the following exact commutative diagram :
0 Qct 04{|c,v T. nQ0c, 0
| | Lo
0 ch @ylct > NCtY '__)0

Then we obtain:

T. nQ0c¢, H*(Nx,1v)&0c,
Lo |
0 Ne, 1y, Ne, iy Ny, ivle, 0

Taking H° of the above sequence, we have

dp

'1‘, no > ”U(NX,/Y)

l ia:

H(N¢,y) ——> H'Nx,vic) —— H'N¢,yx,) — 0

A

HU(QYI(T,)

Since Ima, and Im B, generate H°(Nxt/Y|cL), and dp is surjective, we conclude that A
is surjective. Hence H‘(th,xt)zo. Since (Kx,. C1)x,=0, deg N¢,,x,=—2, which implies
that C, is a (—1, —1)-curve on X,. Q.E.D.

(3.5) Corollary. Let W=W(Ks, a, b) be a Weierstrass model over S. Let C be an
isolated smooth rational curve on W. Assume that W is smooth around C. If S and C
have one of the following properties (1), (2) and (3), then there is a pair of small de-
formations W,, C,) of (W, C) in P=Ps(OPKIPKE) such that C, is a (—1, —1)-curve
on W,.

(1) S=2; (0£i<12) and there is a section D of S—P*' with (D)*=i such that C is
contained in Wp:=rn"Y(D) as a section of n|p: Wp—D. Moreover, (¥.C)=0 or 1.

(2) S—P* and there is a smooth rational curve D on S with (D)=} ; k<4 such that
C is contained in Wy as a section of n|p: Wp—D. Moreover, (X.C)=0.
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B) S=2,; (0<i<12) and there is a fibre | of S—P" such that C is contained in W,
as a section of n|,: W,—l. Moreover (¥.C)=0 or 1.

Proof. In Proposition (3.4), put X=W, Y=P. We may prove that the conditions
(1), .-+, (4) are satisfied in each case. First we will prove in the cases (1), (2).

Case (a): S and C satisfies (1) or (2), and (2. C)=0.

Condition (1): By the exact sequence:

OHGC—*@PIC——)NC/PH(%
we may prove that H*(@p|c)=0. This follows from the following exact sequences:

0 —> Oplc —> 7*(EHRQOp1)|¢c —> BOpis —> 0

0 —> Bpislc —> Oplc —> 7*Os|c —> 0

where €=0PKiRK$ and &* is its dual. First we have H(z*O|c)=0 because H(O)
=0 and HY(Nps)=0. Next we have H'(Op;s|c)=0 because we have H(C, n*(EH)R
Op(D)|c)=HY(m*(E&*)|c)=H'(D, &*%|¢)=0 by the fact that (X.C)=0 and Op(1l)|w=0w(32).
As a consequence we have H'(@p|c)=0. Condition (2) is satisfied because W is a
Cartier divisor on P and H'(©p)=0. Condition (3) is contained in the assumption.
Condition (4) is satisfied because a is already surjective in our case. In fact, Ny, p=
Ow(32YRXn*K5°.

Case (b): S and C satisfies (1), and (2. C)=1.

Let us denote by J the natural map of H(@p,s|c) to H'(Nw,plc). From now on, we
will prove that Ima and Im J generate Ny plc). If this is shown, then clearly Ima
and Im 8 generate H°(Ny,plc). In the remainings, we shall write Ny, p=0w(W).

Let F=Y?Z—(X*+aXZ*+bZ?) be the defining equation of W in P. We write
Op(1)|c=0¢(1) and

H(n*&*Q0c(1))=H(Oc()DH(0c(1)Qr*Ks)BH (Oc(HQ@n*K5®) .
Then J is given by

(L, sy L) —> LL@F/0Z|c)+1(0F/0X )43 F/0Y | )T (Oc(W)),

where

LeH(0c(1)),

L,e H(0c(1)Qn*K5?),

L,e H(O(1)Rn*K5s?).
Note that CCW,CW. In this situation, {9F/dH|w,=0} is a divisor on W, which has
no intersections with X|y,. Here X[, denotes the restriction of 3 to Wp. Hence
{0F/0Z|;=0} consists of 18467 points (which may contain multiple points.). Let V,
denote the image of H°(O¢(1)) in HYO(W))=H°0Ops(214+67)) under J. Then the linear
system defined by V, consists of 18+46: fixed points and 3 points which move freely.
In particular, dimVy=4. On the other hand, we have

{0F/3Y |w,=0} =3X|w ,+(effective divisors which have no intersections with Y|w,).

Let Vy denote the image of HOc(1)®@x*K35*) in H°Oc(W)) under J. Then dimVy=
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10+3:. Finally let U be the subspace of Im H°Ow(W)CTH*(Oc(W)) which defines the
linear system on C of the following type:

9% |¢+(124-67 points which move freely).

We have dimU=13+6i. We shall consider the intersection of Vy and U. {0F/dY |=0}
consists of 1237 points; 32Y|¢ (one point with multiplicity 3) and 943/ points R, -,
Ry.s; none of which lies on 2. Hence every section s&V,CHO¢W)) must be zero
at these 124-3; points. On the other hand, we deduce from the definition of U that
steUCH©-(W)) must be zero at X'|¢ and that its multiplicity is at least 9. Therefore,
we conclude that for every section s€VyN\U, {pC; s is zero at p} =9 |c+ R+ -
+ Ry.3;+others. This imdlies that dim (V,NU)<443i. Since dim Vy=10+37 and dimU
=1346i, we have dim(VyNU)=19+6:. On the other hand, every section of Vy+4U
must be zero at Y|c and the multiplicity=3. Thus we obtain dim(Vy+U)<1946:.
Consequently, dim(Vy+U)=19+467 and dim (VyNU)=443i.

Next we shall consider the intersection of V, and (V,+U). Every section in Vg,
is zero at {0F/0Z|c=0} (which consist of 18+6: points different from X|;). On the
other hand, every section in Vy+U is zero at Y|, with the multiplicity=3. Thus we
conclude that dimV N\ (Vy+U)=1. From this we obtain

dim (V4 Vp+U)=dim V z+dim (Vy+U)—dim (V NV y+U))
=44194-6/—1
=22+46:.
Since dim (Vz+Vy+U)=dim H(O(W))=dim H*(Opo(21+6:))=22+6:, V+Vy+U coin-
cides with H(©¢(W)). This implies that Im J and Im (HOw(W))CH©c(W)) generate

H0©W)). Therefore we have proved that Condition (4) is satisfied. Condition (1) is
verified in the same way as case (a).

case (3): Let us consider the ruling S— P, and define the linear subspace V(a4
of H(Nw,p) as follows:

Viay=1{s€H(Nyp); s=Sta(T, SYXZ*+S}(T, S)Z*},

where T=(T,, T,) is a homogeneous coordinates system of I’!, S=(S,, S,) are natural
injections:

So: Op1 —> Op1DOp1(—1)

Sl M OPl(_i) —> OP1®0P1(—i) ’

a, b are integers with 1<a<4, 1=<b=<5 and neither a(7T", S) nor B(T, S) is not iden-
tically zero on D,:={S,=0}. We will prove that the image of Vs under a and Imp
generate H°(Ny,pl¢) in the case (3) of this collorary. Remark here that by List (1),
V.5 is necessarily a linear subspace of H°(Ny,p) for each 7; (0<:i<12). We will use
the following notation:

Vi={s€Vus; s=Sia(S, T)XZ?%}
Ve={s€Vu; s=SIB(S, T)Z?%}
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Vx={s€H(Nwplc); s=¢€.0F/0X|c, t,€H(Oc(1)@n*K5*)}
Vy={s€H(Nwplc); s=¢:0F/0X|c, t,€H(O:(1)Qn*K5")}
Vz=A{s€H(Nwplc); s=¢,0F/0X|c, 6, &H(Oc(1))}
P.=CNr~YD,), D,: negative section of S

In order to prove that a(Vu,s) and ImpB generate H°(Nw,p|c), we may prove that
a(V)+a(V)+V x+Vz+V z=H'(Ny,plc).

Case (¢): (2.C)=0

Conditions (1), ---, (38) of Proposition (3.4) are valid in this case. First note that if
i1<2, then H( Ny, p)—H*Nwplc) is surjective because H°(Ks"|,) is surjective for every
positive integer » and for a fibre /. Hence we may assume that 3</<12. Then the
zero locus {0F/0X=—3X?—aZ?=0} never contains C. In fact since ;=3, acH(S, K5s*)
has zeros along D,. W always have singularities on {X=Y =0} "\n"'(D),). Since C does
not pass through any singular points, either X+#0 or Y0 must holds at P,. If C is
contained in {0F/0X=—3X*—aZ?=0}, then X=0 at P, because a vanishes at D,. On
the other hand, W is defined by F=y*Z —-X*—aXZ*—bZ*=0, and b also vanishes at D,.
If we replace X* by —1/3 aZ?, then we have Z(Y?—2/3 aXZ—bZ%=0. Since {Z=0}
on W does not dontain C, {(Y*—2/3 aXZ—bZ?)=0} must contain C. So we have Y =0
at P, because both a and b vanish at D,. Consequently, we have X=Y =0 at P,
which is a contradiction. Therefore, C is not contained in {0F/0X=-—3X?—aZ?=0}.
From (2. C)=0, we have Ny,plc=0p(12), Oc(1)Qn*Ks*=0p1(4),

a(Vy)={s€ H(Op:(12)); (5)y=5P,+(7 points which move freely)}

Vy={s€H0p(12)); (s),=(8 fixed points apart from P,)
+(4 points which move freely)} .

Let us consider an element s of a(V,)N\Vy. Then s must have a zero at P, at least
of order 5 and have at least 8 points apart from P, as its zero locus. Since s
H0©p:(12)), this implies that s=0. Hence it follows that a(V,)N\V x=0. Since dima(V,)
=8 and dimV =5, we have H'(Nw/plc)=a(V)+ V. Q.E.D.

Case d): (2.C)=1

If 0<7<2, then we can use the same argument in case (b), that is, the linear space
generated by Ima, V, and Vy, coincides with H°(Ny,p|c). Therefore, assume that
3<i<12. Then we can prove that C is not contained in {0F/0X=—3X*—aZ?*=0} in
the same way as above. Conditions (1), -+, (3) of Prop. (3.4) are valid in this case.
From (J.C)=1, we have the following :

Nw/p|c=0p1(21), 00(1)®7T*K§T =0p1(27’+3)

a(V)={s€ H(Op(21)); (5),=72|c+4P,+ 6-fixed points which
are apart from 2| and P,+ 4 points which move freely}

a(V)={s€H%Op21)); (5),=92|¢+5P,+ 7 points which move freely}

Vy={s€H'(Op:(21)); (5)y=22|c+ 12-fixed points which are apart
from X|c+7 points which move freely}
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Vy={s€H(Op(21)); (s)o=32|c+ 9-fixed points which are apart
from XY|; and P, + 9 points which move freely}

V,={s€HOp:(2])); (s)o=18-fixed points which are apart
from Y|c+3 points which move freely}

Note that our argument below is valid even though Y| coincides with P,. We define:
U={seH'©p(21)); (s)e=92|¢+4P,+ 8 points which move freely}.

Then U is contained in a(V,4+V,). Indeed, dimU=9 and dima(V,)=8. On the other
hand, there is an element sV, such that (s*),=92%|c+4P,+8 points which are apart
from X|; and P,. Clearly Cs*+a(V,)CU. Since s* is not contained in a(V,), the
dimension of Cs*4a(V,) is 9, which implies that Cs+a(V,)=U. Hence U is contained
in a(V,4+V,). From now on, we will prove that U, Vx, Vy and V, generate H°(Nw,plc)
=H"(Op:(21)). First we have:

dimU+Vy)=dimU+dim Vy—dim(UNVy)
=9+10—0=19
In fact, let s be an element of UNVy. Then (s), must have 9% |c+4P,+(9-fixed points

which are apart from Y|, and P,, as its zeros. This implies that s=0 because s&
H*(©p:(21)). Hence dim(UNVy)=0. Noxt we have:

dim(U+Vy+V x)=dim (U+Vy)+1=20.

This is because there is an element s of V; such that (s),=2%|;419 points apart from
2Y|c, which is not contained in U+Vy. Finally we have:

dim(U+V x+Vy)NV 7)) =2

In fact, for every element s of U+Vy+Vy, (s), has 23| as its fixed components, and
for every element s of V,, (s), has 18 fixed points which are apart from 2X|c. Since
dim(U+Vy+V x)=20, dimV ;=4, it follows from the above inequality that

dimU+Vy+Ve+V,)=22.

Since U4V y+V x4+ V,CHOpi(21)), this implies that the inclusion is in fact an equality.
Q.E.D.

(3.6) Corollary. Let A be a linear subsystem of |.L| on P=Ps(ODKIDKE) which
consists of the elements of the following form:

OV Z 40X 49 X 240,20 =0,

where S=2%; (0<i£12), L=0p3)RQp*K5%, v: P-S and X,Y,Z are the same as in (1.2).
Consider the family n: W— P(A) of Weierstrass models over P(A). Then there is a
dense subset T of P(A) which is obtained by excluding a countable number of proper
closed subsets (in the sense of Zariski topology) from P(A), and T has the following
property :

Let C be a smooth rational curve in W,, teT which satisfies:
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(1) W, is smooth around C;

2) (2.C)=0 or 1, where X is the canonical section of W ;

(3) 7n(C) is a fibre | of S—P"' and C is contained in n;*(l) as a section of ni'()—!.
Then C is always a (—1, —1)-curve in W,.

Proof. By Proposition (1.5), (3), we conclude that for a general Weierstrass model
W, the curve CCW with the above properties (1), (2), (3) is always isolated. Since
the numerical condition: (Y. C)=0 or 1 is fixed, we have finite number of such curves
in W. Let us denote this number by n,W) or n,(W) according as (X.C)=0 or 1.
Running W in a family 99, we take its maximal value which is written n, or n,.
Then for a general point t€ P(A), n(W,)=n,. Thus from the first we may assume
that n;(W)=n; By (38.5), if we deform W to a suitable direction, these curves are all
assumed to be (—1, —1)-curves. Therefore, we have the result. Q.E.D.

§4. Examples

In this section we will give some examples of (—1, —1)-curves on a Weierstrass
model W=W(Ks, a, b) over a surface S=23; (0<:<12) or P%. To prove Theorem A’,
we must find a number of (—1, —1)-curves C,, ---. C, on W such that they span
H(W’, C). But at the moment, the existence of such curves depends on the examples
in this section. At the first reading, one had better skip this section and go to §5.

(4.1) We employ the same notation as in (3.1). Let us consider the same diagram
as in (3.1):

P ——— P:=PsOsDKIDKS)

C (&
u/[) cC w —_—
(.1.1) 1/ |

Yy ——- S

|

[(DlePH©@s(DY=P"", (D))s=r

Here P’ is the fibre product of ¥ and Pover S. It can be easily shown that f: P'—U
is a fibre bundle with Po(OpPK:I,PDKE|p) as a typical fibre. We denote by P, this
typical fibre for short. Let 47*' be a small neighbourhood of [D] in P7*!, and take
one trivialization PpX47*' of P’ over 4"*'. Then 9 is considered as a subvariety of
Ppx 47+ over 47*'. In this situation, we obtain the following diagram:
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H"(@pnm
¥:

(4 a
Tar+1.tpy ——> H(Nwpipp) ——> H(Nwpippic)

l
\QTH) — s NTyp0)
g— |

HY(O p )

Here the vertical sequence of the right hand side is exact and ¢ is the Kodaira-Spencer
map in (3.1). We have H'(Ty,l¢)=C"*' from the exact sequence:

0—>T¢—> Tyyle —> New, —>0,

and the fact that Ney,=Op(—r—2). If H*Op,lc)=0. then the injectivity of ¢ is
equivalent to the statement that the linear subspace V of H°(Ny,p,lc) generated by
Im(a-¢p) and Im(B) coincides with H°(Ny,/p,lc). We will apply (3.1) in this form, as a
criterion for (—1‘—1)-curves, to each example in this section.

(4.2) Example. Consider a Weiertrass model Wp=W(Op:(—2—1), a,, b,) over D=DP".
Take a homogeneous coordinates system (T',: T)) of P'. By the definition of Weier-
strass models we have a¢,& H'( P!, 0pi(4(2+1))) and b, H'(P!, 0p:i(6(2+17))). W is defined
by the equation

F=Y*Z—-X*—a,XZ*—b,Z°=0

in Pp=Ppi(Op1POpi(—22+17))BOpi1(—3(2+12)))
Set

(10=T3(2”)

b0=502)

50:(T3(2+i)_T?(z+t))z,

C={weWy; X=0,Y=0Z}.
Then C is a section of Wy—D and, in particular, it is a smooth rational curve. C
does not intersect with the canonical section of W,. By the ruling g: S—P', we con-
sider the homogeneous coordinates system (T, : 7)) of the base space P' as that of C.
Since (2. C)=0, we have 0c(1)=0¢, where O¢(l) denotes Op,(1)lc. (Op,(1) is the tauto-

logical line bundle of Pp.) If we choose a suitable isomorphism between O¢(1) and Oc,
then we have Z|o=1. Then we have:

%Izi}c =Y?—2a0XZ—3by 2% c=—2b,2% c=—2b,

—2% C————I)’)('z—a(.ZZIc=—(1022|(,~=—cz0

oF
_37’0 =2Y Z|=26,2Z| =25,

Since a, and b, has no common zeros, we infer that C does not pass through any
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singular points of Wp. In our case it is shown that H'(Op,|c)=0.
Set S=23; (0<i<12). We put:
U: Opr —> 0}:1@01)‘(—1.)
4.2.1)
Vi Opi(—i) —> OpiPOp(—i),
where U is a natural injection (id, 0) and V is a natural injection (0, id). Then define:

AeH(S, Ks=H"S, 0s(8D+(8+41)l))

(4.2.2) A=a,(OU+a,(OU,V + - +a,QUs"V"
t=(Ty: T")
4 if 1=9, -, 12
5 if i=5, -, 8
n=
6 if i=3,4
8 if i=0, 1,2
BeH'(S, K5%)=HS, 0s(12D,+6i)L))
(4.2.3) B=byOU+b,()UV + -+ +ba(OU> V™
7 if i=7, -, 12
8 if i=5,6
n=| 9 if i=4
10 if i=3
12 if i=0,1,2,

where D, is the negative section of S, and [ is a fibre. We set W=W(Ks, A, B) and
D={xeS; V=0}. Then we have the commutative diagram (4.1.1). In this case we
have »=i. From now on, we will use the same notation as in (4.1). Let
(S-1:S,: S+ : S;41) be a homogenous coordinates system of P(H*(Os(D))*) which para-
metrizes the elements of the linear system in such a way that S_,V—S,TiU—S,T{'T,
— ..« —S;Ti=0. With respect to this coordinates system, [ D] corresponds to (1: 0---0).
Therefore, we employ the coordinate (so, -+, $i); s¢=35:/5S-, as a local coordinate of a
neighborhood of [D]. Let us denote by 4i*' a polydisc with the coordinates (s, -, s;)
and with [D]=(0, 0, ---, 0). We restrict W and U to Wsir1=T X pi+1 4" and Ugin1=
UX pin1di*, respectively. We denote P’ X pcrocogmnd™*' by Pj. We want to give an
explicit trivialization :
Ppyxd4=Pj;.

In order to do that, first we give the following trivialization of Uy:
b
Dx4 Uy

W ]
(x, s) ——— ((glpioglpX%), ),
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where g:S—P! is the fibration as a ruled surface and D, denotes the section of g
which corresponds to s=4.

We denete by g: DX 4—S the composition of the maps: DX 4CSx 4, Sx4-S and
denote by r: Us—S the composition of the maps: U,CSx4, SXx4—S. Let Os(l) be
the tautological line bundle of g: S=Pp(OPO(—i))—P'. Let L be a line bundle on S.
Then we can write L=0s(n)®g*Opi(m) for suitable integers n and m. It is casily
shown that p*r*L and ¢*L are (non-canonically) isomorphic to each other. If L=
g*Opi(m), we have a canonical isomorphism between p*r*L and ¢*L because geg=gerep.
Therefore, to give an isomorphism between p*r*L and ¢*L, we may give an isomor-
phism between p*r*Os(1) and ¢*Os(1). We have given an injection: U : Os—0s(l) in
(4.2.1). Pulling back this injection by r-p and ¢, we have:

A p*r*os(l)
ons <1
i q*0s(l)

Since D is disjoint from D,={x&€S; U=0} and 4 is sufficiently small, both A and 7
are isomorphisms. Therefore, we have an isomorphism & between p*r*Os(l) and ¢*Os(l)
such that the above diagram is commutative. From this & we obtain isomorphisms:

K55 sl pxa= p*(K5% sl )
K55 alpa= p*(K5%alw ) -
This gives rise to a trivialization
Ppyxd4=P}.

Let us prove that H°(Nw,pplc) coincides with the linear subspace generated by
Im(a-¢) and Im B for suitable A and B. We employ the same notation as in the proof
of Corollary (2.5), case (3). (Replace W by Wp, and P by P,) Then we have

Vy={veH(P?, 0p(6(2+1))); v is of the following form:

) ) i
E, Asiarir-7, 3T 8T H (@0, 520 15— Xscaniy, o) T TIEHD
k+in6 e+ D)

+ 2 (—a@rseio-DTET, a, ;€C0)
k+j£6<{2+i)
Vy={veH(P!, 0p(6(2+17))); v is of the following form:
S Bw.iTET, B.. ;€C}

6(2+1)

Therefore, we have:
2(2+1) . 5(2+1)
— D-JiTJ 62+1)=jj
(4.2.4) Vi+Vy= 2 CT{OVTID 3 CTi¢+PT
: j=o F=8(2+1)
3(2+i)-1

@ 2 C(Tg(2+i)—jT{_Tg(2+i)—jT.;£(2+i)+j)‘

j=2(2+i)+1

Since codimuocy oV x+VH)=i+1, Hi(Op,|0)=0 and H(Ty,|e)=C**1, we conclude
that Im ‘B:VX+Vy.
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Next consider the map (a-¢). Let T, be the l-dimensional subspace of T jsi+1,cp3
which is generated by 6/0s,. We denote by (a-¢), the restriction of (a<¢) to T, and
write T,={u(0/0s;:), u,C}. ‘

With respect to the trivialization explained in the above, we have:

(@ oh( g ) =aOTEH TIXZI I+ OTEA THZ o)

=b(OT§*THZ% o),

where a,(1) (resp. b,(?)) is the one in (4.2.2) (resp. (4.2.3)). Hence, for example, if we
put b,()=T¥+"T%+%, then by (4.2.4), we infer that

H(Nw prpple)=Im 19+k2 (ae@)e(T4)

=Im S+Im(a-¢).

As a consequence, C is a (—1. —1)-curve on W such that (1) (C.3)=0 (2) D==r(C) is
a section of S with (D*s=i, where S=2;, and (3) C is a section of Wp—D.

(4.3) Example. With the same notation as in (4.2), we set
F=Y*Z—-X*—a,XZ*—b,Z*=0
a,=2b,Ti**
by =b3T%
50:7‘3“5.
We denote by WP (resp. W)) the open set of W, defined by T,#0 (resp. T,%0).
Let C be a smooth rational curve which is a section of W,—D, and is defined by
the following equations:
On W§
TiX=T%**Z, T3Y =(T¥*°+0,THZ
On W}
T:X=T%¥+Z, T, T2+Y =(T3+ 45, THX .
By the ruling g:S— P!, we consider the system of homogeneous coordinates (T,:T))
of the base space P! as that of C=P'. This is equivalent to taking an identification
of L with g*®p:i(1)lc. where L is the line bundle on C which is a positive generator
of Pic(C)=Z. Hence the identification is unique up to constants. If we choose a

suitable (non-zero) constant, then we may assume that (X|o)=T3**T,, (Y |c)=(T$*°+b,T?),
(Z|¢)=T3. Then we have:

'g% = TH3T{**+ 25, T4T1)

F .
O | =2t

oF

S | ST 2B TAT 25T
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It can be checked that C does not pass through any singular points of W, and that
(2. C)wp=1 for the canonical section X' of Wp.

In the same way as (4.2), we construct a Weierstrass model W and consider the
diagram in (4.1). We employ the same trivialization

Ppxd= P;
as (4.2). The similar calculations to (4.2) show that
1
HY(C, Ny yrplo)/Ima= 33 CIT*=*T]

On the other hand, we have

(@ (e ) =asUTE TUX 2+ BT THZ' )
=a ()T T+ +b,()T*+°Th
Therefore, for example, if we put a,(1)=0 and h,(#)=T35*°T?, then we infer that
HY(Niy p1pl0)=Im B+ (@o)u(T)

=Im B+Im(a-¢).

As a consequence, C is a (—1, —1)-curve on W such that (1) (C.2)=1, (2) D==(C) is
a section of S=23; with (D*s=1¢, and (3) C is a section of Wp—D.

(4.4) Example. Consider a Weierstrass model W,=W(Kpi, 0, 8) over D=P'. Take
a homogeneous coordinates system (T,: T,) of P'. W, is defined by the equation
F=Y*Z—-X*—BZ*=0 in Pp:=Pp(0Op DK PK}E).
Let C be a smooth rational curve on P, which is defined by
X—b(t)Z=0, Y—a()Z=0,
where
a()=3T{Ti+T}
b()=2T{+T1
Here if we set 8=—8T§*—3T}iT4, then C is contained in Wy as a section of Wp—D.
It is shown that (2. C)=0 and that C does not pass through any singular ponints of W.
Set S=2%,; (0<:/<12). We put U and V in the same way as (4.2). Furthermore

let s=(S,:S,;) be a homogeneous coordinate of the base space P' with respect to the
ruling g:S—P'. Then define:

AeHY S, K3)=HS, 0s(8D,+(8+4:)))
(4.4.1) A=a,s)U+a,(s)U"V + -+ +a(s)Us-"V»
s=(S,:S))
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4 if =9, ..., 12
5 if 1=5, .-+, 8
n=
6 if i=3,4
8 if i=0, 1,2
BeHY(S, Kz)=H"S, 0s(12D,+(12+62))))
(4.4.2) B=by(s)U2+b,(s)U"'V + -+ +bu(s)U2-"V™
7 if =7, 12
8 if i=5,6
n=| 9 if ;=4
10 if /=3
12 if 1=0, 1, 2,

and we consider the Weierstrass model W=W(Ks, A, B) over S. Let us define f=gor.
Then f is a K3-fibration over P'. We will investigate how to define the coefficients
A and B of W in order that W, is realized as a fibre of f (i.e. D is a fibre of gand
7Y (DY=Wp).

(4.4.3) Let W be as above and set P(Kg):=Ps(OsPKEPDKE). Let p be the projec-
tion of P(Ks) to S. Denote by S (resp. P,) the inverse image g~'(4) (resp. (g p)~(4)),
where 4 is a sufficiently small neighborhood of x& P!. We want to give an explicit
trivialization :

(g ) '(x)xd=P,

First we can define the natural trivialization between g~!(x)x4 and S, by using U and
V. In fact we can define the isomorphism:

7
O4POpI(—i) g —> OuDO4; Opil 4=04

such that (FoU)(1)=(, 0), (oV)(1)=(0, 1). This isomorphism induces the trivialization
n: g (x)X4—-Ss. Let g be the composition of the maps: g~'(x)X4CSx 4 and SX 4—S.
Let » be the map S,CS. Let 0s(1) be the tautological line bundle of S=Pp(Op®P
Opi(—1)). Let L be a line bundle on S. Then we can write L=0s(n)Qg*Opi(m) for
suitable integers n and m. We want to give an isomorphism between 7*r*L and ¢*L.
By the above homomorphism j, we have a natural isomorphism between them if L is
of the form @s(n). Say x=(x,: x,) with respect to the homogeneous coordinates system
s=(S,:S;) of P'. Then x,#0 or x,#0 must hold. Assume, for instance, x,#0.
Consider the injection

S,: 05 —> g*0p(1),

and pull back the injection by (re%n) and ¢, respectively. Then we have:
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K N*r*g*Op(l)
Og-l(r)xA / 2'
\

w g*g*op(l)

Since x,#0 and 4 is sufficiently small, both ¥ and w are isomorphisms. Hence there
is an isomorphism between n*r*g*Opi(l) and g¢*g*Opi(1) such that the above diagram
commutes. As a consequence we have an isomorphism between z*r*L and ¢*L for
every L&Pic(S), which, of course, induces an trivialization of Pjy.

(4.4.4) Let x=(x,: x,)€P', x,#0. Let 4 be a small neighborhood of x, and we
employ s=S,/S, as a local coordinate for 4 at x. Then the trivialization of P, in
(4.4.3) induces an isomorphism between W ,:=W Xpd and W which is defined by

YV:Z=X4(a,(1: s)Us+a,(1: s)U'V+ .- +a,(1: s)U V") XZ*
(b1 : YU +b,(1: YUV + - +bp(L: s)U™V™Z?
in Ppi(OpDK2PKE) X4, where X, Y and Z are injections:
X: K‘%l —> 0,:169!(%1@1(?:1
Y. K}u —> OP[@K%!@I(}SH
A Opr —> 0}’1@[{‘%1@]{;1 ,
and (U: V) is the relative homogeneous coordinates of P'x4. For example, if

a;j(l: x,/x,)=0 for every 7, and by(1: x,/x,)=—8, bs(1: x,/%x0)=—3, bp(1: x,/%,)=0 for
every k+#0, 4, then we know that f~'(x)=W,. We can prove the following fact:

(4.4.5) (1) In the above situation, if we choose suitable A and B, then Wy is realized
as a fibre of f:W=W(Ks, A, B)—P! over at least 12+42i points: {P,, -, Pisrs;} C P,
(i.e. f~Y(P)=Wp).

(2) Let C; denote the smooth rational curve on f~'(P;) which correspondsto C on Wop.
Then we may assume that every C; is a (—1, —1)-curve on W.

Proof of (1): Since Wy is defined by

YV:Z=X*4+(—8T¥—-3TsTHZ¢,
we may put
ai(s)=0 for every j,

br(s)=0 for every k=5,
be(s) has zeros at {P,, -+, Piasas}
bo(l: xP/x)=—8

bi(l: x{/x§”)=-3,

where (x : x)=P;. We can easily check from the condition for the degree of each
br(s) that there are such b,’s. Q.E.D.

Proof of (2): We apply the criterion of (—1, —1)-curve in (4.1). Of course we
mploy the trivialization of P, explained in (4.4.3). First, by a straightforward calcula-



942 Yoshinori Namikawa

tion, we have for each C;:

Im = ZI§ CURV-*RCUAU"V+UVHPC 12UV —U*V?)

k21
k#3,7,11
Next we have for each Cj;:

(aoSD)(%):%( d;: (1: S)|s=xl(j)/réj))U12-ka

Therefore, if we choose b, such that b, has a zero of order 1 at each P;, then we have
Im B+Im(asp)=H"(Nwp/pplc,) for each j. Note that it follows from the condition for
the degree of b, that such a b, exists. Q.E.D.

(4.5) Example. Consider the Weierstrass model W,=W(Kp., a,, b,) which is defined
by
F=Y*Z—-X*—a,XZ*—b,2°

in Pp:=Pp(OpPDKiPK3:). Take a homogeneous coordinates system (T,: T,) of P!
and we set:

a,=2b,T%

hy=b3T?

ho=T;.

We denote by WY (resp. W) the open set of W, defined by T,#0 (resp. T,#0). Let
C be a smooth rational curve which is a section of W,—D and is defined by the fol-
lowing equations:

on W}

T:X=TSZ, T3Y =(T+56,THZ
on W}

T:X=T$Z, T T =(T3+b,THX.

It can be checked that C does not pass through any singular points of W, and that
(2. C)wp=1 for the canonical section 3 of W, As in (4.4), we consider a Weierstrass
model W=W(Ks, A, B)yon S=5%, (0<:/<12). Let us define f=g-n. Note that a general
fibre of f is an elliptic fibration. Then if we choose suitable A and B, then W is
realized as a fibre of f (i.e. m(D) coincides with g~!(x) for some x= P! and Wp= f~'(x)).
Moreover, we may assume that C is a (—1, —1)-curve on W. The proof is done by
using the criterion (4.1) and the trivialization described in (4.4.3). Then the calculation
is almost similar to that of (4.3) because the defining equations of C in Wy is almost
of the same form.

(4.6) Conclusion from (4.2), (4.3), (4.4), (4.5). In the above examples, we have
constructed four (—1, —1)-curves of different numerical types on special Weierstrass
model W over S=23; (0<:<12). Since a (—1, —1)-curve is stable in deformation of the
ambient 3-fold, we know the following.

Let W=W(Ks, a, b) be a Weierstrass model over S=2; (05:<12). If we choose a
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and b generally, then W contains (—1, —1)-curves C,, C, C§P, ---, C{***P C, of the
following numerical classes:

c @O (H,.C) (H.C)
c, | 0 0 1 |
C. 1 0 1
cy 0 1 0
c, 1 1 0

where H, denotes n*D, (D, is the negative section of S=2,) and H, denotes n*/ (I is a
fiber of g:S—P").

The above examples give, however, no informations about the arrangements of the
curves on W (e.g. the problem whether these curves can be chosen such that they are
mutually disjoint). The next example and Proposition (4.8) are designed for the purpose.

(4.6.1) Definition. A (—1, —1)-curve C on W=W(Ks, a, b) with S=2; (0<:<12) is
called of type 1 (resp. II, I, IV) if C has the same numerical class as that of C,
(resp. C,, C,, C,).

(4.7) Example. This example will assure that we can take two (—1. —1)-curves of
type 1 and M mutually disjoint. We use the notation of (4.2). Define a Weierstrass
model W=W(Ks, A, B) over S=2%; (0<i<12) by setting

A=THUS - (—=THEEL2TATIHU YV
B:(Tgi+6_T:{i{»G)ZUlZ+T8i+7T%i+ﬁUlll/+(2T{;+GT¥i+G_T%i+7T%i+5+Téi+lZ)U10Vﬁ

Let D\={x&S; V=0} and D,={x&S; V=T{U}. Then Wp, :=="'(D,) is isomorphic

to the Weierstrass model W, over I?' which is defined by

YZZ=X3+T;1)i+s/‘(’22+(7"gi+6_T:!iz'+s)223
inPpi(Op1DOP1(—22+))DOpi1(—3(2+7))). Similarly Wp, is isomorphic to the Weierstrass
model W, over P! defined by

YZZ=X3+2T3+3T!lli+5XZZ_I_T(l;i+1223.
in Ppi(Op1POp1(—2(2412))POpi1(—3(2-+7))). Let us consider the smooth rational curves
C, (resp. C_) on W, defined by

X=0, YV =(T3+*—T3+9Z (resp. —(T3+—TH+Z).

By abuse of notation, we denote by C. (resp. C_) the rational curve on Wy, correspond
ing to C, (resp. C.). Then by (4.2), C, is a (—1, —1)-curve on W. Since W has a
involution with respect to X and since C, and C_ are conjugate with respect to this
involution, C_ is also a (—1, —1)-curve on W. Remark that both C, and C_ are of
type I (see (4.6.1)).

Next consider the smooth ratoinal curve C’ on W, defined by
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T:X=T%+7 T3Y =(T¥*°+b,THZ on Wi,
TsX=T3+*Z, T\ T3+Y =(T¥+° 45, THW on W$,

where W3 (resp. W}) denotes the open set of W, defined by T,#0 (resp. T #0).

Here we remark that W, is the Weierstrass model obtained from the example in
(4.3) by exchanging T, and T, and that C’ is obtained from C in (4.3) by the same
way. By abuse of notation, we denote by C’ the rational curve on W, corresponding
to C’. Then by the remark, in order to check whether C’ is a (—1, —1)-curve on W,
first we may replace

T, by T,,

T, by T,,

V by V4+TiU,
U by U

in the defining egnations of W and C’ and next we may apply the calculation of (4.3)
directly. Then it follows that C’ is not (—1,—1)-curve on W. We can, however,
prove that there is a small deformation (W,, C;) of W, C’) in Ps(OsDKEDKE) such
that C; is a (—1, —1)-curve on W,. This small deformation induces a small deformation
W, C_;). Since C_ are (—1, —1)-curves on W, C_, are also (—1, —1)-curves on W,.
On the other hand, it is easily checked that C_.NC'=@ in W. Hence we have
C_..NCi=¢@ in W,. Therefore, we infer that ¥, contains mutually disjoint (—1, —1)-
curves C_, and C;. Moreover, C_, is of type 1 and C; is of type II.

(4.8) Proposition. Let W=W(Ks, a, b) be a Weierstrass model over S=%; (0<i<12).
Let D be a section of g:S—P"' with (D);=1 and let | be a fiber of g. Let C be a
smooth rational curoe on Wp:=W XsD which is a section of Wp—D. Let C’ be a smooth
rational curve on W,:=W X sl which is a section of W,— [. Assume that

(1) both C and C’ are (—1, —1)-curves on W,

2) (C.2)=0o0r1

3) CNC'+Q
Then there is a small deformation (W,, C,, Ci)of W, C, C’)in P=Ps(OsDRIDKE) such
that C,N\Ci=@.

Proof. The case where (C.2)=0): Since (2. C)=0, the natural map: H(Ny, p)—
H°(Nw/pl¢) is surjective. On the other hand, since H°(Ngw)=HYNew)=H"(Ngw)=0
by (1), we have an isomorphism H°(N¢/p)= H(Nw,plc). Therefore, we have a map
0 : H(Nw,;p)—H(N¢,p). 1f we note that C is stable under deformations of W, then 6
can be interpretted geometrically as a correspondence between an infinitesimal displace-
ment of W in P and an infinitesimal displacement of C in P.

Here first we consider the following commutative diagram:
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P, op(W)) ———> H*(W, Nip)

T i

H“(P; OpW)RI:-105) — > H'W, Ny pQOw(—xm(I0),

H (P, 0p(W—p~'(1)))

where p is the projection of P to S and where J.-1, denotes the defining ideal of
77'(!) in P. Note that H°(P, Op(W)QJI.-1) corresponds to the linear subsystem of
|0p(W)| which consists of the elements W, such that W, contains n~(/). ¢ is surjective
because we have HYP, ©p(—p~'(1)))=0, which follows from the spectral sequences of
Leray:

0 —> H'(S, 0s(—1)) —> HY(P, 0p(—p~' (1)) —> H(S, R'px0pQ0Os\—1))
0 —> HY(P', 0pi(—1)) H(S, 0s(—=1)) —> H(P*, R'gx05Q0p:1(—1))

Next let us write g=CNC’ and consider the map k: H*(Ng/p)—= Ne/p@kE(g). Then & is
surjective because N¢,p is generated by its global sections. In fact, this follows from
HYNew@0Opi(—1))=0 because C is a rational curve and Ngw is a direct sum of line
bundles. H'N¢w®@Opi(—1)) can be computed by using the exact sequence which are
obtained from the following by tensoring Opi(—1):

0 —> 6¢ —> Oplc —> Nep —>0

0 —> Opislc —> Oplc —> 1*Os]c —> 0

0 — 6Op—> Os;p—> Npis —> 0

0 —> 0c —> 7*(€*)Q0p(L)lc —> Opislc —> 0,

where €:=0sPKEPDK}E, and €* is its dual sheaf. Then since the restriction H*(Ny,¢
QRO (— ()= H*(Nw/p|cQR0Oc(— (1)) is surjective, we have:

H(Nw pQOw(—=x~'(1))) < H(Nw,p)

! !

II(Nw1plc@Oc(—r~' (D)) T H(Nwiplc) —> New®k(g) = C?
codim 1

Let V be the image of @ ®k(g) by the composition of the maps B¢ Rk(Q)CTOPRE(q)
—Ng p@k(g). Then dimeV=1. By the above diagram, we infer that there is an
element a€ H' (N pQ0w(—x~*(/))) which is mapped to an element S& Ngw®£k(g) with
BsV. On the other hand, since ¢ is surjective, we can take a flat family in PX4,
fiw-A={teC; |t|<e} such that (2) f'0)=W, (2) ¢@/0t)=a, where ¢: Ty n—
H°(Nw,p) is the Kodaira-Spencer map with respect to ¢ and (3) for.every ted', W,
contains 7~!(/). This implies that on W, (t+0), C, and C,(=C’) are mutually disjoint.

THE CASE WHERE (Y. C)=1: Consider the following commutative diagram:
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H°(Neip) == H'Nwipic)
o | 8 tr I
H'(p*€*Q@0c(1)) —> H@p;sic) —> [H"(Bpe) —> H(Nwipic)
‘ J rot
H°(Nwp)
T].z

¢
HYP, 0p(W)RI-11y) ——> HY Ny 1pQ0Ow (—m~' (1))

We will find an element 0 H(Ny,pQ0Ow(—x~'(]))) such that 1) there is an element
e H(p*€*R0c(1)) such that J(z)=7,27,(0), 2) (Bea)z)cH*(Oplc) is not zero at ¢=
CNC’. If we find such an element, then we have our assertion. In fact, consider the
diagram :

0

Ne1pQk(q)
B@) T
0 — OpsQRk@) —— 0pQk(g) T) PFOsQRk(g) —— 0
. ' TZ.'
0. Dk@ P OcQklp

!

0

Here note that Im(hes,)NIm (he7,)=0 in p*@s@k(g). Since now we have B(g)-alg)b)
#0 and h-B(g)-a(g)(0)=0, we infer that B(¢g)(#) is not contained in the vector subspace
OcQk(+O:Rk(q) of OpRk(g). Since the map ¢ is surjective, there is a flat family
fiw—-A4'={teC; |t|<e} in PXx4 such that (1) f~'(0)=W, (2) ¢(0/0t)=6 and (3) for
every te4', W, contains =~*(l), where ¢: Ty, 1= H(Nw,p is the Kodaira-Spencer map
with respect to f. This implies our result.

Let us start the proof of the existence of § with the properties we want. Note
that Ny, pQOw(— ') =0w(92)QRr*0s(12D,+(6:4-11)/). Here we define the vector
subspace V of H(W, Ny, pQOw(—ra Y D)CH W, Ny,p) as follows:

6i+11
Vi={s€H"(Nwp); (5)=92+r"'(12Dy)+ =" D)+ k2=1 T (le)
each [, is an arbitrary fiber of g: S—P,}

We write Ve=7,(V) for simplicity. We will prove in each case of
(CAaSE 1) q¢2%,
(CASE 2) ¢g&2
Proof in (CASE 1): Write ¢,=CN2. Then we have:
Ve={s&H"(Ny,plc): (s)o=¢+9¢,+(62+11)-points which move freely)}.
J and (B-a) are defined by
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J
H(O©p:(3)DOr(T+25)POp1(9+37)) —> H(Nw,plc)
U] u
oF

(6 09— (57| S+ Gy

oF
C)-I-ﬂs Fa

)

where F=Y?>—X*—aXZ?—bZ?, and

ca
H(0p'3)BOp1(7+2i)D0Op1(9+37)) ,1_9_) H(Oplc)
) w

) 3
(6, o, £) — 61(7—?7}C)”z(a—x‘o)*’“(ﬁ?\c)

For the notation 0/0Z, 0/0X, 9/0Y, see (1.2.1). Therefore, it suffces to find an element
t=(¢,, €,, £5) such that

0 0
@ gzl L))o e

oF oFr
D+l [ e(ar].)

has a zero of order=1 at ¢, and has a zero of order=9 at g¢,.

O

First we will investigate the condition (b). For example, set z=(¢,, 0, ¢;). On one
hand, since ((0F/0Y)|c) has a zero of order 3 at ¢, and ((0F/0Z)|¢) is not zero at g, ¢,
must have a zero of order=3 at ¢,. On the other hand, since £ H°(©p:(3)), ¢, has no
zeros other than ¢,. Fix such an ¢,. Then the condition (b) for ¢; is represented by
at most 7 equations of degree=1 in the vector space H*(©p:(3i+9)). Therefore, we find
a non-zero ¢, which satisfies (b). Next we investigate the condition (a). Since ¢q¢&2,
we have X+#0 or Z+#0 at ¢g. If X+0 holds at ¢, then we have:

0
(ﬂ"d)(‘l‘):el C+€3W‘C:’:O at q.

0
0z
In fact, if X+#0 at ¢, then we can consider (Y /X, Z/X) as local coordinates at g. Then
(Boa)(®)=(¢./X)(0/(Z/X))+(¢s/X)(0/0(Y /X)) at q. Since £.,(g)#0, (Bea)(r)#0 at ¢. In
the case where X=0, Z+0 at ¢, we consider ' =(0, ¢,, ¢;). We will divide the problem
into 2 cases: (case i) X=0, Y0, Z#0 at ¢, (case ii) X=0, Y=0, Z+0. In (case i),
first we take an ¢, such that ¢, is not zero at ¢ and has a zero of order 3 at ¢,. Since
Y #0and Z+0 at ¢, we have (@F/0Y )(g)#0. Next, for the ¢,, we take an ¢, such that
(Bea)(z)=t*0F/0X)|c+¢5(0F/0Y)|c has a zero of order=1 at ¢ and has a zero of order
=9 at g,. This is possible. In fact, both ¢, and (9F/dY)|c already have zeros of order
3 at g,. Therefore, the condition for ¢, in H%©p:1(9+37)) can be represented by 7 linear
equations (6 equations for g, and one equation for g). Hence we can find such an ¢,.
We take (X/Z, Y /Z) as local coordinates at ¢q. Then since £,(¢)#0, we have

0 0
z/Z)a(X—/Z)-F(ﬂa/Z)W?&

at g. This completes the proof of (case i).
In (case ii), first we take an ¢, which has a zero of order 1 at ¢ and has a zero of

n_, 0 a | _
(Boee)=tag |+ 37| = ¢ 0
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order 3 at ¢,. Next, for the ¢,, we take an ¢, with ¢4(¢)#0 such that (B-a)(z’)=
C(0F/0X)|c+¢5(0F/0Y )|, has a zero of order 1 at ¢ and has a zero of order=9 at g,.
This is possible. In fact, since (0F/aY )(¢)=0, we have (8-a)(z,)(¢)=0 however £4(¢)+0.
Then we can use the same argument as above. Consequently, we have our assertion
in this case.

Proof in (CASE 2) Take (X/Y, Z/Y) as local coordinates at ¢. Then from the
fact that X=Z7=0 at ¢, it follows that

o .
4.8.1) (Bea)O) =Y 57y +0/Y 5y |

First we take an ¢, such that £,(¢)#0. Since (0F/0Z)(¢)#0, we can find an ¢, such
that 4,((0F/0Z)|¢)+6.((l0F/0X)|c) has a zero of order=3 at ¢. This is possible because
4. H*(0p:(3)). Next for the ¢, ¢, we take an ¢, such that £,((0F/0Z)|c)+E-((0F/0X)|c)
+¢5((0F/0Y)|¢) has a zero of order=10 at ¢q. This is possible because ((0F/dY)|c) has
a zero of order 3 at ¢ and the condition for ¢, is represented by 7 linear equations in
HOp:(9+34). If we take the triple (¢, €, §s) then we have a required element of
H(Nw, pQOw(—z1(1)). Q.E.D.

(4.9) Examle. Let W=W(Ks, A, B) be a Weierstrass model over S=P%. Define A
and B as follows:

A=T T f(T,: T,: T)+2AT+THT5;
B=TT,g(Ty: T,:T)+T4%,

where (T,:T,:T,) is homogenous coordinates of I’ and where f (resp. g) is a
homogenous polynomial of deg 10 (resp. 16). Set D;={T;=0}CS. Then Wy :=WxsD,
is isomorphic to the Weierstrass model W(0p:(3), 2T{T3, T3*) over P'. Similarly Wp,
is isomorphic to the Weierstrass model W(Opi(3), 2T4T$, T1® over P'. We have smooth
rational curves C, and C, on Wjp and W, , respectively, which are defined by:

Cy: on W3,
T3X=T{Z, T3Y=(TP+T¥Z on Wy,
TiX=T3Z, T, T{Y=(T*+TH»HX

C,: on W3,

TiX=T3Z, TY=—TP+T¥»HZ on W,
TiX=T3Z, T,T{Y=—(T+THX.

Note that the above (Wp,, C;) are essentially the same as (Wp, C) in (4.3). In fact, if
we replace T, by T, in (4.3), we get (Wp, C,). If we replace T,by T,, T, by T, and
Y by —Y, then we get (Wp, C\). Therefore, we can use the calculations in (4.3) for
C, and C, on W. As a consequence, we see that if we take the suitable polynomials
f and g, then both C, and C, are (—1, —1)-curve on W. By the construction, we have
C,NC=@ and (Y. C;)=1 (=0, 1).

(4.10) Example. Let W=W(Ks, A, B) be a Weierstrass model over S=P%: We
define A and B as follows:
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A=TyT,
B=(T{'—=Ti"NTi+Tss

Write ¢, for the line on S defined by T,—p/T,=0, p=e**¥''. Set W;:=W Xs{; Then
we have a smooth rational curve C; on each W;CW which is defined by:

To—pT=0, X=0, Y=TiZ.

Let 4, be a sufficiently small neighborhood of [¢;] in P(H(Op(1))*) with local co-
ordinates (s,, s.). The in the way similar to (4.2), WA(].)::prmo(opz(,,)*)d(j) is iso-
morphic to the Weierstrass model W;=W(0p:(3), A;, B;) with

Aj:A((ﬂj+51)T1+52Tz, T, Ty
BjZB(([lj‘FSl)Tn'l‘Sszy T, T»).
Using the same notation as in (4.1), we have

HYNy yrple,)/Im p=C[TITICITITY.

Moreover, we have

0
() (g; )= L T

(a°¢)z(%)=ll @ITIOTS.
2
Therefore, we infer that
H*(Nw jple)=Im +Im(a-¢).

This shows that each C; is a (—1, —1)-curve on W. But note that C,’s intersect at
one point on W. Here we use the following for each pair (C;, C.), j#k.

(4.10.1) Proposition. Let W=W(Kps, a, b) be a Wererstrass model over P*. Let D,
and D, be distinct lines on P*. Let C, ((resp. C,) be a smooth rational curve on Wp .
=WXp:D, (resp. Wp,) such that C, (resp. C,) is a section of Wp—D, (resp. Wp,— D).
Assume that

(1) both C, and C, are (—1, —1)-curves on W,

2) (C..2)=0,

) CNC.+d.

Then there is a small deformation (W, C, , Cs.) of (W, Cy, Cy) in P=Pp:(Op:PKpPA}e)
such that C, NC,,,=@.

Proof. The proof is quite similar to that of (case (C.2)=0) in (4.8). Hence we
omit the proof.

The we have mutually disjoint 11 (—1, —1)-curves on W.

(4.11) Conclusion from (4.9), (4.10). By (4.9), W=W(Kp:, A, B) contains at least
two (—1, —)-curves C, and C, which are mutually disjoint and (C;. 2)=0 (=1, 2) if we
take general A and B. Similarly, by (4.10), we may assume that W contains at least
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11 (=1, —1)-curves C,, -+, C,, which are mutually disjoint and (C;. 2)=1 (=3, ---, 14).
Let us write D; for n(C;). Then D, and D, are mutually distinct lines on P2 On
the other hand, D,, ---, D,, are mutually distinct lines on I”?. Therefore we can find
D; andD, from Ds, ---, D,, such that D,, D,, D;, D, are mutually distinct lines on P?2.
Here we apply (4.10.1) to the pairs (C,, Cj), (C,, Cy), (Cs, Cy), (C,, C,). Therefore, if
we take general A and B, then W=W(Kp., A, B) contains mutually disjoint (—1, —1)-
curves C,, C,, C;, C, such that (C;.2)=0 (=1, 2) and (C;. X)=1 (=3, 4).

§5. Proof of Theorem A’

(5.1) (the Case S=P*) In this case, we take the four curves C,, ---, C, in (4.11).
By Proposition (1.5) (1), Pic(W)=Z [n*0p(1)1BZ[2]. Write H for a*Op2(1). Then
the intersections of the generator of Pic(W) with the above curves are as follows:

H oy
—_ | o N
C, 10
¢, 1 } 1
C, .

Therefore, the conditions in (1.1) are satisfied.

(5.2) (the Case S=2J; with 0</<2) In this case, we take four curves C,, -, C,
in (4.6). Note here that we may assume that these curves are mutually disjoint. In
fact, first we choose the four curves in (4.6) such that C, and C, do not intersect.
This is possible because we have at least (12+27)-curves of type Il and we may pick
the suitable one as C, from these curves. Next from (4.7) and (4.8), it follows that
if we deform W to W,, then we may assume that the four curves are mutually dis-
joint. By (droposition (1.5), (2), we have Pic(W)=Z[H,JPZ[H.JPZ[2], where H,
denotes the pull-back of the negative section on S and H, denotes the pull back of a
fibre of g:S—P! Then the table of intersections is as follows.

Y i, i, |
c, 0 0 1
C, 1 0 1 |
Cs 0 1 0 f
C, 1 1 0 {

Therefore, the conditions in (1.1) are satisfied.

(5.3) (the Case S=2; with 3</<8)
(5.3.1) We will explain the case 7=7 here. Other cases can be treated in the
same way. Let ;.z:W—»W be a resolution in (1.5). Let D, be the negative section of
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g:S—P' Then (zopu)"'(D,) is illustrated in the following picture. Here the self-
intersection number of the double curves in each irreducible component is omitted be-
cause our argument does not need such informations.

N

N ls p-exceptional divisors

L, l;

F _\1 « strict transform of #~'(D,) by p
Cy

In the figure, C, denote the one in (4.6), and ¢ denotes the fibre of F passing
through the point ¢:= C;N\F. ¢, is the fibre of E; which intersects ¢. The other ¢,’s
are determined in a similar way. First we perform the flop of C;. Then the strict
transform of ¢ becomes a (—1)-curve on F (exactly speaking, the strict transform of
F). Since Ky =0y, this implies that it isa (—1, —1)-curve on the new 3-folc obtained
by the flop from W. From now on, by abuse of notation, we will use the same nota-
tion for the ¢, ¢;, E; and their strict transforms by a certain flop. Next preform the
flop of 4. Then ¢, becomes a (—1)-curve on E,, which implies that ¢, is a (=1, —1)-
curve on the ambient 3-fold. We can continue the similar process. Let E; be an
arbitrary p-exceptional divisor. Then, from the above observation, we know the fol-
lowing.

If we perform a suitable composition of flops of (—1, —1)-curves, then we have a
(—1, —1)-curve C on the new 3-fold W’ obtained by the composition of flops and C
satisfies (C, E;)=—1.

(5.3.2) A general Weierstrass model W has canonical singularities and they are
locally trivial deformation of a certain rational double point except for a finite number
of points. We call these points dissident. In our case S=2;, there is only one dis-
sident point. When we construct W from W , the situation of p-exceptional divisors
changes over the point. Let p be a dissident point of W. Then we can find 9
(=1, —1)-curves C{®, ---, C{» such that (gen)(C§{?+#(genm)(p), where =m:W—-S and
g:S— P! are the natural projections. This follows from the fact that there are at
least 26 (—1, —1)-curves on W of type III (See (4.6)). On the other hand, we can find
(—1, —1)-curves C,, C,, C, of other types that C,, C, C{, ---, C{®, C, are mutually
disjoint (See (4.6), (4.7), (4.8)). Since the resolution g2 of W changes nothing around
these curves, we may assume that they are curves on W.
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(5.3.3) Here recall (5.3.1). First, we put C,=C{, and perform a flop of C,.
Then ¢ becomes a (—1, —1)-curve. Next we consider C{" as the C, in (5.3.1). This
time, we perform flops in the order of Cs ¢. Then ¢, becomes a (—1, —1)-curve.
We continue these operations for C{’s (f<7) so that. for C{”, ¢; becomes a (—1, —1)-
curve. For C{, we leave as it is. Then we have 12 mutually diajoint (—1, —1)-
curves on the new Moishezon 3-fold:

Cy, Co, C, Cu, 8, bn, b5, -+, b1 -
We denote by W’ the new 3-fold. Then we have that Pic(W)=Z[Y]1PZ [H,]PZ[H,]
@jzj‘,IZ[Ej], where E;’s are the pg-exceptional divisors in (5.3.1) and H,=p*=x*D,, H,=

p¥n*l (D, is the negative section and [ is a fiber). It follows that Pic(W’) is generated
by the strict transforms of X, H,, H,, E,, ---, E,. By abuse of notation, we denote
them by the same symbol as the original ones. Then the intersection numbers between
these curves and these divisors are as follows:

Y H H E, E, E, E, E; E, E,
C, 0 0 1 0o 0 0 0 0 0 0
C, 1 0 1 0 0 0 0 0 0 0
c® o I 0 0o 0O 0 0 0 0 O
C, 1 1 0 0 0 0 0 0 0 0
¢ 1 1.0 0 0 0 0 o0 0 1
¢, 1 1 0 0 0 0 0 0 0 —1
06 1 1 0 0 0 0 0 0 —1 0
05 1 1 0 0 0 0 0 —1 0 0
0, 1 1 0 0 1 0 -1 0 0 0
A 1 1 0 0 0 -1 1 0 0 0
0s 1 1 0 1 -1 0o 1 0 0 0
A 1 1 0 -1 0 1 1 0 0 0

Then it is checked that the curves generate HZ(W’; C). Moreover we can find the
element 0=C,—Cy—C3+2C+4—b—b—0:—20,+0s+0s+¢. in Keri,. Here i, is the
same one in (1.1). Therefore, the conditions in (1.1) are satisfied.

(5.4) (the Case where S=2Y,; with 9<:/<12) We will explain the case /=9 here.
The cases where /=10, 11 can be treated in the same way. Since W has no dissident
points in the case where /=12, we can treat this case in the same way as the case
3<i<8. A difference between the cases 9</<11 and the cases 3<i<8 is that geox:
W—S is not flat if 9<7<11. In other words, there are g-exceptional divisors which
are contracted to points by gex. (mwep) '(D,) is illustrated as follows when 7=9.
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Eg/‘\]:] Egﬂ[“z E,—,f\F;.
f 'l I“ ________ - I
: l ['2 3 :ll El
| m, (-0 (—1) (—1) ! |
I_—____ ——————————— Al L]
E, ! me /// E E,
: _____ = e = ‘
", (+3) LE,
ms E E,
me Iy : bb
|
: |
m; L) | Es
— :'
my /s o ', I E,
D i(+5) !
: W= !
m ! ] ! ) F
] 1 \\\ ..... II_
cye e O cin G5 csv

Since W has 3 dissident points when /=3, we have 3 bad p-exceptional divisors
F,, F,, F,. They are contracted to points by gemx. We perform flops in the order of
mi, my, my, ms, -+, mg. Then m becomes a (—1, —1)-curve. We do the same proce-
dure for F, and F;. The we have (—1, —1)-curves m® and m®. They are also (—1)-
curves on F. We note that, after these flops, the double curve D has self-intersection
number —10 in F. Next we choose 10 (—1, —1)-curves C{, .-, C{ of type IIl in
the same way as (5.3). We leave C{'® as it is. For each C{; 1<;7<8, we perform
a suitable composition of flops whchi starts from C§{”, as we have done in (5.3). Then
0., -+, b, 45 in the figure become (—1, —1)-curve. For C{®, we perform the flops in
the order of C{», ¢ (see the figure). We note that the self-intersection number of D
in F becomes —1 in this situation. This implies that D becomes a (—1, —1)-curves.
On the other hand, we can choose (—1, —1)-curves C,, C,, C, of type I, II, IV such
that C,, C,, C{¥, .-, C§®, C, are mutually disjoint. As a consequence we have mutually
disjoint (—1, —1)-curves on the new Moishezon 3-fold W’:

Cl» CZ: Célo)’ C4. Dy nl(l)} Ty ”l(a)’ gl’ Tty gs .
On the other hand, since Pic(W):Z[2]@2[1{,]@92[112]@];8; Z[Ej]eajgs"i Z[F] (H,

and H, are the same as in (5.3.3)), Pic(W’) is generated by the strict transforms of 3,
H, H, E,, -+, E;, F,, ---, F,. By abuse of notation, we denote them by the same
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symbols as the original ones. Then the table of intersection numbers are as follows:

Y H, H E E, E, E, E; E. E. E, F, F, F
C, 0o 0 1 o 0 0 0O O 0 0 0 0 0 0
C, 1 0 1 0 0 0 0 0 0 0 0 0 0 0
ce | 0o 1 0 O 0 0 0 O O 0O 0 0 0 0
C, 1 1. 0 0 0 0 0 0 0 0 0 0 0 0
D 9 -3 0 -1 0 0 0 0 0 0 —1 0 0 0
mew 1 -1 0o 0 0 0 0 0 0 0 0 1 0 0
me 1 -1 0 0 0 O 0 0 0 0 0 0 1 0
me 1 -1 0o 0 0 0 O 0 0 o0 0 0 0 1
05 1 10 0 0 0 0 0 0 1 —1 0 0 0
0s 1 1 0 0 0 0 0 0 1 -1 0 0 0 0
0 ! 1 0 0 0 0O 0 1 -1 0 0 0 0 1
ls 1 I 0o 0 0 0 1 -1 0 0 0 0 0 0
0s 1 1 0 0 1 1 -1 0 0 0 0 0 0 0
05 1 1 0 0 1 -1 0 0 0 0 0 0 0 0
0s 1 1 0o 1 -1 1 0 0 0 0 0 0 0 0
0 1 1 0 -1 0 1 0 0 0 0 0 0 0 0

It is checked that the curves generate Hy(W’; C). Moreover we can find the ele-

ment

0=2C,—2C,—8C;—2C,—D+m+m®+m® 4o+ b1+ b+ s — b+ 30: 126,424,

in Keriy. Here i, is the same one in (1.1). Therefore, the conditions of (1.1) are

satisfied.
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