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On the structure of Cousin complexes
By

R. Y. SHARP and Zhongming TANG

0. Introduction

Throughout the paper, A will denote a commutative Noetherian ring (with
non-zero identity), and M will denote an A-module. It should be noted that
M need not be finitely generated. The Cousin complex C(M) for M is described
in [3, Section 2]: it is a complex of A-modules and A-homomorphisms

b2 bt o bO b
0—M-—B°>B'->--->B"S B! .-

with the property that, for each ne N, (we use N, to denote the set of non-
negative integers),
B'= @ (Cokerb™?),.
oy

(Here, for p € Supp (M), the notation ht, p denotes the M-height of p, that is
the dimension of the A,-module M,; the dimension of a non-zero module is the
supremum of lengths of chains of prime ideals in its support if this supremum
exists and oo otherwise.)

Cohen-Macaulay modules can be characterized in terms of the Cousin com-
plex: a non-zero finitely generated 4-module N is Cohen-Macaulay if and only
if C(N) is exact [4, (24)]. Also, the Cousin complex provides a natural minimal
injective resolution for a Gorenstein ring: see [3, (5.4)].

The Cousin complex C(M) will play a major rdle in this paper. It is a
special case of a more general complex which can be constructed whenever we
have a filtration & of Spec(A) which admits M [8, 1.1]; this more general
complex is called the Cousin complex for M with respect to & and is denoted
by C(#, M). As this complex will also feature prominently in this paper, it is
appropriate for us to recall the details of its construction and definition from
[8, Section 1].

A filtration of Spec (A) is a descending sequence F = (F);c n, of subsets of
Spec (A), so that

SpeC(A)QFogFl2"'2Fi2Fi+1 2

k)

with the property that, for each i € N, each member of 0F;, = F\F;,; is a minimal
member of F; with respect to inclusion. We say that & admits M if Supp (M) < F,.
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Given such a filtration & which admits M, the Cousin complex C(#, M)
for M with respect to & has the form

d-2 d-! do dan
0—M-—>MSM S-S M S M ..
with, for each ne N,

M"= @ (Cokerd"?),.
pedF,

The homomorphisms in this complex have the following properties: for me M
and p e dF,, the component of d~'(m) in M, is m/1; and, for n>0, xe M"!
and q € 0F,, the component of d"~'(x) in (Coker d"~?), is n(x)/1, where m: M"™! —
Coker d"~2 is the canonical epimorphism. The fact that such a complex can be
constructed is explained in [8, 1.3] and relies on arguments from [3, Section 2].

The Cousin complex C(M) mentioned in the first paragraph of this paper
is actually the Cousin complex C(s# (M), M) for M with respect to the M-height
filtration (M) = (H;);c n, Of Spec (A4), where

H; = {p € Supp(M): hty, p > i} for all ie N, .

For clarity in this paper, we are going to call C(#(M), M) the basic Cousin
complex for M. We are going to show that this basic Cousin complex does
play a very ‘basic’ rble in the theory of Cousin complexes, because we shall
show that any other Cousin complex for M (with respect to a filtration & of
Spec (4) which admits M) can be obtained from C(s#(M), M) by a rather satisfac-
tory quotient complex construction which has the practical effect of deleting (for
each neN;) some of the direct summands (Coker b""2), (p € dH,) of B" and
leaving the others intact.

To go into a little more detail about our main results, let us say, for a
prime ideal p of A, that p is significant, or of significance, for C(#, M) if there
exists i € N, for which p € 0F; and the direct summand (Coker d*~?), of the term
M' in C(%#, M) is non-zero; otherwise, we say that p is insignificant, or of no
significance, for C(¥, M). (By [8, 1.5], any significant prime for C(¥, M) must
lie in Supp (M).)

We shall show that if p is a significant prime for C(&#, M), and i e N, is such
that p € 0F;, then (p € Supp (M) and) i = ht, p and

(Cokerd'~?), =~ Hi,(M,),

the ‘top’ local cohomology module for the A,-module M,. In particular, for
q € Supp (M) of M-height j, the ‘g-part’ of the basic Cousin complex for M
satisfies (Coker b/"2), = Hi, (M,). These results show that, for each ie N, the
i-th term in C(&, M) is isomorphic to a direct summand of the i-th term in
C(M) = C(# (M), M), the basic Cousin complex for M. However, we can actually
say more, as it turns out that there is a morphism of complexes

Q = (0')5_,: C(H# M), M) > C(F, M)
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such that w™: M —» M is the identity mapping on M and, for each ne N, and
each prime ideal p € JF, that is significant for C(#, M) (so that p € Supp (M) and
n = hty, p), the restriction of w” to the direct summand (Coker b""?), of B" pro-
vides an isomorphism of (Coker b"~?), onto (Coker d"~2),; but for p € Supp (M)\dF,
having hty, p = n, the restriction of w” to (Coker b""2), is zero. Thus each "
(ne Ng) is an epimorphism whose kernel is a direct summand of B".

We are also able to deduce from this structure theory that if C(#, M) is
exact, then so too is C(s# (M), M) and these two complexes are isomorphic. This
gives another way in which C(#(M), M) is ‘basic’, because it is, up to isomor-
phism, the only possible candidate for an exact Cousin complex for M.

The impetus for this work came from study of a balanced big Cohen-
Macaulay module (see [7, (1.4)] for the definition of this concept) over a local
ring. Suppose, temporarily, that A is local with maximal ideal m. In [8, 4.1],
a Cousin complex characterization of balanced big Cohen-Macaulay A-modules
was given: let d:=dim 4, and let 2(A) = (D;);c n, be the dimension filtration of
Spec (4) given by

D; = {p € Spec (4): dim A/p < dim 4 — i} for all ie Ny ;

then M is a balanced big Cohen-Macaulay A-module if and only if C(2(A), M)
is exact and H%(M)#0. The work in this paper arose out of a desire to
compare, for a balanced big Cohen-Macaulay A-module M, the Cousin complexes
C(2(A), M), C(#(A), M) and C(s#(M), M) and to explore whether a prime ideal
q of A with ht g + dim 4/q < dim A could have any significance for any of these
Cousin complexes. In fact, we shall show, as an example illustrating our results,
that such a q has no significance for any of the three complexes, and that the
three complexes are isomorphic.

We now revert to the situation where 4 denotes a commutative Noetherian
ring (with non-zero identity), and M denotes an arbitrary A-module. Also, & =
(F)ien, Will always denote a filtration of Spec(A4) which admits M, and the
Cousin complex C(&, M) will always be denoted by

YRR do dn
0—>M-—>SMSM 5 o M S M.,

1. Technical results about Cousin complexes

In this section, we collect together some results which are fundamental for
working with Cousin complexes. Although some of them can be approached
by means of straightforward modifications of arguments already in the literature,
we do take the opportunity to point out that the work in [2, (3.1), (3.2) and
(3.3)] often provides a short proof that a complex is isomorphic to a Cousin
complex. We thus begin with a brief reminder about complexes of Cousin type.

1.1. Definition. (See [2. (3.1)]) A complex C* = (CY;5 _, of A-modules and
A-homomorphisms is said to be of Cousin type for M with respect to F if it
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has the form

dg? dc! o de A
0—M—->C"—=C o aC>C" o

and satisfies the following for each ne Nj:

(i) Supp(C") S F,;

(ii) Supp (Coker d2 2) < F,;

(i) Supp (H"™(C")) € F,4,; and

(iv) the natural A-homomorphism &(C"): C* - @), a5, (C"), for which, for
yeC" and peOF,, the component of {(C")(y) in the summand (C"), is y/1
(it follows from condition (i) and [3, (2.2) and (2.3)] that there is such an
A-homomorphism) is an isomorphism.

1.2. Remarks. (i) By [2, (3.2)], the Cousin complex C(#, M) is a complex
of Cousin type for M with respect to #Z.

(ii) Let C*=(C%);5_, and Y" = (Y');»_, be complexes of Cousin type for M
with respect to &#. By [2, (3.3)], there is exactly one morphism of complexes

D=4 C>Y

which is such that ¢™': M — M is the identity mapping; moreover, this morphism
is an isomorphism.

(iii) Let L be an A-module such that, for some ne N,, we have Supp (L) =
F;let L'= @,cor, L,

Note that, for p € 0F,, we have Supp, L, < {pA,}, so that each element of
L, (considered as A-module) is annihilated by some power of p, and that, by
[2, (1.2)(ii)] (applied to L and the filtration (F.,);cn,!), the natural 4-homomor-
phism &(L): L' - @, or, L, is an isomorphism.

The following example of the use of 1.2(ii) establishes a result which we
shall need later.

1.3. Example. Let S be a multiplicatively closed subset of A. Asin [8, 1.1],
we denote by S™'# the filtration (G,);.n, Of spec (S™'A), where G; = {S™'p: peF,
and pnS = J}.

Now S™'# admits S™'M, and we need to know that S™'(C(Z, M)) is iso-
morphic, as a complex of S7'4-modules and S~'4-homomorphisms, to

C(S™'F, S™'M),

the Cousin complex for S'M with respect to S™'#.

One can approach this by straightforward modifications of the arguments
given in [3, Section 3], as is suggested in [8, p. 475]. However, another approach
is by means of 1.2(ii), as we now show. It is clear from 1.2(i) that S™(C(#, M))
satisfies conditions (i), (ii) and (iii) of 1.1. To check condition (iv), let ne N,
and note that, for pe dF, with pNS = (&, the A-module (Coker d""?), has a
natural structure as an S '4-module, and, on use of the comments in 1.2(iii),
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we can see that there are S™'A-isomorphisms

SIM"5 @ (Cokerd”2),5 @ (S7'(Cokerd" ?))s1,
peoF, pe dF,
pNS=g pNS= &
It now follows from 1.2(iii) applied to the S™'4-module S~!(Coker d"~2?) that
S7Y(C(ZF, M)) satisfies condition (iv) of 1.1.
We can now apply 1.2(i), (ii) to see that there is a unique isomorphism of
complexes of S~'4-modules and S™'A-homomorphisms

¥ = )is-2: STHC(F, M) > C(S™'F, ST' M)
which is such that ¥ ': 7'M — S™'M is the identity mapping.

14. Remark. Let ne N, and qe€ dF, It follows from the last two para-
graphs of 1.3 (used with the particular choice S = A\g) that the direct summand
(Coker d""?), of M" is A isomorphic to the n-th term in the Cousin complex
C(#,, M,).

2. Comparison of Cousin complexes

This section contains our main results which relate C(s#(M), M) and
C(F, M).

2.1. Notation. In addition to the notation introduced at the end of the
Introduction, the following will be in force for the whole of this section.

We shall write the basic Cousin complex for M, that is C(s#(M), M) where
the M-height filtration #(M) = (H;);cn, of Spec(A4) is given by

H; = {peSupp(M): hty, p =i}  for all ieN,,
as
O—'fj»Mb__l.BOﬁBl_,..._,Bnﬂ;Bnn_,,__.
We shall also let ¥ = (G;);. n, denote a second filtration of Spec (4) which admits
M, and the Cousin complex C(¥, M) will be denoted by
0 M NS N e S NP N e

2.2. Definition. For each p € Spec (4), we define the & -height of p, denoted
by htg p, as follows.

If p¢F,, then we set htg p=—1. If pe();.n,F: then we set htg p = c0.
If neither of these conditions is satisfied, then the set {i € Ny: p € F;} has a greatest
member, n say, and we set htg p =n.

Note that, for p € Supp (M) we have htyunp = hty, p.

Our first lemma in this section establishes some simple but useful properties
of the % -height of a prime ideal in Supp (M).
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23. Lemma. Let p, g Supp (M) with p = q. (The symbol ‘c’ is reserved
to denote strict inclusion.)

(i) If htg p is finite, then htg p < htg q.

(ii) If htg p = o0, then htg q = o0.

(iii) In any event, htg p < htg q.

(iv) For every p € Supp (M), we have hty p < htg p.

Proof. (i) Let htgy p =h. Suppose that htg q = k < h, and look for a con-
tradiction. Then q e F\F,,, and pe F, < F,. Thus q is not a minimal member
of F,, and this is a contradiction.

(ii) Suppose that htgz q = k, finite, and look for a contradiction. Then qe
F\F,,; and peF,. Thus g is not a minimal member of F, and this is a
contradiction.

(iii) This is immediate from (i) and (ii).

(iv) Let ht,, p = n, so that there is a chain p,c p, =--- < p,=p of prime
ideals in Supp (M). If htg p = oo, there is nothing to prove. Otherwise, it follows
from (i) and (ii) that htgz p; is finite for all i=0, ..., n and

Hence htgz p > n.

2.4. Lemma. Suppose, temporarily, that A is local with maximal ideal m,
and that me dF,. Then dimH' "' (C(#, M))<n—i—1for all i=0, ..., n—1.
(We interpret the dimension of the zero A-module as —1.)

Proof. LetieNg with 0 <i<n— 1. We may assume that H }(C(#, M)) #
0. Let

Pocp crep =m
be a chain of prime ideals in Supp (H " }(C(#, M))). By 2.3,
htypo<ht‘9’p1 <<ht;—p,=htg,-m=n.

But, by [8, 1.4(i)], we have poe F;,;,andso i+ 1 < htgp,. Hencen=t+i+1,
and the result follows from this.

Our next result is a generalization of part of the Theorem of [6], and of
[8, 1.8].

2.5. Proposition. Suppose, temporarily, that A is local with maximal ideal
m, and that m e 0F,. Then M", the n-th term in the Cousin complex C(¥, M),
is isomorphic to H? (M), the n-th local cohomology module of M with respect to m.

Proof. Now that Lemma 2.4 has been proved, this can be achieved by
straightforward modification of the argument given in the proof of the Theorem
in [6], and so will be left to the reader.
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2.,6. Corollary. Let neN, and qe0dF,. Then the direct summand
(Coker d""2), of M" is A,-isomorphic to Hp,(M,), the n-th local cohomology
module of M, with respect to the maximal ideal of the local ring A,.

Proof. This is immediate from 1.4 and 2.5.

2.7. Corollary. If p is a prime ideal of A which is of significance for
C(#, M), then p € Supp (M) and htgz p = hty, p.

Proof. By [8, 1.5], p € Supp (M). Let htg p = n, necessarily finite. By 2.6,
H!,(M,) = (Cokerd"?), #0.

Hence, by [5, 6.1], n<dim, M, =hty p. On the other hand, hty p<n by
2.3(iv), and so the proof is complete.

2.8. Remark. Let p e Spec(4). It follows from 2.7 and 2.6 that, for p to
be of significance for C(#, M), several conditions are necessary. It is worthwhile
for us to stress the details.

(i) If p e Spec (A)\F,, then p is of no significance for C(&#, M).

(ii) If p e F,\Supp (M), then p is of no significance for C(&#, M).

(iii) If p e Supp (M), then hty, p < htgp, and p only has significance for
C(#, M) if ht,, p = htgz p; in fact, when this condition is satisfied, p has signifi-
cance for C(#, M) if and only if HY¢P(M,) # 0.

(iv) In particular, if p € (),c n, Fy» then p is of no significance for C(#, M).

2.9. Remark. If follows from 2.8 that, for each ne N,
M"= (@ (Cokerd"?),.

pe 0F,,N3H,,

2.10. Theorem. (We use the notation of 2.1.) Suppose that F, < G; for all
i€ Ny, so that, on use of 2.3(iv), hty,, p < htg p < hty p for all p € Supp (M).

For each ne Ny, let

s = P (Coker d"2), .
pe 0F,NOH ,\0G,,

Then d"(S") < S™*! for all ne Ng, and so, if u" denotes the restriction of d" to
S" (for each n > —2) (interpret S~ = S§™! = 0), then

-2 -1 0 n
05505858 5 585 8m L,

is a subcomplex of C(F, M), we denote this subcomplex by S(¥, 9, M).
The quotient complex C(F, M)/S(Z, %, M) is isomorphic to the Cousin complex
C(% M).

Proof. Let neN, and pedF,N0H\OG, and suppose that 0 #xe€
(Coker d""%),. Let qe dF,,, be such that the component (x + Im d"~')/1 of d"(x)
in the direct summand (Coker d"™'), of M"*! is non-zero.
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By 2.8(iii), q € 0F,,, N0H,,,. By 1.2(iii), x is annihilated by some power of
p; hence, since multiplication by an element of 4\q provides an automorphism
of the A-module (Coker d"7!),, we must have p = q. This means that q ¢ 9G,.,,
for otherwise, since p € G,,,, we should have a contradiction to the fact that
each member of 0G,,, is a minimal member of G,,, with respect to inclusion.
Hence q € 0F,,, N0H,,,\0G,,, and it follows that d"(S") = S"*!, as claimed.

Let us write the quotient complex C(#, M)/S(Z#, %, M) as

05 M50 80t 5 St

Our strategy is to show that this complex is of Cousin type for M with respect
to ¢ and then appeal to 1.2(ii). First note that, for each ne N,

Q" C—? (Cokerd"?),= @ (Cokerd"?),
pe dG,,NJF,NoH,,

pe 0G,NoH,,

11

b

H!, (M) =~ (Coker e""2), ~ (Coker e""?)
pa,\Mp P p

pe dG,NoH,, pe éG,NOH, pe dG,

=N",

in view of 2.6, 2.8(iii) and 2.9. It is thus immediate from 1.2 that Supp (Q") = G,
and the natural A-homomorphism

&eNQ - @ 0
pe 0G,

is an isomorphism. Thus C(#, M)/S(¥, 4, M) satisfies conditions (i) and (iv) of
1.1 (for ¥).

Let us now turn attention to condition 1.1(ii). Of course, Supp (M) < G,,
so let ne N (we use N to denote the set of positive integers). Then

Supp (Coker v"~2) < Supp (Coker d""2)N Supp (Q""!) < F,NG,_, .

Suppose that p € dG,_; N Supp (Coker v""2?) and look for a contradiction. Then
htg p < hty p =n — 1, so that p e Supp (Coker d""2)\F,, a contradiction. Hence
Supp (Coker v"~2) < G,, and C(%, M)/S(¥, %, M) satisfies condition (ii) of 1.1 for
%. It remains for us to check condition (iii).

Let ne N,. First of all, on use of the results of the immediately preceding
paragraph,

Supp (H""1(C(F, M)/S(Z, %, M))) < Supp (Coker v"~2)
< Supp (Coker d""2)NG, .

Suppose that pe dG, Supp(H" '(C(#, M)/S(¥, %, M))), and look for a contra-
diction. Then htgp <htyp =n, so that pe Supp (Coker d" ?)\F,,,. Since
C(#, M) is of Cousin type for M with respect to &, it follows that

(H"H(C(F, M), = (H"(C(F, M))), = 0.
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It therefore follows from the long exact sequence of cohomology modules which
results from the exact sequence of complexes

0-8(F, 9 M)—> C(F, M)-> C(F, M)/S(F, 9 M)—0

that (H"'(C(#, M)/S(Z, 9, M))), =~ (H"(S(#, 94, M))),. However, it follows from
1.2(iii) that (S"), = 0, because
s = @ (Coker d""2),, .
p’' € 0F,N0H,\0G,,
Hence (H" '(C(Z, M)/S(#, %, M))), = (H"(S(#, %, M))), =0, and we have a con-
tradiction. Thus Supp (H" }(C(¥, M)/S(¥, % M))) = G,,,. We have therefore

proved that the complex C(&#, M)/S(Z, 4, M) is of Cousin type for M with respect
to ¢, and so an application of 1.2(ii)) completes the proof.

With the aid of 1.2(ii) and 2.9, we can now immediately deduce the following
corollary of 2.10.

2.11. Corollary. (We use the notation of 2.1.) Suppose that F, < G; for all
ieNy. There is a morphism of complexes

0 = (6')5_,: C(F, M) > C(%4, M)

which has the following properties:

(i) 671: M > M is the identity mapping;

(ii) for each ne Ny, the map 6" M" —» N" is an epimorphism whose kernel
is a direct summand of M";

(iii) for each ne N, and each p € 0G,NdH, we have (p € 0F,N0H, too, and)
the restriction of 0" to the direct summand (Coker d""2), of M" gives an isomor-
phism (Coker d"~2), 5 (Coker e""2),;

(iv) for each ne N, and each p € 0F,N0H,\OG,, the restriction of 0" to the
direct summand (Coker d"~2), of M" is zero.

2.12. Remark. Theorem 2.10 and Corollary 2.11 can be applied to the
basic Cousin complex C(# (M), M) for M and C(&¥, M), because, by 2.3(iv), H; =
F; for all ie N,.

Thus it follows from 2.10 that the modules

S§" = Coker b"2
pe ag:)\ar,, ( )p
form the terms of a subcomplex of C(#(M), M), and the corresponding quotient
complex is isomorphic to C(#, M). Furthermore, 2.11 tells us that there is a
morphism of complexes 2 = (w');5_,: C(# (M), M) » C(F, M) such that o™": M —
M is the identity mapping, and for each ne N, and each p € 0H,, the restriction

of w" to the direct summand (Coker b""2), of B" is zero if p ¢ OF,, but gives
an isomorphism of (Coker b"~2), onto (Coker d""?), if p € OF,.
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3. Applications to exactness of Cousin complexes

We begin this section with reminders of the definitions of the small support
and the depth of the A-module M (recall that M is not assumed to be finitely
generated).

3.1. Definitions. Recall from [1, Section 1] that, when A4 is local with
maximal ideal m, the depth of M, denoted by depth M or depth, M, is defined
to be the smallest integer i such that Exti(4/m, M) # 0 if any such integer exists,
and oo otherwise. For non-zero finitely generated M, this depth is, of course,
finite, but for a non-zero M which is not finitely generated, it is possible for
this depth to be oo.

By [1, 2.1)], H (M) =0 for all i <depth M, while H(M)#0 for i=
depth M if depth M is finite. Thus, by [5, 6.1], if depth M is finite, then
depth M < dim M.

We now revert to the situation where 4 denotes a general commutative
Noetherian ring, not necessarily local. The small support, or little support, of
M, denoted by supp (M) or supp, (M), is defined by

supp (M) = {p € Spec (4): depth, M, is finite} .

It is clear that supp (M) < Supp (M); if M is finitely generated, then these two
sets are equal, but in general this need not be the case.

3.2. Remark. Note that, by 3.1 and 2.3(iv), for p e supp (M),
depth, M, < hty p <htgp.

Note also that if p is a prime ideal of significance for C(#, M) then, by 2.8, we
must have p e supp (M).

3.3. Remark. Suppose that ne N and that the Cousin complex C(&, M)
is exact at M =M™ M° ..., M"2 Let L be a finitely generated A-module
such that (0: L) is not contained in any prime ideal p which is of significance
for C(#, M) and satisfies htgy p < n— 1. Then an argument entirely similar to
the ‘partially exact Cousin complex argument’ of [3, (4.6)] will show that

=0 for i < n;

Exta (L, M){gHomA (L, Coker d""2) fori=n.

3.4. Proposition. Let ne N. Then the Cousin complex C(#, M) is exact
at M =M1, M° ..., M" %2 if and only if, for every p e supp (M), we have
depth, M, > min{n, hts p}.

Proof. (=) Let pesupp (M), so that, pe Supp (M) by 3.1 and htgp is
non-negative: let this height be r. Then, by 2.3(iii), p is not contained in any
prime ideal q which is of significance for C(#, M) and satisfies htz q <r. Hence,
by 3.3, Ext} (4/p, M) =0 for all i <min {n,r}, so that depth, M, > min {n, r}.
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(<) Assume that depth,, M, > min {n, htg p} for every p e supp (M). Sup-
pose that t e N is such that C(#, M) is exact at M = M~', M° ..., M'"% but
not exact at M'"!; we suppose that t < n, and look for a contradiction.

Let p be a minimal member of Supp (H'"}(C(#, M))), so that

p € Ass (HY(C(Z#, M))).

By [8, 14], htz p >t + 1. By 3.3, Ext! (4/p, M) =~ Hom, (A/p, Coker d*"2), and
so Exty (4,/pA,, M;) = Hom,, (4,/pA,, (Coker d'"%),), and this is non-zero
because

pA, € Ass,, (H''(C(£, M))),) = Ass,, ((Coker d'~?),).

Hence pesupp(M) and depth, M, <t However, htzp>t+1, and so
depth,, M, < min {n, htz p}. This contradiction completes the proof.

3.5. Corollary. The following conditions are equivalent:
(i) C(#, M) is exact;

(ii) depth,, M, > htg p for all p € Supp (M);

(iii) depth,, M, = htgp for all p € supp (M).

Proof. This is now immediate from 3.2 and 3.4.

We are now ready to state and prove our main result in this section. It
shows that there can be essentially at most one exact Cousin complex for M,
as it shows that if C(%, M) is exact, then the basic Cousin complex for M,
C(# (M), M) is exact and isomorphic to C(&#, M).

3.6. Theorem. Here, we use the notation of 2.1, so that 4 = (G);. n, denotes
a second filtration of Spec (A) which admits M. We shall suppose that F; = G;
for all ie Ny, so that, by 2.3(iv), hty p < htg p < hty p for all p € Supp (M) and
the results of 2.10 and 2.11 are available.

If C(% M) s exact, then

(i) C(#, M) is exact,;

(ii) the morphism of complexes @ = (0');5_,: C(F, M) —> C(%, M) of 2.11 is
an isomorphism;

(iii) supp (M) is equal to the set of prime ideals of A which are of significance
for C(%, M), and also equal to the set of prime ideals of A which are of significance
for C(#, M),

(iv) for p € supp (M) with hty p = n, we have p € 0F,N0G, and the restric-
tion of 0" to the direct summand (Coker d""?), of M" gives an isomorphism
(Coker d"~2), 5 (Coker e""2),;

(v) both the complexes C(%9, M) and C(¥, M) are isomorphic to the basic
Cousin complex C(# (M), M) for M, so that all three complexes are exact.

Note. Given an exact Cousin complex C(¥%, M), we can always use the basic
Cousin complex C(#(M), M) in the role of C(#, M). Thus this theorem gives
information about all exact Cousin complexes.
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Proof. Let p esupp(M). By 3.2 and 3.5,
depth,, M, < hty p < htg p < hty p = depth,, M, .

Therefore depth,, M, = hty p = htg p = hty p for each pesupp (M), and so it
follows from 3.5 that C(%, M) and C(3#(M), M) are exact. All the remaining
claims now follow easily from 2.11, 3.2, 2.8(iii) and the Note immediately preceding
this proof.

3.7. Example. Suppose that A4 is local with maximal ideal m. In [8, 4.1],
a Cousin complex characterization of balanced big Cohen-Macaulay A-modules
was given: let d:= dim A, and let 9(4) = (D;);cn, be the dimension filtration of
Spec (A) given by D; = {p € Spec (4): dim A/p < dim A — i} for all i € Ny; then M
is a balanced big Cohen-Macaulay 4-module if and only if C(2(4), M) is exact
and H¢ (M) # 0.

Let us assume that M is a balanced big Cohen-Macaulay A-module. Vari-
ous characterizations of the small support of M are provided by [7, (3.2)] (where
the small support was called the ‘supersupport’ of M).

Note that, for i e N,, we have

{p e Spec (4): ht p > i} = {p € Spec (4): dim A — dim A/p > i}.
It therefore follows from 3.6 and [8, 4.1] that all three Cousin complexes
C(2A4), M), C(H#(A), M), C(HM)M)

are isomorphic and exact, and that only primes in supp (M) (which, by [7, (3.3)]
or 3.6, must satisfy ht, p = ht, p = hty,, p) have significance for these Cousin
complexes.

Thus a prime ideal q of 4 with ht q + dim A/q < dim A has no significance
for any of these Cousin complexes: it was a desire to investigate this point, and
compare these three Cousin complexes, which provided the impetus for this
research.
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